Chapter 15

High Assurance Asynchronous Messaging
Methods

William R. Simpson and Kevin Foltz

15.1 Introduction

This paper is based in part on a paper published by WCECS [1]. Asynchronous
messaging describes communication that takes place between one or more appli-
cations or systems, in which the sender does not receive feedback from the receiver
during transmission of a message. This is in contrast to synchronous communica-
tion, in which the sender of a message waits for acknowledgement or a response
from the receiver before completing the transmission.

There is no assumption about which layers asynchronous and synchronous
communication take place in or how these relate to each other. It is possible to
implement synchronous communication using an asynchronous messaging service
or an asynchronous messaging service using synchronous communication channels.
In practice, asynchronous messaging often uses an underlying synchronous
channel.

A common asynchronous messaging design involves one system placing a
message in a message queue and continuing its processing. At the completion of
message transmission, the sender does not know when or whether the receiver
received it. The message queuing system is responsible for delivering the message
to the recipient. Some systems use two or more queues or intermediaries.

W.R. Simpson (=) - K. Foltz
Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311, USA
e-mail: rsimpson@ida.org

K. Foltz
e-mail: kfoltz@ida.org

© Springer Nature Singapore Pte Ltd. 2017 205
S.-I. Ao et al. (eds.), Transactions on Engineering Technologies,
DOI 10.1007/978-981-10-2717-8_15

206 W.R. Simpson and K. Foltz

15.1.1 Some Advantages of Asynchronous Communication

Asynchronous messaging solves the problem of intermittent connectivity. If the
receiving equipment fails or is unavailable, the message remains in a message
queue and is delivered after the failure is corrected. This is especially useful for
transmission of large data files, in which failures are more likely and retransmis-
sions more costly.

An asynchronous messaging system with built-in intelligence may transform the
content and/or format of the message automatically to conform to the receiving
system’s requirements or needed protocol but still successfully deliver the message
to the recipient. This intelligence is used to provide a higher level of understanding
of the content, which allows translation into other formats and protocols. Com-
plicated transformations are better suited to asynchronous communication than
synchronous communication because they may increase latency and cause con-
nectivity problems or other underlying protocol failures for synchronous systems.

15.1.2 Some Disadvantages of Asynchronous
Communication

The disadvantages of asynchronous messaging include the additional component of
a message broker or transfer agent to ensure the message is received. This may
affect both performance and reliability. Another disadvantage is the response time,
which may be inconvenient and not consistent with normal dialog communication.

15.2 High Assurance Issues

There are several high assurance security principles that must be maintained for
asynchronous communication.

1. Know the players—in synchronous (two way communication) this is done by
enforcing bi-lateral end-to-end authentication. For synchronous communication
Enterprise Level Security the certificate is PKI.

2. Maintain Confidentiality—in synchronous Communications this entails
end-to-end encryption using Transport Layer Security (TLS).

3. Enforce Access and Privilege—in synchronous (two way communication) this is
done by the use of an authorization credential. For synchronous communication
Enterprise Level Security the certificate is SAML.

4. Maintain Integrity—know that you received exactly what was sent—know that
content has not been modified—For synchronous communication and enterprise
level end-to-end TLS encryption the use of message authentication codes is
enforced. Packages are signed and signatures are verified and validated. Cre-
dentials of signers are verified and validated.

15 High Assurance Asynchronous Messaging Methods

15.3 Prior Work

207

A proliferation of standards [2—12] for asynchronous messaging has caused inter-
operability problems, with each major vendor having its own implementations,
interface, and management tools. Java EE systems are not interoperable, and
Microsoft’s MSMQ (Microsoft Message Queuing) does not support Java EE. Many
of these are reviewed and compared in [13]. A few of the numerous standard
protocols used for asynchronous communication as defined in the Internet Assigned
Numbers Authority (IANA) protocol registries [14] are in the Table 15.1.

Table 15.1 Messaging ports

Port

TCP/UDP

Messaging Protocol and Description

Status

18

TCP and
UDP

The Message Send Protocol (MSP), more precisely referred
to as Message Send Protocol 2, is an application layer protocol
used to send a short message between nodes on a network.
Defined in RFC 1312

Official

110

TCP

Post Office Protocol v3 (POP3) is an email retrieval protocol

Official

119

TCP

The Network News Transfer Protocol (NNTP) is an

application protocol used for transporting Usenet news articles
(netnews) between news servers and for reading and posting
articles by end user client applications. Defined in RFC 3977

Official

143

TCP

Internet Message Access Protocol (IMAP) is a protocol for
e-mail retrieval and storage as an alternative to POP. IMAP,
unlike POP, specifically allows multiple clients simultaneously
connected to the same mailbox and through flags stored on the
server; different clients accessing the same mailbox at the same
or different times can detect state changes made by other
clients. Defined in RFC 3501

Official

161

UDP

Simple Network Management Protocol (SNMP) is an
“Internet-standard protocol for managing devices on IP
networks.” Devices that typically support SNMP include
routers, switches, servers, workstations, printers, modem
racks, and more. Defined in RFC 3411-3418

Official

218

TCP and
UDP

Message Posting Protocol (MPP) is a network protocol used
for posting messages from a computer to a mail service host

Official

319

UDP

Event Messages for The Precision Time Protocol (PTP) is a
protocol used to synchronize clocks throughout a computer
network. On a local area network, it achieves clock accuracy
in the sub-microsecond range, making it suitable for
measurement and control systems. Defined in IEEE
1588-2008

Official

587

TCP

Simple Mail Transfer Protocol (SMTP), as
specified in RFC 6409

Official

(continued)

208 W.R. Simpson and K. Foltz

Table 15.1 (continued)

Port | TCP/UDP | Messaging Protocol and Description Status
1801 | TCP and | Microsoft Message Queuing or MSMQ is a message queue | Official
UDP implementation developed by Microsoft and deployed in its
Windows Server operating systems
1863 | TCP MSNP (Microsoft Notification Protocol), used by the Official

Microsoft Messenger service and a number of Instant
Messaging clients

1935 | TCP Adobe Systems Macromedia Flash Real Time Messaging Official
Protocol (RTMP) “plain” protocol
2195 | TCP Apple Push Notification service Link Unofficial
2948 | TCP and | Multimedia Messaging Service (MMS) is a standard way to | Official
UDP send messages that include multimedia content to and from
mobile phones
4486 | TCP & Integrated Client Message Service (ICMS). Official
UDP Defined in RFC 6335
5010 | TCP IBM WebSphere MQ Workflow Official

15.3.1 Java Standard Messaging Protocol

Java Messaging System (JMS) is a message-oriented middleware API for com-
munication between Java clients. It is part of the Java Platform Enterprise Edition. It
supports point-to-point communication as well as publish-subscribe.

15.3.2 De-Facto Standard Microsoft Message Queuing

Microsoft Message Queuing (MSMQ) allows applications running on separate
servers/processes to communicate in a failsafe manner. A queue is a temporary
storage location from which messages can be sent and received reliably, as and
when conditions permit. This enables communication across networks and between
computers running Windows, which may not always be connected. By contrast,
sockets and other network protocols require permanent direct connections.

15.3.3 Open Source Messaging Protocols

In addition to Java and Microsoft, different open source solutions exist [2—-12].
RabbitMQ is an open source messaging solution that runs on multiple platforms
and multiple languages. It implements Advanced Message Queueing Protocol
(AMQP), in which messages are queued on a central node before being sent to

15 High Assurance Asynchronous Messaging Methods 209

clients. It is easy to deploy, but having all traffic pass through a single central node
can hinder scalability.

ZeroMQ is another cross-platform, cross-language messaging solution that can
use different carrier protocols to send messages. It can support publish-subscribe,
push-pull, and router-dealer communication patterns. It can be more difficult to set
up, but it provides more control and granularity at the lower levels to tune
performance.

ActiveMQ is a compromise between the ease of use of Rabbit MQ and the
performance of ZeroMQ. All three support multiple platforms and have client APIs
for C++, Java,.Net, Python, and others. They also have documentation and active
community support. There are many other implementations, including Sparrow,
Starling, Kestrel, Beanstalkd, Amazon Simple Queue Service (SQS), Kafka,
Eagle MQ, and IronMQ.

15.3.4 Emerging Standard Advanced Message Queuing
Protocol

Advanced Message Queuing Protocol (AMQP) is an open standard application
layer protocol for message-oriented middleware [15]. It is an emerging technology
addressing the standardization problem. Implementations are interoperable. It
includes flexible routing and common message paradigms like publish/subscribe,
point-to-point, request-response, and fan-out.

The defining features of AMQP are message orientation, queuing, routing (in-
cluding point-to-point and publish-and-subscribe), reliability, and security. AMQP
mandates the behavior of the messaging provider and client to the extent that
implementations from different vendors are truly interoperable, in the same way as
SMTP, HTTP, FTP, and others have created interoperable systems.

15.4 Asynchronous Messaging Security

Asynchronous messaging can provide authentication of the sender and receiver
identities and the integrity and confidentiality of the message content if the holder
of the queue is trusted. One key challenge in asynchronous messaging systems is
that a third party is often involved in the transaction, which may or may not be
trusted to speak for the sending or receiving entities or view or modify content in
transit. As a result, security models often require a trusted third party, which
restricts deployment options. In contrast, synchronous web traffic relies on routers
and other infrastructure to deliver messages, but the use of TLS provides end-to-end
security without the need to trust these intermediate nodes.

210 W.R. Simpson and K. Foltz

15.4.1 Security for Server Brokered Invocation

Server brokered invocation uses web server middleware to manage message
queues. The sender and receiver both communicate directly through secure syn-
chronous channels to the server to send and receive messages. This model is shown
in Fig. 15.1. Asynchronous message security must be from sender to receiver, not
just from sender to server and server to receiver. The latter fails to provide
end-to-end authentication, integrity, and confidentiality, which are required for a
high assurance environment.

In order for the parties involved in the transaction to provide accountability,
integrity, and confidentiality, the service requester must authenticate itself to the
receiver, encrypt the message so only the service provider can receive this message,
and provide verifiable integrity checks on the full message content. The service
provider must confirm that the message is from a known identity, decrypt the
content with a valid key, and verify the integrity checks before that entity can take
action on the message.

This is accomplished by invoking two cryptographic techniques. The first is the
use of a digital signature by the sender. When the message signature is verified, the
service provider knows the identity of the sender and that the content has not been
altered by another entity after it was signed. The second is the encryption of the
message using the public key of the service provider. This requires that the
requester know the public key of the target. A response to the requester must
similarly be signed and encrypted using the public key of the requester.

The use of asymmetric encryption is paired with more efficient symmetric
encryption, where content is encrypted with a random symmetric key, which is
itself encrypted using the receiver’s public key. Additional security can be provided
by message expiration deadlines within queues and central auditing of all messages
sent and received.

_ Service |
Service Request Provider
SOAP or other
message form
compliant with ports
and protocols Reauest Web Server
3 Middleware
: ueue
Service Q
Request
: Response
‘Scr\qce chuem R Signed by provider
Signed by requester esponse [| Encrypted with
Encrypted with Queue public key of requester
public key of provider

Fig. 15.1 Security considerations for server brokered invocation

15 High Assurance Asynchronous Messaging Methods 211

15.4.2 Security for Publish Subscribe Systems

In a Publish Subscribe System (PSS) the queue server acts as an intermediary
between sender and receiver to manage many-to-many instead of just many-to-one
communications. Senders and receivers communicate with the PSS through a
secure synchronous channel. The PSS collects messages and makes them available
to entities based on subscriptions. This model is shown in Fig. 15.2.

The PSS is an active entity and registered in the Enterprise Service Directory.
Active entities act on their own behalf and are not a proxy. To preserve the
end-to-end accountability chain for messages, the original publisher signs the
message. However, unlike server-brokered invocation, no single public key can be
used for all potential receivers. One solution to address this is for the PSS to encrypt
the content to the receivers. The sender’s signature remains intact, preserving
integrity, but end-to-end confidentiality is not guaranteed.

A PSS may use the web server broker as shown in Fig. 15.3. The web server
broker is used only for notification messages, so it does not require security like the
main channel. The transmission of the actual message is still done through the
secure synchronous channel. The storage queue must be encrypted using the PSS’s
public key. This is piecemeal confidentiality, because the sender encrypts to the
PSS, and the PSS encrypts to the receiver. This relies on trust of the PSS.

Service | f_ %crlicg -) P;T;L?r:;in ('l?ini“ !_) Service
>ques uest sl eques Dravide:
Request eques Service q Provider
Service Request
SOARP or other message form
over HTTPS port 443

Fig. 15.2 Publish-subscribe push model

Service Request Service
compliant with Provider
— ports and protocols
Service _5‘1‘ ice_(Publication Service Request Web Server
Request [* X\ Request Subscribe Service | Request Queue Middleware
e Service Request Response
. f“—r“'"-t)thu‘-”l_ . Signed by requester Queue
over HI'TPS port 443 . . Encrypted with public
Mutual Authentication @kc!' of provider " Iér.‘almncc i
2y T . 120¢ v pl’O\l cr
PRITLS Encrypted with
public key of
rr.qug:tu

Fig. 15.3 Publish-subscribe pull model

212 W.R. Simpson and K. Foltz

15.5 Pss Rock and Jewel

The following is an approach developed to maintain high security assurances with
the use of an untrusted PSS. In this formulation, the sender and receiver maintain
end-to-end security because the PSS is unable to impersonate either endpoint or
view or modify the content. The key concepts are the use of “rocks” and “jewels” to
provide security guarantees. The “rocks” are encrypted content blocks, and the
“jewels” are the decryption keys for these rocks, encrypted using public keys for the
intended recipients.

15.5.1 Claims for Targeted Content (PSS)

After authentication through TLS v1.2 or later versions and authorization based on
SAML claims, the sender accesses PSS services. The PSS will offer either publish
or retrieve based on the values in the SAML content claim. If there are no SAML
content claims, the subscriber will only receive basic services based on identity.

Publishing of content for a targeted list, as used by software publishers, is based
upon registered delivery. The targeted list requires the following steps:

0. Publisher does a bi-lateral authentication and establishes a TLS 1.2 session with

SAML authorizations for session establishment with the PSS. The PSS iden-

tifies him as a publisher. He may also be a subscriber, or he may be modifying a

previous publish or he may be retrieving messages, so the PSS ascertains the

reason for his session.

Content to be published will be digitally signed by the publisher.

. The publisher will generate an AES-256 encryption key and encrypt the

content.

3. Encrypted Content is placed in a queue based on an access claim and list name.
The publisher will keep such lists. The PSS will assist in developing claims.

4. Access is based on a list of targets and claims. A target may be an individual
subscriber or a group queue. The publisher may establish a new queue based on
claims and the list for retrieval. This new queue requires an identity and a
claims establishment for retrieval (see 3 above). Additional content may be
published as needed.

5. Expiration time of targeted content is determined by the publisher or the
messaging system.

6. The PSS will provide PKI certificates for each of the targets for the content (if
the publisher needs them and they are already registered in the PSS). The
publisher should check all certificates on the list for currency and revocation. If
invalid certificates are discovered, the list should be pruned.

7. The publisher will prepare encrypted key sets (jewels) by wrapping the AES
encryption key in each target’s public key.

N =

15 High Assurance Asynchronous Messaging Methods 213

PUbliSher Side Publication Subscribe

: Service @ .
Publisher ABC Service — IMuIIuple
=T T Request— U7 T T/ PKI Notification ABC

Software Software has

AES 256 Published a
Encr\."[.-n @ o @ package for Target
Mutual r’! g& i
Authentication i/ @

PKI TLS

_,.-v% For Server 19
’J% For Server 21
/‘@_ , For Server 33

% For Server 56
i % ’

AES 256 Key wrapped
in target public key

Fig. 15.4 Publishing of targeted content

8. The publisher will publish the encrypted material (rocks) and the encrypted key
sets (jewels) for the targets. The PSS will link these to the encrypted material
and the target(s).

9. The PSS will provide notification, if desired, to the subscriber list. The PSS will
assist with message selection and target details, or the publisher may script his
own.

10. The publisher closes the session.

Note: the target must be on the list and have authorization to view content. The
steps are shown in Fig. 15.4.

15.5.2 Retrieving Content for Known Claimants

Retrieval of targeted content may be achieved without the targeted identities con-
tacting the publisher. The following steps are followed:

0. Subscriber does a full bi-lateral authentication using TLS 1.2 with SAML
authorizations for session establishment with the PSS. The claims identify him
as a subscriber. He may also be a publisher, so the PSS ascertains the reason for
his session.

1. The PSS offers subscriber content available for the claims in queues for which
the claimant has an encrypted key available, and the subscriber chooses and
retrieves the encrypted content (rock).

214 W.R. Simpson and K. Foltz

Notification to
ABC Software
Websphere Server

Publication Subscriber side

19 has retrieved Subscribe Service
Package posted to
LIST SERV on @
idale}
! Service_ Subscriber WebSphere
Request Server 19

@\ | assass 3) o

f PKI
AES 256 —4= —For Server 9] & | o=
Key %, For Server2l @
\\"rap'ped v SE r
in target ‘U For Server 33 19
public key

» For Server 56

:

Fig. 15.5 Subscriber retrieval(s) from a known target

AN

. The PSS provides the encrypted key package (jewel).
. The PSS notifies the publisher. When expiration time occurs, the server deletes

the packages and notifies the publisher which packages were not delivered. The
publisher may republish to that list if desired.

. The subscriber decrypts the content encryption key (jewel) with his private key

and accesses the content (rock) decryption key.

. The subscriber decrypts the content.
. The subscriber verifies and validates signature.
. The subscriber closes the session or retrieves additional content.

Note: the target must be on the list and have a content claim. The steps are

shown in Fig. 15.5.

15.5.3 Retrieving Content for Unknown Claimants

Unknown claimants cannot retrieve the content until registering with the content
provider. The steps in that process are described below:

0.

The subscriber does a full bi-lateral authentication TLS 1.2 with SAML
authorizations for session establishment with the PSS. The authentication
identifies him as a subscriber. He may also be a publisher, so the PSS ascertains
the reason for his session.

. The PSS checks the content claims available and the subscriber chooses and

retrieves the content for which full packages exist.

15 High Assurance Asynchronous Messaging Methods 215

Notification to ABC

. " Publication : 4

Software Websphere 2 3

Server 19 m[ﬁgvcd Subscribe Service SUbSCrlber Mde

Package posted to

LIST SERV on PKI @
{date} - -
[. Service _\’ Subscriber WebSphere
AES 256 “Request _ Server 19
Encrypt J‘ PK|
""--..____

@d For Server 19

AES 256 W‘; For Server 21

Key d @“& For Server 33
wrappe .
n target @.‘ For Server 56
public key

Fig. 15.6 Subscriber retrieval(s) from an unknown target

2. For the unknown list, the encrypted key package is not available. The PSS
replies “the publisher has no record of your membership. I need to contact the
publisher. I will send you a notice if the publisher agrees.”

3. The PSS stores a message for the publisher and notifies him that he has a
message.

4. The PSS and subscriber await publisher action.

5. The subscriber closes the session or retrieves additional content.

Note: the target has a content claim, but is not on the list. The steps are shown in
the Fig. 15.6.

15.5.4 Adjusting Publishing Targets (Untrusted PSS)

Publishers must add receivers to the distribution list before they can be provided
messages. The steps in that process are described below:

0. The publisher does a full bi-lateral authentication through TLS 1.2 with SAML
authorizations for session establishment with the PSS. The authorization process
identifies him as a publisher. He may also be a subscriber, or he may be
modifying a previous publish or he may be retrieving messages, so the PSS
ascertains the reason for his session.

1. Retrieve messages. These are retrieved one by one with action taken (or not) and
deletion of the message.

216 W.R. Simpson and K. Foltz

Publisher side @ Publication

VY Service Subscribe Service | Notification to Server 59
= Request \ ABC Software has added
you to the server list.

Publisher ABC

Software ‘01®I®> @

Msg Queue for publisher ABC

AES 256 Software:
Encrypt (a) Server 59 has content
credentials and requested
PKI content. Please ask for
o credentials.
w_’% F?; ::ﬁ;g?‘ (b) Server 83 has content
S " (WebSphere credentials and requested
er : EF- Tor Qarve content. Please ask for
Seee) AES 256 Sl Fos Secverl) credentials.
Mutual Authentication wra]fged ' ‘.-E; g For Server 21 (€
PRITLS in target [oon
Noblic key Va For Server 33
g e x PSS Burden:
Poblidies Busden: A [For Server 56| 1. Maintenance of message
1. Publisher has to do key e

management and list o For Server 59| 2. has to keep an IOU queue

maintenance
2. Publisher has to frequently
contact the PSS for msgs.

Fig. 15.7 Publisher message retrieval and subsequent actions

e The publisher asks for credentials of previously unknown claimants he
wishes to add to his lists.

— The publisher may add claimants to the publisher’s list

— The publisher computes jewels.

— The publisher posts jewels.

— The PSS notifies the subscriber that he has content available. This makes
the entity a known target and Sect. 15.5.2 applies.

e PSS provides messages to requester.
2. The publisher closes the session.

The steps are shown in Fig. 15.7.

15.5.5 Distribution of Burdens

Several burdens are incurred in this high security mode. The publisher has to do key
management and list maintenance. The publisher has to frequently contact the PSS
for messages for publishers. The PSS must maintain message queues for publishers.

15 High Assurance Asynchronous Messaging Methods 217

The PSS has to keep a linked wrapped key package by target with published
content. The PSS is responsible for additional notifications that are sent out. The
unknown claimant may have a delay in receiving content to which he has claims.

15.6 Summary

We have reviewed the basic approaches to asynchronous communication in com-
puting environments. We have also described high assurance approaches to the
process. The proliferation of standards in this area has created a problem with high
assurance. In many instances the high assurance elements require additional steps in
the asynchronous process, but they provide a way to proceed when some inter-
mediaries are untrusted. This work is part of a body of work for high assurance
enterprise computing using web services. Elements of this work are described in
[16-29].

References

1. Foltz K, Simpson WR (2015) Maintaining high assurance in asynchronous messaging. In:
Proceedings World Congress on Engineering and Computer Science 2015, WCECS2015.
Lecture Notes in Engineering and Computer Science. San Francisco, USA, pp 187-192

2. World Wide Web Consortium (W3C): XML Encryption Syntax and processing. http://www.
w3.org/

3. Organization for the Advancement of Structured Information Standards (OASIS) open set of
Standards: Web Services (WS) standards and Security Assertion Markup Language (SAML)
standards. https://www.oasis-open.org/standards

4. National Institute of Standards, Gaithersburg, MD: Encryption related standards. http://www.
nist.gov/srm/

5. PKCS#1: RSA Cryptography Standard: ASN Module for PKCS#1 v2.1, June 14, 2002

6. MSMQ—nhttp://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx

7. RabbitMQ—http://www.rabbitmq.com/

8. Apache ActiveMQ—http://activemq.apache.org/

9. Apache Qpid—http://qpid.apache.org/

10. JBoss HornetQ—http://www.jboss.org/hornetq

11. ZeroMQ—nhttp://www.zeromq.org/

12. WebSphereWMQ-http://www-01.ibm.com/software/integration/wmgq/

13. Message Broker Comparison— http://lifecorporatedev.blogspot.com/2012/07/recently-i-have-
been-given-task-to-find.html

14. Internet Engineering Task Force (IETF) Standards: IANA and Protocol standards including
The Transport Layer Security (TLS). https://www.ietf.org/

15. Advanced Message Queuing Protocol (AMQP)—https://www.amqp.org/

16. Simpson WR, Chandersekaran C, Trice A (2008) A persona-based framework for flexible
delegation and least privilege. In: Electronic Digest of the 2008 System and Software
Technology Conference, Las Vegas, Nevada, May 2008

http://www.w3.org/
http://www.w3.org/
https://www.oasis-open.org/standards
http://www.nist.gov/srm/
http://www.nist.gov/srm/
http://msdn.microsoft.com/en-us/library/ms711472(v%3dvs.85).aspx
http://www.rabbitmq.com/
http://activemq.apache.org/
http://qpid.apache.org/
http://www.jboss.org/hornetq
http://www.zeromq.org/
http://www-01.ibm.com/software/integration/wmq/
http://lifecorporatedev.blogspot.com/2012/07/recently-i-have-been-given-task-to-find.html
http://lifecorporatedev.blogspot.com/2012/07/recently-i-have-been-given-task-to-find.html
https://www.ietf.org/
https://www.amqp.org/

218 W.R. Simpson and K. Foltz

17. Simpson WR, Chandersekaran C, Trice A (2008) Cross-domain solutions in an era of
information sharing. In: The 1st International Multi-Conference on Engineering and
Technological Innovation: IMET2008, vol I, Orlando, FL, June 2008, pp 313-318

18. Chandersekaran C, Simpson WR (2008) The case for bi-lateral end-to-end strong
authentication. In: World Wide Web Consortium (W3C) Workshop on Security Models for
Device APIs. London, England, December 2008, pp 4

19. Simpson WR, Chandersekaran C (2009) Information sharing and federation. In: The 2nd
International Multi-Conference on Engineering and Technological Innovation: IMETI2009,
vol I, Orlando, FL, July 2009, pp 300-305

20. Chandersekaran C, Simpson WR, (2010) A SAML framework for delegation, attribution and
least privilege. In: The 3rd International Multi-Conference on Engineering and Technological
Innovation: IMETI2010, vol 2, Orlando, FL, July 2010, pp 303-308

21. Simpson WR, Chandersekaran C (2010) Use Case Based Access Control. In: The 3rd
International Multi-Conference on Engineering and Technological Innovation: IMETI2010,
vol 2, Orlando, FL, July 2010, pp 297-302

22. Chandersekaran C, Simpson WR (2011) A model for delegation based on authentication and
authorization. In: The First International Conference on Computer Science and Information
Technology (CCSIT-2011). Lecture Notes in Computer Science. Springer Verlag
Berlin-Heildleberg, pp 20

23. Simpson WR, Chandersekaran C (2011) An agent based monitoring system for web services.
In: The 16th International Command and Control Research and Technology Symposium:
CCT2011, vol II, Orlando, FL, April 2011, pp 84-89

24. Simpson WR, Chandersekaran C (2011) An agent-based web-services monitoring system.
Int J Comput Technol Appl (IICTA), 2(9):675-685

25. Simpson WR, Chandersekaran C, Wagner R, (2011) High Assurance Challenges for Cloud
Computing. In: Proceedings World Congress on Engineering and Computer Science 2011,
Lecture Notes in Engineering and Computer Science, vol I, San Francisco, October 2011,
pp 61-66

26. Chandersekaran C, Simpson WR (2012) Claims-Based Enterprise-Wide Access Control. In:
Proceedings World Congress on Engineering 2012, The 2012 International Conference of
Information Security and Internet Engineering. Lecture Notes in Engineering and Computer
Science, vol I, London, July 2012, pp 524-529

27. Simpson WR, Chandersekaran C (2012) Assured content delivery in the enterprise. In:
Proceedings World Congress on Engineering 2012, The 2012 International Conference of
Information Security and Internet Engineering. Lecture Notes in Engineering and Computer
Science, vol I, London, July 2012, pp. 555-560

28. Simpson WR, Chandersekaran C (2012) Enterprise high assurance scale-up. In: Proceedings
World Congress on Engineering and Computer Science 2012. Lecture Notes in Engineering
and Computer Science, vol 1, San Francisco, October 2012, pp. 54-59

29. Chandersekaran C, Simpson WR (2012) A uniform claims-based access control for the
enterprise. Int J Sci Comput 6(2):1-23. ISSN:0973-578X

	15 High Assurance Asynchronous Messaging Methods
	15.1 Introduction
	15.1.1 Some Advantages of Asynchronous Communication
	15.1.2 Some Disadvantages of Asynchronous Communication

	15.2 High Assurance Issues
	15.3 Prior Work
	15.3.1 Java Standard Messaging Protocol
	15.3.2 De-Facto Standard Microsoft Message Queuing
	15.3.3 Open Source Messaging Protocols
	15.3.4 Emerging Standard Advanced Message Queuing Protocol

	15.4 Asynchronous Messaging Security
	15.4.1 Security for Server Brokered Invocation
	15.4.2 Security for Publish Subscribe Systems

	15.5 Pss Rock and Jewel
	15.5.1 Claims for Targeted Content (PSS)
	15.5.2 Retrieving Content for Known Claimants
	15.5.3 Retrieving Content for Unknown Claimants
	15.5.4 Adjusting Publishing Targets (Untrusted PSS)
	15.5.5 Distribution of Burdens

	15.6 Summary
	References

