
A Novice Approach for Web Application
Security

Jignesh Doshi and Bhushan Trivedi

Abstract Number of websites hosted increased exponentially in the past few years.
More and more organizations are doing their business on web. As a result the
attacks on web applications are increased. It is found that about 60 % of web
resources are vulnerable. So computer security is critical and important for Web
applications. There are various types of solutions exists for mitigating security risks.
Developer Skills and efforts are required in most of the solutions. In this paper, the
authors have proposed a model for remote database health check. The focus of
model is to provide higher level security assessment. The proof of concepts has
been implemented using python. The proposed model has been tested on various
test scenarios. Authors have also compared model with the topmost 3 vulnerability
scanners. The results were found promising and satisfactory.

Keywords Web application attacks � SQLI � Defensive coding � Hardening �
Vulnerability scanner

1 Introduction

Computer Security is the biggest challenge of the current era [1–3]. Data and
computer systems are key targets of attacks. As per IBM Data Breach Report, 12 %
increase in security events year-to-year [4]. Top 10 web application risks remain
same in the past few years [1]. Approx. 60 % of attacks are because of vulnerable
application code [5].

Most common approaches used to manage web application attacks are defensive
coding, hardening (filtering), static/dynamic code analysis or black box testing.

J. Doshi (&)
LJ Institute of Management Studies, Ahmedabad, India
e-mail: doshijig@gmail.com

B. Trivedi
GLS Institute of Computer Technology, Ahmedabad, India
e-mail: bhtrivedi@gmail.com

© Springer Nature Singapore Pte Ltd. 2017
N. Modi et al. (eds.), Proceedings of International Conference on Communication
and Networks, Advances in Intelligent Systems and Computing 508,
DOI 10.1007/978-981-10-2750-5_1

1



Solutions based application adversely affect cost and developer’s efforts [6].
Testing is used for building secure applications. The major problem with testing is
that it requires code and web server access [6].

The authors have proposed a security Model to mitigate security risks. Our focus
is to develop Model which can be used for web application database health check
and act as a utility. Model which neither require developer skills nor code.

The remainder of the paper is formed as follows: Sect. 2 explains the importance
of Web application Security and SQL Injection attempts. Section 3 discuss the
problem statement (issues), Sect. 4 describe the proposed model, examining results
and comparison is provided in Sects. 5 and 6 respectively. The conclusion is
provided in Sect. 7.

2 Literature Survey

Injection attack is one of the top three attacks since 2010 [1, 7–15]. SQL Injection
and Blind SQL Injection are key attacks under Injection attacks. Most commonly
SQL Injection attacks are executed from application using user inputs or URLs [5,
9, 10]. The key impacts of SQLI attacks are data loss, application downtime, brand
damage, and customer turnover [7, 11, 16, 17]. Blind SQL Injection attacks are
used to List database information and dump data [1]. Both attack use Structure
query language for execution of attacks.

Most common approaches used to manage SQLI attacks are defensive coding,
hardening (filtering), static/dynamic code analysis, Intrusion detection system and
black box testing [8, 6].

Web application communities have developed various approaches for detection
and prevention of SQLI [11, 16–19]. Observations of various techniques (existing
and proposed) are summarized in Table 1 with reference to efforts, resource
requirements (Code and web server) [6, 16, 17, 20–27].

It is observed that most of the solutions require Developer Skills, developer
efforts and web server/code access (refer to Table 1).

Gap: A systematic, dynamic and effective solution is required to detect and
prevent SQLI [20, 21].

Table 1 Comparison of web application attack solution categories

Approach Developer Source code Web server

Skill Effort Required Required

Defensive coding X X X

Static analysis X X X

Static and dynamic analysis X X X

Black-box/penetration testing M X X X

IDS X X X

Hardening X X X

2 J. Doshi and B. Trivedi



3 Problem Statement

The authors have found that model with following functionalities is required.

(1) Any beginner can run model i.e. no or little technical knowledge is required to
execute the model [6, 17, 20–22].

(2) Model work as remote penetration testing i.e. access for source code is not
required [6, 17, 20–22].

(3) Web server access is not required i.e. model can be executed from remote PC
without installing it on server [6, 17, 20–22].

(4) Model can work as utility [6, 17, 20–22].

4 Proposed Model: Model for Remote Database Health
Check

In this research paper, the authors have proposed a novice approach for performing
remote database health check (web vulnerability checks).

4.1 Objectives of Model

The objectives of model are to develop model which can work as a utility with
minimum technical skills, companies of any size can perform investigations,
developers can develop highly secure web applications and organizations can
mitigate with web vulnerabilities.

4.2 Overview

Prototype model is developed using python and will focus on top 2 vulnerabilities
(SQL Injection and Blind SQL attacks). Model diagram is described in Fig. 1.

Following subsections describe each phase of the proposed model.

(i) Analyse Web Application This step will verify the existence of user entered
web application host name.

(ii) Information Gathering This step describes the process of investigating,
examining and analyzing the target website in order to gather information.
System Information (like Operating system name, Version etc.), Database
Information (like Database Name, Version, table/column Names etc.) and
Links (like number of static links, database links mailing and other links) are
gathered.

A Novice Approach for Web Application Security 3



(iii) Vulnerability Assessment In this step model will check the vulnerability of
web application using data gathered and rule database (payloads) for SQLI
and Blind SQL Injection attacks turn by turn. This task is divided into two
sub tasks. First, attacks are build using payload i.e. create injection strings
using payloads. Then using identified entry points, it will execute attacks.
During vulnerability check, Model will check for all types (attack vectors) of
attacks. The model is using payload database. Various payloads are used for
building and exploiting attacks like Login, Table and column names, attack
payload, rule and words. These payloads provide scalability for any new
attacks which may found in future.

The authors have prepared a prototype for implementing and testing this model.

5 Testing

5.1 Testing Environment

Figure 2 shows the test environment created for proposed model testing.

Fig. 1 Remote database health check model diagram

Fig. 2 Test environment

4 J. Doshi and B. Trivedi



Two virtual machines named VICTIM and HACKER are created on testing
machine. PHPEchoCMS web application is deployed on VICTIM machine and
proposed model is installed on HACKER Machine. For testing HACKER machine
is used.

5.2 Test Scenarios

For proof of concept verification, three test scenarios were considered.

(A) Test Scenarios 1 PHPEchoCMS
A Deliberately vulnerable web site is created for testing model using
PHPEcho CMS. The first test scenario ran with PHPEchoCMS, a deliberately
insecure J2EE web application developed. The purpose of this test campaign
to verify and test the proposed model.

(B) Test Scenario 2
Custom web applications (developed and hosted on local host). The web site is
developed using PHP and database as MySQL. The authors considered two
types of websites (static and dynamic) under this scenario.

(C) Test Scenario 3
Purpose of this scenario is to execute unit testing of developed screen. Under
this category one single login page is developed and testing is performed.

6 Results

6.1 Results

Testing results of above scenarios are summarized in Table 2.

Table 2 Testing results—vulnerability assessment

Test scenario No. of components No. of DB links SQLI Blind SQL

TS-1: Dynamic
(PHPEchoCMS)

25+ 11 TP TP

TS-2: Custom (static) 28+ 04 TN TN

TS-2: Custom (dynamic) 127+ 04 TP TP

TS-3: Dynamic
(under development)

1 4 TP TP

TS3: (Under maintenance) 80+ 5 TN TN

TN True Negative, TP True positive

A Novice Approach for Web Application Security 5



6.2 Performance

Table 3 summarize performance data of all testing scenarios. Performance data
shows that proposed model is quick in assessment.

6.3 Comparison

Four parameters used for comparison are Vulnerability coverage (SQLI and Blind
SQL), Feature (is solution GUI based), Developer Skill required and developer
efforts required. The comparison between proposed model and top 10 open source
tools is presented in Table 4.

It is found that

• Only eight out of top ten open source solution provide vulnerability assessment
for SQLI and Blind SQL Injection, while proposed model can do for both.

• Six out of top ten open source model do not provide Graphical interface, while
proposed model is menu driven

Table 3 Testing results—performance

Application Duration (s)

TS-1: Dynamic (PHPEchoCMS) 135

TS-2: Custom (static) 119

TS-2: Custom (dynamic) 181

TS-3: Dynamic (under development) 040

TS3: (Under maintenance) 177

Table 4 Comparison—top 10 open source solutions

Name SQLI Blind SQL GUI Skill/efforts required

Grabber X X No Yes

Vega X X Yes Yes

Wapiti X X No Yes

W3af X X Yes Yes

Web scarab X X Yes Yes

Skipfish X X No Yes

Ratproxy X X No Yes

SQLMap X X No Yes

Wfuzz X No Yes

Arachni X Yes No

Proposed model X X Yes No

6 J. Doshi and B. Trivedi



• Due to command line interface, technical knowledge is required in most of the
open source solution. While proposed model does not require developer efforts
for execution.

6.4 Comparison of Proposed Model with Top 3
Vulnerability Scanners

Table 5 describes comparison between proposed mode and top 3 vulnerability
scanners.

Table 6 represents resource requirement comparison between Net Sparker and
proposed model.

From Tables 5 and 6, we can conclude that proposed model can works with little
resource i.e. works as a utility. It do not require developer efforts, skills and con-
figuration. It is easy to use.

Table 5 Comparison—top 3 vulnerability scanners

Wapiti OWASP ZAP Net sparker Proposed model

Function Scanner
(act as
fusser)

Fusser Scanner Scanner

Required technical skills Yes No No No

Requires source code
access

No No Yes No

Configuration required Yes Yes Yes No

False positive Medium High Low No

SQL injection Yes Yes Yes Yes

Blind SQL Yes Yes No Yes

Vulnerability assessment Yes Yes Yes Yes

Operations Command
line

Auto and
manual

GUI Menu driven

Report Yes Yes Yes Yes

Purpose Audit Detect training Detect/exploit Detect and
exploit

Table 6 Comparison—resource requirement

Net sparker Proposed model

RAM requirement 1 GB RAM (min.) <512 MB

HDD 100 MB + 100 Mb per scanning and 4.2 GB per scan 1 MB

Installation Yes No

Developed using .NET Python 2.X

Platform Windows UNIX/Windows

A Novice Approach for Web Application Security 7



7 Conclusion and Future Work

Some investigation challenges for web vulnerabilities are exemplified in the pro-
posed model. It provides bases for utility. The model emphasizes on the require-
ments of changes needed in Vulnerability risk mitigation using a light weight
utility. To address challenges of multi tenancy of web application, Authors have
proposed a logging mechanism, which can be useful to address known as well as
unknown threats.

One of the key characteristic of Model is that it does not try to obtain sensitive
data. However, it extracts weaknesses to prepare attacks and evaluate web appli-
cation for vulnerability. The attack results are collected which can be used for
further analysis and code fix. As mentioned Model neither need code nor server
access to determine. Authors can run from any PC by giving an URL to the health
check.

Authors can conclude that they have successfully tested web applications using
proof of concept. The performance found was excellent. Model correctly identified
vulnerability in web applications.

References

1. OWASP. Top Ten project 2013: https://www.owasp.org/index.php/Category: OWASP_Top_
Ten_Project: accessed 31st May 2014.

2. Internet user statistics: http://www.internetworldstats.com/stats.htm: visited on 23rd
November 2014.

3. Internet user in world: http://www.internetlivestats.com/internet-users/: visited on 23rd
November 2014.

4. IBM Data Breach Statistics: http://www-935.ibm.com/services/us/en/it-services/security-
services/data-breach/; visited on 23rd November 2014.

5. Eugene Lebanidze: Securing Enterprise Web Applications at the Source: An Application
Security Perspective: https://www.owasp.org/images/8/83/Securing_Enterprise_Web_
Applications_at_the_Source.pdf, pp. 1, 15, 32.

6. Jignesh Doshi, Bhushan Trivedi, Assessment of SQL Injection Solution Approaches,
IJARCSSE, October 2014, Vol 4, Issue 10, ISSN: 2277 128X.

7. White Paper: Cutting the Cost of Application Security: An ROI White Paper: https://www.
imperva.com/lg/lgw.asp?pid=349: accessed 31st August 2014.

8. Robert Richardson, “15th Annual 2010/2011 Computer Crime and Security Survey”, 2011:
gatton.uky.edu/FACULTY/PAYNE/ACC324/CSISurvey2010.pdf: accessed 1st December
2014.

9. Michael Howard, David LeBlanc and John Viega. “24 Deadly Sins of Software Security”.
“Sin 1: SQL Injection.” Page 3–27. McGraw-Hill. 2010.

10. Nina Godbole and Sunit Belapure, “Cyber Security: Understanding Cyber Crimes, Computer
Forensic and Legal Perspective”, Wiley India Pvt. Ltd, First Edition 2011.

11. WG Hallfond, J Viegas and A Orso: “A Classification of SQL Injection attacks and
Countermeasures”, IEEE 2006.

12. Z. Su and G. Wassermann, “The Essence of Command Injection Attacks in web
Applications”, The 33rd Annual Symposium on Principles of Programming Languages
(POPL 2006), 2006.

8 J. Doshi and B. Trivedi

https://www.owasp.org/index.php/Category
http://www.internetworldstats.com/stats.htm
http://www.internetlivestats.com/internet-users/
http://www-935.ibm.com/services/us/en/it-services/security-services/data-breach/
http://www-935.ibm.com/services/us/en/it-services/security-services/data-breach/
https://www.owasp.org/images/8/83/Securing_Enterprise_Web_Applications_at_the_Source.pdf
https://www.owasp.org/images/8/83/Securing_Enterprise_Web_Applications_at_the_Source.pdf
https://www.imperva.com/lg/lgw.asp?pid=349
https://www.imperva.com/lg/lgw.asp?pid=349
http://gatton.uky.edu/FACULTY/PAYNE/ACC324/CSISurvey2010.pdf


13. Open Web Application Security Project (OWASP) SQLI page: http://www.owasp.org/index.
php/SQL_Injection; last visited 28th Aug 2014.

14. National Vulnerability Database (NVD) Security Checklists: http://web.nvd.nist.gov/view/
ncp/repository; last visited 28th August 2014.

15. Common Weakness Enumeration: http://cwe.mitre.org/data/definitions/89.html: accessed 3rd
August 2014.

16. Rahul Johri and Pankaj Sharma “A Survey on Web Application Vulnerabilities (SQLIA and
XSS) Exploitation and Security Engine for SQL Injection”, IEEE 2012.

17. A. Tajpour, M. Masrom and M. Z. Heydari, “Comparison of SQL Injection Detection and
Prevention Techniques”, 2nd International Conference on Education Technology and
Computer (ICETC), 2012.

18. Chad Dougherty, Practical Identification of SQL Injection Vulnerabilities: www.uscert.gov/
sites/default/files/publications/Practical-SQLi-Identification.pdf.

19. Carnegie Mellon University, Computing Services Information Security Office, Information
security 101: www.cmu.edu/iso/aware/presentation/security101-v2.pdf: visited on 23rd
November 2014.

20. A. Tajpour, M. Masrom and M. Z. Heydari, S Ibrahim: “SQL Injection Detection and
Prevention Tools Assessment”, IEEE 2010, 978-1-4244-5540-9 Aug.

21. A. Tajpour, M.J Shooshtari: “Evaluation of SQL Injection Detection and Prevention
Techniques”: 2010-Second International Conference on Computational Intelligence,
Communication Systems and Networks: 978-0-7695-4158-7/10. doi:10.1109/CICSSyn,
2010 IEEE.

22. Diallo Abdoulaye and Al-Sakib Khan Pathan, “A Survey on SQL Injection: Vulnerabilities,
attacks and Prevention Techniques”, IEEE 15th International Symposium on Consumer
Electronics, 2011.

23. William G.J. Halfond, Allesandro Orso, “AMNESIA: Analysis and Monitoring for
NEutralizing SQL Injection Attacks”, ACM, USA, 2005, pp 174–183.

24. Bisht, P., Madhusudan, P., and Venkatakrishnan, V.N., CANDID: Dynamic Candidate
Evaluations for Automatic Prevention of SQL Injection Attacks. ACM Transactions on
Information and System Security, Volume 13 Issue 2, (2010). doi:10.1145/1698750.1698754.

25. Sam M.S. N.G, “SQL Injection Protection by Variable Normalization of SQL Statement”.
www.securitydocs.com/library/3388, 06/17/2005.

26. Buehrer, G., Weide, B.W., and Sivilotti, P.A.G., Using Parse Tree Validation to Prevent SQL
Injection Attacks. Proc. of 5th International Workshop on Software Engineering and
Middleware, Lisbon, Portugal (2005) 106–113.22.

27. Kemalis, K. and T. Tzouramanis. SQL-IDS: A Specification-based Approach for
SQLinjection Detection. SAC’08. Fortaleza, Ceará, Brazil, ACM (2008), pp. 2153–2158.

28. Stop SQL Injection Attacks Before They Stop You: http://msdn.microsoft.com/en-us/
magazine/cc163917.aspx: accessed 3rd August 2014.

A Novice Approach for Web Application Security 9

http://www.owasp.org/index.php/SQL_Injection
http://www.owasp.org/index.php/SQL_Injection
http://web.nvd.nist.gov/view/ncp/repository
http://web.nvd.nist.gov/view/ncp/repository
http://cwe.mitre.org/data/definitions/89.html
http://www.uscert.gov/sites/default/files/publications/Practical-SQLi-Identification.pdf
http://www.uscert.gov/sites/default/files/publications/Practical-SQLi-Identification.pdf
http://www.cmu.edu/iso/aware/presentation/security101-v2.pdf
http://dx.doi.org/10.1109/CICSSyn
http://dx.doi.org/10.1145/1698750.1698754
http://www.securitydocs.com/library/3388
http://msdn.microsoft.com/en-us/magazine/cc163917.aspx
http://msdn.microsoft.com/en-us/magazine/cc163917.aspx

	1 A Novice Approach for Web Application Security
	Abstract
	1 Introduction
	2 Literature Survey
	3 Problem Statement
	4 Proposed Model: Model for Remote Database Health Check
	4.1 Objectives of Model
	4.2 Overview

	5 Testing
	5.1 Testing Environment
	5.2 Test Scenarios

	6 Results
	6.1 Results
	6.2 Performance
	6.3 Comparison
	6.4 Comparison of Proposed Model with Top 3 Vulnerability Scanners

	7 Conclusion and Future Work
	References


