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Abstract. Outsourcing data/computation intensive tasks to servers
having great computing power and data analytics skills is gaining popu-
larity. While this outsourcing model, due to its cost efficiency, has been
widely used by numerous clients, making sure that loss of privacy and
integrity of results are not affected remain as challenges, especially in pub-
lic cloud infrastructure. For addressing these challenges, clients must out-
source their data in a privacy-preserving and verifiable manner. The cost
of assuring both privacy of data and correctness of results must impose
cost marginally less than the cost of actual computation. In this paper, we
address the problem of secure outsourcing of Closest Pair of Points com-
putation. Finding Closest Pair of Points is central to many complex appli-
cations like clustering. Our scheme involves the client sending encrypted
points to the server and receiving the result which is a pair of points (with
smallest distance between them) along with a proof of correctness. Data
encryption done to ensure privacy of input points must be such that the
encrypted points retain the same order as the original points. For this, we
designed and used a novel encryption scheme which is additively homo-
morphic and order-preserving for encrypting input points in our protocol.
The protocol requires the server to compute almost all distances to be able
to provide the proof of it having computed the results honestly.

Keywords: Verifiable computing · Secure outsourcing · Closest-pair-of
points · Cloud security

1 Introduction

In this age of distributed computing devices, cloud computing, more precisely,
XaaS (Anything as a Service) is gaining wide acceptance. As a result to this,
notion of public clouds has also come into existence. Servers offer services in
terms of heavy computations (like complex data mining operations) on big data
sets and are paid by the clients which are limited by the computing resources
and/or memory storage, for the same. Clients who use any cloud services rely
heavily on the fact that the cloud server is not interested in cheating on the com-
putations or breaching the privacy of the client’s data. But the client can return
results which look like the results client is expecting but the server may not be
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calculating them honestly and returning random values in a particular range,
for example. In such cases, on one hand, integrity and privacy of client’s data
is compromised and on the other hand, server saves its computation efforts (in
terms of CPU cycles) and memory resources, which is a motivation good enough
for server to “cheat”. There is motivation for the server to not care about the
client’s data privacy also. Consider the case where the server which is given the
log of web pages visited by a set of users for performing complex data mining
operations, is contacted by an advertising agency looking for such logs for user’s
behavioral analysis. The server can gain significantly by disclosing the logs to the
agency. Considering many critical applications for which the data/computations
are increasingly being outsourced, one can imagine the threat to his data privacy
and reputation. The above sets motivation for secure outsourcing of data and
computations. The goals of a secure-outsourcing protocol include securing input
and output from disclosure, cheating-proof execution of computations and lim-
ited (extra) work on the client’s side. A variety of problems have been securely
outsourced under two-server model and single server model. Verifiable comput-
ing deals with checking the authenticity of the results returned from the server.
Effectiveness of a verifiable scheme is the average fraction of the total work a
malicious server has to do in order to successfully cheat the client despite the
verification algorithm being part of the scheme. This fraction should be very
close to 1 for a good verifiable scheme.

In this paper, we consider one of the fundamental geometric problems, com-
puting the closest-pair-of points. Closest Pair of Points deals with identification
of the pair with minimum Euclidean distance amongst a given set of points.
Since the problem has repeated computation of Euclidean distances between
different pair of points, it serves as a primitive step for many data mining appli-
cations. The client sends the set of points and the server should compute distance
between each pair of points and return the pair of points with minimum distance
as output. Secure outsourcing of such a computation requires that the points are
encrypted and the server provides the proof of correctness along with the result
pair. The encryption we used for encrypting the points is order-preserving so
that the relative order of computed distances between the encrypted points is
same as for the original points.

Our contributions can be summarized as follows. We addressed the problem of
secure outsourcing of computation of Closest Pair of points. Using the proposed
scheme, a client delegates the computation in privacy preserving and verifiable
manner. The work done by the client for preprocessing the input points and
processing the result returned by the server for obtaining the final result amounts
to no more than O(n) where n is the number of input points. For achieving
this, we have designed and used a novel order-preserving encryption scheme for
encryption of input points. A theoretical analysis of correctness and security of
the result verification protocol is also presented. We have also proposed a new
algorithm for computing Closest Pair of Points which outperforms both brute-
force (O(n2)) and divide-and-conquer (O(nlogn)) versions of it.

The rest of the paper is organized as follows. Section 2 presents review of
important existing literature on privacy preserving and verifiable computation
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outsourcing. Section 3 covers all the preliminaries required for understanding a
secure outsourcing protocol for any important computation. In Sect. 4, complete
description of the proposed scheme for outsourcing closest pair of points is pre-
sented which includes proposed order-preserving encryption scheme in Sect. 4.1,
outsourcing algorithm in Sect. 4.2, discussion on adaptibility of the scheme to
the two-server model in Sect. 4.3. Randomized verification for the outsourcing
scheme is presented in Sect. 4.4 along with its analysis in Sect. 4.5. A new algo-
rithm for computing closest pair of points that outperforms the existing algo-
rithms existing ones is proposed in Sect. 4.6 along with the experimental results
in Sect. 4.7.

2 Related Work

Atallah et al. [8] propose the notion of disguise that can be introduced by the
client during the preprocessing phase of a outsource-secured computation. Dis-
guising the computations hides the computation along with the input and output
data from the server. Random object generation is considered important in dis-
guising. So, the security and effectiveness of all these disguising schemes rely on
the assumption that random component is generated using a “good enough”. The
work also encompasses techniques that can be applied for domain and dimension
modification.

Certain classes of algebraic and differential computations have also been con-
sidered as candidates for secure outsourcing [9]. It is shown that approximating
many of the algebraic differential equations can be reduced to solving classical
problems like Abstract Equation(AE), Boundary Value Problem(BVP), Initial
Value Problem (IVP) with secret parameter etc. Also, non-linear equations can
be reduced to linear forms. Next we present the classes of problems and their
reduction to the “simpler” problems as in [9] along with basic methodology used
for securely outsourcing them.

Hohenberger et al. [10] formally define the notion of outsource security in
presence of untrusted server(s). The notion of α-efficient and β-checkable Secure
Outsourcing algorithms is also given after which a (O( log

2 n
n ), 1

2 )-outsource secure
implementation of modular exponentiation is presented under the two untrusted
program model.

Secure outsourcing of product of two large matrices in two server setting
appeared in 2008 [1]. The extension for cheating detection for the protocol
depends on the infeasibility of predicting a matrix A given a the matrix AR
or RA (but not both at the same time), where R is a radom matrix.

Linear Algebra Computations serve as building block for many cryptographic
algorithms. Problem of secured outsourcing of characteristic polynomial and
eigenvalues of a matrix is addressed by Hu et al. [12] without any cryptographic
assumptions. The protocol is non-interactive. Verification of result requires
O(n2) local computations by the client. The protocol is efficient with client
needing only O(n2) multiplications to calculate the characteristic polynomial
and eigenvalues. Mohassel et al. in [13] show that if there exists a homomorphic
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encryption scheme that is distinctive, associative, additive and multiplicative
then the matrix computations can be securely outsourced with client doing at
most O(n2logn) work.

To combat limited computing power of client, Wang et al. [14] developed a
mechanism for securely outsourcing large-scale system of linear equations along
with a robust cheating detection mechanism. One-time setup phase of the pro-
tocol takes O(n2) cost. Finally, O(n) cost is incurred by client to calculate the n
variables in the problem. When a key (r) of size 768-bit, the protocol performs
well above the computation baseline for the problem. However, using the 1024-
bit key leads the protocol to perform badly as compared to what is considered
as computation baseline for the LE problem.

Problem of public verification of results for outsourced computations without
the verifier needing any key [15] appeared in the year 2012. New protocols to
outsource-secured evaluation of high degree polynomials and matrix multiplica-
tion are proposed under stronger adversarial models.

The problem of privacy preserving distributed k-means clustering of arbitrary
partitioned data was first addressed by Geetha et al. [16] after which improved
versions of outsource-secure k-means clustering appeared in [17,18]. Bunn et al.
[17] proposed a slightly more efficient private multi-party k-means clustering
algorithm. Additionally, it also addresses the problem that could arise from dis-
honest contributing sites. The scheme works under the assumption of existence
of semantically secure Homomorphic encryption scheme.

3 Preliminaries

3.1 Outsourcing Models

Outsourcing is a method by which a weak client asks the server to perform
computations which cannot be done by the client. In single-server model, there
is one server and one client. The server does the entire computation by itself. The
data on which the computation is to be done is passed on by the client to the
server. Since the server does the entire computation by itself it also has the result
of the desired computation. In case of an untrusted server, the client has high
risk of losing his data privacy and/or integrity of computed output. Whereas in
two-server model, the computation is done in parts by the two servers present
and the partial results are put together either by one of the servers or by the
client [1]. We follow a model where the servers are allowed to communicate
with one another. However, there exist outsourcing models where there exists no
communication between the servers. In our algorithm, we assume that the two
servers do not collude, hence there is no need for encryption. The claim that the
solution proposed in this paper fits both the models is proved in Sect. 4.3.

3.2 Requirements for Our Encryption Scheme

To ensure data privacy, the input points need to be encrypted before sending to
the server. The encryption algorithm we propose for securely outsourcing closest
pair of points is order preserving and homomorphic.
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Order Preservation. Since we have to identify the closest pair of points using
distances the encryption must not change the order of the original points i.e. the
relative order of the points must not be disturbed.

For instance, consider two points P1 and P2. Also consider an encryption
scheme with the encryption algorithm E. Suppose P1 > P2 then E(P1) > E(P2)
where E(P1) and E(P2) are encrypted values of P1 and P2 respectively.

Homomorphic Property. The encryption scheme we use must have homo-
morphic property over addition. The encryption scheme is said to be additively
homomorphic if decrypting the sum of encrypted values will give us the sum
of plaintext values. Consider an encryption scheme which gives the encrypted
values of P1 and P2 denoted by E(P1) and E(P2). An encryption scheme is
additively homomorphic if

Dec(E(P1) + E(P2)) = P1 + P2

Where Dec(E(Px)) is the decryption of E(Px).

4 Outsourcing of Closest Pair of Points

Outsourcing of the closest pair of points problem requires that a client provides
a server a set of n points and the server computes and returns a pair with
minimum distance. We discuss all the steps of the proposed scheme in detail and
verify the claims we provide with each step.

4.1 The Proposed Order Preserving Symmetric Encryption Scheme

Order preserving encryption scheme is an encryption scheme that preserves the
numerical ordering of its input. It was originally developed for enabling efficient
range queries over encrypted database [2]. The construction of this scheme is
based on the uncovered relation between the random order preserving function
and hyper-geometric probability distribution. The order preserving function is
a one-one function from the domain set of cardinality M and Range set of
cardinality N such that N > M . The function can be defined as selection of M
out of N ordered items and simultaneously fulfilling the requirement of a good
encryption scheme - “as random as possible”. We have implemented this scheme
for sample data points shown in Fig. 1a and the data points after encryption are
shown in Fig. 1b. It can be seen from the output of encryption the data points
get reflected about the line x = xmax/2 and y = ymax/2.

Assumptions. Without loss of generality, we can make the following assump-
tions on the data points:

1. All the data points lie in the first quadrant of the co-ordinate system i.e. for
all points P (x, y) both x and y are greater than 0.
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2. None of the data points lie on either x or y axis i.e. no points have either
abscissa or ordinate as 0.

Key Generation. We begin by identifying the maximum value that the co-
ordinates of our data points take. Let this maximum value be P .

P = Max(x1, x2, x3, . . . , xn, y1, y2, y3, . . . , yn)

Randomly choose a number r such that r ≥ 3 (r ∈ Zm) and a random
R ∈ [1, P − 1]. Let Q = r × P and for every point Pi = (xi, yi), compute
xinorm = xi × R/P and yinorm = yi × R/P

Encryption. Now we encrypt a point Pi(xi, yi) as

Enc(xi) = Exi = Q − P − xi − xinorm

Enc(yi) = Eyi = Q − P − yi − yinorm

where Enc(a)=Encryption of data value a. Therefore, the encrypted value of
point Pi is

Enc(Pi(xi, yi)) = EPi(Exi, Eyi)

Claim. Euclidean distance computation can be directly performed on EPi and
EPj i.e. ED(EPi, EPj) = (1 + R/P ) × ED(Pi, Pj), where ED is the Euclidean
distance between points Pi, Pj

Proof.

Exi
= Q − P − xi − xinorm

= r × P − P − xi − R/P × xi

= P (r − 1) − xi((P + R)/P )

Similarly,

Eyi
= P (r − 1) − yi((P + R)/P )

D(EPi, EPj) = [(Exi
− Exj

)2 + (Eyi
− Eyj

)2]1/2

= (P + R)/P × D(Pi, Pj)

Lemma 1. If D(Pi, Pj) > D(Px, Py) then ED(EPi, EPj) > ED(EPx, EPy)

Consider,

D(Pi, Pj) > D(Px, Py) =⇒ (1 + R/P )D(Pi, Pj) > (1 + R/P )D(Pi, Pj) (1)

Since R,P are all positive, Using property proved above on Eq. 1 we get,
ED(Pi, Pj) > ED(Px, Py)

Because of the above property we can directly compare the Euclidean dis-
tances between all points and identify the closest pair. Our encryption scheme
successfully hides actual distances between every pair of points.
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4.2 Outsourcing Algorithm

Client

1 Has set of data points P = {P1(x1, y1), P2(x2, y2), . . . , Pn(xn, yn)}.
2 Encrypts data points in P with an appropriate scheme to obtain the set EP =

{EP1, EP2, . . . , EPn}
such that
EPi = Enc(Pi) = (Enc(xi), Enc(yi))

3 Receives the encrypted closest pair of points from the server EPx and EPy

4 Decrypts the received pair of points to obtain the required results
Dec(EPx) = Dec(Enc(Px)) = Px

Dec(EPy) = Dec(Enc(Py)) = Py

Px and Py are the closest pair of points.

Server

1 Receives encrypted set of points EP = {EP1, EP2, . . . , EPn} such that
EPi = Enc(Pi) = (Enc(xi), Enc(yi))

2 Computes closest pair of points EPx, EPy by computing Euclidean distances
between encrypted points in set EP using any of the existing algorithms.

3 Sends the results EPx, EPy obtained in step 2 to the client.

Next, we show that the outsourcing algorithm we presented here fits the popular
two-server model.

4.3 Two-Server Model

In this model, we divide the coordinates between two servers such that the sum
of coordinates with the two servers gives the original coordinates. Each server
computes the partial results and one of the servers finally combines them and
returns them to the client. In this case, if servers are not assumed to collude,
the data encryption is not a necessity because each server only has a part of the
sensitive information. In our model, we use the following algorithm:

1. The client divides the points into two parts such that The client randomly
subtracts the number (xi1 , yi1) from the co-ordinates of points Pi = (xi, yi)
i.e.

Pi2 = (xi − xi1 , yi − yi1)

let xi − xi1 = xi2 and yi − yi1 = yi2
Therefore,

xi1 + xi2 = xi

yi1 + yi2 = yi

2. Let Pi1 = (xi1 , yi1) and Pi2 = (xi2 , yi2) Similarly, Pj1 = (xj1 , yj1) and Pj2 =
(xj2 , yj2)
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3. Pi1 , Pj1 is sent to S1 for all i, j < n and Pi2 , Pj2 is sent to S2 for all i, j < n
4. S1 computes D(Pi1 , Pj1). During this computation S1 computes (xi1 − xj1)

and (yi1 − yj1).
5. S2 computes D(Pi2 , Pj2). During this computation S2 computes (xi2 − xj2)

and (yi2 − yj2).
6. S2 sends (xi2 − xj2) and (yi1 − yi2) as well as D(Pi2 , Pj2) to S1

7. S1 combines the results it has computed and the data it has received to
compute D(Pi, Pj)

Claim. Distance between Pi and Pj = D(Pi, Pj) can be computed if first Server
i.e. S1 receives D(Pi2 ,Dj2) and (xi2 − xj2), (yi2 − yj2) from S2

Proof. S1 already computes

D2(Pi1 , Pj1) = (xi1 − xj1)
2 + (yi1 − yj1)

2and(xi1 − xj1) and (yi1 − yj1)

S2 sends

D2(Pi2 , Pj2) = (xi2 − xj2)
2 + (yi2 − yj2)

2

and (xi2 − xj2 and (yi2 − yj2)

Adding information from S1 and S2,

(xi1 − xj1)
2 + (yi1 − yj1)

2 + (xi2 − xj2)
2 + (yi2 − yj2)

2 (2)

Since we already have (xi1 −xj1), (yi1 −yj1), (xi2 −xj2) and (yi2 −yj2), computing
2(xi1 − xj1)(xi2 − xj2) + 2(yi1 − yj1)(yi2 − yj2) and adding with Eq. 2,

(xi1 − xj1)
2 + (yi1 − yj1)

2 + (xi2 − xj2)
2 + (yi2 − yj2)

2 + 2(xi1 − xj1)(xi2 − xj2)
+2(yi1 − yj1)(yi2 − yj2)

= [xi − xj ]2 + [yi − yj ]2

= D2(Pi, Pj)

��

4.4 Randomized Verification Scheme

Along with privacy of actual input and output points, verifiability of the results
returned by the untrusted server must also be ensured. This verification algo-
rithm has mainly two phases. In the first phase, client pre-processes followed
by outsourcing of input data along with a challenge. Second phase involves the
server that computes the result and responds to the client with the output along
with the response to the challenge. Response sent by the server becomes the
basis for accepting or rejecting the result. The algorithm is as follows:

Input: Set of points P = {P1, P2, P3, . . . , Pn} where Pi = (xi, yi).

Output: (Pi, Pj) such that min{d(Pi, Pj)} for all i, j ≤ n and δ = (d(Pi, Pj)).

Assumption: The distances between all pair of points are distinct.
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Pre-process and Outsource

1. Client C randomly chooses i, j ∈ {1, . . . , n}
2. Compute Euclidean distance between Pi, Pj call it α.
3. Send P = {P1, P2, . . . , Pn} and α to server S.
4. C removes P from storage and only stores (Pi, Pj).

Compute and Respond

1. Server computes Euclidean distance between Pi, Pj∀i, j ∈ {1, . . . , n}
2. Finds the closest pair (Pi, Pj) and distance between them. Call it dmin.
3. Finds x, y such that α = d(Px, Py)
4. Sends π = (dmin, (Pi, Pj), (x, y))

Verification(π, (i, j))

1. Check if(i = x and j = y) true
then accepts dmin as minimum distance

2. else rejects dmin

4.5 Analysis of the Verification Scheme

A result verification scheme for privately outsourced closest pair of points compu-
tation has been provided in the previous section. Verification of results returned
by the server involves challenging the server with a distance between any ran-
domly chosen pair of points. The server has to return the result of the desired
computations (i.e. closest pair) along with the response corresponding to the
challenge. In order to still successfully cheat, it has to find the pair of points the
client used for computing the challenge. This method can be analyzed by calcu-
lating the average amount of work (Euclidean distance computations) the server
has to do in order to find out the pair of points used for computing the challenge.
Once the server computes response to the challenge, there is no motivation left
for the cheating server to calculate the rest of distances and it returns arbitrary
result (pair of points) to the client. Let there be n points, then the probability
that server guesses the pair of points in one attempt (i.e. by calculating only one
distance) is:

P (1) =
1

(
n
2

)

If the server continues working out distances in whatever order it wishes, the
probability of it succeeding after computing “w” distances is:

P (w) =

(
1
1

) × ((n2)−1

w−1

)

((n2)
w

) =
w

(
n
2

) (3)

So, expected amount of work (Euclidean distance computations) done by the
server in before it correctly obtains the challenge points:

E[W ] =
∑(n2)

w=1
w × P (w) =

(
(
n
2

)
+ 1)(2

(
n
2

)
+ 1)

6
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The server can follow another rational approach by which it computes a fixed
number of distances (say w’) an upon failure in finding the challenge points,
guesses from the remaining. In such a case, probability of success for the
attacker is:

P ′(w′) =

(
1
1

) × ((n2)−1

w′−1

)

((n2)
w′

) + (1 −
(
1
1

) × ((n2)−1

w′−1

)

((n2)
w′

) ) × (
1

(
n
2

) − w′ ) =
w′ + 1

(
n
2

) (4)

Similarly, average number of distance computations the server has to do in order
to find the challenge is:

E′[W ′] =
∑(n2)

w′=1
w′ × P ′(w′) =

(
(
n
2

)
+ 1)(

(
n
2

)
+ 2)

3

It is clear from (4) that this strategy gives the attacker a very limited advantage
as compared to (3). Next, we discuss an algorithm for calculating the closest
pair of points that performs better than both brute force and divide and conquer
algorithm.

4.6 Proposed Algorithm for Computing Closest Pair of Points

We propose an algorithm to compute closest pair from a given set of points.
In this algorithm we compute relative distances between points. We follow the
principle that two points with close relative distance will be close to one another.
As observed in experimental results our algorithm outperforms both the divide
and conquer algorithm and the brute force algorithm. The algorithm is as follows:

1 Let P = {P1, P2, P3, . . . , Pn} be a set of points.
xmax = max(x1, x2, . . . , xn), xmin = min(x1, x2, . . . , xn), ymax =
max(y1, y2, . . . , yn), ymax = max(y1, y2, . . . , yn)
Pmax = (xmax, ymax), Pmin = (xmin, ymin)

2 R = Dist(Pmin, Pmax)
Calculate R1 = 2 × R, R2 = 3 × R
Sum = 1D Array
for i = 1, . . . , n
Sum[i] = R1 × Dist(P [i], Pi) + R2 × Dist(P [i], P2)

3 Sort the array Sum.
4 (The closest pair of points will be at most 5 positions apart in Sum.)

for i = 1, 2, . . . , n
P [i] = the point that corresponds to sum[i]

Find points which corresponds to sum[i + 1] to sum[i + 5]
find the closest point to P [i] among the above 5 points

return the Closest pair among all above pairs

4.7 Experimental Results

In Fig. 2b it is observed that the time taken by the proposed algorithm is much
less than the existing (and best known) divide and conquer version.
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Fig. 1. The points are selected uniformly at random from the range 0–1000 units.
Relative orientation and distances between the every pair of points is order preserved
using our encryption scheme

Fig. 2. Model for Two-Server cloud outsourcing and comparative analysis of the pro-
posed scheme with the most efficient algorithm (Divide and conquer)

5 Conclusions and Discussion

Outsourcing of data and computations to the cloud servers with advanced com-
puting resources is an effective application which is attracting numerous cloud
users. However, when the server is untrusted, ensuring privacy of data (both
input and output) and correctness of results becomes important. While outsourc-
ing computations, it is naturally the case that they are computationally heavy
and serve as a primitive step for more complex computations or data analytics.
Computing closest pair of points is one such problem which involves repeated
computations of Euclidean distances between different pair of points and is there-
fore a primitive step of many algorithms that involve grouping/clustering the
data. A secure outsourcing algorithm for the problem is proposed with input and
output privacy being provided by a novel order-preserving encryption algorithm
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proposed in this paper. The result verification scheme has also been presented
and the accompanying theoretical analysis proves its security. The client does
only O(n) work during this process. The adaptability of the proposed secure out-
sourcing scheme is shown with respect to the two-server cloud model. A novel
algorithm for computing closest pair of points that outperforms its best known
algorithm is also proposed. The verification algorithm needs to be improved to
conform to the existing formal model for verifiable computing. This remains as
the ongoing future work.
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