
An Extensive Conception of Reusability
in Software Component Engineering

Devesh Kumar Srivastava and Priyanka Nair

Abstract In early 1960s, intricacy of software systems led to a call for the emer-
gence of the concept of Software Reuse. Rather than building software applications
from genesis, software reuse consents creating software systems from existing
software. Efficient software reuse programs implemented by the firms may increase
their productivity and value, thereby giving the organizations headway. Several
reuse metric and models reign the software industry. Reuse assessment commit to
high quality and economic system development. Despite its commencement as a
potent vision, software reuse has botched to become a part of the typical software
engineering practice. The paper is an attempt to articulate the notion of software
reuse and the concerning issues. Reusability facet has been conferred analogous to
OO paradigm and agile development. Here the concept of reuse has been addressed
as a combination of artifacts as well as individual components.

Keywords Software reuse � Reusability � Reuse approaches � Software reuse
metrics � Agile software development � Object oriented paradigm

1 Introduction

Reconstruction of new systems pertaining to changing requirements is not viable.
Software components can be used time and again for creating new systems and
applications. Components can be integrated into software systems. Everything
associated with a software that can be reused is termed as software reuse. Software
Reuse leverages the project structure and cost effective issues of software engi-
neering. However, Reusability is difficult to maintain and its inclusion in new
systems is even more severe [1]. The NATO Software Engineering Conference,

D.K. Srivastava (&) � P. Nair
Department of CSE/IT, Manipal University, Jaipur, India
e-mail: devesh988@yahoo.com

P. Nair
e-mail: priyankanair@live.com

© Springer Nature Singapore Pte Ltd. 2017
N. Modi et al. (eds.), Proceedings of International Conference on Communication
and Networks, Advances in Intelligent Systems and Computing 508,
DOI 10.1007/978-981-10-2750-5_47

449



1968, gave the prime valuable coverage to the bottlenecks of software engineering.
From amongst various experts who attended the conference, McClory in his
working paper proposed the notion of necessity and adequacy of reusable com-
ponent factory. He contended the effectiveness of using component libraries for
various system processing and computations [2, 3]. The code level reusability is
coherent as compared to the conception of specification and design reusability
which is challenging [1]. The problem of dealing with software reuse is the radical
fixate with additional proposition of measurement of reusable components.

2 Approaches of Software Reuse

To realize software reuse work, conventional approaches are employed. On the
frontier, the classification is primarily based on component level and process level.
Reuse based on object of reuse or component is the Compositional Reuse approach
whereas process reuse fall under Generative Reuse approach. In sync, these
approaches serve as reuse aid to the system [3, 4].

Compositional Reuse appropriates the notion of reusable objects that are unaltered
during reuse. It is a bottom up system development. Combinative accessions of simpler
components frame obscure and complex objects [1]. Components that are compatible
with reuse support features are archived in repositories. Retrieval is a key feature here.
Components are dispersed segments which benefits the developers to achieve high
productivity. Generative Reuse is reuse of process rather than product. Parsers and
Lexical analyzers are based on generative approach. Reusable pattern generation is
taken into account before assimilating objects of reuse into the program [1].

3 Types of Reuse

Reusability scrutinized over domain scope can be categorized in two forms: Vertical
Reuse and Horizontal Reuse. Vertical Reuse is generative in nature. However it has
not yet been widely accustomed in software business industry. In software devel-
opment it has an impending and extensive connotation [5]. However, White
Box Reuse is strenuous to maintain. It is an elemental form of Vertical Reuse. Code is
modeled as the reused entity for white box reuse. The access to the source code and
implementation is required herewith. Reuse is met with alteration and adaptation as
the core [6, 7] Horizontal Reuse is widely accustomed across applications. It follows
compositional reuse approach. Black Box Reuse forms the domain component of
horizontal reuse. Component reuse is carried out without modifications. It employs
Commercial Off the Shelf (COTS) which is a third party application. They are
economical and reliable. COTS components are incorporated in already built soft-
ware in order to provide additional services. However, they are employed for general
applications [8]. It is well appropriated as Black box reuse as they are perceived only
in terms of input and output without taking into account the functionality.

450 D.K. Srivastava and P. Nair



4 Reuse Assessment

In order to identify the effectiveness of various reuse methods, it is imperative to
quantify and assess them. Various software pertinent metric can be employed as
quantitative index to measure the reusability in terms of software assets: product
and process. Some of the reuse metric models have been taken herewith.

4.1 Cost/Productivity Metric Model

There is an additional cost associated with software reuse. Reuse cost is viewed as
an investment. Reuse incurs added cost to the traditional software development
process. The cost model was based on cost benefit analysis [6]. The two models for
cost and productivity commit to the cost of reusing software components and the
cost of developing objects of reuse. The software reused is decisive and reliable
thereby conforming to the black box properties. Apropos the properties, enough
documentation related to the objects of reuse is available but the size remains
non-existent. Negligible cost is associated with the reuse of components [9]. For
estimating the relative size of reusable components, it is required to measure the
size of object of reuse with the hypothesis that they are built from scratch. The
relative size, R of reusable components is hereby articulated as:

R ¼ SR
SR þ SE

ð1Þ

where,

SR estimated size of reusable components
SE effective size of reusable components which is a regulated consolidation of

altered and new source code.

The higher order cost model estimates the cost of developing objects of reuse.
Let CD be the relative cost of developing the software product corresponding to all
current code and b is the cost relative to all new code, of using the reused code in
the new product. CD and b for all new code is assumed to be 1. The relative cost of
software development is presented as follows:

CD ¼ 1 ð1� RÞþ bR Or CD ¼ R ðb� 1Þþ 1 ð2Þ

where,
R: proportion of reused code in the product (1 − R): proportion of all new code.
According to Gaffney and Durek, when only source code is reused b = 0.85

whereas when requirements, design and code are reused b = 0.08. It is because in
the former case all other phases are required to be endured [8].

An Extensive Conception of Reusability … 451



The productivity, P is the inverse of cost metric

P ¼ 1
CD

ð3Þ

or

P ¼ 1
R ðb� 1Þþ 1

ð4Þ

Developing Software with reusable component incurs more cost as compared to
developing software without reusable objects [6, 9].

Consider a small module of an ongoing Omnicare Healthcare Management
Project. We will use the Gaffney and Durek Model to calculate the relative cost and
productivity of the project module with reuse components.

Table 1 indicates the development cost corresponding to different stages of
development of the module. Prototyping or design phase incurs the maximal cost
with respect to other development stages (Fig. 1). Relative reuse cost can be cal-
culated by taking into account the objects of reuse with additional activities. If we
take source code as our object of reuse then requirement analysis and testing are to
be performed as accompanying tasks. Here b = 0.33 (0.07 + 0.26) similarly, when

Table 1 Relative development cost corresponding to different phases of developing the module

Development phase Relative development cost (phase wise)

Requirement analysis 0.07

Prototyping 0.42

Implementation 0.25

Validation and testing 0.26

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

Development Cost(Phase Wise)

Fig. 1 Cost of developing
the software corresponding to
different phases of module
development

452 D.K. Srivastava and P. Nair



requirement is reused then the relative reuse cost will be 0.42 + 0.25 + 0.26; i.e.
b = 0.93. Table 2 shows the relative reuse cost of development. With requirement
taken as the object of reuse holds the highest relative reuse cost (Fig. 2).

Suppose there are 10,000 lines of code in the original software application.
Assuming 4700 lines of code is reused. Here CD = 1 (relative cost of development
of all new code is assumed to be 1). The proportion of reused code R is 0.47
(R � 1). From Fig. 2, b = 0.33 for source code taken as the reused component.
b is the integration cost of reusable component. Using the Gaffney and Durek
model, we can calculate the cost and productivity of development of system with
source code as the object of reuse.

CD ¼ 1 ð1� 0:47Þþ 0:33 ð0:47Þ ¼ 0:69 ð5Þ

Taking source code as the object of reuse, the relative cost and productivity of
development of the module is estimated as 0.69 and 1.4 respectively. Cost of
developing the module relative to all new code is assumed to be 1.

Table 2 Integration cost of reusable component

Object of reuse Accompanying tasks to be completed Relative cost of component
with reuse (b)

Requirement Prototyping,
Implementation,
Testing

0.93

Prototype Requirement
Analysis,
Implementation,
Testing

0.58

Code Requirement
Analysis, Testing

0.33

Requirement, Prototype, Code Testing 0.26

1

0.8

0.6

0.4

0.2

0

Relative Cost of Components with Reuse

Fig. 2 Relative cost of
components with reuse (cost
of integrating reusable
components)

An Extensive Conception of Reusability … 453



4.2 Maturity Metric Model

Maturity metric model is used to assess the implementation and effectiveness of
systematic reuse activities. The advancement of reuse programs is measured on an
ordinal scale [10]. Kolton and Hudsen Reuse Maturity Model is a five level model
that directs an organization for effective reuse of activities in order to achieve
maximal performance.. The levels are: initial/chaotic, monitored, planned, coor-
dinated and ingrained. At the onset of any program, organizations are traceably
between initial/chaotic and monitored level. Post ingrained level; reuse is viewed as
a unified part of the system [1, 10].

4.3 Percent Reuse

To assess the reuse rate, calculating the percentage of reuse, is viewed as an
essential metric. Substantially, amount of reuse is the ratio of the amount of object
reused to the total size of the object considering the life cycle of the program or
system [6]. Moreover, determining the amount of reuse on account of lines of code
(LOC) in a program is trivial. Hence,

%Reuse ¼ Reused LOC in a Software
Total Size of the Software ðLOCÞ � 100 ð6Þ

Consider a software application with 10,000 lines of code. Assuming 4,700 lines
of code of the same application is reused to develop a new software product. The
percentage of reuse is calculated as follows:

%Reuse ¼ 4700
10000

� 100 ¼ 47% ð7Þ

Higher percentage of reuse is indicative of better reuse rate.

5 Agile Development and Reuse

The extension of reusability concept in agile development is complex. The agile
development is the software development methodology that focuses on continuous
improvisation with effective communication between people. However, there is
minimal documentation which makes reusability critical. The major limitation with
reuse in agile environment is the difficulty in continuous redesign, due to paucity of
application-specific artefacts. [11] Reusability can be employed with agile software
development in three ways. The methodologies used for incorporating reusability in

454 D.K. Srivastava and P. Nair



agile development Component Based Development (CBD), Refactoring and
Reusable Architectures. CBD validates the component in conformance with the
suitability for reuse. Refactoring reorganizes and remodels an existing code. It can
be viewed as a template or design that can be employed in varied scenarios per-
taining to requisite applications. Architectural patterns may be used to develop
reusable architectures [11, 12].

6 OO and Reuse

In the 3rd International conference on software reuse it was substantiated that object
oriented paradigm does not validate to be the necessary and sufficient condition to
support reusability. Some of the credos of OO obstruct the reuse and hence there is
need to be very cautious while incorporating its features [13]. Despite the restraints,
OO approach complements features that support software reuse. The Object
Oriented paradigm considerably enhances the productivity with reuse in an ele-
mental role. The assortment and contrast of programming languages becomes a key
consideration when incorporating reusability to improve the productivity [3, 9]. OO
braces both types of reuse. Inheritance backs White Box reuse whereas Client-
Supplier relationship supports black box reuse [10]. Much of the assistance of
Object Oriented paradigm to reusability is on probation. However, some of the
precepts of OO approach need to be scrutinized with respect to violations to the
reuse support.

7 Issues with Reusability

Software reuse work can only be accomplished with the employment of any or both
of the reusable assets: product and process. However, building software with the
reusable assets raises certain methodological and technical concerns. Issues are
often related to spotting of the reusable assets and identifying their conformance to
the current requirements. For ensuring the adaptation of these reusable assets to the
current needs automation of the reusable components is met employing OO features
[3]. There is very little tool support for locating the reusable components and
maintaining a component prospectus. However certain tools like CASE tools are
viewed as a way to improve and promote reuse in software projects in organiza-
tions. Computer Aided Software Engineering (CASE) tool is used for retrieval of
reusable components from a software catalogue [14]. Reusable Components are
fragments that are stored in repositories. Another major issue that crops up is the
reuse barrier. Efficient retrieval is necessary for development of reusable software.
The repository keeps changing constantly which makes it difficult for the developer
to foresee the occupancy of object of reuse [15]. Also, there is an additional cost
associated with development of software with reusable components. It is more

An Extensive Conception of Reusability … 455



challenging to reuse specification and design as compared to the code reuse. To
reuse specification/design a reserve of solutions is required to be searched in a
problem-oriented demeanor [16].

8 Conclusion

The above sections elucidate the imperative aspects of software reuse. Software
reuse reinforces software productivity and quality. Software repository is essential
for maintaining the catalogue of reusable software components. Reusable assets are
conferred in terms of product and process. To carry out software reuse, component
level and process level reuse approaches are prevalent in industry. From amongst
the various software metrics employed for the measurement of different reuse
techniques, cost/productivity metric model, maturity assessment and percent reuse
estimation have been taken up. The cost is negligible when reusing the components.
However an additional cost is incurred when developing software with reusable
components. Despite the efficacy of reusability, there are issues raised while
developing software with reusable components. With Agile development,
reusability facet becomes complex with the limitation of documentation. However
reusability can be incorporated with the agile environment employing various
methodologies. Also, even though OO paradigm has been widely used for sup-
porting conception of reuse, it has not been empirically proven to be the necessary
and sufficient condition for reuse support. Reusability in Agile method is an open
area for researchers for further improvement.

References

1. Sametinger, J Software Engineering with Reusable Components. Springer Science and
Business Media. (2013).

2. Naur, P., Randell, B., & Committee, N. S. Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7–11 Oct. 1968. NATO
Software Engineering Conference, (October 1968), 231. http://doi.org/10.1093/bib/bbp050
(1968).

3. Jalender, B., Govardhan, D. a., & Premchand, D. P. (2010). A Pragmatic Approach To
Software Reuse. Journal of Theoretical and Applied Information Technology (JATIT) Vol,
14, 87–96. Retrieved from http://www.jatit.org/volumes/research-apers/Vol14No2/
3Vol14No2.pdf.

4. Czarnecki, K. Overview of Generative Software Development. Unconventional Programming
Paradigms, 3566, 326–341. http://doi.org/10.1007/11527800_25. 2005.

5. Jamwal, D. Software Reuse : A Systematic review. Proceedings of 4th National Conference;
IndiaCom, 1–7, (2010).

6. Marshall, J. J., & Downs, R. Reuse readiness levels as a measure of software reusability.
International Geoscience and Remote Sensing Symposium (IGARSS), 3(1), 1414–1417.
http://doi.org/10.1109/IGARSS.2008.4779626, (2008).

456 D.K. Srivastava and P. Nair

http://doi.org/10.1093/bib/bbp050
http://www.jatit.org/volumes/research-apers/Vol14No2/3Vol14No2.pdf
http://www.jatit.org/volumes/research-apers/Vol14No2/3Vol14No2.pdf
http://doi.org/10.1007/11527800_25
http://doi.org/10.1109/IGARSS.2008.4779626


7. Dosch, W., Lee, R.Y., Wu C. Software Engineering Research & Applications. Springer, 172
(2006).

8. Galorath, D. Software Reuse and Commercial Off-the-Shelf Software, Galorath Incorporation,
El Segundo, CA. 1–22. Retrieved from http://www.compaid.com/caiinternet/ezine/galorath
(2007).

9. Tripathy, P., Naik, K. (2014). Software Evolution and Maintenance. John Wiley & Sons.
10. Soora, S. K. A Framework for Software Reuse and Research Challenges, IJARCSSE, 4(10),

441–448, (2014).
11. Spoelstra, W. J. T. Reusing software assets in agile development organizations—a

management tool. University of Twente, Hengelo, (2010).
12. Singh, S., & Chana, I. Enabling Reusability in Agile Software Development. International

Journal of Computer Applications, 50(13), 33–40. http://doi.org/10.5120/7834-1132, (2012).
13. Patidar, R., & Singh, P. V. OPEN ACCESS A Survey of Software Reusability, 4(8), 96–101,

(2014).
14. Sharma, A., Grover, P. S., & Kumar, R. Reusability assessment for software components.

ACM SIGSOFT Software Engineering Notes, 34(2), 1. http://doi.org/10.1145/1507195.
1507215. (2009).

15. Shiva, S. G., & Shala, L. A. Software Reuse: Research and Practice. Information
Technology,. ITNG ’07. Fourth International Conference on, 603–609. http://doi.org/10.
1109/ITNG.2007.182, 2007.

16. Sharma, K., Agnihotri, N., & Hooda, M. Software Reusability: Possibilities From The
Existing Software, 97–99. (2013).

An Extensive Conception of Reusability … 457

http://www.compaid.com/caiinternet/ezine/galorath
http://doi.org/10.5120/7834-1132
http://doi.org/10.1145/1507195.1507215
http://doi.org/10.1145/1507195.1507215
http://doi.org/10.1109/ITNG.2007.182
http://doi.org/10.1109/ITNG.2007.182

	47 An Extensive Conception of Reusability in Software Component Engineering
	Abstract
	1 Introduction
	2 Approaches of Software Reuse
	3 Types of Reuse
	4 Reuse Assessment
	4.1 Cost/Productivity Metric Model
	4.2 Maturity Metric Model
	4.3 Percent Reuse

	5 Agile Development and Reuse
	6 OO and Reuse
	7 Issues with Reusability
	8 Conclusion
	References


