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Abstract. Encryption algorithms are designed to be difficult to break
without knowledge of the secrets or keys. To achieve this, the algorithms
require the keys to be large, with some having a recommend size of 2048-
bits or more. However most modern processors only support computation
on 64-bits at a time. Therefore standard operations with large numbers
are more complicated to implement. One operation that is particularly
challenging to efficiently implement is modular reduction. In this paper
we propose a highly-efficient algorithm for solving large modulo opera-
tions; it has several advantages over current approaches as it supports
the use of a variable sized lookup table, has good spatial and temporal
locality allowing data to be streamed, and only requires basic processor
instructions. Our proposed algorithm is theoretically compared to widely
used modular algorithms, and shows improvements over other algorithms
using predefined lookup tables.

1 Introduction

Modular reduction, also known as the modulo or mod operation, is a value within
Y, such that it is the remainder after Euclidean division of X by Y. This operation
is heavily used in encryption algorithms [1–3], since it can “hide” values within
large prime numbers, often called keys. Encryption algorithms also make use of
the modulo operation because it involves more computation when compared to
other operations like add. Meaning that computing the modulo operation is not
as simple as just adding bits.

Modern Intel processors have implemented the modulo operation in the form
of a single division instruction [4]. This instruction will return both the quotient
and remainder in different registers. Therefore the modulo operation can be
computed in a single clock cycle, even though the nature of the operation requires
more computation than add. However this instruction only supports values up to
64-bits, and recommended key sizes for encryption algorithms can be higher than
2048-bits [5]. This is why it is challenging to compute the modulo operation,
because processors cannot directly support these large numbers.

We propose an algorithm for modular reduction which has been designed so
that it is hardware friendly. It only requires simple operations such as addition
and subtraction, unlike some other solutions which use multiplication or divi-
sion [6]. This allows for less costly custom hardware implementations in terms of
area and power. While also making better use of the register inside processors.
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Our proposed algorithm only requires chucks of data at once, starting at the
uppermost bits. Meaning the data can be streamed into a processor or custom
hardware. This gives it good spatial and temporal locality, and reduces cache
misses. Another useful property is that it guarantees the amount of bits required
for computation will that be of the modulo value Y . While allowing for an arbi-
trary bit length of the input value X, unlike the algorithm shown in [7]. This
allows implementations to have fixed bus sizes, giving better performance.

Our proposed algorithm also makes use of a precomputed lookup table, which
supports variable sizes. Therefore allowing it to be customised for its application,
and so that it fits inside cache. This lookup table also has the unique property
of being able to be used for an arbitrary number of bits, regardless of the lookup
tables key size.

Existing algorithms will be described in Sect. 2, including the two most
popular algorithms, Barrett’s reduction and Montgomery’s reduction. Then in
Sect. 3.1 we will describe our proposed algorithm in detail, giving the theorems
behind the algorithm, and their respective proofs. Implementation techniques
and remarks are given in Sect. 4, including the use of lookup tables. Before com-
parisons and concluding marks are given in Sects. 5 and 6 respectively.

2 Previously Known Techniques

This section will cover the popular and related modulus algorithms. The first two
reduction techniques, Barrett and Montgomery are the most commonly used. A
less common technique, the Diminished Radix Algorithm is mentioned, before a
newly proposed algorithm is also described.

2.1 The Barrett Reduction

The general idea behind the Barrett Reduction [6,8] is

X mod Y ≡ X − �X/Y �Y
where X is divided by Y , floored (i.e. remove decimal places), and multiplied
by Y . This value gives the closest multiple of Y to X, therefore we minus this
value from X to give the modulus.

The actual equation proposed by Barrett [6] is modified so that

X mod Y ≡ X −
⌊

X
bn−1 u

bn+1

⌋
Y

where u =
⌊
b2n

Y

⌋
. This assumes that divisions by a power of b are computation-

ally cheap, and that u is pre-computed. Therefore this is less expensive than the
general equation. It can be improved further so that partially multi-precision
multiplication are used when needed, which gives

X mod Y ≈ (X mod bn+1 − (mq̂ mod bn+1)) mod bn+1
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where q̂ is an estimate of X/Y , resulting in the result being an estimate itself.
Therefore a few subtractions of Y from the result can be required to give the
correct modulo value.

2.2 The Montgomery Reduction

Montgomery Reduction [9] is a common algorithm used for modulus reduction.
The unique property of this algorithm is that it does not compute the modulus
directly, but instead the modulus multiplied by a constant. An overview of the
algorithm is shown in Algorithm1 [10], where Y is odd, X is limited to 0 ≤ X <
Y 2, and K is the number of bits.

Algorithm 1. Reduction
Compute: 2−KX mod Y
1: x = X
2: for k = 1 to K do
3: if x is odd then
4: x = x + Y
5: x = x/2

return x

Algorithm 2. Modification
Compute: 2−KX mod Y
1: x = X
2: for k = 1 to K do
3: if the kth bit is high then
4: x = x + 2kY

return x/2K

Algorithm 1 is a simple interpretation of the Montgomery Reduction, with
further improvements required to match the performance of the Barrett Reduc-
tion. This is because currently the algorithm requires 2K2 single precision shifts
and K2 additions [10]. A small improvement is shown in Algorithm 2, where K
must now satisfy the condition 2K > Y .

Now the number of single precision shifts has been reduced to K2 + K,
however the divide in the return statement can be done in one shift. This results
in K2 single precision shifts, and 1 right shift of size K.

There are other modifications of the Montgomery Reduction [11,12] for both
software and hardware. And due to the number of variations, in this paper we will
only compare our proposed algorithm against the two Montgomery Reductions
algorithms, as shown in Algorithms 1 and 2.

2.3 The Diminished Radix Algorithm

The Diminished Radix Algorithm [13] has been designed so that certain moduli
offer performance gains [10]. Because of this, it is not a universally applicable
algorithm, so it will not be compared against in this paper.

2.4 Fast Modular Reduction Method

A proposed algorithm [7] by Cao et al. for modular reduction, uees a fixed size
lookup table similar to precomputed tables described in [14]. Even though [7]
is not one of the main algorithms for modular reduction, it will be described
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in detail in this paper. This is because it shares some of the core theorems
with our proposed algorithm in Sect. 3.1. Also [7] represents the common way
of implementing a lookup table for modular reduction, and will help show that
our proposed algorithm makes better use of a lookup table.

Cao et al. describe two algorithms, the second being an improvement over the
first. Therefore we will discuss the first algorithm as shown in Algorithm3, and
just make note that the second algorithm is better for the worst-case situation.

Algorithm 3. Fast Modular Reduction Method

Compute: X mod Y
k = bitlength(Y )
r(α) = 2α mod Y
T = {r(2k − 1), r(2k − 2), ... , r(k)}

1: if X < Y then
2: return X
3: if bitlength(X) = k then
4: return X − Y
5: s = binary(X)

6: m = 0
7: for i = bitlength(X) − 1 downto k do
8: if s[i] is high then
9: m = m + T[i − k]

10: m = m +
∑k−1

j=0 s[j]2j

11: while m ≥ Y do
12: m = m − Y
13: while m < 0 do
14: m = m + Y

return m

Algorithm 3 uses a precomputed lookup table T, which contains the modulus
answer for each bit from index k to 2k − 1. Then it loops through each bit index
of X at or above k and adds the value from the lookup table. Once the loop is
complete, it then adds the bits from index 0 to k − 1 of X onto the result m.
This is the main reduction, but further reductions can be required, hence the
last two while loops.

3 Proposed Algorithm

3.1 Overview

The algorithm we propose for calculating the modulus is shown in Algorithm4,
which computes X mod Y . The functions are shown before the pseudo code, were
α for example denotes the parameter into the function. Lower case variables with
a subscript represent bits at an index in the upper case variable, as shown by the
definition of T . Finally ˆ denotes the variable is an array or set. These notations
will be the same for the theorems and proofs in Sect. 3.3.

The bit shifting operation is the key feature of our algorithm, as it allows the
use of a single precomputed value to find the modulus of all bits above the bit
width of Y , unlike other solutions. We can also use multiple precomputed values
in the form of a lookup table and use a larger bit shift to improve performance,
which is described in Sect. 4.1. Where the algorithms in [7] require a precomputed
value for each bit above the bit width of Y . This can be very costly as the
precomputed values have a fixed size, where our algorithm can vary the number
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Algorithm 4 . Proposed Algorithm

Compute: X mod Y

Width(α) = width of α in terms of bits

Split(α, w) = {∑w−1
i=0 αi2

i, ...,∑w−1
i=0 αWidth(α)−w+i2

i}
Num(α̂) = number of elements in α̂

T =
∑Width(T )−1

i=0 ti2
i, ti ∈ {0, 1}

1: Ĝ = Split(X, Width(Y ))
2: N = Num(Ĝ) − 1
3: while N > 0 do
4: T = Ĝ[N ]
5: for i = Width(Y ) − 1 downto 0

do

6: T = T << 1
7: while tWidth(Y ) = 1 do
8: tWidth(Y ) = 0

9: T = T+(2Width(Y ) mod Y )
10: Ĝ[N − 1] = Ĝ[N − 1] + T
11: while Ĝ[N − 1]Width(Y ) = 1 do

12: Ĝ[N − 1]Width(Y ) = 0

13: Ĝ[N − 1] = Ĝ[N − 1] +
(2Width(Y ) mod Y )

14: N = N − 1
15: while Ĝ[0] > Y do
16: Ĝ[0] = Ĝ[0] − Y

return Ĝ[0]

of precomputed values. The other key property of our algorithm is that it only
reads data of X once (reads an element in Ĝ once), starting from the uppermost
bits and working down to the 0th bit. This gives our algorithm excellent spatial
and temporal locality. In terms of a hardware implementation, it also means the
data can be streamed from memory. Then because only a fixed amount of data
is read and computed at a time, custom hardware can be faster, have better
area usage, and be more power efficient. This guaranteed data width is another
property that other solutions cannot offer easily.

3.2 Description

Before the algorithm is described in further detail, first the functions must be
explained.

– Width: Given the parameter α, this function will return the minimum num-
ber of bits in α. Put simply, it results the index of the uppermost high bit,
plus one. For example if 13 were inputted, the result would be 4.

– Split: The first parameter α is the value to be split, and the second w is a
bit width value. This function splits α into a vector, so that each element is
bit width w. If α cannot be split up evenly (i.e. the bit width of α is not a
multiple of w), then α can be padded with zero bits. For example splitting
35 into a vector with an element bit width of 4, results in {3, 2}. In terms of
binary values, 35 = 1000112, so the result is {00112, 00102} (note the padded
zeros at index 1).

– Num: Number of elements in the vector α̂ after the split function.

The first line of Algorithm 4 splits X into a vector Ĝ so that the elements
have the same width as Y . Then we set N to the uppermost index of Ĝ, because
we will process the elements in reverse. Once we enter the loop, we will set T to
element N for ease of understanding the algorithm.
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The For loop will count from 0, to the number of bits in Y . Each iteration
we shift T left by one (i.e. double T ). Then if an overflow occurs, meaning that
the width of T is no longer equal to that of Y (i.e. the bit at index Width(Y)
is high), we clear this overflow bit, and add 2Width(Y ) mod Y to T . This value
we add should be precomputed so that it is already in modulo Y , therefore it
costs just one addition operation. The reason we do this is because if an overflow
occurs, we are guaranteed that T is greater than Y . So we add the modulo value
of this overflow bit back to the answer, which keeps T the same bit width as Y .
Therefore this means that T is, or is close to the correct value. When adding
2Width(Y ) mod Y to T , another overflow may occur, which requires us to repeat
line 7 until no overflow occurs.

Note that clearing the overflow bit could also be achieved by subtracting Y
from T . But depending on implementation, it is possible that multiple subtrac-
tions of Y are required to clear the overflow bit. Also subtraction would not
allow the use of a lookup table which is described in Sect. 4.1.

Once the we have finished the For loop, we have therefore performed
Width(Y ) number of shifts on T . Then we add T to the next element in Ĝ.
Whenever we perform an add, it is possible for an overflow to occur, so we have
to include the loop on Line 11 to deal with this when adding T .

When we reach element 0, which are the lowermost bits of X, so we know
that we are already close to the correct result, meaning we can stop the loop.
Then some subtractions could be required before the correct result is required
(depending on implementation). However implementing the algorithm as is, at
most only one subtraction would be required.

We are now left with the correct answer in element 0, which can be returned.
In order to prove that this algorithm will produce the correct modulus answer,
we must now discuss the theorems and proofs that the algorithm is based upon.

3.3 Theorems and Proofs

The algorithms main operation is to double the value of T , and by doing this,
we are also doubling the modulus. This is shown in Theorem1. Note that it is
important to find the modulus of 2M because by doubling M , the result could
become greater than Y .

Theorem 1. If X mod Y = M , then 2X mod Y = 2M mod Y

Proof. Given X mod Y = M where X,Y ∈ Z and M ∈ Z
Y
0

X

Y
= Q + M (Q = Quotient)

∴ X mod Y ≡ M mod Y

2X

Y
= 2(Q + M)

2X

Y
= 2Q + 2M

∴ 2X mod Y ≡ 2M mod Y
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Because an integer represented in binary is made up of powers of 2s, it is said
that the number is the sum of power of 2s. Therefore if we take the modulus of
each power of 2 and sum them, it is equivalent to summing the power of 2 s then
taking the modulus, as shown in Theorem2.

Theorem 2. Given an integer X, which is the sum of power of 2s, then the
sum of the modulus’s of the power of 2 s in Y , is equivalent to the modulus of X
in Y .

Proof. Given X mod Y where X,Y ∈ Z

X =
n−1∑
i=0

xi2i (where xi ∈ {0, 1})

xi2i

Y
= Qi + Mi (where Qi,Mi ∈ Z)

xi2i mod Y ≡ Mi mod Y

∴ X mod Y ≡
n−1∑
i=0

Mi mod Y

Theorem 3 in the general context of the algorithm is the same as Theorem 1.
However we require Theorem 3 because our proposed algorithm can use a lookup
table (described in Sect. 4.1), which Theorem 1 does not make clear.

Theorem 3. Given an integer X, which is to be shifted bit left by w, the modulus
of X bit shifted by w is equivalent to finding the modulus of X after being bit
shifted.

Proof. Given (X << w) mod Y = M where X,Y,M,w ∈ Z

Because left bit shifting X by w is equivalent to doubling X w times, we can
use Theorem 1 to prove that:

((X mod Y ) << w) mod Y ≡ (X << w) mod Y ≡ M

The first 3 theorems are the basic underlying operations used in our algo-
rithm. Now we need to prove the fundamental idea behind the algorithm. Theo-
rem 4 proves the initial step of the algorithm, splitting up X into elements of an
array/vector so that they can be concatenated together to give X. Then when
finding the modulus of X, we can sum the modulus of each element (with bit
shifting).

Theorem 4. When finding X mod Y , if X is larger then Y in terms of number
of bits, the modulus is equivalent to dividing X into elements of the same bit size
as Y , follow by the bit shifting and summing the modulus values of each element.
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Proof. Given X mod Y = M where X,Y,M ∈ Z

Y =

k−1∑

i=0

yi2
i

(where yi ∈ {0, 1} and k > 0)

X =

n−1∑

i=0

xi2
i

(where xi ∈ {0, 1} and n mod k = 0)

X̂ = {
⎛

⎝
n−1∑

i=n−k

xi2
i
>> (n − k)

⎞

⎠ , ... ,

⎛

⎝
k−1∑

i=0

xi2
i

⎞

⎠}

Y =

k−1∑

i=0

yi2
i

(where yi ∈ {0, 1} and k > 0)

X ≡
0�

i=(n/k)−1

X̂i

≡
(n/k)−1∑

i=0

(X̂i << ki)

Because the concatenation of X̂ is equivalent to X. Then by shifting each
item in X̂ to the correct bit position and summing, is equivalent to X. Therefore
we can use Theorems 2 and 3 so that

(n/k)−1∑

i=0

(X̂i << ki) mod Y ≡ X mod Y

Note: if n mod k �= 0 then X can be padded with 0s until n mod k = 0. 	

Theorem 5 proves that a single precomputed value (or a lookup table), can

be used to help find the modulus in each element greater than 0. This is an
important property of the algorithm, as it allows the use of more precomputed
values in the form of a lookup table.

Theorem 5. When calculating the modulus off X̂i in Y where i > 0, the mod-
ulus is equivalent to multiplying X̂i by

(
2k mod Y << k(i − 1)

)
.

Proof.

X̂i << ki mod Y

≡ X̂i2
ki

mod Y

≡ (X̂i mod Y ) × (2
ki

mod Y )

≡ (X̂i mod Y ) × (2
k
<< k(i − 1) mod Y )

Instead of multiplying (as in Theorem5), we instead shift each individual bit
in an element and add if an overflow occurs. These are proven to be equivalent
in Theorem 6.
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Theorem 6. Left shifting X̂i by ki in modulo Y where i > 0, is equivalent to
shifting X̂i one shift at a time. Then if the kth bit becomes high after any shift
(or add operation), drop it, and add 2k mod Y to X̂i. Therefore keeping the bit
width of X̂i constant, while remaining in modulo Y .

Proof.

X̂i × 2ki mod Y

≡ X̂i << ki mod Y

≡ (((X̂i << 1 mod Y ) ... ) << 1 mod Y )

After each shift we put X̂ back into modulo Y , and because X̂ has k bits, if the
kth bit becomes high (i.e. overflow), we know that X̂ is definitely bigger than
Y . Then by using Theorems 4 and 5, we can say that X̂ is equivalent in modulo
Y to adding 2k mod Y to X̂ (after dropping the kth bit).

Theorem 6 is the main theorem for this algorithms operation (i.e. producing
the correct answer). However for implementation, it would suffer from perfor-
mance issues. This is due to the amount of shifting and potential adding which
we would need to perform. So instead of shifting an element to its correct position
directly, we can just shift it by the number of bits in Y , then start shifting the
next element as well. This is shown in Theorem 7, and in terms of performance
of the algorithm, is the most important theorem.

Theorem 7. If we start calculating the modulus of X in Y at X̂(n/k)−1, then
instead of performing k (((n/k) − 1) − 1) number of shifts, we can perform k
shifts, then add X̂(n/k)−1 to X̂(n/k)−2. Repeating until we reach X̂0 which will
contain the result.

Proof.
(
X̂(n/k)−1 << k((n/k) − 2)

)
+
(
X̂(n/k)−2 << k((n/k) − 3)

)

≡
(
X̂(n/k)−1 << k << k((n/k) − 3)

)
+
(
X̂(n/k)−2 << k((n/k) − 3)

)

≡
((

X̂(n/k)−1 << k
)
+
(
X̂(n/k)−2

))
<< k((n/k) − 3)

3.4 Example

Below is an example on how to solve 1620 mod 11 on a 4-bit processor using our
proposed algorithm.

1620 = 0110010101002

11 = 10112

Ĝ = {01102, 01012, 01002}
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T = Ĝ[2]

= 01102

T = T << 1

= 11002

T = T << 1

= 1 10002

T = 10002+

(100002 mod 10112)

= 10002 + 01012

= 11012

T = T << 1

= 1 10102

T = 10102 + 01012

= 11112

T = T << 1

= 1 11102

T = 11102 + 01012

= 1 00112

= 00112 + 01012

= 10002

T = T + Ĝ[1]

= 10002 + 01012

= 11012

T = T << 1

= 1 10102

T = 10102 + 01012

= 11112

T = T << 1

= 1 11102

T = 11102 + 01012

= 1 00112

T = 00112 + 01012

= 10002

T = T << 1

= 1 00002

T = 00002 + 01012

= 01012

T = T << 1

= 10102

T = T + Ĝ[0]

= 10102 + 01002

= 11102

T = T − 11

= 11102 − 10112

= 00112

∴ 1620 mod 11 = 3

4 Theoretical Implementation

4.1 Lookup Table

A useful property of our algorithm is that is allows for the use of a variable
sized lookup table. Lookup tables may not be suitable for all applications or
functions, such as key generation, because the overhead in creating the table
could be too expensive. However for applications where large amounts of data
must be computed with the same modulo value, such as smart-cards or secure
tunnels, there is a performance gain. The algorithm in its most basic form already
uses a lookup table. For each shift, if an overflow occurs, we add a precomputed
value, else we add nothing, giving a simple lookup table as shown in Table 1.

This can be extended to look at more bits at a time. For example, if we
were to look at 2-bits, the lookup table would be that of Table 2. Allowing us to
shift by two bits at a time (instead of a single shift), but we still only require a
single add. However this makes a software implementation slightly more difficult,
because we cannot use the overflow bit anymore. Therefore we must look at the
upper 2-bits of T before shifting. The current software implementation uses an
and operation then a shift to get these upper bits. On a 64-bit processor, a lookup
table with a key size of up to 64-bits, only requires the and shift operations to
be executed on a single 64-bit register, regardless of the size of Y . To possibly
improve performance even more, one approach that could be explored is reversing

Table 1. Precomputed
Lookup Table for 1-bit

Key Value

0 0

1 2k mod Y

Table 2. Precomputed
Lookup Table for 2-bits

Key Value

00 0

01 2k mod Y

10 2k+1 mod Y

11 (2k + 2k+1) mod Y
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the bits in each element (and keys), meaning only an and operation would be
required.

Given that the lookup table is of variable size, it is important to make the
whole table fit into the processors cache. This makes the lookup time require sig-
nificantly less clock cycles than fetching from main memory, and thus improving
performance. The size of Y has the biggest impact on the size of the lookup
table. For example, if Y is a 2048-bit value, then each item in the table requires
2048-bits, plus the number of bits for each key.

4.2 Memory Access

This algorithm has been designed in such a way that memory access has been
kept to a minimum. The lookup table can be configured so that it fits in cache.
Once loaded, memory access is only required for X. Since the algorithm only
works on segments of X at a time, it can load an element of X, process it, then
load the next element. Therefore reducing the number of fetches (also cache
misses), and improving performance. Each element loaded is the same number
of bits as Y , meaning if Y is 2048-bits, then the processor only needs to load
2048-bits at a time. This allows the data to be streamed into the processor,
which is also important for a custom hardware implementation.

5 Comparisons

We theoretically compared our algorithm to the algorithms presented in Sect. 2,
and have not compared it to previously implemented designs or techniques of
those algorithms.

5.1 Comparisons with Barrett Reduction

Comparing between our proposed algorithm and the Barrett Reduction is very
difficult in theory. This is because the Barrett Reduction only seems to use a few
operations. However when looking at implementation, it is the nature of these
operations which cause performance issues. This is because when working with
large numbers, for example 2048-bits, a 64-bit processor cannot simply execution
a single instruction. Instead it must execution many instructions to compute the
result.

Addition operations on large numbers are straight forward assuming the
instruction set supports a carry bit. The words of the two input values can just
added together. For example on Intel x86 processors, the adc instruction can be
used to add two words together, plus add a carry bit if an overflow occurred on
the previous add or adc. Therefore if we are computing r = a + b, our pseudo
assembly code would be
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add r[0], a[0], b[0]

adc r[1], a[1], b[1]

...

adc r[n], a[n], b[n]

where each word of a and b are added together. Therefore the number of instruc-
tions required is the number of words in the value. Subtraction can be achieved
in a similar manner, by using the sub and sbb instructions.

Multiplication is not as simple as addition or subtraction, because each word
in a needs to be multiplied by all words in b. One technique to implement this
is using basic long multiplication. For example if we are computing 33 × 52 on a
4-bit processor, we get

0010 0001

× 0011 0100

1000 0100

+ 0110 0011 0000

0110 1011 0100

where we are only multiplying or adding 4-bits per cycle. Therefore in this exam-
ple, we require 4 multiples, and 3 adds. This can get more complex if overflows
occur when multiplying, often requiring more additions in modern instruction
sets [4]. Scaling this up to multiplying two 2048-bit values on a 64-bit proces-
sor, 1024 multiplications and even more additions depending on the amount of
overflows that occur. Ignoring other instructions such as fetch, move and store,
just this simple multiplication requires over 2048 instructions. The number of
registers within the processor will also impact the performance because large
numbers (i.e. 2048-bits) can be difficult to fit into registers all at once.

This is the disadvantage of using the Barrett reduction, because even though
the operations used seem simple, in reality they can be complicated to imple-
ment. The algorithm also makes use of the division operation which is more com-
putationally intense than multiplication. However it depends on the value of b.

In contrast, our algorithm only uses simple operations like bit shifting and
addition. It also uses memory efficiently as elements of the value are only accessed
once. However the number of instructions required depends on the size of the
key and lookup table. For example given X mod Y , if Y is only 1024-bits,
and X is 2048-bits, therefore the main reduction is computed on the upper
1024-bits of X. Then the lookup table key can be 8-bits, resulting in a size of
approximately 258Kb (1024-bit values + keys). This means that 1024/8 lookups
are required. The bulk of the instructions are adding the lookup values each
time. In this case, on a 64-bit processor, 2048 add instructions are needed. This is
therefore comparable to a single multiplication in the Barrett Reduction (because
the multiplication will be computed on 2048-bits). The shifts required will also
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require approximately 2048 instructions, which makes equals two multiplication
operations. There are other instructions that will be required of course, like some
additions for joining the elements together, and some final subtractions to get
to the correct result. But these heavy depend on the inputted values.

At this point it is not possible to definitely claim our proposed algorithm
is better than the Barrett Reduction. However by analysing the instructions
required, we can show that it will use less instructions when compared to the
Barrett Reduction, because of the Barrett Reductions heavy use of multiplica-
tion and division instructions. Comparing implementations of both algorithms
in software is a difficult approach. Because both algorithms would be needed to
be implemented fairly, with neither having any better code than the other (i.e.
optimisations). Therefore only once a fully operational hardware implementation
of our algorithm is complete, will we be able to provide a definite answer.

5.2 Comparisons with Montgomery Reduction

Unlike the comparison for the Barrett Reduction, comparing our proposed algo-
rithm against the Montgomery Reduction is more straight forward. This is
because the main operation used in Algorithm 2 is addition, which is the same
as our proposed algorithm. Given that an addition in Algorithm2 only occurs if
a bit is high, we will say that on average, half of the bits are high. Meaning if the
input is 2048-bits, only 1024-bits are high. Which therefore requires 1024 addi-
tion operations. As discussed in the Barrett Reduction comparison, one addition
uses many instructions on a standard processor. Therefore on a 64-bit proces-
sor, 16384 add instructions are required if the input is 2048-bit values. This is
far more than our proposed algorithm would require, which was approximately
2048 add instructions, and approximately 2048 shift instructions, as shown in
the Barrett comparison. The Montgomery Reduction also makes no guarantees
on the number of bits required for each operation. For example, given X mod Y ,
where X is 4096-bits and Y is 1024-bits, then each add operation will need to
compute over 4096-bits. However our proposed algorithm will only compute over
1024-bits at a time. This is a very useful property for hardware implementations,
and for making efficient use of registers and lower level cache.

The Montgomery Reduction does not always give the correct answer first
time, often requiring additional steps to compute the desired result. Where as
our proposed algorithm will give the correct result after one run. Another point
is that the Montgomery Reduction also requires a lot of shifting operations for
the 2kY computation. Therefore using this simple theatrical comparison, our
proposed algorithm should allow for better implementations in both software
and hardware over the Montgomery Reduction algorithms shown.

5.3 Comparisons with Fast Modular Reduction Method

This newly proposed algorithm in [7] is actually similar to the Montgomery
Reduction in the sense that it looks at high bits. The difference is that it only
processes the bits above bits of the modulus (Y ), like our proposed algorithm. For
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example, given X mod Y , where X is 2048-bits and Y is 1024-bits, then it will
only process the upper 1024-bits of X. Then for each high bit i, it uses a lookup
table to get the result of 2i mod Y and adds it to the result. Therefore if we again
say that half of the bits are high, 512 add operations are required. The bit width
of the result is not clearly stated, however given that only values are added, it
has to be 2048-bits (the same as X). Meaning at least 8192 add instructions
would be needed, but will probably be closer to 16384. Our proposed algorithm
would use far less instructions, and it guarantees the width of the result. Also
because it keeps the result at a fixed width, the amount of subtractions required
should be less on average, but this depends on the input.

Comparing the lookup tables, this algorithm [7] has a fixed size lookup table.
So for example, if Y is 2048-bits, then there must be 2048 entries in the table,
each of a size of 2048-bits. Resulting in a size of approximately 4Mb. Also because
of this, the bit width of the input X, can be no more than double the bit width of
Y . This is because the lookup table only contains entries for the bits up to double
that of Y , which for this example is 22048 to 24096. This is a major limitation of
this algorithm. However when looking at our lookup table, it can vary in size,
and can support an arbitrary bit length of X. This is important to allow the
table to fit in cache, and for devices which have limited storage. Using the same
example where Y is 2048-bits, if the lookup table key is 8-bits, then the total
size is approximately 0.5Mb. Our algorithm even allows for a lookup size of 1, if
space is really limited.

Therefore our proposed algorithm is superior to that proposed in [7], both
in terms of required instructions and the effectiveness of the lookup table. It is
also a better option for hardware implementations because it can guarantee bit
widths, and support varying sized lookup tables.

6 Future Work and Conclusion

We propose an algorithm for computing the modulus operation which is unique
to other algorithms. Future work includes creating an implementation on a Field-
Programmable Gate Array (FPGA). Then to compare not only the performance,
but also the area and power required, as well as looking into the effectiveness of
side channel attacks. We would also like to develop a software implementation,
and compare its performance for computing the modulo operation over integers,
as well as within already secure data. For example encrypting data which is
already encrypted using a fully homomorphic encryption scheme.

The algorithm has been designed to keep memory access at a minimum,
decreasing the time the processor has to wait for data to be fetched. It is more
advanced than other algorithms using lookup tables, such as in [7] and [14],
because our algorithm allows the table to be used on an arbitrary input, while
supporting a variable size.
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