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Abstract. Tiaoxin and AEGIS are two second round candidates of the
ongoing CAESAR competition for authenticated encryption. In 2014,
Brice Minaud proposed a distinguisher for AEGIS-256 that can be used
to recover bits of a partially known message, encrypted 2188 times,
regardless of the keys used. Also he reported a correlation between
AEGIS-128 ciphertexts at rounds i and i+ 2, although the biases would
require 2140 data to be detected. Apart from that, to the best of our
knowledge, there is no known cryptanalysis of AEGIS or Tiaoxin. In this
paper we propose differential fault analyses of Tiaoxin and AEGIS fam-
ily of ciphers in a nonce reuse setting. Analysis shows that the secret key
of Tiaoxin can be recovered with 384 single bit faults and the states of
AEGIS-128, AEGIS-256 and AEGIS-128L can be recovered respectively
with 384, 512 and 512 single bit faults. Considering multi byte fault, the
number of required faults and re-keying reduces 128 times.

Keywords: Stream cipher · AEAD · Differential fault analysis

1 Introduction

Authenticated encryption with associated data (AEAD) is a class of crypto-
graphic primitive for privacy of the plaintext and integrity of both plaintext
and associated data. CAESAR [1], a competition for authenticated encryption,
is targeting to identify a portfolio of AEAD. Initially, fifty seven authenticated
encryptions were submitted to CAESAR. However, in the second round of the
competition, 29 submissions survived. Tiaoxin and AEGIS family of ciphers are
among the 29 selected second round candidates.
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Side channel attacks, such as timing analysis, power analysis and fault analy-
sis, target the implementations of ciphers and test the strength of ciphers in such
settings. Power and fault analyses are among the most explored types of side
channel attacks.

Biham and Shamir [6] first introduced the idea of Differential Fault Analy-
sis (DFA). Subsequently various symmetric ciphers were analyzed using DFA
model. Fault attacks study the robustness of a cryptosystem, in a setting which
is in general, weaker than its original or expected mode of operation. In a DFA
model, during cipher operations, faults are injected. Since the faults flip the
corresponding bits, the attack results in a difference in the state. The resulting
faulty output, together with the fault free one, are analyzed to obtain full or
a part of the secret information. Although optimistic, this model of attack has
been shown to be successful against both stream ciphers and as well as against
block ciphers. Most of the proposed ciphers in the eStream portfolio are vulner-
able to the fault attacks [3–5,7–14,16,20–22]. AES is also highly vulnerable to
fault attacks [2,17,19,23].

Tiaoxin [18] and AEGIS [25] are authenticated cryptographic algorithms sub-
mitted to CAESAR by Ivica Nikolić and Hongjun Wu et al. respectively. AEGIS
family ciphers were first proposed in SAC 2013 [24]. In SAC 2014, Minaud [15]
showed linear biases in AEGIS keystream. However, attack complexity in work
of Minaud is higher than the exhaustive key search. There are many similarities
in the design principle of Tiaoxin and AEGIS family. Both the ciphers use the
same technique of injecting message directly into the state to achieve authenti-
cation almost for free. Both ciphers take advantage of AES-NI instructions to
achieve outstanding speed in software. The security of both the ciphers relies on
the following two assumptions:

A Each Key-IV pair is used to protect only one message.
B If the verification fails, the decrypted plaintext and the wrong authentication

tag should not be given as output.

The Tiaoxin and AEGIS designers recommended that Key-IV pair should not be
reused. They expressed security concern if all the assumptions are not fulfilled.
However, no specific attack was provided. Nevertheless, in the security claims
section of the submission document of Tiaoxin, it is stated that

“If the nonce is reused. Obviously in this case high probability trails (that
do not need to end in a zero difference) for the Encryption of Tiaoxin-346
can be used to recover state bytes and to compromise the confidentiality.”

Note that one can protect only one message by each Key-IV pair in stream
ciphers like Grain. However, there are many papers such as [3,4] on Grain under
fault attack where re-key is used. In [1], it is mentioned about fault attack as
follows:

“Sometimes attackers can flip bits in a computation (for example, by firing
a laser at a target chip), and deduce secret data from the resulting cipher
output.”
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The aim of this paper is to strengthen the designers claim by describing a fault
attack in a nonce reuse setting that allow the complete key recovery for Tiaoxin
and complete state recovery for AEGIS family.

Contribution of the paper: The current paper proposes a differential fault
attack model on Tiaoxin and the AEGIS family of ciphers when an adversary
has precise control on the fault location and fault timing. The attacker injects
single bit faults by re-keying each time to obtain particular state blocks. Then
after getting a suitable number of state blocks, the entire state is recovered at
a known cycle of operation of the cipher. For Tiaoxin, after reversing the state,
the secret key can also be recovered. For AEGIS, the recovered complete state
could be used for suitable purposes.

Organization of the paper: The rest of the paper is organized in the fol-
lowing way: In Sect. 2 we provide description of Tiaoxin and AEGIS family of
ciphers. The attack model considered in this paper and the attacks are described
in Sect. 3. Section 3.5 briefly discusses another attack model to reduce the num-
ber of faults and re-keying. Finally Sect. 4 concludes the paper.

2 Description of the Ciphers

In this section we briefly describe (only the relevant parts are described) the
ciphers Tiaoxin, AEGIS-128, AEGIS-256 and AEGIS-128L. For a descriptive
version of the ciphers, the reader may refer to [18,25]. Tiaoxin and the AEGIS
family of ciphers extensively use one keyed round of AES. So we describe the
one keyed round of AES first.

2.1 AES Round Function

A sequence of 16-bytes will be called a word. Let A and B be two words. We
denote by AES(A,B), the one keyed round of AES applied to A with B as the
subkey (word to AES matrix conversion is the standard one). Thus

AES(A,B) = τ(A)⊕B where τ(·) = MixColumns(ShiftRows(SubBytes(·))).
One should note that the AES operations MixColumns(·),ShiftRows(·) and

SubBytes(·) are all invertible. Thus if τ(A) is known one can obtain A uniquely
and efficiently. Also if AES(A,B) i.e. τ(A) ⊕ B and B are both known, one can
easily recover A.

2.2 Description of Tiaoxin

Tiaoxin-346 has three states T3, T4 and T6 composed of 3, 4 and 6 words respec-
tively. The state update mechanism of Tiaoxin uses a round transformation
operation R(Ts,M) with state Ts and a word M as input. The output Tnew

s of
R(Ts,M) is the new state and is given by:

Tnew
s [0] = AES(Ts[s − 1], Ts[0]) ⊕ M,

Tnew
s [1] = AES(Ts[0], Z0),
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Tnew
s [2] = Ts[1],

. . . ,

Tnew
s [s − 1] = Ts[s − 2],

where Z0 is a Tiaoxin constant [18].
The state update operation update(T3, T4, T6,M0,M1,M2) takes three addi-
tional words M0,M1,M2, i.e.

update : T3 × T4 × T6 × M0 × M1 × M2 → T3 × T4 × T6

The function update(T3, T4, T6,M0,M1,M2) is defined as (See Fig. 1):

Tnew
3 = R(T3,M0); T3 = Tnew

3

Tnew
4 = R(T4,M1); T4 = Tnew

4

Tnew
6 = R(T6,M2); T6 = Tnew

6

Tiaoxin ciphertext and tag generation are done in 4 stages: (1) The Initializa-
tion (2) Processing the Authenticated Data (3) The Encryption and (4) The
Finalization.

Fig. 1. The update function in Tiaoxin-346

After initialization and processing of the authenticated data, in the encryp-
tion stage, at each round i, a plaintext Mi = M0

i ||M1
i , composed of two words

M0
i and M1

i , is encrypted to the ciphertext Ci = C0
i ||C1

i , composed of two words
C0

i and C1
i . The encryption at the round i is defined as:

update(T3, T4, T6,M
0
i ,M1

i ,M0
i ⊕ M1

i )
C0

i = T3[0] ⊕ T3[2] ⊕ T4[1] ⊕ (T6[3]&T4[3]),
C1

i = T6[0] ⊕ T4[2] ⊕ T3[1] ⊕ (T6[5]&T3[2])

2.3 Description of AEGIS-128

Five 128 bit substates S0, . . . , S4 constitutes the inner state of AEGIS-128. Let
Si,0, . . . , Si,4 be the substates at the beginning of round i So we have Si =
Si,0||Si,1||Si,2||Si,3||Si,4, where each Si,j is a word and || is the concatenation
operator.
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Fig. 2. The state update function of AEGIS-128

At each round i, a 16-byte data block mi is used to update the state. The new
state Si+1 is computed as follows:

Si+1,0 = AES(Si,4, Si,0 ⊕ mi),
Si+1,1 = AES(Si,0, Si,1),
Si+1,2 = AES(Si,1, Si,2),
Si+1,3 = AES(Si,2, Si,3),
Si+1,4 = AES(Si,3, Si,4)

Figure 2 represents the state update function of AGEIS-128.
AEGIS-128 ciphertext and tag generation are done in 4 stages: (1) The Ini-

tialization (2) Processing the Authenticated Data (3) The Encryption and (4)
The Finalization.

AEGIS-128 takes a 128 bit key and 128 bit nonce. After initialization and
processing of the authenticated data, in the encryption stage, at each round, a
16-byte plaintext block P is used to update the state, and P is encrypted to C as
C = P ⊕ zi, where zi = Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3) is the 16-byte block keystream.

2.4 Description of AEGIS-256

At the beginning of the i-th round, the (6-word) state of AEGIS-256 is given
by Si = Si,0||Si,1||Si,2||Si,3||Si,4||Si,5, where each Si,j is a word. At each round
i, a 16-byte data block mi is used to update the state. The new state Si+1 is
computed as follows:

Si+1,0 = AES(Si,5, Si,0 ⊕ mi),
Si+1,1 = AES(Si,0, Si,1),
Si+1,2 = AES(Si,1, Si,2),
Si+1,3 = AES(Si,2, Si,3),
Si+1,4 = AES(Si,3, Si,4),
Si+1,5 = AES(Si,4, Si,5).

Like AEGIS-128, AEGIS-256 ciphertext and tag generation is also done in
4 stages: (1) The Initialization (2) Processing the Authenticated Data (3) The
Encryption and (4) The Finalization.
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After initialization and processing of the authenticated data, in the encryp-
tion stage, at each round, a 16-byte plaintext block P is used to update the
state. Also P is encrypted to C where C = P ⊕ Si,1 ⊕ Si,4 ⊕ Si,5 ⊕ (Si,2&Si,3).

2.5 Description of AEGIS-128L

At the beginning of the i-th round, the (8-word) state of AEGIS-128L is given
by Si = Si,0||Si,1||Si,2||Si,3||Si,4||Si,5||Si,6||Si,7, where each Si,j is a word. At
each round i, two 16-byte data block ma and mb are used to update the state.
The new state Si+1 is computed as follows:

Si+1,0 = AES(Si,7, Si,0 ⊕ ma)
Si+1,1 = AES(Si,0, Si,1),
Si+1,2 = AES(Si,1, Si,2),
Si+1,3 = AES(Si,2, Si,3),
Si+1,4 = AES(Si,3, Si,4 ⊕ mb),
Si+1,5 = AES(Si,4, Si,5),
Si+1,6 = AES(Si,5, Si,6),
Si+1,7 = AES(Si,6, Si,7).

AEGIS-128L ciphertext and tag generation are done in 4 stages: (1) The
Initialization (2) Processing the Authenticated Data (3) The Encryption and
(4) The Finalization.

After initialization and processing of the authenticated data, in the encryp-
tion stage, at each round, two 16-byte plaintext block P and P ′ are used to
update the state. Also P and P ′ are encrypted to C and C ′ respectively as
C = P ⊕ z2i, C

′ = P ′ ⊕ z2i+1, where z2i = Si,1 ⊕ Si,6 ⊕ (Si,2&Si,3), z2i+1 =
Si,2 ⊕ Si,5 ⊕ (Si,6&Si,7) are two 16-byte block keystream.

3 Attack Description

The current paper assumes the following attack model:
The attacker can run the cipher with the same secret key, public parameters

and plaintext several times. The attacker is able to inject single bit faults. A
single bit fault flips the value of the corresponding bit. The attacker has control
on the fault timing i.e., the attacker is able to induce single bit fault at any
chosen cycle of operation of the cipher. The attacker has control on the fault
location i.e., the attacker is able to induce single bit fault at any chosen location.
The plaintext and the corresponding normal/faulty ciphertext is available to the
attacker.
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3.1 Attack on Tiaoxin

Let us consider three consecutive ciphertext generation rounds i, i+1 and i+2.
At round i, the plaintext Mi = M0

i ||M1
i , composed of two words M0

i and M1
i , is

encrypted to the ciphertext Ci = C0
i ||C1

i composed of two words C0
i and C1

i as:

update(T3, T4, T6,M
0
i ,M1

i ,M0
i ⊕ M1

i )
C0

i = T3[0] ⊕ T3[2] ⊕ T4[1] ⊕ (T6[3]&T4[3]),
C1

i = T6[0] ⊕ T4[2] ⊕ T3[1] ⊕ (T6[5]&T3[2]).

We first consider faults at round i. To be precise we inject faults at round i, just
after the call to the state update function.

Let us now consider a single bit fault at the r-th bit of the j-th byte of the
block T6[5] i.e., at the r-th bit of the byte T6[5][j], 0 ≤ r ≤ 7, 0 ≤ j ≤ 15. Due to
the fault, the faulty value of T6[5][j] becomes T6[5][j] ⊕ f , where the r-th bit of
f is ‘1’, remaining bits being ‘0’s.
Now the fault free ciphertext is given by

C1
i = T6[0] ⊕ T4[2] ⊕ T3[1] ⊕ (T6[5]&T3[2]) ,

whereas its faulty value becomes

C1
faulty,i = T6[0] ⊕ T4[2] ⊕ T3[1] ⊕ (

(T6[5] ⊕ F )&T3[2]
)
,

where F is a word with its j-th byte as f , remaining 15 bytes being all 0’s. This
shows that C1

i [j]⊕C1
faulty,i[j] = f&T3[2][j]. Since C1

i [j] and C1
faulty,i[j] are both

available to the attacker and r-th bit of f is known to being ‘1’, one can recover
the r-th bit of the byte T3[2][j] directly and uniquely.

This shows that, by injecting single bit faults (at each re-keyed run) to the
r-th bit of the j-th byte of the block T6[5] at round i, one can deterministically
obtain the r-th bit of the j-th byte of the block T3[2] for any 0 ≤ j ≤ 15 and
0 ≤ r ≤ 7. Thus with 128 faults to T6[5], it is possible to recover the entire T3[2]
block. Hence we arrive at the following proposition:

Proposition 1. Given any ciphertext generation round i, by injecting 128 faults
to the block T6[5] one can always recover the block T3[2].

Key recovery procedure: We now present the key recovery procedure based
on Proposition 1. For that we consider faults at rounds i, i + 1 and i + 2.
To avoid ambiguity, we use the superscript i, to denote the state values at round
i. For example, with this new notation, T i

s represents the state Ts at round i.
At round i, by injecting faults to the block T i

6[5], just after the state update call,
one recovers the block T i

3[2]. At round i + 1, the state T3 is transformed to

T i+1
3 = (AES(T i

3[2], T i
3[0]) ⊕ M i

0, AES(T i
3[0], Z0), T i

3[1]).

Clearly by injecting faults to the blocks T i+1
6 [5] and T i+2

6 [5] respectively at
rounds i + 1 and i + 2, just after the state update call, one can recover the



DFA on Tiaoxin and AEGIS 81

block T i
3[1] and AES(T i

3[0], Z0). Since AES(T i
3[0], Z0) and Z0 are both known,

T i
3[0] can now be recovered. Thus by injecting 3×128 faults at three consecutive

ciphertext generation rounds i, i + 1 and i + 2 one can recover the entire T i
3.

One should note that,

T i
3 =

(
AES(T i−1

3 [2], T i−1
3 [0]) ⊕ M i−1

0 , AES(T i−1
3 [0], Z0), T i−1

3 [1]
)
.

Thus

T i
3[0] = AES(T i−1

3 [2], T i−1
3 [0]) ⊕ M i−1

0 ,

T i
3[1] = AES(T i−1

3 [0], Z0),
T i
3[2] = T i−1

3 [1].

Clearly from T i
3 we can recover T i−1

3 i.e., T3 state update is invertible. Now
during the initialization phase, the state T3 was initialized by (key, key, IV ).
Thus for Tiaoxin, the secret key can be recovered with 384 single bit faults. The
attack strategy for Tiaoxin is illustrated in Fig. 3.

key key IV

T3[0] T3[1] T3[2]

Initialization

T i
3 [0] T i

3 [1] T i
3 [2] T i

6 [5]
∗

1

Round i

T i+1
3 [0] T i+1

3 [1] T i+1
3 [2] = T i

3 [1]

AES(T i
3 [0], Z0)

T i+1
6 [5]

∗

2

Round i + 1

T i+2
3 [0] T i+2

3 [1] T i+2
3 [2]

= AES(T i
3 [0], Z0)

T i+2
6 [5]

∗

3

Round i + 2

45

6

Fig. 3. Attack strategy on Tiaoxin: Here 1,2,... stand for the 1st, 2nd, ... steps of
the attack procedure, “∗′′ denotes the fault injection, the dotted arrow denotes the
consequence of Proposition 1, the arrow from a state Ti to a state Tj denotes that the
state Tj can be recovered from the state Ti.

3.2 Attack on AEGIS-128

Let us consider two consecutive ciphertext generation rounds i and i + 1. Under
our attack model both the 16-byte block keystreams zi and zi+1 will be available
to the attacker. The state of the cipher at these rounds are given by

Si = Si,0||Si,1||Si,2||Si,3||Si,4,

Si+1 = Si+1,0||Si+1,1||Si+1,2||Si+1,3||Si+1,4
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and the corresponding 16-byte keystreams are given by

zi = Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3),
zi+1 = Si+1,1 ⊕ Si+1,4 ⊕ (Si+1,2&Si+1,3).

As in the case of Tiaoxin, with 128 faults to Si,2, it is possible to recover the
entire Si,3 block. Similarly by injecting 128 faults to Si,3, it is possible to recover
the entire Si,2 block. Thus we arrive at the following proposition:

Proposition 2. Given any ciphertext generation round i, by injecting 128 single
bit faults to Si,3 (or Si,2) one can always recover the block Si,2 (or Si,3).

State Recovery Procedure: We now present the state recovery procedure
based on Proposition 2. For that we consider faults at rounds i and i + 1.

By injecting 3 × 128 single bit faults to Si,3, Si,2 and Si+1,3 one respec-
tively recovers the blocks Si,2, Si,3 and Si+1,2. Now Si+1,2 = τ(Si,1) ⊕ Si,2.
Since Si+1,2 and Si,2 are both known, Si,1 can be recovered. Thus from zi =
Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3) one can recover Si,4. At this moment Si,1, Si,2, Si,3

and Si,4 are known. Thus one can easily obtain Si+1,3 = τ(Si,2) ⊕ Si,3 and
Si+1,4 = τ(Si,3) ⊕ Si,4. Now consider zi+1 = Si+1,1 ⊕ Si+1,4 ⊕ (Si+1,2&Si+1,3)
which gives Si+1,1 as Si+1,2 is also known. Finally Si+1,1 = τ(Si,0) ⊕ Si,1 gives
Si,0. Thus with 3× 128 faults, we have the state Si = Si,0||Si,1||Si,2||Si,3||Si,4 at
the i-th round. The attack strategy on AEGIS-128 is illustrated in Fig. 4.

Si
0 Si

1 Si
2 Si

3 Si
4Round i ∗ ∗

1 2

zi = Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3)

Si+1
0 Si+1

1 Si+1
2 Si+1

3 Si+1
4Round i + 1

∗

3

zi+1 = Si+1,1 ⊕ Si+1,4 ⊕ (Si+1,2&Si+1,3)

τ(Si
1) ⊕ Si

2

4 5

τ(Si
0) ⊕ Si

1 τ(Si
2) ⊕ Si

3 τ(Si
3) ⊕ Si

4

6 78

9

Fig. 4. Attack strategy for AEGIS-128: The notations are similar to that of Fig. 3.

3.3 Attack on AEGIS-256

In this case, we consider three consecutive ciphertext generation rounds i, i + 1
and i + 2. Under our attack model the 16-byte block keystreams zi, zi+1 and
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zi+2 are available to the attacker. The state of the cipher at these rounds are
given by

Si = Si,0||Si,1||Si,2||Si,3||Si,4||Si,5,

Si+1 = Si+1,0||Si+1,1||Si+1,2||Si+1,3||Si+1,4||Si+1,5

Si+2 = Si+2,0||Si+2,1||Si+2,2||Si+2,3||Si+2,4||Si+2,5

and the corresponding 16-byte keystreams are given by

zi = Si,1 ⊕ Si,4 ⊕ Si,5 ⊕ (Si,2&Si,3) ,

zi+1 = Si+1,1 ⊕ Si+1,4 ⊕ Si+1,5 ⊕ (Si+1,2&Si+1,3) ,

zi+2 = Si+2,1 ⊕ Si+2,4 ⊕ Si+2,5 ⊕ (Si+2,2&Si+2,3).

As in AEGIS-128, with 128 faults to Si,2, it is possible to recover the entire
Si,3 block. Similarly by injecting 128 faults to Si,3, it is possible to recover the
entire Si,2 block. Thus we arrive at the following proposition:

Proposition 3. Given any ciphertext generation round i, by injecting 128 faults
to Si,3 (or Si,2) one can always recover the block Si,2(or Si,3).

We now present the state recovery procedure based on Proposition 3. For that
we consider faults at rounds i, i + 1 and i + 2.

By Proposition 3, one obtains Si,2 and Si,3.Si+1,3 is obtained from the relation
Si+1,3 = τ(Si,2) ⊕ Si,3. At round i + 1, Si+1,2 can be recovered by injecting 128
faults to Si+1,3. Now Si+1,2 = τ(Si,1) ⊕ Si,2. Since Si+1,2 and Si,2 are both
known, Si,1 can be recovered. At round i + 2, one follows the same procedure to
recover Si+2,2, Si+2,3, Si+1,1 and Si,0. At this moment four blocks Si,0, Si,1, Si,2

and Si,3 of i-th round are known. By zi = Si,1 ⊕ Si,4 ⊕ Si,5 ⊕ (Si,2&Si,3) one
knows the value of Si,4 ⊕ Si,5. Now consider

zi+1 =Si+1,1 ⊕ Si+1,4 ⊕ Si+1,5 ⊕ (Si+1,2&Si+1,3)
=Si+1,1 ⊕ τ(Si,3) ⊕ Si,4 ⊕ τ(Si,4) ⊕ Si,5 ⊕ (Si+1,2&Si+1,3) .

This gives Si,4 as the rest are known. Finally Si,4 ⊕ Si,5 gives Si,5. Thus with
4 × 128 faults, we have the state Si = Si,0||Si,1||Si,2||Si,3||Si,4||Si,5 at the i-th
round.

3.4 Attack on AEGIS-128L

We consider two consecutive ciphertext generation rounds i and i+1. The state
of cipher at these rounds are given by

Si = Si,0||Si,1||Si,2||Si,3||Si,4||Si,5||Si,6||Si,7,

Si+1 = Si+1,0||Si+1,1||Si+1,2||Si+1,3||Si+1,4||Si+1,5||Si+1,6||Si+1,7.
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The corresponding known 16-byte keystreams are given by

z2i = Si,1 ⊕ Si,6 ⊕ (Si,2&Si,3),
z2i+1 = Si,2 ⊕ Si,5 ⊕ (Si,6&Si,7),
z2i+2 = Si+1,1 ⊕ Si+1,6 ⊕ (Si+1,2&Si+1,3),
z2i+3 = Si+1,2 ⊕ Si+1,5 ⊕ (Si+1,6&Si+1,7).

For AEGIS-128L we have the next proposition similar to Proposition 3.

Proposition 4. Given any ciphertext generation round i, by injecting 128 faults
to each of Si,3, Si,2, Si,7 and Si,6 one can always recover the blocks Si,2, Si,3, Si,6

and Si,7 respectively.

We now present the state recovery procedure based on Proposition 4.
By injecting 4 × 128 single bit faults, one obtains Si,2, Si,3, Si,6 and Si,7.z2i

and z2i+1 respectively give Si,1 and Si,5. Now Si+1,1 and Si+1,5 are recovered by
considering the following relations

Si+1,2 = τ(Si,1) ⊕ Si,2,

Si+1,3 = τ(Si,2) ⊕ Si,3,

Si+1,6 = τ(Si,5) ⊕ Si,6,

Si+1,7 = τ(Si,6) ⊕ Si,7,

z2i+2 = Si+1,1 ⊕ Si+1,6 ⊕ (Si+1,2&Si+1,3),
z2i+3 = Si+1,2 ⊕ Si+1,5 ⊕ (Si+1,6&Si+1,7.

Thus, Si+1,1 = τ(Si,0) ⊕ Si,1 and Si+1,5 = τ(Si,4) ⊕ Si,5 respectively give
Si,0 and Si,4. This shows that with 4 × 128 faults, we have the state Si =
Si,0||Si,1||Si,2||Si,3||Si,4||Si,5||Si,6||Si,7 at the i-th round.

3.5 Reducing the Number of Re-Keying

Due to the nature of the ciphers, the attacker can reduce the number of re-
keying of the ciphers by injecting faults parallely. For this we consider another

Table 1. Summary of attacks

Cipher Encryption round Number of times
Key-IV is repeated
(Single bit fault model)

Number of times
Key-IV is repeated
(Multi byte fault model)

Tiaoxin i, i + 1, i + 2 384 3

AEGIS-128 i, i + 1 384 3

AEGIS-256 i, i + 1, i + 2 512 4

AEGIS-128L i, i + 1 512 4
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fault model where the attacker can inject single bit faults to all the 128 bits of
a 16-byte block at a time. In this case the number of re-keying will reduce by
128 times. With this fault model the attacker will now respectively require only
3, 3, 4 and 4 re-keying for Tiaoxin, AEGIS-128, AEGIS-256 and AEGIS-128L.
The injected fault being visualized as a multi byte fault. We summarize the
attacks in Table 1.

4 Conclusion

In this paper we presented a differential fault analysis on Tiaoxin and the AEGIS
family of ciphers. We show one can find the key of Tiaoxin by injecting 384
single bit faults. Also we prove one needs 384 (respectively 512 and 512) single
bit faults for AEGIS 128 (respectively AEGIS 256 and AEGIS-128L) to find the
state. Reducing the number of single bit faults in an attack model where the
adversary does not have the control over the fault injection timing as well as the
fault injection location, could be a challenging future work.
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