
Chapter 4

Hilbert Irreducibility Theorem

4.1 Hilbert Irreducibility Theorem

In this section we shall be interested in discussing proofs, generalizations and
geometric formulations of the so-called Hilbert Irreducibility Theorem (HIT in
the sequel).

Here is the original statement, proved by Hilbert in 1894:

Theorem 4.1.1 (Hilbert Irreducibility Theorem). Let F (X,Y ) ∈ Z[X,Y ] be a
polynomial, of degree ≥ 1 in Y , irreducible in the ring Q[X,Y ]. Then there exist
infinitely many integers n ∈ Z such that the specialized polynomial F (n, Y ) ∈
Z[Y ] is irreducible in the ring Q[Y ].

In the case when degY F ≥ 2, the only interesting one, as a corollary we
obtain that:

Under the above hypothesis on the polynomial F (X,Y ), for infinitely many
n ∈ Z the specialized polynomial F (n, Y ) has no rational root.

Consider the plane algebraic curve of equation C : F (x, y) = 0; it is endowed
with a map C → A

1 defined by the x function: C � (x, y) 
→ x ∈ A
1. The above

weak conclusion of HIT asserts that the map x : C(Z) → Z is not surjective.
The full HIT predicts that for infinitely many points n ∈ Z = A

1(Z), the pre-
image x−1(n) is irreducible, i.e. forms a single orbit for the natural action of
the Galois group.

A natural generalization to several variables and arbitrary number fields
reads as follows:

Theorem 4.1.2. Let κ be a number field, d ≥ 1 a positive integer,
F (X1, . . . , Xd, Y ) ∈ k[X1, . . . , Xd, Y ] an irreducible polynomial of degree ≥ 1
in Y . Then for a Zariski-dense set of rational points (a1, . . . , ad) ∈ κd the
specialized polynomial F (a1, . . . , ad, Y ) ∈ κ[Y ] is irreducible.
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46 4 Hilbert Irreducibility Theorem

We provide an equivalent geometric formulation:

Theorem 4.1.3. Let V be an irreducible affine algebraic variety of dimension
d ≥ 1, π : V → A

d a dominant morphism, all defined over a number field κ;
there exists a Zariski-dense subset of rational points (a1, . . . , ad) ∈ A

d(κ) = κd

such that each of their fibre π−1(a1, . . . , ad) is irreducible.

By irreducible, we mean of course irreducible over κ; it will be a finite set of
points of V (κ̄), all conjugate over κ to a single point.

The link between Theorems 4.1.2 and 4.1.3 is clear: a polynomial
F (X1, . . . , Xd, Y ) ∈ κ[X1, . . . , Xd, Y ] defines the affine variety in A

d+1 of equa-
tion F = 0, which is naturally endowed with a dominant morphism to the affine
space A

d (projection on the first d coordinates). If the polynomial F is monic
in Y , such a projection is also a finite map; we then speak of ramified covering
of the affine space.

Remark. Since the affine spaces are simply connected, each covering of
degree > 1 of A

d must ramify somewhere, actually over a codimension one
subvariety.

Hilbert Irreducibility Theorem (H.I.T.) is in a sense a converse to the
Chevalley-Weil Theorem discussed in the previous section. While the Chevalley-
Weil theorem applies in the situation where an unramified covering of algebraic
varieties is given (and it predicts a sort of surjectivity over the set of rational
points) H.I.T. holds for certain coverings of rational varieties, which do ramify.
A weak conclusion of H.I.T. is the non-surjectivity of the set-theoretic map
between the sets of rational points.

We shall see in a moment that actually this seemingly weaker statement
asserting non-surjectivity over rational points is in fact equivalent to the full
H.I.T. provided one admits coverings by possibly reducible varieties. The fol-
lowing statement will be regarded as the general Hilbert Irreducibility Theorem,
and will be proved to be equivalent to Theorem 4.1.2:

Theorem 4.1.4. Let κ be a number field, X be an algebraic variety defined
over κ of dimension d and π : X ��� A

d a dominant rational map, also defined
over κ. Suppose that π admits no section θ : Ad ��� X. Then the set Ad(κ) = κd

is not contained in the image π(X(κ)) of the rational points of X. Moreover,
the set Ad(κ) \ π(X(κ)) is Zariski-dense on A

d.

Remarks. (1) If X is irreducible, then the rational map π admits no section
if and only if it has degree > 1; in general, the existence of a section is equivalent
to the existence of an irreducible component of X where the restriction of π is a
birational isomorphism to A

d. (2) Due to the birational invariance of the above
statement, the affine space A

d could be replaced by any κ-rational variety.

Following Serre [48] we call thin the sets of rational points which are images
of morphisms admitting no section. Precisely:

Definition. Let Y be an algebraic variety defined over a field κ. A subset
A ⊂ Y (κ) is said to be thin with respect to κ if there exists an algebraic variety
X with dimX ≤ dimY and a rational map π : X ��� Y defined over κ such
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that π admits no sections and A is contained in the image π(X(κ)) of the
rational points of X.

We can always decompose the variety X as X = X ′ ∪ X ′′, for two closed
subvarieties X ′, X ′′, where X ′ is of pure dimension d = dimX = dimY or is
empty and every component of X ′′ (which might also be empty) has dimension
< d. Now a rational map π : X → Y admits a section if and only if it is of
degree one when restricted to a suitable irreducible component of X ′. Also,
note that the image of X ′′ is contained in a hypersurface of Ad.

Hence thin sets in A
d according to Serre’s definition above are union of sets

of two kinds: (1) sets of rational points contained in a proper closed subvariety;
(2) images of rational points of a variety of pure dimension d under a map
admitting no rational section. Again, type (2) sets could be alternatively defined
as finite union of images of rational dominant maps of degree > 1 defined on
an irreducible variety of the same dimension.

We shall prove that those of type (1) are in fact contained in sets of type
(2). This is the content of the following lemma (compare with [12], Lemma 5.2)

Lemma 4.1.5. Let Y ⊂ A
d be a proper closed subvariety defined over a field

κ. There exists an irreducible algebraic variety X of dimension d and a finite
map π : X → A

d of degree > 1 such that Y (κ) ⊂ π(X(κ)).

Proof. Let P (X1, . . . , Xd) ∈ k[X1, . . . , Xd] be a non-zero squarefree polynomial
vanishing identically on Y . Let X ⊂ A

d+1 to be the variety defined by the
equation Y 2 = P (X1, . . . , Xd). Then X is irreducible (since P is square-free,
in particular not a square); projection π : X → A

d onto the x-coordinates
provides a finite map such that Y (κ) ⊂ π(X(κ)). ��

In view of the above lemma, we could rephrase the definition of thin set by
saying that a subset Z ⊂ A

d(k) is thin with respect to κ if it is contained in the
image π(X(κ)) where X is a union of irreducible varieties each of dimension d
and π : X → A

d is dominant of degree > 1 on each component of X.

In view of the above consideration, Theorem 4.1.4 becomes equivalent to
the statement where “variety of dimension d” is replaced by “variety of pure
dimension d”. Also, it is equivalent to the following statement: the set Ad(κ) is
not thin. To justify that this last statement does imply also the last sentence
of Theorem 4.1.4, namely that A

d(κ) \ π(X(κ)) is Zariski-dense, note that if
it were not, up to adding a type (1) subset to π(X(κ)) (which is possible by
Lemma 4.1.5), we would obtain the emptiness of Ad(κ) \ π(X(κ)), contrary to
the fact that Ad(κ) is not thin.

Finally, it remains to us to prove Theorem 4.1.4 in some of its equivalent for-
mulations discussed above and to prove that it formally implies the apparently
stronger Theorem 4.1.3.

Proof of Theorem 4.1.4. We start by proving its 1-dimensional analogue:

Theorem 4.1.6. Let C be an algebraic curve defined over a number field κ,
π : C ��� A

1 be a rational dominant map admitting no section. Then A
1(κ) �⊂

π(C(κ)).
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Proof. We easily reduce to the case where C is smooth and π : C → A
1 is a finite

morphism; this might affect the set π(C(κ)) only by a finite set. Then decom-
pose C into the union C1 ∪ . . . ∪ Cr of its irreducible components. We know by
hypothesis that the restriction π|Ci

has degree > 1 for each i = 1, . . . , r and we
have to prove that A1(κ) �⊂ ⋃r

i=1 π(Ci(κ)). Let us choose a finite set S of places
of κ containing the archimedean ones. Since the ring extension κ[C]/π∗κ[A1] is
integral, after enlarging if necessary the set S, we can suppose that the ring
extension OS [C]/π∗OS [A

1] is also integral. By this we mean that the each com-
ponent Ci is defined by an equation Pi(X,Y ) = 0, where Pi(X,Y ) ∈ OS [X,Y ]
has S-integral coefficients, is monic in Y and the map π : C → A

1 is the projec-
tion on the X-coordinate. Clearly, it suffices to prove that A1(OS) �⊂ π(C(κ)),
but in view of the integrality of the ring extension OS [C]/π∗OS [A

1], each κ-
rational pre-image of an S-integer is necessarily an S-integer point of C. If
C(OS) is finite, we are done, since A

1(OS) = OS is an infinite set. Otherwise,
consider the different components Ci of C endowed with maps πi : Ci → A

1, for
i = 1, . . . , r. By hypothesis, for each i ∈ {1, . . . , r}, the map πi : Ci → A

1 has
degree > 1. Now, consider a non-constant polynomial p(t) ∈ OS [t], which will
be chosen later; it defines a finite morphism p : A1 → A

1. We can construct for
each i ∈ {1, . . . , r} the fiber product C′

i → A
1 of πi : Ci → A

1 and p : A1 → A
1,

namely the curve

C′
i := {(α, β) ∈ Ci × A

1 : πi(α) = p(β)},

endowed with its natural projection on A
1, sending (α, β) 
→ β. Let us choose

the polynomial p(t) in such a way that each corresponding curve C′
i is irreducible

and has positive genus. It suffices for this to choose p(t) = t3+ c, where c ∈ OS

is chosen outside the zero branch locus of any of the πi. Hence we have a choice
working for all components Ci. Now, the points of A1 which are both of the
form p(β) for β ∈ OS and πi(α), for α ∈ Ci(OS), are images of S-integral points
of C′

i, by our construction of C′
i. However, by Siegel’s Theorem all the curves

C′
i have only finitely many S-integral points; hence only finitely many of the

points of the set p(OS) ⊂ A
1(OS) can be images of S-integral points of C, so

infinitely many of them lie outside π(C(OS)). ��
End of the proof of Theorem 4.1.4. Let us assume that π : X ��� A

d is as
above; again, one easily reduces to the case where π : X → A

d is actually a
morphism. Suppose by contradiction that Ad(κ)\π(X(κ)) is not Zariski-dense,
so it is contained in a hypersurface Z ⊂ A

d. Let us choose a line l ⊂ A
d,

defined over κ such that: (1) l �⊂ Z; (2) the pre-image π−1(l) is a curve; (3) C
and π|C : C → l admits no section. The existence of such a line can be proved
by standard application of Bertini’s theorem. Then Theorem 4.1.6 provides the
desired contradiction. �
Proof of Theorem 4.1.3. As promised, we now prove Theorem 4.1.3, by deducing
it from Theorem 4.1.4. Recall that we are given an irreducible affine variety V
of dimension d and a dominant rational map π : V ��� A

d of degree > 1. We
want to prove that for a Zariski-dense set of rational points in A

d(κ), each pre-
image is irreducible over κ. Again, it is easy to reduce to the case of dimension 1
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and of a finite morphism π : V → A
1 (here V is an irreducible curve). We note

at once that if the degree of π is two or three, then Theorem 4.1.4 immediately
implies our conclusion: actually, if the pre-image of a point, which consists of
two or three algebraic points, contains no rational point, it means that such
pre-image is made of Galois conjugate elements (in other words: if a polynomial
in one variable of degree two or three has no roots, then it is irreducible). To
explain the strategy of our proof, let us consider the case of a map π : V → A

1

of degree four. Then, for a point α ∈ A
1(κ), having a rational pre-image is not

equivalent to having a reducible pre-image: it may be that the pre-image is
made of two Galois orbits of quadratic points. Let us define the fibered square
V ×π V of V with respect to π as

V ×π V := {(x, y) ∈ V × V : π(x) = π(y)};

it is a curve, endowed with a natural projection to A
1; let us also define its

symmetric fibered square as the quotient of the variety V ×π V by the natural
involution interchanging x and y, and denote it by V (2); it is a reducible curve,
contains canonically V via the diagonal embedding V ↪→ V ×πV . The reducible
curve V (2) is still endowed with a natural projection to A

1, which we denote
by π2. If π has degree 4, which we are assuming, then deg(π2) = 4 + 6 = 10.
Now, for a point α ∈ A

1(κ), the existence of a rational point in the pre-image
π−1
2 (α) is equivalent to the reducibility of the pre-image π−1(α) ⊂ V (κ̄). So,

Theorem 4.1.4 implies the conclusion of Theorem 4.1.3 in this case.
The general case is analogous: if n denotes the degree of the map π, it

suffices to consider the union of the curves V (i), where each V (i) is the i-th fold
symmetric fiber product of V with itself (with respect to π), for i = 1, . . . , [n/2].

�

4.2 Universal Hilbert Sequences

Let us consider the simplest case treated by Hilbert himself, namely that of
a polynomial P (X,Y ) ∈ Z[X,Y ], irreducible of degree ≥ 1 in Y . By Hilbert
Irreducibility Theorem 4.1.1, there exists an infinite sequence x0 < x1 < x2, <
. . . of integers such that the polynomial P (xn, Y ) is irreducible in Q[Y ] for
every n. One can ask whether there exists a single sequence working for all
irreducible polynomials: of course, we must neglect a finite set depending on
the given polynomial, namely the precise question is: does there exist a sequence
x0 < x1 < x2, < . . . of integers such that for every irreducible polynomial
P (X,Y ) ∈ Z[X,Y ] of positive degree in Y there exists an index n0(P ) such
that for every n > n0(P ) the specialized polynomial P (xn, Y ) is irreducible in
Q[Y ]? A positive answer to this question can be given via a diagonalization
argument, starting from the original result of Hilbert. It is however tempting
to search for explicit sequences with the above property. They are commonly
called Universal Hilbert Sequences. The first examples, to our knowledge, have
been provided by Sprindzuk [53]; other examples have been constructed by Bilu
[5] and Dèbes and Zannier [24].
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We shall content to show one example, drawn from the paper [14], which
classifies Universal Hilbert Sequences among power sums. By a power sum we
mean in this context a function N → Q of the form

n 
→ u(n) = b1a
n
1 + . . .+ bka

n
k ,

where k ∈ N and a1, . . . , ak are natural number and b1, . . . , bk are rational
numbers. Theorem 4 of [14] reads as follows:

Theorem 4.2.1. Let u : N → Q be a power sum as above. The following are
equivalent:

(1) the sequence u(0), u(1), . . . is a Universal Hilbert Sequence;
(2) there exist no integer d ≥ 2, polynomial P (X) ∈ Q[X] of degree d and

power sum v : N → Q such that identically u(nd) = P (v(n)).

As an example, the sequence n 
→ 2n + 3n is a U.H.S.. Clearly, it is not
the case for the sequence n 
→ u(n) := 2n, or any other geometric progression;
actually for the last sequence u, note that putting P (X) = X2 one has u(2n) =
P (u(n)), so condition (2) is not satisfied.

We now give a sketch of the proof that the sequence u(n) := 2n + 3n is a
U.H.S.; the general proof of Theorem 4.2.1 is obtained by following the same
path.

As in the deduction of Theorem 4.1.3 from Theorem 4.1.4, we reduce to
proving the following:

Proposition 4.2.2. Let P (X,Y ) ∈ Z[X,Y ] be an irreducible polynomial of
degree d ≥ 2 in Y . Then the equation P (2n + 3n, y) = 0 has only finitely many
solutions (n, y) ∈ N× Z.

Proof. Suppose by contradiction that the equation P (2n + 3n, y) = 0 has in-
finitely many integral solutions. Then by Siegel’s finiteness theorem on integral
points (Theorem 3.3.1), the curve of equation P (X,Y ) = 0 must have genus
zero and only one or two points at infinity. In algebraic language, there exist
two non-constant rational functions f(t), g(t) such that P (f(t), g(t)) ≡ 0, and
such that for infinitely many n ∈ N, 2n + 3n = f(tn) for a suitable tn ∈ Q.
Moreover, the degree of f(t) equals d = degY P and f(t), g(t) can have only
one or two poles (all together). In the first case, after a change of variables,
we obtain that f(t), g(t) ∈ Q[t] are polynomials. We then have, again by our
assumptions on the infinitude of the integral solutions to the original equation,
that the equation 2n + 3n = f(t) has infinitely many solutions (n, t) ∈ N×Q.
After a translation of the form t 
→ t+ c, we can suppose that the polynomial
f(t) ∈ Q[t] is of the form f(t) = atd+a2t

d−2+ . . .+ad. Since the denominators
of t must be bounded, we can suppose after another change of variable that t
is in fact an integer, so the equation 2n+3n = f(t) has infinitely many integral
solutions, where f(t) has degree d and no term of degree d − 1. In particular,
for infinitely many pairs (n, t) ∈ N× Z we shall have

|2n + 3n − atd| � |t|d−2.
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Working on each arithmetic progression modulo d and writing n = md + r,
we can say that for at least one value of r ∈ {0, . . . , d− 1} and a positive real
number c1, the Diophantine inequality

|2r2md + 3r3md − atd| < c1|t|d−2

has infinitely many integral solutions (m, t) ∈ N× Z. ��

Now we can rewrite the above inequality as∣∣∣∣2r2md + 3r3md

td
− a

∣∣∣∣ < c1|t|−2,

so ∣∣∣∣∣3
r/d3m d

√
1 + 2r2md3−r3−md

t
− a1/d

∣∣∣∣∣ < c2|t|−2,

for a suitable constant c2. Here 3
r/d and a1/d denote suitable real d-th roots of

3r and a. Now let us express by Taylor development d
√
1 + u as 1+δ1u+δ2u

2+
O(u3) where δ1, δ2 are the rational numbers δ1 =

(
1/d
1

)
= 1

d , δ2 =
(
1/d
2

)
= 1−d

2d2 .

Putting αi = δi · 2ri

3ri for i = 1, 2 and noting that 26m

36m � t−2 (since t tends to
infinity as 3m), we obtain from the above displayed inequality that∣∣∣∣

(
3r/d3m

t

)(
1 + α1

2md

3md
+ α2

4md

9md

)
− a1/d

∣∣∣∣ < c2
1

t2
.

Observe that the term 3r/d3m

t converges to a non-zero limit for m → ∞; so after
multiplying both sides by 9md · t

3r/d3m
we obtain we obtain that the inequality

|9md + α16
md + α24

md − a1/d3−r/dt3m| < c39
(d−1)m (4.2.3)

holds for infinitely many positive integers m. Note that the left-hand side is
a linear combination, with algebraic coefficients, of S-units and an S-integer:
namely, it is the value of a homogeneous linear form at the point

x = (9md, 6md, 4md, t3m) ∈ O∗
S
3 ×OS ,

where OS = Z[1/6]. We now proceed to apply the Subspace Theorem, with
κ = Q, N = 4, S consisting of the archimedean absolute value and the 2-adic
and 3-adic ones. Let us define the following linear forms: for the archimedean
place, denoted by∞, put L∞,1(X1, . . . , X4) = X1+α1X2+α2X3−a1/d3−r/dX4,
then complete to a basis by putting L∞,i(X1, . . . , X4) = Xi for i = 2, 3, 4. For
each p-adic place (p = 2, 3), put Lp,i = Xi. The double product appearing in
the statement of the Subspace Theorem becomes

4∏
i=1

∏
ν∈{∞,2,3}

|Li,ν(x)|ν ≤ 9−md · t · c39(d−1)m ≤ c43
−m.
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Since the height of the point x is � 9md, the Subspace Theorem 2.2.4, applied
with any ε < 1/(2d), implies that all but finitely many solutions to the inequal-
ity (4.2.3) satisfy finitely many linear dependence relations with integral coeffi-
cients. But now, this would yield that a relation like t = b13

m+b22
md3(1−d)m+

b34
md3−(2d−1)m, for suitable rational numbers b1, b2, b3, would hold infinitely

often; this is impossible: by integrality considerations, b2, b3 would vanish, and
we would have t = b13

m; however, an equation like

P (2r2md + 3r3md, 3md) = 0

can have only finitely many solutions m ∈ N.

The case where the rational functions f and g parametrizing the curve
P (X,Y ) = 0 have two poles is similar; details can be found in [14], [60] and [6].

4.3 Hilbert Irreducibility over algebraic groups

In this section, where we give no proofs at all, we shall connect Hilbert irre-
ducibility theory with algebraic groups. Let us start from the original version
given by Hilbert himself. Recall that it can be rephrased by saying that given
a curve C and a morphism π : C → A

1 from the curve to the line, the set N

of natural numbers cannot be contained in the image π(C(Q)) of the rational
points on C (unless the map π : C → A

1 admits a section).

Now, observe that the line A
1 is the underling algebraic variety of the ad-

ditive group Ga and that the set N of natural numbers is a Zariski-dense sub-
semigroup. It is then natural to try to ask the following: given an algebraic
group G defined over a number field κ, a variety V of the same dimension as
G and a dominant map π : V → G admitting no section, and given a Zariski-
dense sub-semigroup Γ ⊂ G(κ), the set Γ cannot be contained in the image
π(V (κ)) of the rational points of V .

Actually, the above statement does not hold, as shown by the simple example
below:

Example. Choose κ = Q and G = V = Gm to be the multiplicative group,
and π : Gm → Gm be the degree-2 isogeny: π(x) = x2. Letting Γ = {4n : n ∈
N}, say, we have that Γ is entirely contained into π(Gm(κ)).

More generally, whenever V is itself an algebraic group and π : V → G an
isogeny, one can construct a counterexample by choosing first a Zariski-dense
subgroup in V (κ) taking for Γ its image. Starting with the group Ga this will
not be possible, since the latter is simply connected.

It is then natural to ask if such counterexamples are in a sense the only
possible ones. In the case of linear algebraic groups, this is the content of the
following result, proved in [12]:

Theorem 4.3.1. Let G be a connected linear algebraic group defined over a
number field κ; let V be an algebraic variety with dimV = dimG and π : V ���
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G a rational dominant map, all defined over κ. Let Γ ⊂ G(κ) be a Zariski-
dense sub-semigroup. If Γ ⊂ π(V (κ)) then there exists an algebraic group G′,
an isogeny p : G′ → G and a rational map θ : G′ ��� V , all defined over κ,
such that π ◦ θ = p.

Let us see that a particular but significant case is connected with Theorem
4.2.1: consider the case where G = G

2
m is the two-dimensional torus, Γ is the

semigroup generated by the pair (2, 3) ∈ G
2
m; it is Zariski-dense, since the

two numbers 2 and 3 are multiplicatively independent. Take any irreducible
polynomial P (X,Y ) ∈ Q[X,Y ] of degree ≥ 2 in Y . Then the surface V ⊂ G

2
m×

A
1 defined by the equation P (X1 +X2, Y ) = 0, provided with the projection

π : (X1, X2, Y ) 
→ (X1, X2), gives an example of a ramified covering of G2
m

admitting no section. Theorem 4.2.1 assures that only finitely many points of
Γ have a rational pre-image in V , so in particular π(V (Q)) does not contain
Γ .

More generally, one can consider Diophantine equations involving linear re-
current sequences. We recall that a linear recurrent sequence is a sequence
u : N → κ which can be expressed in the form

u(n) =

h∑
i=1

pi(n)α
n
i ,

where p1(T ), . . . , ph(T ) are polynomial in κ̄[T ] and α1, . . . , αh ∈ κ̄∗, called roots
of the recurrence, are non-zero scalars.

Consider the simple-looking Diophantine equation like u(n) = y2, to be
solved in (n, y) ∈ N × κ, which consists in finding perfect squares (in a given
number field) in a linear recurrent sequence. We shall show how this equation
can be viewed as a problem on integral points on covers of algebraic groups.
Namely, let d be the multiplicative rank of the group generated by the roots,
which we suppose for simplicity to be torsion-free (we can however always re-
duce to this case); let β1, . . . , βd be a basis for this multiplicative group. Put
G = Ga ×G

d
m and let Γ be the cyclic group generated by γ := (1, β1, . . . , βd).

For simplicity, we suppose that each αi, so each βi, is κ-rational (so the same
holds for the polynomials pi); in that case Γ consists of κ-rational points of
G and the sequence u can be expressed as u(n) = f(γn), where f ∈ κ[G] is
a regular function on G. Now, let V ⊂ G

d
m × A

1 be defined by the equation
Y 2 = f(X1, . . . , Xd). Projection π : V → G

2
m onto the X coordinates provides

a dominant map without sections, unless the given linear recurrent sequence
is identically a square (i.e. a square in the ring of linear recurrent sequences).
One can then conjecture finiteness of integral solutions to the original equa-
tion, which would follow (via an elementary reasoning) from the degeneracy of
integral points on V .

A theorem of Zannier [59] (previously a conjecture of Pisot) proves that
the sequence cannot take always perfect square values in a given number field,
thus proving that the projection π(V (κ)) cannot contain Γ ; this is exactly the
content of Theorem 4.3.1 in that case. More generally, Ferretti and Zannier
[32] proved Theorem 4.3.1 for variety V and map π : V → Ga × G

d
m, at
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least whenever Γ is cyclic. The extension to arbitrary linear algebraic groups,
provided in Theorem 4.3.1, is based on that result, and carried out in [12].

As mentioned, at least when G is a torus, and π : V → G is a finite map, ad-
mitting ramification (which prevents V to be a torus itself) one could conjecture
that in fact V (OS) is degenerate. This would follow from Vojta’s conjecture,
and would e.g. imply the finiteness of the solutions to equations of the form
yd = 2a + 3b + 1, which we already mentioned (and will be reconsidered again
in the next chapter). For d = 2 and κ = Q, the above equation has been solved
completely by Leitner [36], using ad hoc methods.

Of course, it is worthwhile to consider also the case of non-linear algebraic
groups. WheneverG is a simple abelian variety, and V is an irreducible algebraic
variety provided with a dominant morphism V → G, then either V is itself is
an abelian variety (which happens if and only if the morphism is unramified),
or V is of general type. In the second case its integral (i.e. rational) points
should be degenerate. This particular case of Lang-Vojta conjecture, however,
is far from being proved at present. A weaker statement, suggested by Serre, is
that whenever G(κ) is Zariski-dense, π(V (κ)) should not coincide with G(κ),
or even should be sparse in some sense. Partial results in this direction are the
object of the paper [62].
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