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Abstract. This paper presents a method to predict the remaining useful life of
bearings based on theories of Mixture of Gaussians Bayesian Belief Network
(MoG-BBN) and Support Vector Data Description (SVDD). Our method
extracts feature vectors from raw sensor data using wavelet packet decompo-
sition (WPD). The features are then used to train the corresponding MoG-BBN
and SVDD model. Genetic algorithm is employed to determine the initial value
of training algorithm and enhance the stability of our model. The two models are
combined to acquire a good generalization ability. The effectiveness of the
proposed method is verified by actual bearing datasets from the NASA prog-
nostic data repository.
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1 Introduction

Bearings are one of the most commonly used components in mechanical equipment.
Due to their high failure rate, the working condition of bearings directly affects the
safety of the whole equipment. RUL prediction of bearings plays a key role in con-
dition based maintenance (CBM) [1], as it can effectively anticipate bearing failure,
reduce the maintenance cost as well as increase the productivity.

Since the condition monitoring data is available, this paper focuses on the
data-driven methods [2]. Under this framework, a variety of previous researches about
bearings prognostic and RUL prediction has been conducted, including artificial net-
works [3–5], hidden Markov models (HMM) [6, 7], support vector machines [8–10],
etc. Huang et al. [5] trained the back propagation neural networks which focus on ball
bearings’ degradation periods by the MQE indicator obtained from SOM, then applied
WAFT technology to make RUL prediction. Tobon-Mejia et al. [6] proposed a method
based on the Mixture of Gaussian Hidden Markov Models, in which hidden states are
used to represent the failure modes of bearings. The RUL can be estimated straightly by
the stay durations in each state. Shen et al. [8] took the fuzziness of degradation into
account and proposed a damage severity index (DSI) based on fuzzy support vector data
description (FSVDD), which can indicate the growth of degradation with running time.
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In addition, Zhang et al. [11] constructed a Mixture of Gaussians Bayesian Belief
Network (MoG-BBN) to characterize the degradation state by the condition monitoring
data from sensors. However, the initial values of the parameters used in model training
have a great impact on the accuracy of the RUL prediction. Hence, the stability and
generalization of the model are reduced. To overcome this deficiency, this paper
proposed a RUL prediction method based on the MoG-BBN and SVDD. The novelty
of this paper lies in two respects. First, genetic algorithm is used to find the optimal
initial value when training the MoG-BBN model so that the stability of the model
enhances significantly. Second, a method based on SVDD are presented to estimate the
RUL when the MoG-BBN model does not work well, which improve the general-
ization capability and the prediction accuracy.

The remainder of the paper is organized as follows: Sect. 2 introduces the
methodology proposed for remaining useful life prediction of bearings. Section 3
carries out experiments on actual bearing data from NASA to examine the effectiveness
of the proposed method. Section 4 concludes the work.

2 Methodology

The framework of the methodology is shown in Fig. 1. It can be divided into two
phases: the off-line phase and the on-line phase. During the off-line phase, the raw data
is processed to extract features, and then these features are used to train the MoG-BBN
model and the SVDD model. During the on-line phase, the processing of the real-time
vibration signal from sensors to extract features remains the same. Then, the features

Fig. 1. Framework of the proposed method
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are fed into the MoG-BBN model to characterize the degradation state. Some measures
will be taken to determine whether the trained MoG-BBN model matches well with
current component. If matching well, it comes to the RUL prediction step directly.
Otherwise, the features will be fed into the SVDD model to get a better model per-
formance and robustness. Finally, the RUL estimation will be implemented.

2.1 Feature Extraction

Wavelet packet decomposition (WPD) is an effective technique in signal analysis. It
has sufficient high-frequency resolution, which contains the most useful fault infor-
mation of bearings [12]. WPD can be considered as a tree, and its root is the original
signal. By recursively applying the wavelet transform, WPD can automatically choose
the appropriate frequency scale according to the characteristics of the analyzed signal,
further decompose the high and low frequency data, and divide the spectrum band into
several levels [7].

Based on excellent properties described above, WPD method is used to extract
features from the raw vibration data of bearings in this paper. Assume that the
decomposition level is l, then there will be L ¼ 2l nodes on the last level. Let fit
represent the ith node of the last level, the feature vector at time t can be described as
following.

f ¼ ðf1t; f2t; . . .; fLtÞT ð1Þ

Note that a normalization process based on the mean and standard deviation of the
raw data should be applied to the result of WPD before training the model in order to
improve the generalization capability.

2.2 The Mixture of Gaussians Bayesian Belief Network

Structure. Figure 2 illustrates the MoG-BBN structure where D and M are discrete
variables, and O is a continuous variable. In this structure, D represents the degradation
states which cannot be directly observed, D 2 f1; 2; . . .ag. a is the maximum degra-
dation state number. In this paper, a is set to 3, representing healthy, sub-healthy, and
faulty states. M represents the distinctive Gaussian distributions for each state D,
M 2 f1; 2; . . .bg, where b is the number of components in mixed Gaussian distribution.
O represents the observation vector corresponding to a degradation state.

Note that M is the connection of the degradation state D and the observation O,
which makes MoG-BBN a suitable tool, because it transforms continuous observations
from monitoring sensors to discrete degradation states of physical components. From
the above definition, once the probability PðDjOÞ is known, the degradation state can
be recognized, and then RUL of bearings can be estimated.

Let o be a realization of O. According to Fig. 2, the definition of conditional
probability and the total probability formula, the value of PðDjOÞ can be calculated as
following.
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PðDjO ¼ oÞ ¼
PðDÞP

M
PðMjDÞPðO ¼ ojD;MÞP

X
PðDÞP

M
PðMjDÞPðO ¼ ojD;MÞ ð2Þ

Note that, the values of PðDÞ, PðMjDÞ and PðOjD;MÞ must be inferred by EM
algorithm shown below.

EM Algorithm. A declaration of the variables used in the estimation procedure is
given first.

• pd : the initial distribution of degradation state D, and pd ¼ PðD ¼ dÞ for
d 2 f1; 2; . . .; ag.

• Cdm: mixture coefficient of the mth Gaussian distribution for degradation state d,
where Cdm ¼ PðM ¼ mjD ¼ dÞ, for d 2 f1; 2; . . .; ag, m 2 f1; 2; . . .; bg.

• ldm: mean vector of the mth Gaussian distribution for degradation state d.
• Rdm: covariance matrix of the mth Gaussian distribution for degradation state d.

To compute PðOjD;MÞ, suppose Od is the distribution of an observation O gen-
erated by degradation state d, then

Od ¼
Xb
m¼1

CdmNðldm;RdmÞ; 1� d� a ð3Þ

The statistical values of the above parameters can be inferred via training data sets
and the EM algorithm. Given an observation sequence o ¼ foð1Þ; oð2Þ; . . .; oðNÞg, where
N denotes the length of the sequence, the EM algorithm is divided into the
Expectation-Step and the Maximization-Step.

• Expectation-Step: for each pair of ðd;m; nÞ, with n 2 f1; 2; . . .;Ng,

xðnÞ
dm ¼PðDðnÞ ¼ d;MðnÞ ¼mjoðnÞ;pd ;Cdm;ldm;RdmÞ

¼ PðoðnÞjDðnÞ ¼ d;MðnÞ ¼m;ldm;RdmÞPðDðnÞ ¼ d;MðnÞ ¼m;pd;CdmÞPa
d¼1

Pb
m¼1

PðoðnÞjDðnÞ ¼ d;MðnÞ ¼m;ldm;RdmÞPðDðnÞ ¼ d;MðnÞ ¼m;pd ;CdmÞ
ð4Þ

Fig. 2. Mixture of Gaussian Bayesian belief network.
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• Maximization-Step: update the above parameters as follows,

pd ¼ 1
N

XN
n¼1

Xb
m¼1

xðnÞ
dm

Cdm ¼ 1
Npd

XN
n¼1

xðnÞ
dm

ldm ¼
PN
n¼1

xðnÞ
dmo

ðnÞ

PN
n¼1

xðnÞ
dm

Rdm ¼
PN
n¼1

xðnÞ
dmðoðnÞ � ldmÞðoðnÞ � ldmÞT

PN
n¼1

xðnÞ
dm

ð5Þ

Let k ¼ ðp;C; l;RÞ. The process is repeated until PðojktÞ � Pðojkt�1Þ�� ��\n or
iteration number exceeds the maximum value set in advance. The threshold n ¼ 10�4 is
used in the experiment section of this paper.

Initial Value Optimization Based on Genetic Algorithm. The initial value of p and
C can be generated randomly from a uniform distribution, while l and R can be
acquired through clustering methods for training samples. Due to the fact that the initial
values of p and C have a great impact on the model obtained by training, in this paper,
an initial value optimization method based on genetic algorithm is proposed.

Encoding. According to what is proposed in [13], encoding methods of GA can be
classified into two main approaches: binary encoding and float encoding. Taking into
account the convenience and accuracy, floating encoding is adopted in this paper.
Suppose that the maximum degradation state number in the MoG-BBN model is a, and
mixed Gaussian distribution number for each state is b. The numbers of total param-
eters to optimize related to p and C are a and a � b, respectively. Then there are
a � ðbþ 1Þ decimal floating numbers constituting an individual.

Fitness function. Corresponding to the fitness of the individuals to the environment,
the value of this function reflects the fitness of the individuals in terms of measurement
indicators. In this paper, the fitness function depicts the accuracy of the models gen-
erated by different individuals when identifying the degradation states.

Selection. According to each individual’s fitness, the strategy of RWS is to calculate
the probability that the gene is inherited from the individual by the offspring, and based
on that probability, the offspring population is randomly selected in the parent gen-
eration. The higher the fitness of the parent is, the greater the probability that its genes
will be selected to be inherited to the offspring will be. Let the fitness of the ith
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individual be fi, and the population quantity be pop. The probability that this individual
will be selected is

Pi ¼ fiPpop
i¼1

fi

ð6Þ

A method based on Roulette Wheel Selection (RWS) is used in this paper: let the
first to the kth individuals be a part of the next generation directly on the basis of the
fitness sorting (from large to small). And the rest pop� k individuals can be generated
by genic recombination and mutation of pop� k pairs that are selected from the current
population by RWS method.

Crossover. This paper use Arithmetic crossover to produce a new individual. Assume
that two individuals of the parent are XA and XB, then the new individual generated by
arithmetic crossover operator is as following, where c is the parameter, which is
commonly set to 0:5.

X
0
A ¼ cXB þð1� cÞXA

X
0
B ¼ cXA þð1� cÞXB

(
ð7Þ

Mutation. Mutation is a genetic operator which is used to maintain genetic diversity.
To ensure the convergence, the mutation operator used in this paper adds or subtracts a
small random number to the original floating number. This random number is called
step width. Bigger step width leads to faster evolution speed at the beginning. How-
ever, it will be more difficult to converge at the end. In order to speed up the evolution
and ensure that the genetic algorithm can be more accurate when converging to the
optimal solution at the same time, a method that the step width changes dynamically is
taken.

The steps of float coding genetic algorithm for the optimization of the initial values
of p and C can be summarized as following.

(a) Randomly generate the initial population consisting of pop individuals.
(b) Calculate and sort the fitness of each individual in the current population, from

large to small.
(c) Let the first to the kth individuals be a part of the next generation directly on the

basis of the fitness sorting. Generate the rest pop� k individuals by genic
crossover and mutation of pop� k pairs that are selected from the current pop-
ulation by RWS method. Note that the step width in the mutation process
decreases gradually with the iteration. Besides, if necessary, additional measures
should be taken to ensure that the values of float genes related to p and C are
significant after crossover and mutation, respectively.

(d) If the resulting solution tends to be stable in a certain range or the number of
iterations reach the maximum value, exit and the optimal solution is gotten.
Otherwise, turn to step (b).
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2.3 Support Vector Data Description

Assume a training set containing n vectors of objects fxi; i ¼ 1; 2; . . .;Ng. The opti-
mization objective of the SVDD method is to find the minimum-volume hypersphere
containing all or most possible target data points in feature space, and it can be
described as following:

min
R;c;n

R2 þC
XN
i¼1

ni

s:t:ðxi � cÞTðxi � cÞ�R2 þ ni; ni � 0; i ¼ 1; 2; . . .;N

ð8Þ

where c is the center of the hypersphere, and ni is slack variable, cooperating with the
penalty constant C to make the trade-off between the radius R and the number of data
points that lie out of the hypersphere [14]. Construct the Lagrangian:

LðR; c; ai; niÞ ¼ R2 þC
XN
i¼1

ni �
XN
i¼1

ai R2 þ ni � ðx2i � 2cxþ c2Þ� ��XN
i¼1

cini ð9Þ

Where ai � 0 and ci � 0. Set the partial derivatives of Eq. (9) to 0.

@L
@R

¼ 0; )
XN
i¼1

ai ¼ 1

@L
@c

¼ 0; )c ¼
XN
i¼1

aixi

@L
@ni

¼ 0; )C � ai � ci ¼ 0

ð10Þ

With Eqs. (9) and (10), the objective function can be reconstructed:

maxLðaÞ ¼
XN
i¼1

aiðxi � xiÞ �
XN

i¼1;j¼1

aiajðxi � xjÞ

s:t:
XN
i¼1

ai ¼ 1; 0� ai �C

ð11Þ

In practice, the inner product ðxi � xjÞ is replaced by a kernel function Kðxi � xjÞ that
satisfies Mercer’s theorem. In this paper, the RBF kernel function is used, and then
Eq. (11) is transformed to the following form:
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maxLðaÞ ¼
XN
i¼1

aiKðxi � xiÞ �
XN

i¼1;j¼1

aiajKðxi � xjÞ

s:t:
XN
i¼1

ai ¼ 1; 0\ai\C

ð12Þ

The value of ai can be obtained by solving Eq. (12). Target data points corre-
sponding with 0\ai\C are support vectors. Then the radius R of the hypersphere can
be acquired by any support vector xsv.

R2 ¼ Kðxsv � xsvÞ � 2
XN
i¼1

aiKðxi � xsvÞþ
XN

i¼1;j¼1

aiajKðxi � xjÞ ð13Þ

2.4 RUL Prediction

To predict the RUL in the on-line phase, two curves (the degradation state curve and
the radius curve) must be obtained first in the off-line phase.

Degradation State Curve. By EM algorithm, the parameters p, C, l and R of the
MoG-BBN are estimated, which allows us to obtain the state sequence of the training
data through Eq. (2), and the degradation state curve (Fig. 3). The time duration for
which the component in the off-line phase has been in each state can be computed
based on the curve, as Eq. (14),

TðSdÞ ¼
XX
x¼1

TðSdxÞ ð14Þ

where TðSdÞ stands for the total time duration of the state d, X represents the number of
consecutive visits.

Fig. 3. The degradation state curve of the MoG-BBN.
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Radius Curve. Suppose that the training set contains N vectors of objects
fx1; x2; . . .; xNg, and the objects fx1; x2; . . .; xn0g correspond to the healthy state at the
beginning. The SVDD models are trained sequentially with each sub data set
fx1; x2; . . .; xng, n 2 fn0; n1; . . .;Ng, to get the corresponding SVDD hypersphere’s
radius Rn. Then we obtain the radius change R ¼ fRn0 ;Rn1 ; . . .;RNg with the time
evolution, as shown in Fig. 4.

RUL Prediction. To predict the remaining useful life of the component in the
real-time signal in the on-line phase, first we characterize the degradation state of the
component by Eq. (2), then we determine whether current state of the component
match the trained MoG-BBN model. Concretely, supposed that the characterized
degradation state is s at time t while the degradation state is �s according to the right part
of Fig. 3 (obtained by training data). If s is equal to �s, it matches the model, otherwise it
doesn’t.

Denote LðtÞ as the prediction of remaining useful life at time t. If s is equal to �s, LðtÞ
can be computed as following.

LðtÞ ¼
Xa
d¼1

PðD ¼ dÞLdðtÞ

¼
Xa
d¼1

PðD ¼ dÞ
Xa
i¼d

TðSiÞ � �TdðtÞ
 ! ð15Þ

In Eq. (15), LdðtÞ denotes the RUL when the component is in the degradation state
d, and �TdðtÞ denotes the past time for which the component has been in the degradation
state d.

When s is not equal to �s, the Sigmoid function curve fitting will be implemented by
the radius curve obtained by SVDD. Figure 4 illustrates how the RUL at time t is
estimated.

Fig. 4. Radius curve and the Sigmoid function fitting.
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3 Experiments and Discussions

The RUL prediction method of bearings proposed previously is tested by the condition
monitoring data from NASA’s prognostics data repository [2]. During the experiments,
raw data of bearing 1 and bearing 4 in the test #2 are used, and both of them can be
considered failed at the end.

First, wavelet packet decomposition was applied to the data, where the number of
decomposition levels is set to 3 and the wavelet base is db4 (Fig. 5). Then two
experiments were implemented: in experiment #1, the raw data collected from bearing
1 was divided into training data and test data, in experiment #2 the dataset of bearing 1
was used to as training data and the dataset of bearing 4 was used as test data.
A detailed discussion of the experiment #1, and the results of both experiments are
given as following.

In the off-line phase, the sojourn time of each state of the trained MoG-BBN model
is shown in Table 1, the radius curve is shown in Fig. 6. The reason why the radius
curve starts at 4500 min is that the former data was collected when the bearing was in
the healthy state. And the SVDD model was first trained at 4500 min with all the
former data. Sigmoid function was used in the curve fitting of the radius curve, for the
bearing has been in the healthy state for a long time according to Table 1, and in this
period, the radius growth of the hypersphere is slow, while at the end of bearings’ life
cycle, the slack variable ni in the objective function of SVDD makes the radius grow
slow, too. From Fig. 6, we can observe that the radius curve fits well with the Sigmoid
function.

Fig. 5. WPD is applied to raw signal of bearing 1.

Table 1. Sojourn time of each degradation state in Expt. #1

Degradation state 1 2 3

Sojourn time (min) 5090 1890 2870
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In the on-line phase, Fig. 7 depicts how the degradation states are characterized
after the validate data are fed into the MoG-BBN model. We could observe that the
bearing had been in the healthy state for almost 50 % of its whole lifetime, which
matches the result in Table 1. It can be explained that the training data and validate data
is collected from the same bearing.

The RUL prediction results of the method based on MoG-BBN without GA and the
method proposed by this paper are compared in Figs. 8 and 9.

From Figs. 8 and 9, we can observe that the predicted remaining useful life con-
verges at the end of predictions. With the optimization of the initial value by genetic
algorithms and the combination of the SVDD model, our method has an excellent
performance in the RUL predictions of bearings. It has higher prediction accuracy, and
better generalization ability and robustness as well.

Fig. 6. Radius curve generated by the training data.

(a) Probability of each degradation state.  (b) Degradation state characterization result.

Fig. 7. Degradation state characterization in Expt. #1.
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4 Conclusions

A method based on the MoG-BBN and SVDD for RUL prediction of bearings is
proposed in this paper. WPD is chosen to extract features because it has sufficient
high-frequency resolution, which contains the most useful fault information of bear-
ings. The MoG-BBN model is a useful tool to predict the RUL with high accuracy
when the work condition of bearings in on-line phase is very similar to the training
data. However, different initial value may lead to different performance, the genetic
algorithm is used to overcome this deficiency and acquire good stability with randomly
generated initial parameters. And, an appropriate combination of the MoG-BBN and
the SVDD model could improve the generalization capability and ensure the accuracy
of the prediction at the same time.

Acknowledgement. This work was supported by the National Hig-Tech. R&D (863) Program
(No. 2015AA042102) in China.

Fig. 9. RUL prediction result of experiment #2.

Fig. 8. RUL prediction result of experiment #1.
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