Provenance-Aware NoSQL Databases

Anu Mary Chacko@), Munavar Fairooz, and S.D. Madhu Kumar

National Institute of Technology Calicut, Kozhikode, India
anu.chacko@nitc.ac.in

Abstract. NoSQL stores are very widely used for BigData Analytics. These
stores are built with inherent scalability and fault tolerance. But there are not much
mechanism to provide security guarantees like integrity and auditability. Prove-
nance is a metadata which captures the details of how the data reached its current
state. By way of capturing provenance it is possible to enhance the functionality
of NoSQL stores to verify the integrity of results. This paper presents an approach
to capture provenance of NoSQL databases using logs generated by the database.
A proof of concept was implemented in MongoDB and examples are used to
illustrate the use of “Why provenance’ and ‘How-provenance’ captured.

Keywords: Data provenance - NoSQL databases - MongoDB - MapReduce -
How-provenance - Why-provenance

1 Introduction

With the growth of information technology, the volume of data has grown enormously
in the last decade. This large volume of data available is usually unstructured in nature
which when mined can give a lot of useful information. For meeting this requirement
new paradigms of storage and analytics have evolved, and NoSQL databases is an
example of the same. NoSQL stands for Not Only SQL and is an evolution of traditional
Relational Databases to handle the large volume of unstructured data. NoSQL databases
usually have a simple data model, support basic operations, have weak security but have
high availability and scalability. The key attraction of these databases is the dynamic
schema that allows the different types of unstructured data to reside in the same collec-
tion/table. Most of the NoSQL databases support only CRUD (Create, Read, Update,
and Delete) operations. So when the analytic query demands more complex join or
aggregation operations, analytic frameworks like MapReduce are used.

When a huge amount of data is processed, and decisions are derived based on it,
users need some mechanism to ensure the credibility of decision. Data provenance can
help here. Data provenance is the metadata that captures the creation and subsequent
modification of the data as it is processed in and across systems.

In the case of NoSQL data analytics, data in the range of terabytes and petabytes are
being processed. The credibility of the result produced by analyzing the big data is
dependent on the goodness of data. Provenance is the metadata which captures the
information about how a data reached its current state. Hence, provenance can be of
great help in verifying and ensuring the “goodness” of data.

© Springer Nature Singapore Pte Ltd. 2016
P. Mueller et al. (Eds.): SSCC 2016, CCIS 625, pp. 152-160, 2016.
DOI: 10.1007/978-981-10-2738-3_13

Provenance-Aware NoSQL Databases 153

The relationship between provenance and security can be considered symbiotic [1].
To ensure security attributes like auditability or to make good security decisions users
need well-captured provenance. To ensure good security practices provenance needs to
be audited.

Security is a major concern for the adopters of Big Data and Cloud processing.
Ensuring efficient capture and storage of provenance for data processed will provide the
users a mechanism to verify and debug results obtained. Also, provenance can throw
light on potential security breaches. In this paper, we evaluate an option to capture
provenance of NoSQL databases and explore the uses of the collected provenance. There
is no provision for capture of provenance in any of the existing NoSQL implementations.
Rest of the paper is organized as follows: Sect. 2 discusses the related work in the area,
Sect. 3 explores the detail of the proposed design, Sect. 4 gives the details about the
implementation of proof of concept and Sect. 5 concludes the paper by exploring future
work possible.

2 Related Works

Initial works in provenance was done in 1970s in the area of eScience where provenance
was collected to ensure reproducibility and verification of scientific experiments. Exam-
ples of such systems are Chimera [2], MyGrid [3], PASOA [4], etc. The approach
adopted for provenance capture was to redesign existing application/workflow to capture
provenance.

PASS [5] (Provenance-Aware Storage System) attempts to capture provenance at
the storage level. PASS is built by modifying Linux kernel to automatically deduce
provenance information by observing operating system calls at read/write level. There
have been significant contributions in the domain of relational databases as well.

Buneman et al. [6] categorizes database provenance as ‘Why-provenance’ and
‘Where-provenance’. ‘Why-provenance’ lists all source data items that contributed to
the creation of result data item. “Where-provenance’ lists the originating sources of the
result. This categorization has been extended to include ‘How-provenance’ that explains
how the individual derivations have been carried out according to the query [7].

A practical example of making a relational database provenance-aware is seen in the
project done by the University of Illinois called PERM (Provenance Extension of Rela-
tional Model) [8] built by extending PostgreSQL engine. Here provenance is captured
by query rewriting and is displayed along with the query results as additional columns.

Kulkarni [9] suggests a generalized provenance model for key-value systems. The
proposed system has the capability to capture tuple provenance and schema provenance.
The author proposes application to explicitly select the data/collection for which prov-
enance need to be captured. For updates, the value before modification is also captured.
The scheme provides provision for a logical marker which will help in tracking set of
columns as a single logical unit. Provenance queries are provided for finding the prov-
enance information required. A proof of concept was implemented on by modifying
Cassandra to make it provenance-aware.

154 A.M. Chacko et al.

A NoSQL metadata management tool called Wasef was proposed by Alkhaldi et al.
[10]. Wasef captures provenance as one of the metadata. Provenance capture and use
are quite primitive in the initial model. A proof of concept was implemented in Cassandra
and evaluated.

Both KVPM and Wasef is implemented by changing the code of Cassandra to make
it provenance-aware. It will be a better approach to have a generic provenance collection
methodology which automatically capture provenance by observing transactions in the
database. In this paper we propose a novel approach of automatic provenance collection
in NoSQL database by monitoring the logs and demonstrate a proof of concept of our
idea in MongoDB. The practical use of provenance collected is illustrated through an
example.

3 Design

When we do analytics on data stored in NoSQL store, the primary use of provenance
will be to explain unexpected results. For this purpose ‘why-provenance’ and ‘how-
provenance’ will be useful. “Why-provenance’ will list all the source data tuples that
contributed to the creation of result data tuple. ‘How-provenance’ will list the operations
that caused the data tuple to reach the current value. So combining ‘how-provenance’
and ‘why-provenance’ we will have a holistic answer to how the result tuple was formed.
NoSQL databases are designed to be scalable and can partition across many servers.
The system scales transparently, and built-in fault tolerant mechanisms via replication,
make it difficult to capture the ‘Where-provenance’.

There are two approaches for capturing provenance. One approach is to redesign
individual application to make it provenance-aware and the second approach is to auto-
matically deduce provenance by observing the transformations to data. In this paper, we
propose a novel approach to capture provenance by using existing logs in NoSQL data-
base. NoSQL databases are designed with logs to enable replication of changes to ensure
transparent scalability. The information in the logs can be reused to capture provenance
of data transactions. As a proof of concept, MongoDB is made provenance-aware using
this approach.

4 Proof of Concept - Provenance Aware MongoDB

MongoDB is an example of document-oriented datastore that captures data in the form
of key-value pair. To capture provenance we use the concepts in key value provenance
model proposed by Kulkarni [9].

4.1 Requirements

MongoDB supports only basic CRUD operation. Complex analytic queries are
supported by built-in MapReduce Framework. So in this work the ‘How Provenance’
of data stored in MongoDB and ‘Why Provenance’ of data queried using MapReduce

Provenance-Aware NoSQL Databases 155

is captured. Combining the ‘How-provenance’ with the “Why-provenance’ the holistic
picture of the contributing tuples of a result can be obtained.
The requirements of the Provenance Aware MongoDB are listed below.

Users should be able to track tuple level and schema level provenance.

Users should be able to know the contributing sources for a result tuple (why-prov-

enance) and know the operations that caused the tuple to have current value (how-

provenance).

3. The solution should be generic as far as possible and should have minimal instru-
mentation of existing application/data store.

4. Asthe volume of provenance and data is huge, the user should be provided the option
to select the tuple or table for which provenance needs to be captured.

5. Overheads should be minimal as far as possible.

[\

4.2 Capturing ‘How-Provenance’

To capture ‘How-Provenance’ system needs to capture the operations through which
a tuple reached its current state. MongoDB stores humungous amount of data and
provenance may not be relevant to all data. Hence, the user/programmer of the data-
base is given flexibility to identify the document for which provenance needs to be
collected. Resource for which provenance needs to be captured can be listed as
‘resource expression’.

Resource expression can be written in the following formats.

If the provenance is to be tracked.

For a particular document inside a collection -<Database/Collection/Id>.
For a collection - <Database/Collection>(provenance is tracked for all documents
for the collection).

MongoDB maintains a capped collection called Oplog for storing all operations that
happened in the database so as to replicate in secondary servers. Capped Collections are
fixed size collections in MongoDB where documents are retrieved in the order of inser-
tion, and when the size gets exhausted, space for new documents are made by over-
writing the oldest documents in the collection.

Oplog entries in MongoDB include the timestamp, unique id, operation name, name-
space with the details of the database, collection and document affected by the operation
and the new state of the document after performing the operation. Primary oplog captures
all the operations that are applied on the primary node. The secondary nodes copy and
apply these operations in an asynchronous process to achieve eventual consistency.
Thus, oplog entries give primary information to track ‘how-provenance’. In addition to
the above information, details about the user executing the action need to be captured.

The ‘how-provenance’ is captured by setting up a tailable cursor to the oplog. This
script runs parallel to the MongoDB process to detect any entry being made in the oplog.
When a new entry comes to oplog, the resource expression file is checked to identify
whether the tuple is listed for provenance capture. If so, information from Oplog like
timestamp converted to ISO date time, operation type are retrieved and stored in a

156 A.M. Chacko et al.

separate append only provenance collection. This provenance information is augmented
with user information to make provenance complete.
The following example illustrates the ‘how-provenance’ captured for a document.
Suppose in the MongoDB database called ‘hospital’ there exists a collection called
‘patients’. Assume that we want to track the provenance for a particular patient, say
‘P123’. In the beginning we specify resource expression as <hospital/patients/P123>
The current state of the patient record is given in Fig. 1

{

L id" H l|P123|I’

"Name" : "John",

"Doctor" : "Dr.jacob",

"Disease" : "Asthma",

"Medication" :["Doxil4","Laxin"],
"Allergy" : "Sneezing "

}

Fig. 1. Document in MongoDB for P123

‘How-provenance’ for the document is given in Fig. 2.

{
*_id" : "hospital.patient.P123",
*Provenance" : [
{ *Op_Type" : "i*
*Operation” : *{ ‘Name': 'John’, 'Disease’ : 'Asthma’,
‘Medication': ['Doxil4' , 'Aadrone’],
'‘Doctor' : ' Dr. James '

3,
*Time" : ISODate("2016-04-29T12:66:49Z"),
"user" : "Dr. James",

}

{ *Op_Type" : "u*

*Operation® : *{'$set': {'Medication':['Laxin]},
{'Doctor': 'Dr. Jacob'}}",

*Time" : ISODate("2016-04-29T1:67:08Z"),

“user" : "Dr. Jacob",

1

{ “Op_Type" : "u*
"Operation” : * {'$set': {'Allergy': 'Sneezing'},

{'Medication:[Doxil4, Laxin]'}}",

*Time" : ISODate("2016-04-29T32:67:16Z"),
"user" : "Dr. Jacob*,

}

]
}

Fig. 2. How-provenance captured

The above example shows how both data and schema provenance is available for
querying.

4.3 Capturing ‘Why-Provenance’

The work was extended to capture MapReduce provenance in MongoDB. The prove-
nance collected characterizes as “Why-provenance’ as it gives reason/witness for why
an output was obtained.

Provenance-Aware NoSQL Databases 157

Ikeda et al. [10] proposed a model to capture provenance in MapReduce workflows
in Hadoop called RAMP (Reduce and Map Provenance). They use a wrapper-based
approach to capture provenance by building wrappers for the various components of
MapReduce framework like Record Reader, Mapper, Reader, and Writer. They apply
an eager approach and record provenance as the workflow proceeds. The eager approach
of computing provenance along with MapReduce computation introduces a lot of
computational overhead and delay in job execution time. Hence a lazy approach of
computing provenance was used in this work. The mapper and document writer was
modified to write intermediate data into two temporary files. Mapper emits key value
pairs (ki, vi). For each of the mapper output, a pair (ki, pi) is recorded in the filel where
piis the 12-byte document id of the input document being processed. Reducer processes
all the values with the same key (ki, [v1,v2,...vn]) and produces an output of the form
(ki, vi). The document writer writes the key-value pair in the result collection as well as
in file2. After the execution of the job, provenance file is generated by a python script,
which takes the two files as input and maps input provenance with output value using
the key. So the output provenance value will be (V, {p1, p2 ... pn}) and will list all input
documents which contributed towards output record. The algorithm to capture MapRe-
duce Provenance is diagrammatically explained in Fig. 3.

Input Map

Collection Output
i ‘ (Ki,[v1,v2,...vn])
Document Reader
Reducer
Query
documents (Ki, V)
Y
Mapper Document Writer
Filel i
(Ki,vi) (Ki,V, [p1,p2..pn]
Map Reduce
Output Output

Process filel and file2
and extract [p1,p2...pn]
corresp ing each ki

Fig. 3. Modified MapReduce to capture ‘Why-Provenance’

The example given below illustrates the practical application of the ‘Why-prove-
nance.’

In a hospital application, the collection of patient’s medication bills at different times
are captured in hospital database is illustrated in Fig. 4.

The total bill for a patient can be consolidated by running a MapReduce job. The
output for the same is shown in Fig. 5.

The provenance captured via MapReduce (Why Provenance) and MongoDB(How
Provenance) will provide a good explanation for the result as shown in Fig. 6.

158 A.M. Chacko et al.

Patient id Bill Date Prescribed Doctor Items Price(3)

("Medicine":"Aidul7","qu“:10 "price":2.5}
-1, o)

P127 2012-12-13 22:00:00||Dr.Jacob

P133 2012-09-04 00:00:00||Dr.Ajeeb

{"Medicine":" Ameco7","qty’
P123 2012-10-03 14:00:00|(Dr.Ajeeb {"Medicine":"Mentol","q

P127 2012-12-13 22:00:00||Dr.Jacob "Medicine":"Aidol7","qt

"Medicine":"Demol Tab","q
"Test":"ECG","qty":1,"pric
P123 2012-12-13 22:00:00||Dr.Jacob "Medicine":"Abeol","qty":10,"price":25} 250

P127 2012-12-13 22:00:00|(Dr.Ajeeb

= sy "Medicine":"Laxin","qty":5,"price":2.5}
P123 |[2012-10-04 00:00:00|Dr.Jacob ("TestECG . prce125) 1375
P133 (2012-12-04 04:00:00Dr.Ashly Hi0e}2i5) 625

'qty":25,"price":25}
{"Medicine":"Laxin","qty":5,"price":2.5}

P333 2013-01-04 04:00:00|(Dr.Hema {"Medicine":"Aloxenol ty":25,“price“:25) 150
{"Test":"ECG","price":125}

Fig. 4. Hospital database

ey [vaiue]

(P127/[1600
P333[150

622
7365

Fig. 5. Output of the query for total bill

Key | Value Provenance

P127(1600 |5545ad39acf2bS1ed475aeld | (Patientid| Bill Date [Prescribed Doctor Ttems Price(§)
[3545addaachobSledd75aele | [p3 |p0iz-12-13 2200:00[Drdacch {"Medicine" Abeol", qty’:10,"price"25) 250

IMedica Bill document

{
*_id" : *hospital.patient.P123,

= *Provenance" : [
{
B e] SR p——

P333[150 |

P1234622 5545ad56acf2b51ed475aelf

o

*Medication': ['Doxil4’ , 'Aadrone’],
MapReduce output ivorymng o et
I,
Time : ISODate(*2015-04-29T12:56:492"),
*user® : *Dr. James®,
h
{y < *Op_Type* : *u*
"_id" : "P123", *Operation® : *{'$set': {'Medication":['Laxin]},
"Name" : "John" {'Doctor': 'Dr. Jacob'}}*,
’ *Time" : ISODate(*2016-04-29T1:67:08Z2"),

"Doctor" : "Dr.jacob", *user* : *Dr. Jacob®,
"Disease" : "Asthma",)' .

. .. oge
"Medication" :["Doxil4","Laxin"] » '%Pp:nyt‘l:n‘ : * {"$set": {"Allergy': 'Sneezing'},
"Allergy" : "Sneezing " {'Medication:[Doxil4, Laxin]'}}*,

Time : ISODate(*2016-04-29T32:67:162"),
} *user*® : *Dr. Jacob®,

Patient document })
} How provenance

Fig. 6. Why and how-provenance combined

4.4 Performance Analysis

The experiment was conducted on a single node MongDB 2.6.1 on an Intel i3CPU Linux
Laptop with 4 GB RAM.

Provenance-Aware NoSQL Databases 159

How-Provenance’ Overhead. As the strategy to capture ‘how-provenance’ is by
running a tailable cursor parallel to MongoDB server process, there is no time overhead
associated with the same. However, the storage overhead is proportional to the number
of operations done on the document/collection.

Why-Provenance’/MapReduce Provenance Overhead. We ran MapReduce on
MongoDB on various randomly generated datasets of different sizes. The time given is
cumulative time for processing MapReduce workflow and running the python script to
generate provenance. Time overhead is about 70-73 %. Space overhead depends on the
documents that are processed, as for every input document 12 bytes are required to track
the document id. In the 260 MB dataset used, space overhead is very large as we used
more than 700000 documents in the dataset. Experiment results are graphically repre-
sented in Fig. 7.

8000 40000
7000 35000
6000 30000
5000 i‘ 25000
E 2000 HNo provenani 2 20000 W No provenanc
M Provennace
3000 E’ 15000 M Provennace
2000 F 10000
I o
0
36vB 100MB 260MB 0
36MB 100MB 260MB
Input data
Input data

Fig. 7. Space overhead and time overhead for why-provenance against data size

5 Conclusion and Future Work

Provenance is a metadata that helps us audit the security of our systems and ensure that
our system is trustworthy. In this era of data explosion, big data analytics is extensively
used for decision making. In this context, capturing provenance is critical as it provides
a mechanism to ensure trustworthiness of result. In this paper, the option of capturing
of the provenance of NoSQL database by using system logs is explored. The proof of
concept was demonstrated by building a basic prototype in MongoDB and capturing
‘how-provenance’ and ‘why-provenance’ of queries.

Using our approach, any application built on top of MongoDB can capture prove-
nance of all database operations without adding any code for the same. The user is given
the flexibility of selecting documents for which provenance need to be tackled via
resource expression.

The work is based on the assumption of fault tolerance that is built into NoSQL
databases via replication mechanism. In this basic prototype, we have explored the type
of provenance and their uses. As future extension of this work, storage and performance
optimizations to make the provenance model more usable can be explored. Currently
an append-only table is used to capture provenance so that provenance remains immut-
able. Securing the provenance with integrity and confidentiality guarantees will be an
interesting line of work.

160

A.M. Chacko et al.

References
1. McDaniel, P.: Data provenance and security. J. IEEE Secur. Priv. 9(2), 83-85 (2011)
2. Foster, I.,Vockler, J., Wilde M., Zhao, Y.: Chimera: a virtual data system for representing,

10.

querying, and automating data derivation. In: Proceedings of the 14th Conference on
Scientific and Statistical Database Management (2002)

Ikeda, R., Salihoglu, S., Widom, J.: Provenance- based refresh in data-oriented workflows.
In: Proceedings of the 20th ACM International Conference on Information and Knowledge
Management (2011)

Moreau, L., Groth, P., Miles, S., Vazquez, J., Ibbotson, J., Jiang, S., Munroe, S., Rana, O.,
Schreiber, A., Tan, V., Varga, L.: The provenance of electronic data. Commun. ACM 51(4),
52-58 (2008)

Muniswamy-Reddy, K., Holland, D., Braun, U., Seltzer, M.: Provenance-aware storage
systems. In: Proceedings of the 2006 USENIX Annual Technical Conference, Boston, June
2006

Glavic, B., Dittrich, K.R.: Data provenance: a categorization of existing approaches. In:
Proceedings of the 12th GI Conference on Datenbanksysteme in Buisness, Technologie and
Web (BTW) (2007)

Cheney, J., Chiticariu, L., Tan, W.-C.: Provenance in databases: why, where and how. Found.
Trends Databases 1(4), 379-474 (2009)

Galvic, B.: Perm: efficient provenance support for relational databases. Ph.D. thesis,
University of Zurich (2010)

Kulkarni, D.: A provenance model for key-value systems. In: TaPP 2013 Proceedings of the
5th USENIX Workshop on the Theory and Practice of Provenance (2013)

Park, H., Ikeda, R., Widom, J.: RAMP: a system for capturing and tracing provenance in
MapReduce workflows. In: International Conference on Very Large Data Bases, pp. 1351—
1354 (2011)

	Provenance-Aware NoSQL Databases
	Abstract
	1 Introduction
	2 Related Works
	3 Design
	4 Proof of Concept - Provenance Aware MongoDB
	4.1 Requirements
	4.2 Capturing ‘How-Provenance’
	4.3 Capturing ‘Why-Provenance’
	4.4 Performance Analysis

	5 Conclusion and Future Work
	References

