
Chapter 14
Wrong Limits and Wrong Assumptions:
Kenny Norwich and Willy Wong Fail
to Derive Equal-Loudness Contours

Lance Nizami

14.1 Introduction

What is a loudness contour? It is a plotted curve, which is obtained for a given
person by having that research subject adjust the intensity of a “comparison” tone of
a given waveform frequency until it seems as loud as a “reference” tone of a
constant intensity and constant frequency. This method has been used in psy-
chology laboratories for decades. For each different reference-tone intensity, a
different loudness contour ensues.

Kenneth Howard (Kenny) Norwich and Willy Wong claim to derive
equal-loudness contours mathematically, from theoretical first-principles [1, 2].
This is the only occurrence of such a feat, to the present author’s knowledge.
Further, full comprehension of what Norwich and Wong did requires reading two
papers [1, 2], of which the more recent one [1] gives a backward derivation of what
appears in the older one [2]. Indeed, further reading proves to be necessary [3–6].
All of the needed papers are examined here, to provide a synopsis that is not found
in the literature. The synopsis reveals wrong limits and wrong assumptions
underlying the Norwich and Wong derivations.

14.2 Norwich and Wong: A Loudness Equation

Norwich and Wong [1] introduce an “Entropy Equation”, in which loudness is
denoted L. Acoustical stimulus intensity, in units of power, is denoted I. Norwich
and Wong ([1], Eq. (11)) write
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Investigation reveals that this is also Eq. (9) of [2], but that has k instead of k/2
(i.e., the ½ was presumably absorbed into “k”). “k” appears in earlier Norwich
papers, as “a proportionality constant” [3], its value “determined by the arbitrary
scale units of the experimenter” ([4], p. 269). Norwich and Wong assume that k is
independent of intensity and frequency. The term Ith in Eq. (14.1) is the “threshold
intensity”. Norwich and Wong ([1], p. 931) now name Lth, “the loudness threshold”
(actually the threshold loudness); from Eq. (14.1),
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They then state that ([1], Eq. 12)

L=
L− Lth, L>Lth

0, otherwise
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(This equation will be explored soon.) Altogether, from Eqs. (14.1) and (14.2)
and L = L–Lth in Eq. (14.3),
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This appears in [1] as Eq. (13), with the γ misprinted as “y”. Equation (14.4)
also appears in [2], as Eq. (10) but with k instead of k/2.

14.3 Norwich and Wong: The “Weber Fraction”

Norwich and Wong [1] now differentiate Eq. (14.4). They get ([1], Eq. 14)
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which does not depend on which of Eq. (14.1) or Eq. (14.4) is used for loudness.
Norwich and Wong [1] then reorder Eq. (14.5) to obtain dI/I. They then replace dL
by ΔL, the difference limen (i.e., the subjectively just-noticeable difference) in
loudness. Likewise, they replace dI by the intensity change corresponding to ΔL,
namely, ΔI ([1], p. 932). Altogether,
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, ð14:6Þ

which they name the Weber fraction ([1], Eq. (15)).
The empirical values of the Weber fraction had already been studied by many

psychologists. Early-on, there was Riesz [7]. He mentioned an equation that “can be
made to represent ΔE/E [his notation for ΔI/I] as a function of intensity at any
frequency”, by adjusting three equation parameters ([7], p. 873), each parameter
itself being an empirical equation of frequency. Norwich and Wong [1] transformed
Eq. (14.6) into the empirical equation used by Riesz [7], first by assuming (after
Fechner [8]) that ΔL is constant with intensity, and then by defining two new
positive quantities, S∞ and S0–S∞:

S∞ =
2ΔL
nk

, ð14:7aÞ

S0 − S∞ =
2ΔL
n k γ

. ð14:7bÞ

Hence ([1], Eq. (22))

γ =
S∞

S0 − S∞
. ð14:7cÞ

Altogether, then,
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where ΔI/I > 0. Equation (14.8) has the same general form as Eq. (2) of Riesz [7].
Equation (14.8) is also Eq. (16) of [1] and Eq. (1) of [2].
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14.4 Norwich and Wong: Derivation of Equal-Loudness
Contours

Norwich and Wong [1] then proceed to derive equal-loudness contours. First is the
theoretical intensity of the comparison tone, as a function of its frequency, found by
equating comparison-tone loudness to that of a constant-intensity 1 kHz reference
tone. With the parameters of the reference tone denoted by ^ (caret),

LðI, f Þ=L I ,̂ 1 kHz
� 	 ð14:9Þ

(in [1] as Eq. (37)). Substituting appropriate terms from Eq. (14.4) gives
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which is Eq. (12) of [2], but with k there instead of k/2, and with “prime” in place of
“caret”, and with a script I in place of caret-I. Equation (14.10) can be re-arranged
to solve for I/Ith; ten times its logarithm to base 10 gives the intensity of the
matching comparison tone in decibels sensation level (dB SL):
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It transpires that Eq. (13) of [2] is the term within the largest brackets here, but
with k instead of k/2, and with “prime” instead of “caret”, and with a script I in
place of caret-I.

In Norwich and Wong [1], the frequency for the ^ parameters is taken to be

1 kHz. I
⌢

th is taken from Wegel [9]. S0 and S∞ are evaluated from Riesz [7],
allowing values for γ (Eq. (14.7c)). k is assumed to be independent of frequency

and intensity ([1], p. 931). k and k
⌢

are hence assumed equal; k
⌢

k̸ therefore disap-
pears from Eq. (14.11).

The reference tone for making loudness contours is here 1 kHz. Empirically,
each intensity of the 1 kHz tone would have an associated plot of the points {tone
frequency, tone sensation level} that subjectively match the loudness of the 1 kHz
reference tone. Equation (14.11) gives the respective theoretical equal-loudness
contours; they appear in Fig. 5 of Norwich and Wong [1] and in Fig. 4 of Wong
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and Norwich [2]. They are bowl-shaped, being lowest in-between the lowest and
highest waveform frequencies.

Norwich and Wong note elsewhere [5] that Fletcher and Munson [10] had
produced equal-loudness contours, likewise using an SL scale. Unlike the theo-
retical curves of Norwich and Wong [1] and of Wong and Norwich [2], however,
the Fletcher and Munson [10] contours increase in-between the lowest and highest
waveform frequencies, forming hill-shaped plots. Norwich and Wong [1] hence
replaced Riesz’s “n” by an equation for the Stevens exponent as a function of
frequency. They employed ([1], p. 935) “a function similar to the one suggested by
Marks” [11]. Their theoretical equal-loudness contours were now hill-shaped like
those of Fletcher and Munson [10].

14.5 Examining Norwich and Wong (1): The Loudness
Equation at the Loudness Threshold

Let us carefully scrutinize what Norwich and Wong [1] did. According to them,
Eq. (14.4) above derives from Eq. (14.1) above. That is, loudness allegedly obeys
both Eqs. (14.1) and (14.4). But this is not possible. First, note that the upper line of
Eq. (14.3) should read L ≠ L–Lth, not L = L–Lth. Now consider loudness limits.
As I → Ith from I > Ith, L → Lth (following Eq. (14.1)); but according to
Eq. (14.4), L → 0. Thus, we have L = 0 and L = Lth at the same intensity, Ith.
Note also that as I → 0 from I > 0, then after Eq. (14.1), L → 0; but after
Eq. (14.4), L → (–k/2)ln(1 + γ), a negative loudness (k, γ > 0). Of course, a
negative loudness is an impossibility.

14.6 Examining Norwich and Wong (2): The Constancy
of K

Crucially, Norwich and Wong [1] assume that the parameter k is independent of
intensity and frequency. But Norwich and his co-authors never test that assump-
tion, even up to the present day. Therefore, it is tested here, as follows. k can only
be obtained by fitting Eq. (14.1) or Eq. (14.4) to empirical plots showing loudness
growth with intensity. To do so, first the term γ/Ithn in Eq. (14.1) was replaced by a
symbol γ′. Equation (14.1) was then fitted to thirty-seven loudness-intensity plots
from the peer-reviewed experimental literature. Following that literature, Eq. (14.1)
was put into logarithmic form in {ln I, ln L} coordinates, before fitting to loga-
rithms of loudnesses.

Figure 14.1 shows the fitted values of k, versus the respective tone frequency, or
for white noise. The empirical loudness-growths were taken from: [12], white noise
(geometric means of magnitude estimates: series 1–3); [13], 1 kHz tone (Figs. 2, 3,
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6, 7, 8, and 10); [14], 0.1 kHz tone (Fig. 2, crosses; Fig. 2, circles), 0.250 kHz tone
(Fig. 3, geometric means of circles); [15], 1 kHz tone (subjects # 8, 9, 10, 11, 12,
13); [16], 1 kHz tone (curves 1–7); [17], 0.550 kHz tone (subject AWS),
0.765 kHz tone (subjects EWB, RSM); [18], white noise (Fig. 2: binaural, mag-
nitude production; binaural, magnitude estimation; monaural, magnitude

Fig. 14.1 The fitted value of
the free parameter k of
Eq. (14.1) as a function of
tone frequency or for white
noise (see text). The 37 dots
represent more
loudness-growth plots than in
all of Norwich et al.’s relevant
publications, from the very
first in 1975 up to the present
day

Fig. 14.2 The fitted value of
the free parameter k of
Eq. (14.1) (values of
Fig. 14.1) versus the
corresponding maximum
magnitude estimate from each
empirical loudness-growth
plot. The line
k = 0.173 ⋅Lmax

1.41 is fitted to
the data points (see text)

198 L. Nizami



production; monaural, magnitude estimation); [19], 1 kHz tone (Fig. 1, circles;
Fig. 1, squares), white noise (Fig. 7, circles and crosses); [20], binaural 1 kHz tone
(cross-modality-matching, high range day 2; low range day 2).

Regarding Fig. 14.1: k is not constant. For 1 kHz tones and for white noise,
multiple k values are evident. Figure 14.2 shows k versus the maximum loudness
available from each empirical loudness-growth plot (i.e., the loudness at the highest
respective applied stimulus intensity). A power function, converted to logarithmic
form (as per the literature), was fitted using sum-of-squares-of-residuals. The latter
favors higher loudnesses, hence the data points were weighted by the square root of
the absolute value of each loudness. From this, k = 0.173 ⋅Lmax

1.41. Norwich and
co-authors never mention such a relation. Regardless, k is not constant with Lmax.
Hence, k cannot generally be constant, although Norwich and Wong [1] think
otherwise.

Fig. 14.3 The fitted value of
the free parameter n (the
Entropy exponent) of
Eq. (14.1), versus the fitted
value of the Stevens
exponent, x, for the
loudnesses used in Fig. 14.1.
The line n = x indicates
putative equality of n and x.
The line n = 0.123 + 1.215x
is fitted to the data points (see
text)
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14.7 Examining Norwich and Wong (3): Entropy
Exponent, Stevens Exponent

Recall that Norwich and Wong [1] replace n, the exponent of Eq. (14.1) and of
Eq. (14.4), with x, the exponent of Stevens’ power law: they assume that n = x.
But, just as for k, Norwich and his co-authors never test that assumption, even up to
the present day. Values of n arise from the same curvefitting described just above.
Therefore, there is just one parameter remaining to be quantified, namely x. It is
obtained through the same procedures described above, but with L = aIx as the
fitted equation. Having thereby obtained values of n and of x, we may examine the
notion that n = x. Figure 14.3 shows n versus x.

A straight line fitted to the data points gives n = 0.123 + 1.215x. The reasons
for the numbers 0.123 and 1.215 are not known. Nonetheless, n does not equal x,
contrary to Norwich and Wong [1].

To thoroughly establish any actual relation between n and x, further analysis was
done, as follows. Norwich’s “Entropy Theory” (e.g., [6]) specifies that the maxi-
mum transmitted information during the perception of a stimulus, called It, max units

Fig. 14.4 n versus x, for the
magnitude estimates used in
Fig. 14.1, when the fit of
Eq. (14.1) is constrained to
produce It, max = 2.5
bits/stimulus (see text). The
Entropy exponents n may
therefore differ from those in
Fig. 14.3. The line
n = 0.217 + 1.013x is fitted
to the data points, as
described in the text
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of information, is related to maximum loudness Lmax and minimum loudness
Lmin as

It, max =
Lmax − Lmin

k
. ð14:12Þ

k in the denominator is the same k as investigated above. Empirically Lmax ≫Lmin,
allowing Lmin to be ignored. The fitting of the Entropy equation to loudness growth
can be stopped for a value of k yielding It, max = 2.5 bits/stimulus, which is the
average value found in the literature [6]. Figure 14.4 shows the relation of n to x in
such circumstances. A line fitted to the data points in the same manner described
above is n = 0.217 + 1.013x. The reasons for the values 0.217 and 1.013 are
unknown. Again, however, n does not equal x, contrary to Norwich and Wong [1].
The difference may seem trivial, but it is well-known that empirical values of x can
be as low as 0.3 (e.g., [11]), in which case the difference between n and x is not, in
fact, trivial.

14.8 Examining Norwich and Wong (4):
Frequency-Dependence of the Exponent

Recall from above that Norwich and Wong ([1], p. 935) employed “a function
similar to the one suggested by Marks” [11] to make their theoretical
equal-loudness contours hill-shaped like those of Fletcher and Munson [10]. The

Fig. 14.5 x as a function of
frequency, from the equation
of Marks and the equation of
Norwich and Wong. (The
curves are only shown for
frequencies below 400 Hz,
Marks’ limit of validity for his
equation.)
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respective equation of Marks [11] describes the Stevens exponent x as a function of
frequency f (in Hertz), and is

x=0.33+ 0.0009 ⋅ 400− fð Þ where f <400Hz, ð14:13Þ

which applies “over low frequencies (f) and not too high sound pressure levels”
([11], p. 74). Compare Eq. (14.13) to the Norwich and Wong equation “similar to
the one suggested by Marks” [1], Eq. (40), but with no restrictions of sound
pressure level or frequency:

x=0.28+ 2.17f − 0.59 + 0.01f 0.2. ð14:14Þ

Equations (14.13) and (14.14) are not the same. Indeed, we do not know the
units of the constants in Eqs. (14.13) and (14.14), hence we do not even know
whether the x’s represented by the two equations have the same units! Figure 14.5
shows the curves generated by Eqs. (14.13) and (14.14). The curves clearly differ,
and in fact, they intersect only once.

14.9 Conclusions

Norwich and Wong [1] present a backwards derivation of arguments made in Wong
and Norwich [2]. Wrong arguments in one paper prove to be wrong in the other. In
particular, Norwich and Wong [1] make several assumptions which prove to be
unjustified. All of this is somewhat surprising, given that Norwich and Wong [1]
identify several prominent tenured professors (Lawrence Marks, Lester Krueger,
Lawrence Ward) as reviewers of their paper. It is even more alarming that Wong
and Norwich [2] was reviewed by a theorist, William Hellman.

The present conclusions reveal that embarrassing and needless errors occur
consequent to the embarrassing and needless errors of inappropriate limits, unjus-
tified assumptions, and quantities having incompatible units. Indeed, Norwich’s
entire Entropy Theory is riddled with mistakes (see [21–30]). Professor Norwich
evidently tolerates a culture of errors in his laboratory; papers authored indepen-
dently by his co-authors may prove similarly faulty.

This paper follows upon a contribution [31] to WCECS 2015 (San Francisco,
USA).
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