
Chapter 3

The theorems of Thue and Siegel

3.1 Thue’s equation

One of the first finiteness results on Diophantine equations was proved by Axel
Thue in 1909 [58]. It constitutes the starting point of the modern theories of
Diophantine equations and Diophantine approximation.

Theorem 3.1.1 (Thue, 1909). Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous ir-
reducible polynomial of degree ≥ 3. Let c ∈ Z be a non-zero integer. The dio-
phantine equation

F (x, y) = c (3.1.2)

has only finitely many solutions in integers (x, y) ∈ Z
2.

We provide two proofs of this theorem, the second of which uses Siegel’s
theorem for open sets of P1, i.e. Corollary 3.2.4 from next section.

Proof. Our first proof follows Thue’s original path. Let us suppose by contra-
diction that n 
→ (xn, yn) is an infinite sequence of integral solutions to (3.1.2),
with |yn| → ∞ (it is clear that there are only finitely many solutions for each
given y). We factor the form F (X,Y ) in Q̄[X,Y ] by writing

F (X,Y ) =

d∏
i=1

(βiX − αiY ),

where d = degF and (αi, βi) ∈ Q̄
2 are such that F (αi, βi) = 0. Since F (X,Y )

is irreducible (over the rationals), the determinants αiβj − βiαj do not vanish
for any i �= j. Also β1, . . . , βd are all non-zero. From the equation (3.1.2) we
obtain, by taking absolute values,

d∏
i=1

∣∣∣∣βi
xn

yn
− αi

∣∣∣∣ = |c|
|yn|d → 0.
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32 3 The theorems of Thue and Siegel

Then, up to extracting a subsequence from the sequence n 
→ yn and reordering
indices, we can suppose that the sequence of rational numbers n 
→ (xn/yn)
tends to α1/β1. From the above relation we also obtain the inequality∣∣∣∣xn

yn
− α1

β1

∣∣∣∣ ≤ c1
|yn|d ,

holding for all large n in an infinite subsequence, where c1 is any number larger
than |cβd−1

1 |maxi(|α1βi − αiβ1|1−d). The above inequality contradicts Roth’s
Theorem, since d > 2, finishing the proof. ��

As promised, we give a second proof of Thue’s theorem.

Proof. Consider the algebraic curve C ⊂ A
2 defined by Thue’s equation

F (X,Y ) = c. Let U ⊂ P1 be the open set F (X,Y ) �= 0. Then U is the comple-
ment of d ≥ 3 points in P1. The map C → U sending C � (x, y) 
→ (x : y) ∈ U is
a (unramified) cover of U , so if C had infinitely many integral points the same
would be true of U , by Chevalley-Weil. An application of Theorem 3.2.4 gives
the desired finiteness. ��

Some remarks are in order:
(1) Thue did not use Roth’s Theorem, which was not yet known at the time,

but he used instead a weaker version that he proved in the same article; it is
the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > max(|p|, |q|)− d
2−1−ε,

where d = [Q(α) : Q] and ε > 0, holding for all but finitely many rational
numbers p/q.

(2) The same proof, using Roth’s Theorem, applies without changes to prove
the finiteness of integral solutions to equations of the form

F (x, y) = g(x, y)

where F (X,Y ) is an irreducible form and the total degree of the polynomial
g(X,Y ) satisfies deg g < degF − 2.

(3) All curves defined by a Thue’s equation of the form (3.1.2) have d (dis-
tinct) points at infinity; if d ≥ 3, and only in this case, they have non-zero
genus, in other words they are not rational (see below). In contrast, when
d = 2, the conic of equation F (X,Y ) = 0 has two points at infinity, and has
genus zero. The example of Pell’s equation x2 − ay2 = 1, where a > 0 is a
positive non-square integer, shows that the assumption that d ≥ 3 cannot be
omitted.

(4) Replacing Roth’s Theorem by its generalized version, e.g. Theorem 2.1.8,
one can deduce in the same way the more general

Theorem 3.1.3 (Thue-Mahler Theorem). Let κ be a number field, OS ⊂ κ
a ring of S-integers, F (X,Y ) ∈ OS [X,Y ] be a binary homogeneous form with
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S-integral coefficients. Suppose that F (X,Y ) has at least three pairwise non-
proportional linear factors in κ̄[X,Y ]. Then there are only finitely many pairs
(x, y) ∈ O2

S, up to multiplicative constants, such that

F (x, y) ∈ O∗
S . (3.1.4)

Let us sketch an independent proof of the Thue-Mahler Theorem, which does
not use directly Diophantine approximations methods, but rather the S-unit
equation theorem in two variables.

It runs as follows: after factoring

F (X,Y ) =
k∏

i=1

(βiX − αiY )ei (3.1.5)

where βiX − αiY for i = 1, . . . , k are the distinct prime divisors of F (X,Y ) in
Q̄[X,Y ], we can suppose, after enlarging κ and S if necessary, that the βi, αi

belong to κ and the determinants βiαj − βjαi are S-units. Then for every
coprime S-integers x, y, the values βix − αiy, for i = 1, . . . , k, are pairwise
coprime; if (x, y) is a solution to (3.1.4), the product of the βix−αiy is a unit,
so each term is a unit. Let us write

ui = βix− αiy,

for i = 1, . . . , k; since by our hypothesis k ≥ 3, we can consider the first three
terms u1, u2, u3. Eliminating x and y from the relations above we obtain a
linear relation of the form a1u1 + a2u2 + a3u3 = 0, for some non-zero constant
coefficients a1, a2, a3, holding for all the solutions (x, y). An application of the
S-unit equation theorem (Theorem 3.2.1) gives the desired result. �

It is worthwhile to look for a geometric interpretation of the last proof; it
will turn out that this is precisely the second proof of Thue’s theorem given
above.

We can view the solutions (x, y) to (3.1.4) as integral points on A
2, which

moreover are integral with respect to the curve of equation F (x, y) = 0 in A
2.

The latter is a union of k lines intersecting at the origin. Viewing the point
(x, y) ∈ A

2 as a point (x : y : 1) ∈ P2, it becomes integral also with respect to
the line at infinity. Hence we are considering integral points in P2 with respect
to a configuration of k + 1 lines, the first k passing through a single point and
the last one, the line at infinity, being in general position with respect to the
previous k. This variety is isomorphic to the product A

1 × (P1 \ {k points}),
the projection on the last factor being given by (x : y : 1) 
→ (x : y). Hence
its points are degenerate and moreover they lie on finitely many lines x = λiy;
this gives the required finiteness statement.
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3.2 Hyperelliptic curves and sums of two units

The aim of this section is proving the following two theorems and showing their
interdependence.

Theorem 3.2.1 (S-unit Equation Theorem in two variables). Let Γ ⊂ Q̄
∗ be

a finitely generated multiplicative group. Then the equation

u+ v = 1

has only finitely many solutions (u, v) ∈ Γ × Γ .

This theorem is indeed equivalent to Siegel’s Theorem 3.3.1 for the particular
curve C = P1 \ {0, 1,∞}, as explained in §1.2. The following result is Siegel’s
theorem in the case of the so-called hyperelliptic curves, where the points (or
the point) at infinity are fixed by the hyperelliptic involution.

Theorem 3.2.2. Let OS be a ring of S-integers in a number field κ; let f(X) ∈
OS [X] be a polynomial with at least three simple roots in κ̄. Then the equation

y2 = f(x) (3.2.3)

has only finitely many solutions (x, y) ∈ OS × κ.

In other words, there exist only finitely many x ∈ OS such that the value
f(x) is a square in κ. Note that if f(X) has two roots, the conclusion does
not hold in general, as the example of the polynomial f(X) = 2X2 + 1 shows
already for κ = Q and OS = Z. Also, if f(X) has two simple roots, and no
other root in κ̄, then the curve of equation y2 = f(x) is rational, isomorphic to
Gm over a suitable extension of the number field κ. Hence it contains infinitely
many integral points, over a suitable extension of the ring of integers OS .

Let us prove Theorem 3.2.1 by using Corollary 2.1.10. First we can find a
number field κ and a ring of S-integers OS ⊂ κ such that Γ ⊂ O∗

S . Suppose by
contradiction that there exist infinitely many solutions (u, v) to the equation
u + v = 1 of the Theorem. By symmetry, we can suppose that for all our
solutions H(v) ≥ H(u). Now, for each solution (u, v), let T = T (u, v) be the
set of places ν ∈ S such that |v|ν < 1. Since S is finite, there are only finitely
many possibilities for the subset T . So, after extracting a suitable infinite sub-
sequence, we can and shall suppose that T is fixed. Putting γ := −u/v we
obtain γ − 1 = −v−1 so

∏
ν∈T

|γ − 1|ν =
∏
ν∈T

1

|v|ν =
∏
ν∈S

max(1, |v−1|ν) = H(v−1)−1 = H(v)−1,

where the last equality follows from the product formula. Since H(γ) ≤ H(u) ·
H(v) ≤ H(v)2, we obtain ∏

ν∈T

|γ − 1|ν ≤ H(γ)−1/2.
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Hence Corollary 2.1.10, applied with any number ε < 1/2, gives the desired
contradiction, finishing the proof. Note that by inserting on T also the places
for which u is small, we could have ended with the inequality

∏
ν∈T |γ− 1|ν �

H(γ)−1, so a much weaker result than Corollary 2.1.10 would suffice.

Let us now prove Theorem 3.2.2 by using Theorem 3.2.1. Of course, if we
prove finiteness of solutions of (3.2.3) for x in a ring larger thanOS , our theorem
will be proved. Hence we can enlarge the number field κ so that the roots of
f(X) become rational and we also enlarge the ring of S-integers OS so that it
becomes a Principal Ideal Domain. Now equation (3.2.3) can be written as

y2 = a · (x− α1)(x− α2)(x− α3)g(x)

where a, α1, α2, α3 ∈ κ, a �= 0, the αi are pairwise distinct and the polynomial
g(X) ∈ κ[X] does not vanish at αi for any i = 1, 2, 3. Since the two polynomials
h(X) := a(X−α1)(X−α2)(X−α3) and g(X) are coprime, in the ring κ[X], they
generate the unit ideal; in other words, there exist polynomials ϕ(X), ψ(X) ∈
κ[x] such that

ϕ(X)h(X) + ψ(X)g(X) = 1.

Up to enlarging if necessary the ring of S-integers OS , we can suppose
that a ∈ O∗

S and that all the coefficients of all the four polynomials
h(X), g(X), ϕ(X), ψ(X) are S-integers. Now, for every x ∈ OS , from the above
identity it follows that the two S-integers h(x), g(x) generate the unit ideal
(1) = OS , so they must be coprime. Hence, due to unique factorization in OS ,
whenever the product f(x) = h(x)g(x) is a square in κ, both factors should be
squares, up to units. Since the quotient of the group of units modulo squares
is finite, we obtain from the infinitude of the set of solutions to (3.2.3) that for
at least one unit γ ∈ O∗

S the equation

y2 = γ(x− α1)(x− α2)(x− α3)

has infinitely many solutions (x, y) ∈ OS × κ. We observe that x − αi, x −
αj are essentially coprime for i �= j, actually they are coprime whenever the
discriminant ((α1 − α2)(α2 − α3)(α3 − α1))

2 is a unit, which we can suppose
to hold after enlarging S; so, by repeating the previous argument, we deduce
that there exist units γ1, γ2, γ3 such that for infinitely many x ∈ OS and each
i = 1, 2, 3, the elements γi(x − αi) are squares in κ. After enlarging κ we can
suppose that the γi are also squares, so that for infinitely many x ∈ OS there
exist y1, y2, y3 ∈ κ such that we can write

y2i = x− αi for i = 1, 2, 3.

Eliminating x from the first two relations (i.e. those corresponding to i = 1, 2)
we obtain

y21 − y22 = (y1 − y2)(y1 + y2) = α2 − α1

Recall that α2 − α1 is a unit, since the discriminant of h(X) was supposed to
be a unit; then y1− y2 (and also y1+ y2) must be a unit. Then, using the same
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relations for the other pairs of distinct indices i, j in {1, 2, 3}, we obtain that
y1 − y3 and y2 − y3 are also unit. Writing⎧⎨

⎩
y1 − y2 = u3

y2 − y3 = u1

y3 − y1 = u2

for suitable units u1, u2, u3, we obtain the homogeneous S-unit equation

u1 + u2 + u3 = 0.

Putting u := −u1/u3, v := −u2/u3, we get the relation u+v = 1 and Theorem
3.2.1 gives the finiteness of the ratios u1/u3, u2/u3. This in turn gives the
finiteness of the triples (y1, y2, y3) up to multiplicative constants and from this
and the relation y21 − y22 = α2 − α1 it is easy to deduce the finiteness of the
solutions x.

The above proof might seem complicated and unnatural, but it can be en-
lightened using a geometric view-point. Let C be the affine curve defined by our
equation (3.2.3). The main point of the proof is the observation that the three
rational functions x − αi, for i = 1, 2, 3, take perfect square values at integral
points (x, y) (after a fixed enlargement of the ring OS). This is of course con-
nected with the Chevalley-Weil theorem: the three functions in question are lo-
cally a square everywhere, so the function field extension κ(C)(√x− αi)/κ(C) is
unramified over C (it might ramify at infinity, depending on the parity of deg f).
Hence, by Chevalley-Weil, each integral point on C lifts to an integral point on
C′, where C′ is the affine curve corresponding to the integral closure of the ring
κ[C][√x− α1,

√
x− α2,

√
x− α3]. Now, letting yi be square roots of x − αi in

κ[C′], we have that the regular functions u3 := y1−y2, u1 := y2−y3, u2 := y3−y2
have all their zeros and poles at infinity, so they send C′ → Gm. So we obtain

the morphism C′ → G
2
m by sending C′ � p 
→ (−u1(p)

u3(p)
, −u2(p)

u3(p)
) whose image is

the line u+v = 1 inside the torus G2
m; this closed set of the torus is isomorphic

to P1 \{0, 1,∞}, so it contains only finitely many integral points and the proof
is finished.

It could be proved that for a general affine hyperelliptic curve C defined by
an equation (3.2.3) there exists no non-constant morphism C → G

2
m, and, when

such a morphism does exist, its image is a translate of a subtorus; so Theorem
3.2.1 or its generalization Theorem 1.2.2 cannot be used directly. However, the
two-variables S-unit equation theorem can be used, and has been used in the
above proof, after taking an unramified cover C′ → C of the original curve,
since the curve C′ does admit such a non-trivial morphism to G

2
m.

We end by showing that Theorem 3.2.1 immediately implies Siegel’s theorem
in the rational case:

Corollary 3.2.4. Let X ⊂ P1 be an algebraic open set with P1 \X consisting
of at least three points. Then X(OS) is finite, for every ring of S-integers OS.
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Proof. We just repeat the argument given in the introduction. We can suppose,
up to enlarging the field of definition κ, that three of the points of the com-
plement of X in P1 are 0, 1,∞. Then the algebra κ[X] contains the functions
x, 1/x, 1/(x−1). Hence for every integral point p ∈ X(OS) we obtain a solution
(u, v) = (x(P ), 1− x(P )) to the S-equation u+ v = 1 of Theorem 3.2.1. ��

3.3 Siegel’s Theorem on curves

As mentioned, a general theorem of Siegel-Mahler, which we give here in the
most general formulation provided by Lang [39], asserts the finiteness of S-
integral points on a large class of curves, namely all those satisfying the as-
sumption of log-general type appearing in Vojta’s conjecture:

Theorem 3.3.1 (Siegel’s Theorem on curves). Let C be an affine curve defined
over a number field. Suppose either that it has genus > 0 or that it has at least
three points at infinity. Then for each ring of S-integers OS, the set C(OS) is
finite.

Note that we do not assume the curve is smooth; however, the theorem in
the possibly singular case would follow easily from the particular case of smooth
curves.

In the sequel, we shall suppose that C is smooth affine and define C̃ to be
its smooth compactification; let g be the genus of C̃. We denote by D the
complement: D = C̃ \ C.

So Siegel’s theorem asserts that whenever degD ≥ 3 or g ≥ 1, then the
set C(OS) is finite. On the other hand, we have already observed in Chapter
1 that if g = 0 and degD = 1 or 2 the corresponding curve, which is either
Ga = A

1 or Gm = A
1 \ {0} has infinitely many integral points (over a suitable

ring of S-integers). Hence Siegel’s theorem provides a complete classification of
the algebraic curves admitting infinitely many integral points.

Let us analyze this classification in view of the Chevalley-Weil theorem.
Recall that given two (smooth, affine) curves C1, C2 admitting a dominant mor-
phism π : C1 → C2, if C1(OS) is infinite, also C2(OS) will be infinite. On the
other hand, if π : C1 → C2 is an unramified cover, then the two finiteness
properties are equivalent; more precisely, if C2(OS) is finite for every ring of
S-integers OS , the same is true of C1(OS). Let us write, as usual, Ci = C̃i \Di

and denote by gi the genus of C̃i and by si = degDi. The inequalities g1 ≥ g2
and s1 ≥ s2 hold for every dominant morphism π : C1 → C2; moreover, for
unramified morphism the equality holds if either deg π = 1 (which is certainly
the case if C1 = A

1) or C2 = Gm (in which case necessarily C1 = Gm). Hence,
Siegel’s finiteness theorem can be stated as follows:

Theorem 3.3.2 (Siegel’s Theorem - alternate version). Let C be a smooth
affine curve defined over a number field κ. The following are equivalent:

(i) the set C(OS) is finite for every ring of S-integers;
(ii) there exists an unramified cover C′ → C of C such that the genus of C′ is

strictly larger than the genus of C;
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(iii) for every integer g, there exists an unramified cover C′ → C of C such that
the genus of C′ is larger than g;

(iv) there exists an unramified cover C′ → C of C such that C′ has strictly more
points at infinity than C;

(v) for every integer N there exists an unramified cover C′ → C of C such that
C′ has at least N points at infinity;

(vi) the fundamental group of the topological space C(C) is not abelian.

By Chevalley-Weil Theorem and topological classification of algebraic
curves, this means that an apparently weaker statement than Siegel’s, namely
the finiteness of integral points on curves of sufficiently large genus (say genus
> 100) would imply via Chevalley-Weil theorem the full statement in Theorem
3.3.1. The same could be said about the requirement on the number of points
at infinity: the finiteness of integral points on all the curves with at least, say,
one hundred points at infinity, over every ring of S-integers, would imply the
finiteness of integral points on curves with at least three points at infinity, as
well as on those which have positive genus and at least one point at infinity
(i.e. are affine).

Siegel’s proofs. We give a sketch of a proof of Siegels’ Theorem similar to the
original one (but we should mention that Siegel did not treat arbitrary S-
integers in his 1929 paper [52]; the generalization to arbitrary S-integers is due
to Mahler and Lang, see [39]). Actually, Siegel provided two different proofs; we
recommend the paper [63], which we are following now, for a careful discussion
of the different tools needed in the various approaches.

Let us suppose that an affine curve C (say embedded in A
N ) of genus >

0 admits infinitely many S-integral points. Then we can extract an infinite
sequence P1, P2, . . . in C(OS) converging in the projective completion C̃ for
every place ν ∈ S (recall that C̃(κν) is compact).

For each point P ∈ A
N (κ) and each place ν ∈ S, denote by |P |ν the sup-

norm of P . Then the height of an S-integer point P ∈ A
N (OS) is

H(P ) =
∏
ν∈S

max{1, |P |ν},

so H(P ) ≤ max{1, |P |ν0}�(S) where ν0 is such that |P |ν0 ≥ |P |ν for any other
place ν. We can suppose that for our points in the sequence P1, P2, . . . the
place ν0 is one and the same. Let Q = limn→∞ Pn, the limit being taken in the
ν0-adic sense. Then for a suitable local parameter t ∈ κ(C) at Q and a positive
real number δ, we shall have

|t(Pn)| =: dist(Pn, Q) � |Pn|−δ � H(Pn)
−δ/�(S). (3.3.3)

If δ > 2�(S), a direct application of Roth’s Theorem would be sufficient to
conclude. If, however, that δ < 2�(S), inequality 3.3.3 would not suffice. Siegel’s
trick to overcome this difficulty consists in taking an unramified covering C̃′ → C̃
of C. By Chevalley-Weil theorem, the integral points Pn lift to integral points
P ′
n ∈ C′

i(OS), in one of the finitely many twists of C′
i of C′. We can suppose,
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since we may dispose of infinitely many integral points, that all of them lift
to integral points on a same curve C′. The rate of convergence at infinity of
the P ′

n is the same, since the given covering is unramified (even at infinity).
On the other hand, the height of the new points P ′

n is smaller then that of
the Pn by a factor equal to the degree of the cover. Working with a cover of
degree > 2�(S)/δ one is in the situation of applying Roth’s theorem and we
may conclude.

In connection with Siegels’ Theorem, we end this section by showing that
the results about Thue-Mahler and hyperelliptic equations fit into this frame.

Let us start by proving that the algebraic curve defined by Thue’s equation
(3.1.2) is non-rational, as soon as the hypotheses appearing in the statement
of Thue’s Theorem are satisfied: this is the content of the following

Theorem 3.3.4. Given a homogeneous form F (X,Y ) ∈ C[X,Y ] of degree
degF = d ≥ 3, with no repeated linear factors, for every non-zero complex
number c ∈ C

∗ the equation

F (x(t), y(t)) = c

has no solutions (x(t), y(t)) ∈ C(t)2 in non-constant rational functions.

Proof. Homogenizing, we are reduced to showing that the homogeneous equa-
tion

F (X,Y ) = cZd

has no non-constant solutions in coprime polynomials x(t), y(t), z(t) ∈ C[t].
Factoring the homogeneous form as in (3.1.5) and dividing all factors by y(t)
we obtain

d∏
i=1

(
x(t)

y(t)
− αi

βi

)
= C

(
z(t)

y(t)

)d

,

where C = c
β1···βd

. Here we are assuming that all βi are non-zero, but the proof

would not be really different if (at most) one βi vanishes. As mentioned, the
points γi := αi/βi, i = 1, . . . , d, are pairwise distinct. Each time the rational
function f(t) := x(t)/y(t) takes one of these values, the function z(t)/y(t)
takes the value zero. Since deg(z(t)/y(t)) ≤ deg f , the cardinality of the set
f−1({γ1, . . . , γd}) cannot exceed deg f ; on the other hand, the pre-image of a
set of cardinality d has at least d deg(f) − R points, where R is the degree of
the ramification divisor of f ; the latter is equal to 2 deg(f) − 2 by Riemann-
Hurwitz formula or direct computation. Hence (d−3) deg f+2 ≤ 0 from which
it follows that d ≤ 2, finishing the proof. ��

It is also easy to see that the number of points at infinity is precisely d; so
the curves defined by Thue’s equations have two good reasons for the set of
their integral points to be finite.

We now consider the geometry of the algebraic curve defined by the hyper-
elliptic equation

y2 = f(x), (3.3.5)
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where f(X) ∈ C[X] is a polynomial with no repeated factors. The above equa-
tion defines a smooth affine curve in the plane A2; however, whenever deg f ≥ 4
its natural completion in P2 turns out to be singular at its only point at infinity;
its desingularization has two points at infinity. Let us denote by C̃ this smooth
projective model.

Theorem 3.3.6. Let f(X) ∈ C[X] be, as before, a non-constant polynomial
without repeated roots and let C̃ be a smooth complete model of the affine curve
defined by the above equation (3.3.5). If deg f ≥ 3, then C̃ is non-rational.

Proof. One could apply the well-known genus formula to prove that the genus
of C̃ is d

2 − 1 if d = deg f is even, d−1
2 if d is odd: hence it is > 0 whenever

d ≥ 3. Nevertheless, we prefer a proof which is closer in spirit to our proof of
the finiteness of integral solutions. We exibit a non-zero class in H1(C̃, {±1}),
recalling that this group is isomorphic to the quotient

{f ∈ C(C̃)∗ : ordp(f) ≡ 0 (mod 2) ∀p ∈ C̃}/{f2 : f ∈ C(C̃)∗}.

In fact, supposing for simplicity d ≡ 0 (mod 2), d ≥ 4, and writing f(X) =
a(X − α1) · · · (X − αd), for complex numbers α1, . . . , αd, a ∈ C, a �= 0, we
see at once that each rational function x − αi has a double zero at (αi, 0).
It has a simple pole at each of the two points at infinity; so the product f =
(x−α1)(x−α2) is a square locally everywhere. Let us show that it is not globally
a square in C(C̃); if it were so, we would have C(C̃) = C(x)(

√
f); however, this

extension is unramified over x = α3, while the extension C(C̃)/C(x) does ramify
over x = α3. ��

3.4 A Subspace Theorem approach to Siegel’s Theorem

The aim of this section is to provide a complete proof of Siegel’s Theorem on
curves assuming the Subspace Theorem (in the version given in Theorem 2.2.1).

Let us go back to the proof of Thue’s theorem. Recall that the equation
under examination was

F (x, y) = c,

where F (X,Y ) =
∏d

i=1(βiX − αiY ), d ≥ 3, the linear factors are pairwise
coprime and c �= 0. Letting C be the algebraic curve defined by the above
equation, the main point of the proof consisted in considering one of the rational
functions βix− αiy on C, viewed as a morphism C → A

1. We can extend it to
the complete curve C̃ (defined by the homogeneous equation F (X,Y ) = cZd)
by sending C̃ � (X : Y : Z) 
→ (βiX − αiY : Z) ∈ P1. Then we applied Roth’s
theorem, i.e. a result on Diophantine approximation on the line. The choice of
such a rational functions was dictated by the fact that it is regular on C (i.e. its
poles lie at infinity) and vanishes at sufficiently high degree on an accumulation
point for an infinite sequence of integral points on C (supposed to exist).
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This strategy does not work in general: for instance, if a curve C has only
one point at infinity, such a point will be an accumulation point for every
infinite sequence of integral points on C, and there exist no non-constant regular
function on C vanishing at infinity. Even if there are more points at infinity, it
may be that no function with the desired property exists. Let us see a concrete
example:

Example. Consider the algebraic curve of equation

C : x3 − 2y3 = x+ y + 1. (3.4.1)

Its genus is one, and moreover it has three points at infinity, so by Siegel’s
theorem it should have only finitely many integral points. Each sequence
(xn, yn), n ∈ N in C(Z) should converge to the point A := ( 3

√
2 : 1 :

0) ∈ P2 (considering the natural compactification C̃ of C given by the equa-
tion X3 − 2Y 3 = Z2(X + Y ) + Z3). The other two points at infinity are
B := (ζ 3

√
2 : 1 : 0) and B̄ = (ζ̄ 3

√
2 : 1 : 0), where ζ is a primitive third

root of unity. Every regular function f ∈ κ[C] is a polynomial function of
x = X/Z, y = Y/Z. If κ = Q, then, since A,B, B̄ are Galois-conjugated over
Q, such a function must have poles at each of the three points or be constant.
However, working over the cubic field κ = Q( 3

√
2) we can find a function having

a zero at A, for instance the function x+ 3
√
2y. Now from the equation (3.4.1)

we deduce that

(x− 3
√
2y) =

x+ y + 1

x2 + 3
√
4xy + y2

.

When the pair (x, y) tends to infinity (i.e. to A) on the curve C the asymp-
totic estimations |x + y + 1| � max(|x|, |y|) = |x| and |x2 + 3

√
4xy + y2| �

max(|x|, |y|) = x2 hold. Hence the left hand side tends to zero asymptotically
as x−1, not faster; dividing by y one obtains |x/y − 3

√
2| � H(x/y)−2 which is

not sufficient to deduce a contradiction via Roth’s theorem.

We can, however, try to consider more functions f1, . . . , fr ∈ Q( 3
√
2)[C],

giving rise to a morphism C → A
r, and then try to apply Diophantine approx-

imation results in the larger space A
r, like the Subspace Theorem.

Let us now give the details, following [15]. Precisely, we want to prove the
following

Theorem 3.4.2. Let C be a smooth affine curve with r ≥ 3 points at infinity,
defined over a number field κ. Then for every ring of S-integers OS ⊂ κ, the
set C(OS) is finite.

The full Siegel’s theorem then follows by applying Chevalley-Weil theorem.

Proof. Let Q1, . . . , Qr be the points (valuations) at infinity of the curve C. They
are defined over a finite extension of κ. For a large integer N put

VN = H0(C̃, N(Q1 + . . .+Qr)) = {f ∈ κ̄[C] : (f) ≥ −N(Q1 + . . .+Qr)}.
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Let f1, . . . , fd, where d = h0(N(Q1 + . . . + Qr)) = rN + O(1), be a basis of
VN . Since the divisor Q1 + . . .+Qr is defined over κ, we can choose f1, . . . , fd
defined over κ, i.e. with fi ∈ VN ∩ κ[C] for i = 1, . . . , d.

As in the previous sketch of the proof, if C(OS) is infinite, we can find a
sequence P1, P2, . . . of integral points in C(OS) such that for each place ν ∈ S
the sequence converges to a point Rν ∈ C̃(κν). We let S′ to be the set of places
for which the limit Rν lies at infinity.

After multiplying the fj by a suitable constant, we can suppose that fj(Pn) ∈
OS for all j, n.

For every ν ∈ S, consider the filtration V = Wν,1 ⊃ Wν,2 ⊃ . . . defined as

Wj = Wν,j = {f ∈ VN : ordRνf ≥ j − 1−N}.

We have dim(Wj/Wj+1) ≤ 1 for each j; in particular dimWj ≥ d− j + 1.

Now, for each ν ∈ S′, choose a basis of VN containing a basis of each subspace
Wν,j (for each j such that Wν,j �= {0}). These functions can be expressed
as linear combinations of the basis (f1, . . . , fd), i.e. as values of linear forms
Lν,j(f1, . . . , fd), where Lμ,j(X1, . . . , Xd) has its coefficients in κ̄. Clearly

ordRνLν,j(f1, . . . , fd) ≥ j −N + 1.

For ν ∈ S \ S′ we just put Lν,j(f1, . . . , fd) = fj .

For each ν ∈ S′ choose a local parameter tν ∈ κ(C) at Rν . The above
displayed inequality implies that

|Lν,j(f1(Pn), . . . , fd(Pn))|ν � |tν(Pn)|j−1+N
ν .

Now, observe that we dispose of d = rN + O(1) rational functions
Lν,j(f1, . . . , fd) , of which at most N have poles and approximately (r − 1)N
have zeros at Rν . Estimating the order of the product

∏
j Lν,j(f1, . . . , fd) we

have that this order is positive, and actually > (r− 2)N +O(1) for large N (a
stronger asymptotic estimates in fact holds, but we do not need it).

Put x = (f1(Pn), . . . , fd(Pn)) ∈ Od
S and let as before |x|ν be its sup-norm

in the ν-adic absolute value. Observing that for ν �∈ S′ the absolute values of
fj(Pn) are uniformly bounded, we can deduce that

∏
ν∈S

d∏
j=1

|Lν,j(x)|ν
|x|ν �

∏
ν∈S′

(|tν(Pn)|)(r−2)N
.

On the other hand, the height is easily estimated byH(x) � ∏
ν∈S′ (|tν(Pn)|)N .

Finally we obtain ∏
ν∈S

d∏
j=1

|Lν,j(x)|ν
|x|ν � H(x)2−r.

The Subspace Theorem then implies that infinitely many vectors x lie on a
hyperplane; this is impossible, since the functions f1, . . . , fd are linearly inde-
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pendent, so every non-trivial linear combination of f1, . . . , fd can have only
finitely many zeros.

Another approach to Siegel’s theorem on integral points involving non-
standard analysis has been proposed by Robinson and Roquette [46]. Their
proof implicitly uses Mordell-Weil theorem on the Jacobian of the curve, al-
though it does not mention explicitly Jacobians.

Finally, Gasbarri [33] gave a different proof of Siegel’s theorem, which uses
ideas coming from the proof of Thue-Siegel-Dyson-Gelfond theorem on Dio-
phantine approximation. Basically, he reproves this approximation theorem for
integral points lying on a curve, and deduces a finiteness statement whenever
there are three points at infinity. ��
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