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Abstract. Recently, differential evolution (DE) algorithm has attracted more
and more attention as an excellent and effective approach for solving numerical
optimization problems. However, it is difficult to set suitable mutation strategies
and control parameters. In order to solve this problem, in this paper a dynamic
adaptive double-model differential evolution (DADDE) algorithm for global
numerical optimization is proposed, and dynamic random search (DRS) strategy
is introduced to enhance global search capability of the algorithm. The simu-
lation results of ten benchmark show that the proposed DADDE algorithm is
better than several other intelligent optimization algorithms.
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1 Introduction

Differential Evolution (DE) algorithm is a simple and efficient global optimization
searching tool, firstly proposed by Storn and Price [1–4] in 1995. It has been widely
used in pattern recognition [5], chemical engineering [6], image processing [7], and
achieved good results. The reasons why DE has been considered as an attractive
optimization method are as follows: (1) Compared with other evolutionary algorithms,
DE algorithm is much simple and straightforward. (2) There are less parameters in DE.
(3) Its searching is random, parallel and global. Compared with other algorithms, DE is
outstanding, but the basic DE algorithm also has the disadvantages just like other
intelligent algorithms. The DE algorithm suffers from the contradiction between con-
vergence speed and accuracy, and the problem of premature convergence; additionally,
it also suffers from the stagnation problem: the search process may occasionally stop
proceeding toward the global optimum even though the population has not converged
to a local optimum or any other point; Finally, DE algorithm is sensitive to the choice
of the parameters and the same parameter is difficult to adjust to different problems [8].

In recent years, many researchers have carried out the improvement of the basic DE
algorithm, which has drawn much attention. Brest et al. [9] presented the jDE algorithm
in which the control parameters F and CR were encoded into population individuals

© Springer Science+Business Media Singapore 2016
L. Zhang et al. (Eds.): AsiaSim 2016/SCS AutumnSim 2016, Part I, CCIS 643, pp. 186–198, 2016.
DOI: 10.1007/978-981-10-2663-8_20



and evolved with the increasing of iterations. Two new arguments were used to adjust
control parameters, these arguments are calculated independently. Qin et al. [10]
proposed the SaDE algorithm, in which the trial vector generation strategy was chosen
from the candidate pool in accordance with the probability obtained from its success
rate in generating promising results within the learning period which is a certain
number of previous generations. Zhang et al. [11] presented the JADE algorithm, a new
mutation strategy and an external archive were used to provide information of progress
direction. This strategy is utilized to balance the greediness of the mutation and the
diversity of the population. Hamzacebi et al. [12] proposed the dynamic random search
(DRS) technique based on basic random search technique, DRS contain two phases:
general search and local search. This technique could be applied easily in the process of
optimization problem to accelerate convergence rate.

As we know, the effectiveness of basic DE in solving optimization problems mainly
depends upon the selected generation (mutation and crossover operations) strategy, and
associated control parameters (population size NP, mutation parameter F and crossover
rate CR). So when solving optimization problems, the donor vector generation strategy
should be determined and suitable values of control parameters needs to be chosen in
advance. However, according to the characteristics of the problem and available
computation resources, diverse optimization problems require different generation
strategies with different control parameter values. This paper proposes a dynamic
adaptive double-modle differential evolution (DADDE). In the DADDDE algorithm,
the mutation mode combine two basic mutation strategies. To improve the diversity of
population and balance the search capability between global and local search, the
adaptive mutation parameter and crossover rate are used. In order to promote con-
vergence rate, every iteration process is targeted at current best individual to execute
dynamic random search.

The whole paper is generally organized into five parts. In the first part a brief
introduction about this study is made. Following that, the second part demonstrates the
process of basic differential evolution algorithm. The third part presents a dynamic
adaptive double-modle differential evolution (DADDE) algorithm. In the fourth part
the experimental study is taken to test the performance of DADDE compared with jDE,
SaDE, JADE, PSO as well as the influence of three improvements
(double-modle/adaptive parameters/dynamic random search) on DADDE. At last, the
fifth part draws the conclusion of this paper.

2 Basic Differential Evolution Algorithm

The DE algorithm involves four basic operations which are called initialization,
mutation, crossover and selection respectively. The whole flow chart of DE is shown in
Fig. 1.

Step 1. Initialization
G ¼ 0; 1; 2; . . .;Gmax denotes Generation, the ith individual Xi;G at Gth generation

is represented by:
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Xi;G ¼ ðx1i;G; x2i;G; . . .; xDi;GÞ; i ¼ 1; 2; . . .;NP ð1Þ

NP represents the number of population members in DE, D denotes dimension. The
search space of uniformly and randomly distributed individuals constrained by the
prescribed minimum and maximum bounds ½Xmin;Xmax�, Xmin ¼ ðx1min; x

2
min; . . .; x

D
minÞ;

Xmax ¼ ðx1max; x
2
max; . . .; x

D
maxÞ. When Generation G ¼ 0, the initial population is formed

by individuals generate in ½Xmin;Xmax�.

Xi;0 ¼ ðx1i;0; x2i;0; . . .; xDi;0Þ; i ¼ 1; 2; . . .;NP ð2Þ

Therefore the jth component of the ith individual should be initialized as x ji;0 ¼
x jmin þ randð0; 1Þ � ðx jmax � x jminÞ; j ¼ 1; 2; . . .;D, rand½0; 1� is a uniformly distributed
random number within ½0; 1�.

Step 2. Mutation
Mutation operation contains variant forms. The general process of mutation is

expressed by

Vi;G ¼ Xr1;G þFðXr2;G � Xr3;GÞ ð3Þ

where i means the ith individual vector of current generation. r1; r2; r3 2 f1; 2; . . .;NPg
are three different random integers, besides each one of them should be different from i.
Vi;G denotes donor vector. The mutation control parameter F is a real and constant
factor that controls the amplification of the differential variation.. If Vi;G is not within
½Xmin;Xmax�, let Vi;G ¼ Xmin þ randð0; 1Þ � ðXmax � XminÞ, rand½0; 1� is a uniformly
distributed number randomly chosen from ½0; 1�.

Step 3. Crossover
The operands of crossover are components of the individual. Through this opera-

tion, the donor vector Vi;G exchanges its components with the target vector Xi;G to form
the trial vector Ui;G ¼ ðu1i;G; u2i;G; . . .; uDi;GÞ; i ¼ 1; 2; . . .;NP

u j
i;G ¼ v ji;G; randj �CRor j ¼ randnj

x ji;G; randj [CR and j 6¼ randnj
;

(
j ¼ 1; 2; . . .;D ð4Þ

randj is a number randomly chosen from ½0; 1�, randnj is a randomly chosen index from
f1; 2; . . .;Dg. The crossover control parameter CR is a real and constant factor that

Initialization Mutation Crossover Selection Termination Output 
Y

N

Fig. 1. Flow chart of basic DE
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controls which parameter contributes to which trial vector parameter in the crossover
operation, ranging between [0,1].

Step 4. Selection
Selection is based on Greedy policy. The offspring vector is acquired through

comparing the fitness value of the trial vector Ui;G and target vector Xi;G according to

Xi;Gþ 1 ¼
Ui;G; f ðUi;GÞ\f ðXi;GÞ
Xi;G; f ðUi;GÞ� f ðXi;GÞ

(
; i ¼ 1; 2; . . .;NP ð5Þ

f is the function of the fitness value. The one which has the better value between Ui;G

and Xi;G should be chosen as the new individual, then add one to generation G.
Equation (5) is for dealing with the minimization.

Step 5. Termination
If the population meet the termination conditions or reach the upper limit of gen-

eration, Output the optimal solution. Otherwise, go to step 2 till meet the termination
conditions.

3 Dynamic Adaptive Double-Model Differential Evolution

This paper proposes a dynamic adaptive double-model differential evolution
(DADDE). In DADDE, the mutation mode combine two basic mutation strategies. To
improve the diversity of population and balance the search capability between global
and local search, the adaptive mutation parameter and crossover rate are used. In order
to promote convergence rate, every iteration process is targeted at current best indi-
vidual to execute dynamic random search. These improvements to basic DE are as the
following.

3.1 Double Mutation Strategies

According to the DE algorithm which was firstly proposed by Storn and Price [1–4],
there are ten kinds of basic mutation strategies, these strategies are provided in Table 1.

In general, DE/x/y/z denotes different mutation strategies. DE denotes differential
evolution, x denotes base vector which contain rand, best, rand-to-best, current-to-best

Table 1. Mutation strategies of DE

Number Mutation strategies Number Mutation strategies

1 DE/best/1/exp 6 DE/best/1/bin
2 DE/rand/1/exp 7 DE/rand/1/bin
3 DE/rand-to-best/1/exp 8 DE/rand-to-best/1/bin
4 DE/best/2/exp 9 DE/best/2/bin
5 DE/rand/2/exp 10 DE/rand/2/bin
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and so on. y denotes the number of differential vectors. z denotes crossover strategies
which include exponential crossover and binomial crossover.

Each strategies has its own characteristics, but through a large number of studies,
Storn and Price found that DE=rand=1=bin and DE=best=2=bin have better perfor-
mance, also have been applied to the practical industrial process mostly.
DE=rand=1=bin is expressed as Eq. (3), DE=best=2=bin is expressed as

Vi;G ¼ Xbest;G þF½ðXr1;G � Xr2;GÞþ ðXr3;G � Xr4;GÞ� ð6Þ

Xbest;G denotes the best individual in current population. In order to make full use of the
better global search capability of DE=rand=1=bin and the better convergence ability of
DE=best=2=bin, Overcome the disadvantages of both strategies as well, Hu [14]
combined these two mutations as follows:

Vi;G ¼ Xr1;G þFðXr2;G � Xr3;GÞ; if rand�
ffiffiffiffiffi
G
Gm

q
Xbest;G þF½ðXr1;G � Xr2;GÞþ ðXr3;G � Xr4;GÞ�; otherwise

(
ð7Þ

The threshold value u ¼
ffiffiffiffiffi
G
Gm

q
, is an variable increase with the growth of gener-

ation. Here we set a new threshold value:

u ¼
ffiffiffiffiffiffiffi
G
Gm

r
� ðumax � uminÞþumin ð8Þ

½umin;umax� ¼ ½0:1; 1�. At the beginning, DE=rand=1=bin will be used much more, as
generation increase, algorithm will use DE=best=2=bin more often.

3.2 Adaptive Mutation Parameter and Crossover Rate

Adaptive parameter will achieve a balance between the convergence speed and global
search ability. when F have a large value, global optimization ability will be stronger,
but convergence rate become slower. A large value of CR will lead to better conver-
gence speed, worse stability and lower success rate of the algorithm, premature con-
vergence become more obvious as well. In order to prevent the occurrence of
premature convergence and guarantee fast convergence speed at the same time, taking
the follow adaptive mechanism is to assign the parameters.

F ¼ Fmax � ðFmax � FminÞ �
ffiffiffiffiffiffiffi
G
Gm

r
ð9Þ

CR ¼ CRmin þðCRmax � CRminÞ �
ffiffiffiffiffiffiffi
G
Gm

r
ð10Þ

In DADDE, F 2 ½0:4; 0:9�;CR 2 ½0:6; 0:9�. With the increase of iteration, F
increase and CR decrease, to insure the diversity of population and global search
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capability at the beginning of the algorithm, to reduce the diversity and promote the
algorithm convergence in the later stage of the algorithm.

3.3 Dynamic Random Search

Dynamic random search (DRS) technique is based on searching the solution space
randomly to acquire the best value of minimization problem. DRS contain two phases:
general search and local search. DRS is simple and easily adaptable for any problems.
Because of these two essential advantages, this technique could be applied easily in the
process of optimization problem to accelerate convergence speed. Steps of local search
phase [12] which is added into basic DE algorithm for soluting continuous mini-
mization problem are as follows (objective function of the problem is described as f(x))
(Fig. 2).
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4 Experimental Study

4.1 Benchmark Functions

In this section, 10 global minimization benchmark functions are presented to evaluate
the performance of the proposed DADDE algorithm against other intelligent algo-
rithms. These functions (f1–f10) are dimension-wise scalable [15]. Among these
benchmark functions, f1–f6 represent unimodal functions, f7–f10 represent multimodal
functions. The value of dimension, names, optimum value, and initialization ranges for
these benchmark functions are provided in Table 2.

4.2 Experimental Setup

The proposed DADDE algorithm was compared with various outstanding algorithms
such as PSO, jDE, JADE and SaDE, to test the performance of DADDE. The exper-
iments were conducted on the suite of 10 test functions listed in Table 4. For all the
algorithms, the maximum number of function evaluations was set to 150,000 genera-
tions and the population size was set as NP = 100. Other parameters in PSO, jDE,
JADE and SaDE, were set based on previous literature [9–11]. Every algorithm ran 30
times on the 10 test functions, the optimal values, the average values and standard
deviation of the functions were obtained in 30 runs. The optimal value and the average
value can show the quality of the solution obtained from the algorithm, and the
standard deviation can be used to explain the stability and robustness of the algorithm.

Crossover

Initialization

Y N

Selection

DRS

Ternination

Output

N

Y

Fig. 2. Flow chart of DADDE

192 J. Liu et al.



Before the experiment, in order to illustrate the effectiveness of the repetition of
previous algorithm code, a test had been taken. In this test, all the parameters including
population size, the maximum number of evaluation, running times were set up as same
as the original reference. The results of this test and from the original literature were
almost in the same order of magnitude. For example, in literatures [52] parameters of
jDE were set as: s1 = s2 = 0.1, initialization of F and CR is 0.5, the maximum number
of function evaluations is 1500. jDE algorithm ran 50 times on f1, the average values
was 1.10E-28 and standard deviation was 1.00E-28 according to the original literature.
The results of the code edited in this study showed that the average value was 8.97E-27
and the standard deviation was 4.66E-27. This test proved that the code used in this
paper can reflect the performance of previous algorithms, so as to ensure the effec-
tiveness of comparison between DADDE and other algorithms.

4.3 Comparison Between DADDE and Other Algorithms

Table 3 presents the results over 30 independent runs on 10 test functions. Wilcoxon’s
rank sum test at a 0.05 significance was conducted between DADDE and each of PSO,
jDE, JADE and SaDE. Moreover, “+”, “-” and “�” in Table 4 denote that the per-
formance of DADDE is better than, worse than, and similar to that of the corresponding
algorithm respectively. Results of comparison based on Wilcoxon’s test can be directly
observed from Table 4.

It is obviously that the proposed DADDE algorithm performed better than the other
compared algorithms. For example, it was better than PSO on all 10 test functions,
better than jDE on 7 test function sand similar to it on 2 test functions, better than SaDE
on 7 test functions and similar to it on 3 test functions, better than JADE on 6 test
functions and similar to it on 3 test functions.

Table 2. Benchmark functions

Function Name Dimension f (x*) Initial range

f1 Sphere 30 0 [-100, 100]D

f2 Schwefel 2.22 30 0 [-10, 10]D

f3 Schwefel 1.2 30 0 [-100, 100]D

f4 Schwefel 2.21 30 0 [-100, 100]D

f5 Rosenbrock 30 0 [-30, 30]D

f6 Quartic 30 0 [-1.28, 1.28]D

f7 Schwefel 2.26 30 -12569.5 [-500, 500]D

f8 Rastrigin 30 0 [-5.12, 5.12]D

f9 Ackley 30 0 [-32, 32]D

f10 Griewank 30 0 [-600, 600]D
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Table 3. Experimental results of 10 benchmark functions

Function Algorithm Best Mean Std

f1 PSO + 1.37E-012 8.07E-033 3.35E-032
jDE + 9.24E-067 6.34E-065 2.67E-064
SaDE + 2.34E-046 4.93E-042 1.17E-043
JADE � 9.37E-065 8.02E-060 2.26E-059
DADDE 0.00E+000 0.00E+000 0.00E+000

f2 PSO + 1.98E-014 4.12E-013 2.87E-013
jDE + 9.60E-044 4.57E-043 4.25E-042
SaDE + 9.38E-021 8.03E-020 6.01E-020
JADE + 3.95E-035 2.88E-034 3.98E-035
DADDE 0.00E+000 0.00E+000 0.00E+000

f3 PSO + 1.78E+000 2.86E+000 6.34E+000
jDE + 3.56E-007 5.21E-007 7.75E-007
SaDE + 2.45E-003 4.82E-003 7.24E-003
JADE � 1.66E-037 4.33E-037 1.26E-036
DADDE 4.03E-269 3.63E-250 1.73E-249

f4 PSO + 1.39E+000 2.39E+000 4.32E+000
jDE + 2.64E-001 1.74E-001 5.62E-001
SaDE + 4.15E-002 4.77E-002 1.60E-002
JADE + 5.61E-011 2.26E-011 4.70E-011
DADDE 1.22E-274 1.56E-252 3.24E-251

f5 PSO + 1.20E+000 2.13E+000 4.17E+000
jDE + 1.35E-004 7.57E-004 2.23E-004
SaDE + 4.58E-004 9.66E-004 5.82E-004
JADE + 3.69E-022 4.90E-021 9.41E-021
DADDE 0.00E+000 0.00E+000 3.24E+000

f6 PSO + 4.39E-002 5.12E-002 1.71E-002
jDE � 2.81E-003 3.43E-003 2.11E-003
SaDE � 6.40E-003 7.06E-003 3.71E-003
JADE - 1.93E-003 2.43E-003 1.18E-003
DADDE 2.64E-003 2.94E-003 1.97E-003

f7 PSO + 1.25E+004 1.20E+004 2.81E+002
jDE � 1.25E+004 1.25E + 004 6.77E+001
SaDE � 1.25E+004 1.25E+004 9.47E+001
JADE + 1.25E+004 1.22E+004 1.93E+002
DADDE 1.25E+004 1.25E+004 0.00E+000

f8 PSO + 2.93E-012 1.86E-011 1.08E-011
jDE + 1.68E-013 2.44E-012 3.83E-012
SaDE + 1.88E-013 2.78E-012 4.06E-012
JADE + 3.11E-013 8.98E-0.12 5.12E-012
DADDE 0.00E+000 0.00E+000 0.00E+000

(Continued)
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4.4 Comparison of the Influences on DADDE with or Without
Double-Modle/Adaptive Parameters/Dynamic Random Search

The proposed algorithm is tested to prove that the global search capabilities of DADDE
can be enhanced after three improvements (double-modle/adaptive parameters/dynamic
random search) are added. For convenience, the algorithm without adaptive parameters
and dynamic random search is called DDE, the algorithm without dynamic random
search is called ADDE.

In Fig. 3, the convergence graphs show the fitness of function from DE, DDE,
ADDE and DADDE on two representative benchmark functions (f4, f9) with D = 30,
NP = 100 and FES = 1500. The convergence speed of DADDE was the best one.
Table 4 presents the results after these four algorithms ran 30 times. It can be known
that the average values and standard deviation of DADDE were both relatively less
than that of others.

According to the evidence provided by Fig. 3 and Table 5, the convergence rate
and accuracy of DADDE were better than the other three comparisons, so it came to a
conclusion that global search capabilities of DADDE can be enhanced by these pre-
sented improvements.

Table 3. (Continued)

Function Algorithm Best Mean Std

f9 PSO + 1.19E-008 2.98E-008 3.88E-008
jDE - 5.16E-017 6.11E-017 1.25E-017
SaDE � 1.29E-013 3.07E-013 2.41E-013
JADE � 8.64E-015 8.06E-015 6.53E-015
DADDE 3.28E-015 4.44E-015 2.20E-015

f10 PSO + 1.98E-002 4.12E-002 2.87E-002
jDE + 1.57E-006 1.97E-006 4.06E-006
SaDE + 1.55E-005 2.20E-005 1.76E-005
JADE + 1.75E-006 2.27E-006 4.40E-006
DADDE 0.00E+000 0.00E+000 0.00E+000

Table 4. Comparison results based on Wilcoxon’s rank sum test.

Function PSO jDE SaDE JADE

DADDE better 10 7 7 6
DADDE worse 0 1 0 1
DADDE equal 0 2 3 3
Success Rate 100 % 90 % 100 % 90 %
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This improved algorithm can balance the search capability between global and local
search. But by using double mutation strategies and adaptive parameters, good global
search capabilities are achieved at the cost of reduction of convergence rate. Although
dynamic random search is added to promote convergence rate, on several test functions
experimental convergence speed were still influenced, this limitation is more obvious
on unimodal functions.

Fig. 3. The convergence graphs for best fitness
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5 Conclusions

As an excellent and efficient search and optimization algorithm, differential evolution
(DE) has been widely applied in science and engineering. In the DE algorithm,
mutation strategies and control parameters are very significant to the algorithm’s
performance. However, it is difficult to select a befitting strategy and parameters.
Moreover, dynamic random search could be applied easily in the process of opti-
mization problem to accelerate convergence rate. Therefore, a DADDE algorithm is
put forward to improve the performance of basic DE.

In this paper, the experimental studies had been executed on ten global numerical
optimization functions adopted from previous literature. DADDE was compared with
other four advanced optimization algorithms, such as PSO, jDE, SaDE and JADE. The
experimental results indicated that the performance of DADDDE was better than the
other four algorithms totally. In order to prove that the global search capabilities of
basic DE can be enhanced by these three improvements made in DADDE, DADDE
was compared with the DE, DDE and ADDE. All of the experimental results showed
that the performance of DADDE was more outstanding than other competitors.
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