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Introduction

This survey is intended to be a concrete introduction to Diophantine geometry;
it originates in a three-week course delivered at the Institute for Mathematical
Sciences in Chennai during the special year devoted to Number Theory.

The leading theme is represented by the distribution of integral points on
algebraic varieties. Roughly speaking, a Diophantine equation should have only
finitely many solutions in integers unless there is a geometric reason explaining
their abundance. By ‘geometric’, we mean some property satisfied by the alge-
braic variety formed by the complex solutions to the given equation (or system
of equations).

The celebrated Lang-Vojta’s conjecture formalizes this principle: it gives
geometrical condition on an algebraic variety under which the set of integral
points should be degenerate, i.e. contained in a finite union of proper closed
subvarieties. Most of this text is devoted to explaining in concrete instances
some features of this conjecture, and to proving some particular cases. A nowa-
days classical theorem of Faltings and Vojta solved the conjecture for varieties
which can be embedded into semi-abelian varieties. It contains e.g. the solu-
tion to Mordell’s conjecture on rational points on compact hyperbolic curves,
as well as Siegel’s finiteness theorem for integral points on open hyperbolic
curves. We have chosen to focus on a recent different method, which relies on
the Subspace Theorem in Diophantine approximation, and makes no use of the
theory of algebraic groups.

This work is not meant to supersede any previous standard textbook on
Diophantine geometry, such as the classical books by Lang [40], Serre [48], Vo-
jta [55] and the more recent ones by Hindry and Silverman [35] and Bombieri
and Gubler [8], to which the reader is referred. The main goal of this work is
to rapidly introduce the impatient reader to some concrete problems in Dio-
phantine geometry, especially those involving integral points, to present some
recent results not available in textbooks and to show some new viewpoints on
classical material. At some points, we preferred to replace proofs by a detailed
analysis of particular cases, referring to the papers quoted in the references for
complete proofs. In some instances, we decided to prove a general result only in

vii



viii Introduction

special cases, thinking that a simpler proof in a particular but significant case
can be more illuminating than the more complicated proof of the most general
statement.

Needless to say, we have omitted many (if not most) central topics in Dio-
phantine geometry, such as: local-to-global principles, arithmetic on elliptic
curves and abelian varieties, asymptotic estimates (as appearing e.g. in Manin’s
conjecture). Even the investigation of rational points on algebraic varieties has
been almost omitted, in favor of the case of integral points.

In the first chapter, we introduce the general problem of the distribution of
integral and rational points on algebraic varieties; Lang-Vojta’s conjecture, the
central objective of this work, is formulated and discussed. Also, we provide
some useful facts on the behaviour of integral points under morphisms.

In the second chapter, we present without proofs the main tools from Dio-
phantine approximation theory, and show some relations among them. In par-
ticular, we present different formulations of the Subspace Theorem, which will
be the main tool for proving the degeneracy results for integral points appearing
in the subsequent chapters.

The third chapter contains a complete proof of Siegel-Mahler theorem on
integral points on curves, as well as different approaches to a previous result of
Thue.

The fourth chapter is devoted to the celebrated Hilbert Irreducibility The-
orem; we prove a generalized version of Hilbert Irreducibility Theorem by ap-
pealing to Siegel’s theorem on curves.

The last chapter is devoted to the analysis of integral points on surfaces. It
is perhaps the most original part, containing also very recent results not yet
published in any textbook.
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Chapter 1

Integral points on algebraic varieties

1.1 Introducing the problem

Our main concern will be the investigation of the solutions in in-
tegers to systems of algebraic equations. Namely, given polynomials
f1(X1, . . . , XN ), . . . , fk(X1, . . . , XN ) ∈ Z[X1, . . . , XN ], we consider the solu-
tions (x1, . . . , xN ) ∈ Z

N to the equations⎧⎪⎨
⎪⎩
f1(x1, . . . , xN ) = 0

...
...

...
fk(x1, . . . , xN ) = 0

The complex solutions to the above system form an affine algebraic variety,
defined over the field Q of rational numbers. Hence the problem is rephrased
as studying the integral points on algebraic varieties.

One can consider the analogous question for rational points and
can work also on projective varieties. Given homogeneous polynomials
f1(X0, . . . , XN ), . . . , fk(X0, . . . , XN ) ∈ Z[X0, . . . , XN ], their common zero set
in PN is a projective algebraic variety. The solutions (x0, . . . , xN ) ∈ Q

N+1

to the system fi(x0, . . . , xN ) = 0 (i = 1, . . . , k) correspond to rational points
(x0 : . . . : xN ) ∈ PN (Q) on such variety.

The aim of this survey is to show relations between the geometry of (com-
plex) algebraic varieties and the distribution of integral or rational points on
it. The following examples show that, to achieve this goal, it is necessary to
allow extensions of finite degree of the field of definitions and/or of the ring of
integers.

(i) Consider the conic C ⊂ P2 of equation (in homogeneous coordinates) X2 +
Y 2 = 3Z2. It admits no rational points, and nevertheless it is isomorphic (as
an abstract complex curve) to the projective line P1, whose rational points
are Zariski-dense. If we work over the number field Q(i), or Q(

√
3), this

© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2016 1
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2 1 Integral points on algebraic varieties

paradox is solved: both C and P1 have a Zariski-dense set of rational points,
and the two curves are isomorphic over such number fields.
A simpler example is provided by the conic of equation X2 + Y 2 + Z2 = 0,
which has no real points at all. Again, it has infinitely many points over the
number field Q(i), or Q(

√−2).
(ii) Let C be the affine line of equation 2x + 2y = 1. Clearly, such an equation

admits no integral solution, so C contains no integral point, although it is
isomorphic (even over the rational number field) to the line of equation
x + y = 1, which contains infinitely many integral points. Of course, both
equations have infinitely many solutions over the ring Z[1/2].

(iii) Consider the hyperbola of equation xy = 1 in the affine plane. It contains
only two integral points, namely (1, 1), (−1,−1). Nevertheless, it is isomor-
phic, over the reals (so in particular over the complex numbers) to the hyper-
bola of equation x2 − 2y2 = 1, which admits infinitely many integral points
(Pell’s equation). Extending the ring of integers to Z[

√
2], the two curves

become isomorphic (and both have infinitely many points with coordinates
in such a ring).

Hence, it will be more convenient to complicate a little our setting, allowing
arbitrary number fields as fields of definition and searching for solutions in
arbitrary rings of S-integers (see below for the definition). Also, it is more
convenient to rephrase the notion of integral point on an algebraic variety to a
more intrinsic one, recovering in particular cases the naive definition of “point
with integral coordinates”.

Let κ be a number field. The absolute values of κ are either p-adic (we say
also finite, or ultrametric) or archimedean. A place is an equivalence class of
absolute values, where two absolute values are called equivalent if they induce
the same topology. The finite places correspond to non-zero prime ideals of the
ring of integers of κ; the archimedean ones correspond to embeddings κ ↪→ C

up to conjugation.
Let ν be a finite place; we denote by Oν the valuation ring at the place ν

and by mν its maximal ideal:

Oν = {x ∈ κ : |x|ν ≤ 1}, mν = {x ∈ κ : |x|ν < 1},

and let
κ(ν) := Oν/mν

be the corresponding residue field, which is a finite field. The elements of Oν

will be called ν-integers.
For a finite set S of places containing the archimedean ones, we put

OS = {x ∈ κ : |x|ν ≤ 1, ∀ν �∈ S}.

The elements of the ring OS will be called S-integers. Note that an S-integer
is an element of the number field which is ν-integral for each place ν outside
S. Whenever S consists precisely of the archimedean absolute values, the ring
of S-integers coincides with the ring Oκ of algebraic integers in κ.
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The group of S-units will play a prominent role; it is defined to be the group

O∗
S = {x ∈ κ : |x|ν = 1, ∀ν �∈ S}.

For every finite place ν, there is a well defined reduction map

PN (κ) → PN (κ(ν)) :

given a point P ∈ PN (κ) with projective coordinates (x0 : . . . : xN ) (where
xi ∈ κ for i = 0, . . . , N), we can choose a non-zero scalar λ such that λ ·xi ∈ Oν

for all i = 0, . . . , N and not all the xi belong to mν ; the existence of such a
λ is guaranteed by the fact that the local ring Oν is a discrete valuation ring,
so in particular a principal ideal domain. Let Pν ∈ PN (κ(ν)) be the point
Pν = (λx0 +mν : . . . : λxN +mν); it will be called the reduction modulo ν (or
modulo mν) of the rational point P .

Let now D ⊂ PN be a closed subvariety defined over κ. It is defined by
a homogeneous ideal ID ⊂ κ[X0, . . . , XN ]; consider its intersection ID,ν :=
ID ∩ Oν [X0, . . . , XN ] with the ring of polynomials with ν-integral coeffi-
cients. One can consider its image in the quotient ring Oν [X0, . . . , Xn]/mν =
κ(ν)[X0, . . . , XN ]; it is a homogeneous ideal of κ(ν)[X0, . . . , XN ], so it corre-
sponds to a closed subvariety Dν of the projective space PN over the finite field
κ(ν).

Then it makes sense to check whether a rational point P ∈ PN (κ) reduces
modulo ν to the closed subvariety D: we will mean that the point Pν belongs
to Dν .

Let X̃ ⊂ PN be a projective algebraic variety defined over the number field
κ and D ⊂ X̃ be an algebraic subset. We say that a rational point P ∈ X̃(κ) is
integral with respect to D if for no finite place ν of κ the point P reduces to D
modulo ν (this in particular implies that P does not lie on D). If S is a finite
set of places containing the archimedean ones, we will speak of (S−D) integral
points (sometimes omitting the reference to S or D) if the same condition holds
for every place ν outside S.

Putting X := X̃ \D, we speak of S-integral points of X, and denote its set
by X(OS).

Whenever X ⊂ A
N ⊂ PN is an affine variety, we let X̃ be its completion

under the canonical embedding A
N ↪→ PN and put D = X̃ \ X. Then the

(S −D) integral points of X̃ will be the points of X with coordinates in OS .

Examples

• Let X = A
1, X̃ = P1, D = {(1 : 0)}; the immersion A

1 ↪→ P1 is given by
x 
→ (x : 1). A point x = a/b ∈ A

1(Q), where a, b are coprime integers, b �= 0,
is integral with respect to D if for every prime p, (a/b : 1) = (a : b) �≡ (1 : 0)
(mod p), i.e. no prime number divides b, so b = ±1, which means that x ∈ Z.

• Take X = Gm = P1 \ {0,∞}, so now D = {0,∞}. Then a point (x : 1) ∈
P1(OS) is integral with respect to D if and only if x is a unit in OS . So
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Gm(OS) = O∗
S . If OS = Z or the ring of integers of an imaginary quadratic

field, then Gm(OS) is a finite set; otherwise, it is Zariski-dense.
• Take X̃ = P1 × P1, and for D the diagonal. A point P = ((a : b), (c : d)) ∈

X̃(Q), where a, b, c, d ∈ Z and gcd(a, b) = gcd(c, d) = 1, is D-integral if
and only if ad− bc = ±1. Then X(Z) is in natural bijection with the group
PSL2(Z) := SL2(Z)/{±1} and is Zariski-dense in X.

• Take X̃ as above, D = ((1 : 0), (1 : 0)); note that D is not a hypersurface.
Then a point P = ((a : b), (c : d)) as above is D-integral if and only if
gcd(b, d) = 1. In the present case too, integral points are Zariski-dense.

• Let D ⊂ PN be a hypersurface defined by the equation F (X0, . . . , XN ) = 0.
Here F (X0, . . . , XN ) ∈ OS [X0, . . . , XN ] is a polynomial with coprime S-
integral coefficients. Then, if we assume for simplicity that OS is a principal
ideal domain (which can always be achieved after a finite enlargement of S),
the (S −D) integral points on PN can be written in projective coordinates
(x0 : . . . : xN ) such that F (x0, . . . , xN ) ∈ O×

S .

Our definition depends on the embedding X ↪→ PN . Actually, given an
(abstract) variety X = X̃ \ D and a rational point P ∈ X(κ), it is always
possible to find an embedding X̃ ↪→ PN such that P becomes integral.

It is worthwhile, although unnecessary for the comprehension of the sequel,
to look at an alternative definition in terms of schemes. To an algebraic variety
X over a number field κ, we can associate an integral model over the ring of
integers Oκ, or more generally over a ring of S-integers OS : it is a flat scheme
X → Spec(OS), whose generic fiber is isomorphic to X. Then the S-integral
points of X correspond to sections Spec(OS) → X .

Alternatively, let X̃ be a complete variety, D ⊂ X̃ a closed subvariety, both
defined over the number field κ; let X̃ be an integral model of X̃, and let
D ⊂ X̃ be the closed subscheme corresponding to D. Then the integral points
on X := X̃ \D correspond to sections Spec(OS) → X̃ avoiding the subscheme
D. Of course, this integrality notion heavily depends on the chosen integral
model for X. In our previous definition, the dependence on the integral model
was hidden by the choice of a projective embedding: since the projective space
PN admits a canonical integral model over Spec(OS) for every ring (of S-
integers) OS , every embedded variety inherits an integral model.

1.2 The conjecture of Lang-Vojta

We recall some facts from (complex) algebraic geometry. Given a smooth com-
plete algebraic variety X̃ and a divisor D on X̃, we associate to it the sequence
h0(X̃, nD) of the dimensions of the spaces of regular sections of the associated
sheaf:

h0(X̃, nD) = dimH0(X̃,O(nD)).

Recall that the vector space H0(X̃,O(D)) can be viewed as the space of rational
functions f on X̃ whose divisor (f) satisfies (f) + D ≥ 0; if D is effective,
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this means that the poles of f are contained in the hypersurface D and their
multiplicity is bounded by the corresponding multiplicity in D. We say that a
divisor is big if it satisfies

h0(X̃, nD) � ndim X̃

for n → ∞. For instance, whenever D is an ample divisor, h0(X̃, nD) =
(Dd/d!)nd + O(nd−1), where d = dim X̃ and the symbol Dd denotes the d-
fold intersection product. So, ample divisors are big.

For an effective divisor D, the following are equivalent (see [23], chapter 1):

(i) D is big;
(ii) there exists an integer n > 0 such that nD is linearly equivalent to the sum

of an ample and an effective divisor.

In the special case of curves, big divisors are simply those with strictly
positive degree, which are precisely the ample ones.

Let us recall that the canonical sheaf on a smooth projective variety X̃ of
dimension d is the sheaf associated to the canonical line bundle, i.e. the highest
external power ΛdΩX̃ , where ΩX̃ denotes the cotangent bundle. Given any
non-zero rational section of the canonical line bundle, its divisor is a canonical
divisor. In other words, a divisor K is a canonical divisor if its associated sheaf
O(K) is isomorphic to the canonical sheaf. Hence the canonical divisors form
a unique class under the linear equivalence relation.

We can now formulate Vojta’s conjecture, which is a generalization of previ-
ous conjectures by Bombieri and Lang. Our version below is a particular case
of the Main Conjecture in [55]:

Vojta’s Conjecture. Let X̃ be a smooth projective algebraic variety defined
over a number field κ; let K be a canonical divisor on X̃ and let D be a reduced
effective divisor, with normal crossing singularities (if any). Suppose that K+D
is big. Then, for every ring of S-integers OS ⊂ κ, the S-integral points on
X := X̃ \D are not Zariski-dense.

We shall also say that a variety X = X̃ \D, where X̃ is complete and smooth
and D is a normal crossing singularity divisor, is of log-general type whenever
K +D is ample, K being as above a canonical divisor. It turns out that such
a property does not depend on the smooth compactification X̃ of X, provided
that the complement D = X̃ \X has only normal crossing singularities.

The particular case where D is empty (i.e. the zero divisor) concerns rational
points; in that case Vojta’s conjecture asserts that rational points on varieties
of general type are not Zariski-dense. In the case of curves, this assertion is
Mordell’s conjecture, proved by Faltings [29]. In the case of complete surfaces,
the conjecture was formulated by Bombieri in 1980, and is still an open prob-
lem. A function field analogue of Bombieri’s conjecture has been settled by
Noguchi [41].
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Let us analyze in detail the case of curves. Let C̃ be a complete curve, and
let D1, . . . , Dr be distinct points of C̃, where the integer r might be zero. Put
D = D1+ . . .+Dr, and view D both as a divisor of degree r and a finite set of
cardinality r. The complement C := C̃ \D is then an affine curve, unless r = 0.
Consider the set C(OS), which coincides with C̃(κ) if r = 0. Denoting by g the
genus of C̃, every canonical divisor turns out to have degree 2g − 2, so K +D
will be big in all cases but

• C = C̃ � P1

• C � A
1

• C � Gm

• C = C̃ is an elliptic curve.

In all such cases, C(OS) is infinite, provided we allow a finite extension of the
number field κ and possibly of the set of places S. In contrast, K+D is ample,
so big, in the following cases:

• C is rational with at least three points at infinity;
• C has genus one and is affine;
• C has genus at least two.

In the first two cases, the finiteness of S-integral points is the famous theorem
of Siegel and Mahler. In the last case, as mentioned, the finiteness of rational
points was conjectured by Mordell and proved by Faltings. Dimension one,
however, is the only dimension in which the conjecture is settled; also, our
discussion proves that the formulation is sharp, i.e. the condition on the bigness
of K +D cannot be weakened.

Let us analyze more in detail the case where C is rational with three points
at infinity, so we can suppose C = P1 \ {0, 1,∞}. Its ring of regular functions
can be written as

OS [C] = OS [P1 \ {0, 1,∞}] = OS

[
x,

1

x
,

1

1− x

]
.

So the integral points correspond to specializations of the variable x to an S-
integer u such that its inverse is also S-integer and (1−u)−1 is still an S-integer.
In other words, u is a unit in O∗

S and v := 1− u is a unit. We then obtain the
so called S-unit equation in two variables

u+ v = 1.

A theorem of Siegel and Mahler asserts that such an equation has only finitely
many solutions (u, v) ∈ (O∗

S)
2. A natural generalization to several variables is

provided by Theorem 1.2.4 (see also Theorem 1.2.2).

In higher dimension, the conjecture of Lang-Vojta is largely open. We dispose
however of a very general theorem proved by Faltings and Vojta. Before stating
it, recall that a semi-abelian variety is a connected commutative algebraic group
containing no unipotent subgroups. It can always be realized as an extension
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of an abelian variety (i.e. an algebraic group which is an irreducible projective
variety) by a linear torus (i.e. a power of Gm); in other words, it sits in the
middle of an exact sequence

0 → G
n
m → G → A → 0,

where A is an abelian variety.

Theorem 1.2.1 (Faltings-Vojta’s Theorem). Let G be a semi-abelian variety,
embedded in a projective space, Y ⊂ G a closed algebraic subvariety, all defined
over a number field κ. Then the Zariski-closure of the set Y (OS) of integral
points of Y is a finite union of translates of subgroups of G lying in Y .

In the case C̃ is a complete curve of genus ≥ 2, one can view C̃ embedded
into its Jacobian G, which is an abelian variety. Since the only translates of
subgroups contained in C̃ are points, the above Theorem 1.2.1 implies finiteness
of rational points on C̃, which constitutes Faltings’ theorem.

On the other extreme, consider the case whereG is a linear group, soG = G
n
m

is a torus. We then have

Theorem 1.2.2. Let Y ⊂ G
n
m be an algebraic subvariety of a linear torus Gn

m.
The Zariski-closure of the set of points of Y whose coordinates are S-units is
the union of finitely many translates of subtori contained in Y .

Let us see some special cases of Vojta’s conjecture in dimension two. We
consider those affine algebraic surfaces admitting a compactification which is
isomorphic to the projective plane P2. We can then start from the complete
surface X̃ = P2 and remove some curves (i.e. reduced effective divisors) from
it in order to satisfy the condition in Vojta’s conjecture.

Since the canonical divisor of P2 is in the class of −3·(line), the condition on
a curve D on P2, for the sum D+K being big, becomes: degD ≥ 4. So, Vojta’s
conjecture asserts the degeneration of integral points on the complement of a
curve of degree at least 4, having only normal crossing singularities.

Suppose that F (X,Y, Z) = 0 is an equation for the curve D, where
F (X,Y, Z) ∈ OS [X,Y, Z] is a homogeneous polynomial without multiple fac-
tors. After enlarging if necessary S so to obtain a P.I.D. we can ensure that the
coefficients of F generate the unit ideal; also, every point (x : y : z) ∈ P2(κ)
can be written with coprime coordinates in OS . Then the integrality condition
on the point (x : y : z), written with coprime OS-integral coordinates, becomes

F (x, y, z) ∈ O∗
S .

Let us consider the very special case of a configuration of four lines in general
position on the plane. We can reduce (again after possibly enlarging the field
of definition) to the lines X = 0, Y = 0, Z = 0, X + Y − Z = 0. The integral
points on the complement are parametrized by triples (x, y, z) ∈ O3

S of coprime
S-units such that xyz(x + y − z) ∈ O∗

S ; such triples must be taken up to
multiplicative constants. Since the elements x, y, z, (x+y−z) are all S-integers
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and their product is a unit, each factor must be a unit. Then, dividing by the
unit z4 and putting u := x/z, v := y/z, the integrality condition is expressed
by u, v being units and the sum u+v−1 being also a unit. Putting w := 1−u−v
we obtain the S-unit equation

u+ v + w = 1. (1.2.3)

Recall that Vojta’s conjecture would assert the degeneracy of integral points on
the complement of the four given lines in the plane; in term of the above equa-
tion, this means that the triples (u, v, w) ∈ (O∗

S)
3 satisfying equation (1.2.3)

are not Zariski-dense. This is known, and actually a more precise result has
been proved:

Theorem 1.2.4 (S-unit equation Theorem). Let Γ ⊂ C
∗ be a finitely generated

multiplicative group. Let n ≥ 2 be an integer. For all but finitely many solutions
(x1, . . . , xn) ∈ Γn to the equation

x1 + . . .+ xn = 1 (1.2.5)

there exists a non-empty subset I ⊂ {1, . . . , n} such that
∑

i∈I xi = 0.

In the situation of our equation u+v+w = 1, we obtain that all but finitely
many solutions belong to one of the families (t,−t, 1), (1, t,−t), (t, 1,−t) for
some unit t ∈ O∗

S . Geometrically, this means that all but finitely many integral
points on the complement of the said configuration of lines belong to one of
the three lines of equation X + Y = 0, Y − Z = 0 or X − Z = 0. These lines
are characterized by the fact that they cross the configuration of the previous
four lines in just two points.

In the general situation of n variables, let us note that the above equation
(1.2.5) defines a hypersurface of the torus G

n
m, which is not a subgroup (in

the multiplicative sense), nor a translate of a subgroup. Then Theorem 1.2.2
applies; the conclusion of Theorem 1.2.4 is a bit more precise, because it gives a
complete description of the possible infinite families of solutions, corresponding
to positive dimension subtori contained in Y .

The second natural case to consider is the case of the union of a conic and
two lines, in general position. In this case, we do not have just one choice,
up to projective automorphisms, but a 1-dimensional moduli space of such
configurations.

Up to change of coordinates, we can suppose that D (i.e. the union of a
conic and two lines in general position) is given by the equation

ZX(Y 2 −X2 − aXZ − bZ2) = 0,

for scalars a, b ∈ κ. So we are looking for points (X : Y : Z) ∈ P2 such that
ZX(Y 2 − X2 − aXZ − bZ2) ∈ O∗

S . Again, dividing out by Z4 and putting
u := X/Z, y := Y/Z we obtain that the integral points correspond to pairs
(u, y) ∈ O∗

S ×OS such that y2 − u2 − au− b =: v is a unit. We then arrive at
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the equation
y2 = u2 + au+ b+ v.

Vojta’s conjecture would imply the degeneracy of solutions. Consider the very
special case where a = 0, b = 1 and OS ⊃ Z[

√
2, 1

6 ]. The numbers of the form

±2m/2 ·3n, with m,n ∈ Z, are units. In particular, we could have u = 2m/2, v =
3n for positive m,n. Then Vojta’s conjecture implies the following: for every
number field κ, all but finitely many solutions (y,m, n) ∈ κ × N × N to the
simple-looking Diophantine equation

y2 = 2m + 3n + 1

satisfy another non-trivial algebraic equation of the form f(y, 2m, 3n) = 0,
independent of the above one. Here f(Y, U, V ) ∈ κ[Y, U, V ] is a non-zero poly-
nomial, not multiple of Y 2 − U2 − V − 1. But now, it is easy to see that no
infinite degenerate family of solutions can exist for the above equation, so Vo-
jta’s conjecture would imply unconditional finiteness. This is however an open
problem; a solution in the particular case κ = Q has been recently provided by
Leitner using ad hoc congruence methods [36].

So, even the simple case of a curve of degree four and three components
remains open. Note, however, that its analogues over function fields [20], and
in Nevanlinna theory [44] have now been settled.

In the case the curve D has fewer components, the problem becomes even
more difficult. No case is known when D is an irreducible curve with normal
crossing singularities, although some cases are solved when D is highly singular,
after works of Faltings [31] and Zannier [61] (see also [37]).

Let us analyze more in detail the problems arising from the case D is smooth
and irreducible. Recall that if such a curve D is defined by the homogenous
equation F (X,Y, Z) = 0 of degree at least 4, the conclusion of Vojta’s conjec-
ture would be the degeneracy of points (x : y : z) ∈ P2 with F (x, y, z) ∈ O∗

S ,
where the coordinates x, y, z must be chosen in OS . For instance Vojta’s con-
jecture implies that for every n ≥ 4 and every ring of S-integers OS , the triples
of S-integers (x, y, z) ∈ O3

S such that

xn + yn + zn ∈ O∗
S ,

should not be Zariski-dense. This is still an open problem.

Let us see another explicit example about the complement of a smooth
quartic in the plane. Consider the quartic curve

D : X4 − 4X2Y 2 + 4Y 4 +X3Z + Z4 = 0.

Letting F (X,Y, Z) = X4−4X2Y 2+4Y 4+X3Z+Z4 = (X2−2Y 2)2+X3Z+Z4,
the S-integral points on P2 \D correspond to the solutions to F (x, y, z) ∈ O∗

S

where (x, y, z) ∈ O3
S . In particular, whenever F (x, y, z) = 1, we produce such

an integral point, namely (x : y : z) ∈ P2(κ). We see at once an infinite family,
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obtained by taking z = 0 and reducing to the Pell’s equation

x2 − 2y2 = ±1,

which admits infinitely many solutions already in the ring Z of rational integers.
We can explain the geometric reason behind the presence of such an infinite
family of solutions: the line of equation Z = 0 is a bi-tangent line for the curve
D, so its intersection with D consists of just two points; removing these two
points, we obtain an affine curve isomorphic to Gm, hence having infinitely
many S-integral points on a suitable ring of S-integers. In our case, we obtain
infinitely many points already over the integers.

It is well-known that for every smooth quartic D there exist twenty-eight
such bi-tangents (up to enlarging the field of definition) and twenty-four more
lines which are tangent at an inflexion point; these lines too intersect the curve
just at two points; so in general we will have at least fifty-two infinite families
of integral solutions to the original equation F (x, y, z) ∈ O∗

S .

We have seen that the integrality condition with respect to a curve in the
projective plane can be expressed by a relation of the form F (x, y, z) ∈ O∗

S ,
for a homogeneous polynomial F (X,Y, Z) ∈ OS [X,Y, Z] of a certain degree d.
Now, observe that the group O∗

S is finitely generated, by Dirichlet’s theorem, so
there exist only finitely many classes modulo perfect d-th powers. This implies
that all units become perfect d-th powers in a fixed finite extension of the
number field κ. Now, if for some integers x, y, z ∈ OS , we have that F (x, y, z)
is a unit and a perfect d-th power, we write F (x, y, z) = ud for some unit
u ∈ O∗

S ; dividing x, y, z by u we obtain a solution to the equation F (x, y, z) = 1.
Now, suppose that the “equation” F (x, y, z) ∈ O∗

S has a Zariski-dense set of
solutions (x, y, z) ∈ O3

S . Then, by our discussion the equation F (x, y, z) = 1 will
also have a Zariski-dense set of solutions, after enlarging the number field κ if
necessary.

So it is reasonable to compare the affine surface S ⊂ A
3 of equation

S : F (x, y, z) = 1

with the complement P2 \D, where D is the smooth curve of equation

D : F (X,Y, Z) = 0.

It turns out that these surfaces are strongly related. First, the surface S is
of log general type if and only if P2 \ D is so, which occurs if and only if
d = degF ≥ 4. For instance, the degeneracy of integral solutions to the equation
xn+ yn+ zn = 1 for n ≥ 4 would follow both from applying Vojta’s conjecture
to the surface given by the same equation, and by applying the same Vojta’s
conjecture to the open set of P2 defined by Xn + Y n + Zn �= 0. A second link
between the two surfaces is provided by the fact that the map

S � (x, y, z) 
→ (x : y : z) ∈ P2 \D
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is an étale cover of degree d = degF . Actually, it is a cyclic cover, since multi-
plication of (x, y, z) by d-th roots of unity operates on S without changing the
projective class of the point (x : y : z). We shall see in the next paragraph that
the Chevalley-Weil theorem provides the geometric formulation and natural
generalization for this kind of phenomena.

Another remark about integral points on the complement of a curve D in
the plane: we have seen that the problem simplifies if D is sufficiently reducible.
For instance, the problem is solved whenever D has at least four components.
This fact can be explained geometrically, in view specially of the above general
theorem of Faltings-Vojta (Theorem 1.2.1).

Let F1, . . . , Fr ∈ OS [X,Y, Z] be pairwise non proportional irreducible forms
and let D be the curve of equation

∏r
i=1 Fi(X,Y, Z) = 0. It has r irreducible

components. Letting di = degFi and d be a common multiple of the di, consider
the map (P2 \D) → G

r−1
m sending

(P2 \D) � (x : y : z) 
→
(
F

d/d1

1 (x, y, z)

F
d/dr
r (x, y, z)

, . . . ,
F

d/dr−1

r−1 (x, y, z)

F
d/dr
r (x, y, z)

)
∈ G

r−1
m .

If two of the functions F
d/di

i /F
d/dr
r are algebraically independent, the image

of P2 \ D is a surface Y ⊂ G
r−1
m ; the integral points of P2 \ D are sent to

points with S-unit coordinates, so points of Y ∩ G
r−1
m (OS). If r ≥ 4, Y is a

proper subvariety of Gr−1
m . Hence, if Y is not the translate of a subtorus, which

happens only when the homogeneous forms Fi satisfy multiplicative dependence
relations, by Theorem 1.2.2 the integral points on Y are degenerate. But then
the S-integral points on P2 \D will also be degenerate.

However, when r ≤ 3, and the irreducible components of D are smooth
curves intersecting properly, it can be shown that there exists no dominant
map (P2 \D) → Y to any proper subvariety Y of a torus, not itself a torus; so
Theorem 1.2.2 cannot apply.

Although our main concern will be integral points on affine varieties, let us
pursue some speculations also about rational points. As we said, the case of
curves is settled by Faltings’ theorem, while the case of surfaces remains largely
open. For smooth hypersurfaces of P3, the condition of being of general type
amounts to having degree at least five. Those of lower degree are either rational
(over C) whenever their degree is 1, 2 or 3, or K3 surfaces, if their degree is 4.
Clearly, rational surfaces have a Zariski-dense set of rational points, provided
we enlarge their field of definition so to become rational over the enlarged field;
many cases are known of K3 surfaces with a Zariski dense set of rational points.
Bombieri’s conjecture, i.e. Vojta’s conjecture for rational points on complete
surfaces, asserts that these are the only cases of smooth surfaces in P3 admitting
a Zariski-dense set of rational points.

One of the most popularly known anecdotes about Ramanujan concerns his
remark that the number 1729 is the smallest positive integer which can be
written in two different ways as a sum of two cubes:
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1729 = 13 + 123 = 93 + 103.

There are infinitely many such numbers, nowadays called “taxicab numbers”:
they arise from the solutions in positive integers to the homogeneous Diophan-
tine equation

X3 + Y 3 = Z3 +W 3

which moreover satisfy (X,Y ) �= (Z,W ) and (X,Y ) �= (W,Z). Clearly, start-
ing from one solution, we can produce infinitely many others by multiplying
X,Y, Z,W by a same number; so we will be interested in projective solutions
(X : Y : Z : W ) ∈ P3(Q). Now, the projective surface defined by the above
equation is rational over Q, and it is easy to construct a Zariski-dense set of
rational points; also, it is possible to find a Zariski-dense set of such points with
positive coordinates. The fact that such a set is Zariski dense implies in partic-
ular that it is not contained in the two lines of equation X − Z = 0 = Y −W
and X −W = 0 = Y − Z, so they really give rise to taxicab numbers.

One can consider the analogue problem for n = 4. The K3 surface defined
in P3 by the equation X4 + Y 4 = Z4 + W 4 is also known to have a Zariski-
dense set of rational points 1; so in particular, infinitely many rational points
lie outside the two mentioned “uninteresting” lines. However, for every n ≥ 5,
according to the Bombieri-Vojta conjecture the set of rational points should
be degenerate, i.e. the rational points should accumulate on a finite union of
curves of geometric genus ≤ 1, apart finitely many exceptions. Moreover, for
large values of n, it can be proved theat the only curves of genus ≤ 1 on the
corresponding surface are the trivial lines; therefore, there should exist only
finitely many ‘taxicab numbers’ of any such exponent n, up to multiplication
by n-th powers.

1.3 Behaviour of integral points under morphisms

Let X1, X2 be quasi projective algebraic varieties defined over a number field
κ, and let π : X1 → X2 be a morphism defined over κ. We can find projective
completions X̃1, X̃2, and divisors Di on X̃i such that Xi = X̃i \ Di and the
morphism π can be continued to a morphism, still denoted by π : X̃1 → X̃2

such that π−1(D2) = D1. We can cover X1 by a finite family of affine open
sets Uα ⊂ X1 which are isomorphic to closed subsets of an affine space A

n.
Let us choose local coordinates such that each S-integral point of X1 will have

1 this quartic surface contains eight lines defined over Q. Starting e.g. from the line r of
equation X = Z, Y = W , we obtain an elliptic fibration as follows: consider the pencil of

planes containing r; each plane intersects the surface on the line r and a cubic curve, which is
smooth for all but finitely many such planes (precisely, there are nine exceptions); each such
plane intersects the line X = −Z, Y = −W at a single point P and the line X = W,Y = −Z
at a point Q. These points P and Q, depending on the plane, i.e. on a parameter lying on

P1, provide two sections of this elliptic fibration. Taking Q to be the origin, one can verify
that P is not identically torsion with respect to Q; then one obtains infinitely many rational
points on all but finitely many fibers. The details are given in [54].
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S-integral coordinates. Locally on each Uα the morphism π can be written in
polynomial coordinates

π(t1, . . . , tn) = (p1,α(t1, . . . , tn), . . . , pk,α(t1, . . . , tn)),

where for every (t1, . . . , tn) ∈ Uα, the point π(t1, . . . , tn) lies in X2. The poly-
nomials pj(T1, . . . , Tn) have their coefficients in the number field κ. Due to
the fact that the covering {Uα} of X1 is finite, we have only finitely many
polynomials to consider, so after enlarging S if necessary, they will all have
S-integral coefficients. Then the image of the set of S-integral points on X1

will be formed by S-integral points on X2. This in particular implies that if π
is dominant and the S-integral points on X1 are Zariski-dense, the set X2(OS)
will also be Zariski-dense, possibly after enlargement of the set S. Or, viewed in
the other direction, if X2(OS) is never Zariski-dense, for any ring of S-integers
OS , then X1(OS) too will be always degenerate.

This is consistent with Vojta’s conjecture; actually if a smooth variety X2

is of log-general type and is dominated by a variety X1 via a generically finite
morphism, then the variety X1 will also be of log-general type.

The above discussion shows that in general, given a generically finite mor-
phism X1 → X2, proving degeneracy of integral points on the dominating
variety X1 will be easier than proving it for X2; actually it can happen that
X2 does not satisfy the hypotheses, nor the conclusion, of Vojta’s conjecture,
while X1 does: for instance, every variety dominates a projective space of the
same dimension, where the rational points are Zariski-dense.

There exists, however, a case when the Zariski-density of integral points
on one variety, over ‘sufficiently large’ rings of S-integers, is equivalent to the
Zariski-density of integral points on the other one. It is the case of unramified
covers, and is the content of the so-called Chevalley-Weil theorem below, which
we formulate in two different ways, restricting for simplicity to the case of
curves:

Theorem 1.3.1 (Chevalley-Weil, first version). Let κ be a number field, C1, C2
be smooth (affine or projective) absolutely irreducible curves defined over κ,
π : C1 → C2 an unramified cover. For every ring of S-integers OS ⊂ κ, there
exists a number field κ′ containing κ, a finite set of places S′ of κ′ containing
all the places above those of S, such that every S-integral point p ∈ C2(OS)
admits at least one pre-image p′ ∈ π−1(p) in the set C1(OS′).

Here is the alternative formulation:

Theorem 1.3.2 (Chevalley-Weil, second version). Let κ be a number field,
S a finite set of places of κ containing the archimedean ones. Let C1, C2 be
two smooth irreducible curves, defined over κ, π : C1 → C2 be an unramified
morphism. There exists a finite set of places S′ of κ containing S, and finitely

many irreducible curves C(1)
1 , . . . , C(n)

1 , and maps πi : C(i)
1 → C2, all defined over

κ, such that
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(i) for each 1 < i < j ≤ n there exists an isomorphism ψi,j : C(i)
1 → C(j)

1 , defined
over κ̄, with πj ◦ ψi,j = πi.

(ii) for each S-integral point p ∈ C2(OS), there exists an index i ∈ {1, . . . , n}
such that π−1

i (p) contains an S′-integral point.

We recall that whenever C is complete, S-integral points are just rational
points. So, in that case, Theorems 1.3.1 and 1.3.2 apply to all κ-rational points.

Let us first see concrete instances of Chevalley-Weil theorem, admitting easy
proofs.

Example 1. Consider the affine curves C1 = C2 = Gm and the unramified
morphism x 
→ xn, for some integer n ≥ 1. We have seen that the integral points
on Gm are the units. So C2(OS) = Gm(OS) = O∗

S . Now, Dirichlet’s finiteness
generation theorem asserts that the group of S-units is finitely generated, being
the direct product of a finite group and a free abelian group of rank equal to
�(S)−1. Then the quotient of O∗

S modulo its subgroup of n-th powers is finite.
Adding to κ the n-th roots of the elements of a complete set of representatives
for the quotient defines a finite extension of κ, so a number field κ′. Then each
integral point in C2(OS) will have its pre-images in C1(κ′) (and the integrality
is preserved).

Example 2. Consider the elliptic curve C2 ⊂ P2 defined by the homogeneous
equation

ZY 2 = X(X − Z)(X + 6Z)

It has positive rank over Q, since its point (2 : 4 : 1) has infinite order, af-
ter taking the point (0 : 1 : 0) as the origin for the group law. Using affine
coordinates x := X/Z, y := Y/Z, the equation takes the form

y2 = x(x− 1)(x+ 6).

Suppose now to have a rational point (x, y) ∈ Q
2 satisfying the above equation,

with y �= 0; writing x = a/b for coprime integers a, b, with b > 0, we obtain
that the rational number

a

b

(a
b
− 1

)(a
b
+ 6

)
=

a(a− b)(a+ 6b)

b3

must be a square in Q. Clearly, the above fraction is reduced, so both the
denominator b3 and the numerator a(a − b)(a + 6b) must be squares. Now,
since a, b are coprime, a, a − b are also coprime; as to a and a + 6b, we see
immediately that they are either coprime, or their greatest common divisor is
2, 3 or 6. So, every prime dividing a, with the possible exception of the primes
2 and 3, appears in the factorization of a with even multiplicity. Then a is a
square in the number field Q(i,

√
2,
√
3), and so is x = a/b (recall that b is a

square already in Q, since b3 is a square).
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Let now C1 be the smooth projective model of the affine algebraic curve
defined in A

3 by the system

C1 :

{
y2 = x (x− 1) (x+ 6)
u2 = x

which is naturally endowed with a projection π : C1 → C2, corresponding to
the field extension Q(C2)(

√
x)/Q(C2).

The above argument shows that each rational point P ∈ C2(Q) has a pre-
image in C1(Q̄) which is defined over the number field Q(i,

√
2,
√
3), so the

conclusion of Theorem 1.3.1 is verified.

Let us now see how to construct the curves C(i)
1 and the map πi : C(i)

1 → C2 as
in Theorem 1.3.2. The three rational numbers −1, 2, 3 generate a multiplicative
group of order 8 modulo rational squares; let {ε1, . . . , ε8} be representative for

the quotient group. Define, for i = 1, . . . , 8, the curve C(i)
1 to be the smooth

projective model of the affine curve given by the equation

C(i)
1 :

{
y2 = x(x− 1)(x+ 6)
u2 = εix

.

We call it a twisted form of the curve C1 defined above; it turns out to be
isomorphic to C1 over the field of algebraic numbers, but not over Q which is

a field of definition for each C(i)
1 and for C1. We also define πi : C(i)

1 → C2 as
before, by sending (u, x, y) 
→ (x, y).

What we proved about the arithmetic of the rational points on C2 can be
rephrased by saying that for each rational point P ∈ C2 there exists an index
i ∈ {1, . . . , 8} such that π−1

i (P ) is formed by rational points of C1 (now it is
meant rational over Q). This is the conclusion of Theorem 1.3.2.

To finish the discussion of this example, let us see that the hypothesis of the
Chevalley-Weil theorem is satisfied, namely the covering map π : C1 → C2 be-
tween the two complex curves in question is unramified. Since the field extension
C(C1)/π∗(C(C2)) = C(C2)(

√
x)/C(C2) is obtained by adding the square-root of

the rational function x, the possible ramification can arise only over the zeros
and poles of x. Proving that in fact there is no ramification amounts to showing
that the rational function x ∈ C(C2) is locally a square everywhere, i.e. all its
poles and zeros have even multiplicity. Now, the only pole of x is the point at
infinity (0 : 1 : 0), and has multiplicity two, while its only zero is the point
(0 : 0 : 1), which is a double-zero.

We now provide an elementary proof of the (first version of) Chevalley-Weil’s
theorem in the particular case of cyclic covers. In the sequel, we will just need
this particular case; actually, we could (but we will not) restrict our attention
to the degree two-covers.

We start with some preliminaries on cyclic covers of algebraic curves, which
have an independent interest.

Over the complex numbers, we have the following result:
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Theorem 1.3.3. Given a smooth complex projective algebraic curve C̃ over the
field C of complex numbers, the isomorphism classes of degree two unramified
covers Y → C̃ are in natural bijection with the following sets:

(i) H1(C̃,Z/2Z);
(ii) the points of 2-torsion in the Jacobian of C̃;
(iii) the quotient of the multiplicative group {f ∈ C(C̃)∗ : ordp(f) ≡ 0

(mod 2) ∀p ∈ C̃} by the group of squares in C(C̃)∗.
In particular, there are exactly 2g isomorphism classes of such covers, where g
is the genus of the curve.

Let us rapidly describe such a correspondence. Given a cohomology class in
the Čech cohomology group H1(C̃,Z/2Z), one can form the topological cover
Y → C̃(C) associated to it; it is trivial (i.e. disconnected) if and only if the co-
homology class is zero. Now Y can be endowed with a unique complex structure
such that the map Y → C̃ becomes holomorphic. Being a compact Riemann
surface, it is also algebraic and so we obtain a cover in the category of complex
algebraic curves.

Starting from a rational function f ∈ C(C̃)∗ satisfying the condition

ordp(f) ≡ 0 (mod 2) ∀p ∈ C̃,

which amounts to saying that f is a square locally everywhere, we can construct
the extension C(C̃)(√f)/C(C̃), which is actually a field if and only if f is not
(globally) a square. In that case, it corresponds to an irreducible algebraic curve
Y endowed with a degree-two morphism Y → C̃ (while if f is a square in C(C̃),
then C(C̃)(√f) � C(C̃)× C(C̃)).

Finally, a point of 2-torsion in the Jacobian J(C̃) corresponds to a divisor
D on C̃ of degree 0 such that 2D = (f) is principal. Then f is a square locally
everywhere, but is not a square globally unless D itself is principal.

We can generalize the above discussion as follows. Let us fix a prime number
l. Let C be a smooth irreducible algebraic curve, defined over a field κ, of
characteristic �= l, which contains all the l-th roots of unity. Then every degree
l cyclic cover of C will be of the form π : C′ → C, where the function field
κ(C′) can be obtained as κ(C)( n

√
f), for a suitable rational function f ∈ k(C),

not a perfect l-th power in k(C). Such a cover is unramified if and only if
all the zeros and poles of f appear with multiplicity divisible by l. Hence
the correspondence between the cyclic unramified covers of degree l and the
quotient group {f ∈ κ(C̃)∗ : ordp(f) ≡ 0 (mod l) ∀p ∈ C̃} still holds; however,
two covers can be “geometrically” isomorphic without being isomorphic over
κ. For instance, multiplying f by a non-zero constant which is not a perfect
l-th power in κ changes the κ-isomorphism class of the associated cover.

Let us now consider affine curves. Eliminating points from a complete curve
“increases” the fundamental group, so we expect the existence of more unrami-
fied covers; precisely, given a complete curve C̃, a finite set D ⊂ C̃, all the covers
of C̃ which ramify only over D give rise to unramified covers of C̃ \D.
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The natural analogue of Theorem 1.3.3 holds in the affine case too:

Theorem 1.3.4. Let C = C̃ \D be an affine algebraic curve, where C̃ is smooth
and complete and D ⊂ C̃ a finite set. There is a natural bijection between the
following sets

(i) unramified cyclic covers Y → C;
(ii) H1(C,Z/2Z);
(iii) the quotient of the multiplicative group {f ∈ C(C̃)∗ : ordp(f) ≡ 0

(mod 2) ∀p ∈ C} by the group of squares in C(C̃)∗.
In particular, there exist exactly 2g+s−1 such covers, up to isomorphisms, where
g is the genus of C̃ and s is the cardinality of D.

One could even extend the correspondence by mentioning the 2-torsion
points in the generalized Jacobian of the affine curve C, which turns out to
be an extension of the ordinary Jacobian J(C̃) by a linear torus of dimension
s− 1.

We now proceed towards the proof of the Chevalley-Weil theorem. The first
lemma is in a sense the arithmetic analogue of the finiteness of the isomorphism
classes of cyclic unramified covers of given degree of a complex algebraic curve.

Lemma 1.3.5. Let l be a prime number. Let κ be a number field containing
the l-th roots of unity, S a finite set of places containing the archimedean ones.
There exist only finitely many cyclic extensions of κ of degree l which are
unramified outside S.

Proof. We start by enlarging S to a finite set S′ such that the ring of S′-integers
is a P.I.D.. We shall prove that there are only finitely many cyclic extensions of
given degree of κ unramified outside S′, from which the Lemma clearly follows.

By Kummer theory, a degree l cyclic extension of κ will be of the form κ( l
√
a)

where a is an element of κ∗, not a perfect l-th power. After multiplying a by
non-zero perfect l-th powers, the field generated by l

√
a does not change; hence

we can suppose that a is an S′-integer; we can further suppose that all its
divisors which are perfect l-th powers are units. If the field extension κ( l

√
a)/κ

is unramified outside S′ then a must be a S′-unit. Now, since the group of
S′-units is finitely generated, its quotient modulo perfect l-th powers is finite.
Hence we deduce the finiteness of such field extensions. ��

Lemma 1.3.6. Let, as before, κ be a number field. Let also C̃ be a smooth
irreducible projective curve defined over κ. Let f ∈ κ(C) be a non-constant
rational function having all its zeros and poles in C̃(κ). There exists a finite set
of places S of κ, such that for every (ultrametric) place ν of κ, with ν �∈ S, the
following holds: for every rational point p ∈ C(κ) with ν(f(p)) �= 0 there exists
a point q ∈ C(κ), with f(q) = 0 or f(q) = ∞ and p ≡ q (mod ν). Moreover,
if f has a zero (resp. a pole) of order h at q and p ≡ q (mod mν)

k, p �≡ q,
(mod mν)

k+1, then ν(f(p)) = h · k.
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Proof. We view C̃ as defined in a projective space by a given system of algebraic
equations having integral coefficients in κ. Taking S sufficiently large, we can
suppose that the reduction modulo every place ν outside S of such polynomials
still defines a smooth irreducible curve over the residue field κ(ν); we denote
by C̃ν this curve, which is defined over κ(ν).

Also, we can write f as the restriction to C̃ of a given rational function in
the coordinates of the ambient space; still after enlarging S, we can suppose
that such rational function is well defined and separable modulo every place
ν �∈ S; we denote by fν ∈ κ(ν)(C̃ν) the rational function defined on the reduced
curve C̃ν obtained in this way.

After further enlarging S if necessary, the reductions modulo every place
ν �∈ S of the (rational) zeros and poles of f in C will be all distinct. Then, by
Riemann-Hurwitz formula, it follows that fν cannot have other zeros nor poles,
apart the reduction modulo ν of the zeros or poles of f on C̃.

The proof is now easy. Whenever, for p ∈ C(κ), ν(f(p)) �= 0, the reduction
modulo ν of p is a zero or a pole of fν , so by our discussion it must be congruent
to a rational zero or pole of f .

The last sentence is easily proved by working on local coordinates. ��
Proof of Theorem 1.3.2 in the case of cyclic covers. Let us consider first

the case of covers of complete curves. Let C̃1 → C̃2 be a cyclic cover of degree
l, defined over a number field κ. After enlarging the field of definition to a
number field κ′ ⊃ κ, we can view the function field extension κ′(C̃1)/κ′(C̃2) as
κ′(C̃2)( l

√
f), where f is a rational function on C̃2 such that all its zeros and

poles lie in C̃2(κ′) and have multiplicity divisible by l. Then define S as in the
statement of Lemma 1.3.6. Enlarging κ′ we can obtain a new number field, still
denoted by κ′, containing all the degree l extensions of κ unramified outside
S; we can also suppose that it contains all the l-th roots of unity. Let now
p ∈ κ(C̃2) be a κ-rational point on C̃2. Then each of the l pre-images of p in C̃1
are defined over κ( l

√
f(p)). By Lemma 1.3.6, this field is unramified outside S,

so is contained in κ′.
The proof in the affine case is almost the same. One must use the hypothesis

that the rational points in question are S-integral because there is no control
of the multiplicity of the possible zeros and poles of the rational function f
which lie at infinity. For this reason, we must consider only points which never
reduce to points at infinity, for any ideal of OS . �

It is clear that our proof is in principle effective, in the sense that it enables to
determine the field κ′ and the set S′ appearing in the statement. A completely
explicit bound for the degree and discriminant of the field κ′ has been recently
provided in [7], actually in the more general case of arbitrary unramified covers,
not necessarily cyclic.



Chapter 2

Diophantine approximation

2.1 Diophantine approximation on the line

In this short chapter we present without proof classical material about Dio-
phantine approximation. More details and complete proofs can be found for
instance in [50], [51], [8]. We are primarily interested in the rational approx-
imation to algebraic numbers; more precisely, we are interested in estimating
the accuracy in the approximation to such numbers with respect to the denom-
inator of the approximant. The following theorem gives the best possible result
for an arbitrary irrational number.

Theorem 2.1.1 (Dirichlet). Let α ∈ R \Q be a real irrational number. There
exist infinitely many rational numbers a/b (a, b coprime integers, b > 0) such
that ∣∣∣α− a

b

∣∣∣ < 1

b2
.

For instance, one can take for a/b the truncated continued fraction expansion
of α.

Some irrational numbers can be approximated to a higher degree; for in-
stance, Liouville’s number α :=

∑∞
n=1 10

−n! has the property that for every
positive μ there exist infinitely many rationals a/b (a, b coprime integers, b > 0)
such that ∣∣∣α− a

b

∣∣∣ < 1

bμ
.

Such numbers are never algebraic; actually, a theorem of Liouville states that:

Theorem 2.1.2 (Liouville). Let α be a real irrational algebraic number of
degree d over Q. There exists a positive number c(α) such that for all rational
numbers a/b ∣∣∣α− a

b

∣∣∣ ≥ c(α)

bd
.
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A deeper theorem, due to Roth (1955) [47], improves on the exponent d:

Theorem 2.1.3 (Roth’s Theorem). Let α be a real algebraic number, ε > 0.
For all but finitely many rational numbers a/b, the following inequality holds:

∣∣∣α− a

b

∣∣∣ > 1

b2+ε
. (2.1.4)

In an other formulation: if α is algebraic irrational, there exists a positive
real number c(α, ε) such that for all rational numbers a/b,

∣∣∣α− a

b

∣∣∣ > c(α, ε)

b2+ε
. (2.1.5)

Roth’s proof is ineffective, in the sense that it does not provide any means
of finding the finitely many rational numbers a/b which violate the inequality
(2.1.4). Looking at its second formulation, by the ineffective nature of Roth’s
proof it is not possible to calculate the function c(α, ε).

Roth’s theorem is best possible as far as the exponent is concerned in view
of the mentioned result of Dirichlet (Theorem 2.1.1). However, one can try to
improve on Roth’s exponent after restricting the approximations to suitable
classes of rational numbers. For instance, one can consider the set of rational
numbers which, once written in base ten, have only finitely many digits. These
numbers form the ring of S-integers Z[ 1

10 ] = Z[ 12 ,
1
5 ].

In that case, Ridout [45] improved Roth’s bound by proving that: for every
irrational algebraic number α and every positive real ε > 0, there are only
finitely many pairs of integers (a, n) ∈ Z× N such that |α− a

10n | < 10−(1+ε)n.

A similar result holds whenever the numerators of the approximations are
supposed to be of special type, e.g. products of powers of primes from a fixed
finite set. When both numerators and denominators are subject to lie in a
finitely generated multiplicative semi-group, then the exponent can be lowered
to “ε” (see Corollary 2.1.10).

In another direction, one can try to replace the rational number field Q by
an arbitrary number field κ ⊂ C. Of course, the expected exponent should
change; for instance, if κ ⊂ R and has degree d = [κ : Q] over the rational, a
variation of Dirichlet’s theorem asserts that each real number α ∈ R \κ can be
approximated to a degree −2d with respect to the “height” of the approximant
(see below for the precise definition of height).

Still another generalization concerns p-adic approximation: one can fix a
p-adic algebraic number α ∈ Qp and study its approximations by rational
numbers.

In order to find the most appropriate generalization, containing Roth’s and
Ridout’s theorem and their natural extensions to number fields, we introduce
the language of heights and revise the theory of absolute values in a number
field.

Let κ be a number field. For every place ν of κ, the corresponding absolute
values differ logarithmically by a positive constant: namely, if | · |ν and ‖ · ‖ν
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are two equivalent absolute values of κ there exists a positive real number
δ such that for every x ∈ κ, |x|ν = ‖x‖δν . We are looking for a canonical
normalization, which will simplify the notation in the formulation of results
from Diophantine approximation. One natural choice would be simply to choose
the ν-adic absolute values extending the natural ones already defined in the
rational number field Q. However, there is another possibility, which is less
canonical since it depends on the number field κ, but has the advantage that
by adopting this new convention, the generalization and extensions of Roth’s
theorem will be easier to state. We proceed to define this second normalization.

Let then ν be a place of κ; the completion κν , which is independent of the
chosen normalization for the absolute value, is a finite algebraic extension of
the corresponding completion of Q, which is either the real number field R or
a field of p-adic numbers Qp. If ν is ultrametric, we let p be the characteristic
of the residue field κ(ν) (so that κν contains Qp) and normalize the absolute
value | · |ν on κ so that on Q it becomes

|x|ν = |x|
[κν :Qp]

[κ:Q]
p ∀x ∈ Q.

Since the absolute value is determined by the place up to renormalization, the
above relation defines the absolute value on the whole of κ. In other words,

there is an embedding jν : κ ↪→ Cp such that for all x ∈ κ, |x|ν = |jν(x)|
[κν :Qp]

[κ:Q]
p .

If, on the contrary, ν is archimedean, then it corresponds to an embedding
jν : κ ↪→ C; we then normalize the absolute value | · |ν by putting

|x|ν = |jν(x)|
[κν :R]
[κ:Q] ,

where the symbol | · | on the right-hand side stands for the usual complex
absolute value.

With this choice of the normalizations the absolute logarithmic Weil height
reads

h(x) =
∑
ν

log+ |x|ν ∀x ∈ κ,

where the sum runs over the places of κ and log+ = max(0, log). We also put

H(x) = exp(h(x))

and call it the height of the algebraic number x. It turns out to be independent
of the number field κ containing x.

Also, the product formula can be written ‘without weights’, as∏
ν

|x|ν = 1 ∀x ∈ κ∗.

We can now formulate the first extension of Roth’s theorem: we study the
degree of approximation of algebraic numbers by elements of a given number
field κ. The result is the following
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Theorem 2.1.6. Let κ be a number field, ν be a place of κ and α ∈ κν be an
element of the topological closure of κ, algebraic over κ but not lying in κ. Let
‖ · ‖ν denote the absolute value normalized with respect to κ and extended to
κν . Then for every positive real number ε > 0 there exists a number c(α, ν, ε)
such that for all β ∈ κ

|α− β|ν > c(α, ν, ε) ·H(β)−2−ε.

Let us consider the particular case where ν is archimedean and κ ⊂ κν = R.
While generic real numbers can be approximated by a sequence of rationals with
an error bounded by Dirchlet’s Theorem, we expect that using as approximants
elements of κ instead of only rational numbers the degree of approximability
of any real number will increase. Since κ is a vector space of dimension [κ : Q]
over Q, it should be possible to make the error in the approximation as little
as the height of the approximant to the power −2[κ : Q]. Actually this is
true, and can be proved via the classical pigeon-hole principle. However, in
Theorem 2.1.6 above the usual exponent 2 appears; taking into consideration
our normalization, the same inequality written with respect to the usual real
absolute value would show precisely the exponent −2[κ : Q]; so Theorem 2.1.6
states that for algebraic numbers no improvement on Dirichlet’s exponent can
be obtained.

The most general version of Roth’s Theorem, encompassing both Ridout’s
theorem and the above Theorem 2.1.6, was formulated by Lang in [40]:

Theorem 2.1.7. Let κ be a number field; let S be a finite set of places of κ.
Let, for every ν ∈ S, | · |ν be the extension of the ν-adic absolute value to κν ,
normalized with respect to κ and let αν ∈ κν be an algebraic number. For every
ε > 0 there exists a number c = c(S, (αν)ν∈S , ε) such that for all β ∈ κ with
β �= αν for every ν ∈ S, ∏

ν∈S

|αν − β|ν > c ·H(β)−2−ε.

Notice that interesting cases arise when some, or even all, the αν lie in κ.
Indeed, another equivalent formulation of the general Roth’s Theorem 2.1.7
involves only κ-rational points. It appears e.g. in [10] and reads as follows:

Theorem 2.1.8. Let κ be a number field, d ≥ 1 an integer, α1, . . . , αd be
pairwise distinct elements of κ. Let S1, . . . , Sd be pairwise disjoint finite sets of
absolute values. Finally, let ε > 0 be a positive real number. Then for all but
finitely many elements β ∈ κ,

d∏
h=1

∏
ν∈Sh

|αh − β|ν > H(β)−2−ε. (2.1.9)

The above theorem can be further generalized, by allowing also points at
infinity as target of the approximation. This will be useful in order to deduce
the mentioned theorem of Ridout. Precisely, for α = ∞ and any absolute value
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ν, let us define the ν-adic distance from α to β ∈ κ, provided β �= 0, by putting

|α− β|ν = |∞ − β|ν := |β|−1
ν .

Then the condition that a rational number β ∈ Q be of the form β = a/b where
b is a product of primes from a fixed set T can be expressed by the inequality∏

ν∈T |β − ∞|ν ≤ |b|−1; if |β| ≤ 1 we also have H(β) = |b| so the arithmetic
condition that β lies in a fixed ring of S integers is equivalent to the inequality∏

ν∈T

min(1, |β −∞|ν) ≤ H(β)−1,

where T ⊂ S is the set of ultrametric places in S.

Actually, the generalization of Theorem 2.1.8 with one point α allowed to
be at infinity follows formally from the present version of Theorem 2.1.8 itself:
observe that applying projective transformations Φ : P1 → P1 of the form

Φ(x) =
ax+ b

cx+ d
,

where

(
a b
c d

)
∈ GL2(κ) one can send the given set of target points {αν}ν∈S ⊂

P1(κ) = κ ∪ {∞} to a subset of κ = P1(κ) \ {∞}.
For instance, in the special case in which the set of {αν , ν ∈ S} consists of

the three rational points 0, 1,∞ ∈ P1(κ), the above Theorem 2.1.8 implies:

Corollary 2.1.10. Let Γ ⊂ κ∗ be a finitely generated multiplicative group. Let
T be a finite set of places of κ and ε > 0 a positive real number. Then for all
but finitely many γ ∈ Γ ∏

ν∈T

|γ − 1|ν > H(γ)−ε. (2.1.11)

Before giving its proof (assuming Theorem 2.1.8) we remark that a stronger
and fully effective estimate can be obtained via the theory of linear forms
in logarithms (Baker’s method), which replaces the right-hand side term in
(2.1.11) by a (negative) power of the logarithmic height h(γ) = logH(γ) of the
approximant.

Proof. Let us deduce Corollary 2.1.10 from Theorem 2.1.8. Let S be a finite
set of places of κ such that Γ ⊂ O∗

S and T ⊂ S. For every solution γ ∈ Γ
to (2.1.11), let T0 be the set of places ν for which |γ|ν < 1

2 and T∞ the set
of places ν such that |γ|ν > 2. Let T1 ⊂ T be the set of places ν such that
|γ − 1|ν < 1

2 . Note that T0, T1, T∞ ⊂ S. Then

∏
ν∈T

|γ − 1|ν ≥
( ∏

ν∈T1

|γ − 1|ν
)

· 1

2�(T )
. (2.1.12)
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We have also the following estimates∏
ν∈T0

|γ|ν =
∏

ν∈T0∩T1

|γν | ·
∏

ν∈T0\T1

|γ|ν ≥ 2−�(T0)
∏

ν∈T0\T1

|γ|ν (2.1.13)

and∏
ν∈T∞

|γ|−1
ν =

∏
ν∈T∞∩T1

|γ|−1
ν ·

∏
ν∈T∞\T1

|γ|−1
ν ≥ 2−�(T∞)

∏
ν∈T∞\T1

|γ|−1
ν . (2.1.14)

Also, in view of the fact that γ is a S-unit and of the definition of T0, T∞, we
have ∏

ν∈T0

|γ|ν =
∏

ν∈T∞

|γ|−1
ν = H(γ)−1.

From inequalities (2.1.13), (2.1.14) and the above identity we obtain∏
ν∈T0\T1

|γ|ν � H(γ)−1,
∏

ν∈T∞\T1

|γ|−1
ν � H(γ)−1 (2.1.15)

where the implied constant only depends on �(S).
Consider the projective transformation x 
→ Φ(x) = x

x+1 , which sends 0, 1,∞
to 0, 1/2, 1 respectively. It satisfies, for every valuation ν,

1

2
|x− 0|ν ≤ |Φ(x)− 0|ν ≤ 2|x− 0|ν if |x|ν ≤ 1

2

1

2
|x− 1|ν ≤ |Φ(x)− 1

2
|ν ≤ 2|x− 1|ν if |x− 1|ν ≤ 1

2

and
1

2
|x|−1

ν ≤ |Φ(x)− 1|ν ≤ 2|x|−1
ν if |x|ν ≥ 2.

Then we have∏
ν∈T0\T1

|γ|ν ·
∏

ν∈T∞\T1

|γ|−1
ν ·

∏
ν∈T1

|γ − 1|ν �
∏

ν∈T0\T1

|Φ(γ)|ν

·
∏

ν∈T∞\T1

|Φ(γ)− 1|ν ·
∏
ν∈T1

∣∣∣∣Φ(γ)− 1

2

∣∣∣∣
ν

.

In view of (2.1.15) and the above inequality we can then write

∏
ν∈T0\T1

|Φ(γ)|ν ·
∏

ν∈T∞\T1

|Φ(γ)− 1|ν ·
∏
ν∈T1

∣∣∣∣Φ(γ)− 1

2

∣∣∣∣
ν

� H(γ)−2
∏
ν∈T1

|γ − 1|ν .

We now apply Theorem 2.1.8, taking for d = 3, α1 = 0, α2 = 1
2 , α3 = 1; and

S1 = T0 \ T1, S2 = T∞ \ T1, S3 = T1; the inequality (2.1.9) of Theorem 2.1.8,
together with the above estimates, gives the desired conclusion of Corollary
2.1.10. ��
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In the rational case, we state the following corollary, whose deduction is left
to the reader.

Corollary 2.1.16 (Theorem of Ridout). Let {p1, . . . , pl}, {q1, . . . , qm} be two
set of prime numbers; let λ, μ be real numbers in the closed interval [0, 1]. Let
us consider the set B of rational numbers β of the form β = p/q where

p = pa1
1 · · · pal

l · p∗
q = qb11 · · · qbmm · q∗

where a1, . . . , al, b1, . . . , bm are integers with ai ≥ 0, bj ≥ 0 and p∗, q∗ satisfy

p∗ ≤ p1−λ

q∗ ≤ q1−μ

Let α ∈ R be a real algebraic number and let ε > 0 be a positive real number.
Then for all but finitely many β ∈ B,

|α− β| > H(β)−2+λ+μ−ε.

We end this section by providing yet another version of Roth’s theorem; we
shall present it as a lower bound for homogeneous linear form.

Theorem 2.1.17 (Homogeneous Roth’s Theorem). Let κ be a number field, S
be a finite set of absolute values of κ. For each ν ∈ S, let L1,ν(X,Y ), L2,ν(X,Y )
be linearly independent linear forms with coefficients in κ. Finally, let ε > 0 be
a positive real number. For all but finitely many (x : y) ∈ P1(κ) the following
inequality holds:

∏
ν∈S

|L1,ν(x, y)|ν
max(|x|ν , |y|ν) ·

|L2,ν(x, y)|ν
max(|x|ν , |y|ν) > H(x/y)−ε. (2.1.18)

Note that, due to the appearance of the denominator max(|x|ν , |y|ν), the left
hand-side term is invariant by multiplication of x and y by a non-zero constant,
so it only depends on the projective class (x : y) of (x, y). This is consistent
with the right-hand side term, which only depends on the ratio x/y.

2.2 Higher dimensional Diophantine approximation

In higher dimension, we shall be interested in approximating hyperplanes de-
fined by linear forms with algebraic coefficients by rational points. We shall
adopt the language and notation of projective geometry for simplicity, as in
the homogeneous version of Roth’s Theorem given in Theorem 2.1.17.

The main result of this section is the so-called Subspace Theorem, first
proved, in a particular case, by W. M. Schmidt in the seventies. Here we for-
mulate the generalization provided by H.-P. Schlickewei, which is the natural
extension of Roth’s theorem to higher dimension.
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We need an extension to higher dimension of the notion of height, already
introduced for algebraic numbers.

Let κ be a number field, x = (x0, . . . , xN ) ∈ κN+1 \ {0} a non-zero vector.
For every place ν of κ, its ν-adic norm ‖x‖ν is defined to be

‖x‖ν = max(|x0|ν , . . . , |xN |ν).

Let us define the height of the associated projective point, still denoted by
x = (x0 : . . . : xN ) ∈ PN (κ), to be

H(x) =
∏
ν

‖x‖ν ,

where the product runs over all the valuations of κ.
With these conventions, Schmidt’s Subspace Theorem reads:

Theorem 2.2.1 (Subspace Theorem). Let N ≥ 1 be a positive integer, κ
be a number field and S a finite set of places of κ. Let, for every ν ∈ S,
L0,ν(X0, . . . , XN ), . . . , LN,ν(X0, . . . , XN ) be linearly independent linear forms
with algebraic coefficients in κν . Then for each ε > 0 the solutions x = (x0 :
. . . : xN ) ∈ PN (κ) to the inequality

∏
ν∈S

N∏
i=0

|Li,ν(x)|ν
‖x‖ν < H(x)−N−1−ε (2.2.2)

lie in the union of finitely many hyperplanes of PN , defined over κ.

For N = 1, the conclusion provides the finiteness of the solutions to the
inequality (2.2.2); so we recover Roth’s Theorem. In higher dimension, however,
the finiteness conclusion does not hold: for instance, when the point x lies in the
hyperplane defined by the vanishing of one linear form, the left-hand side term
in (2.2.2) vanishes, so the inequality is satisfied. It is worth noticing, however,
that the exceptional hyperplanes containing the infinite families of solutions
are not necessarily the zero sets of the involved linear forms, as the following
example shows:

Example. Let α be a real irrational algebraic number, with 0 < α < 1;
consider a “good” rational approximation p/q ∈ Q to α. By this we mean that
p, q are coprime integers, q > 0, and∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
;

we know from Dirichlet’s Theorem that there exist infinitely many of
them. Since α < 1, for infinitely many good approximations p/q one has
max(|p|, |q|) = |q|, so we can write the above inequality as∣∣∣∣α− p

q

∣∣∣∣ < max(|p|, |q|)−2.
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For each such pair (p, q) we have the upper bound

|qα− p|
max(|p|, |q|) ≤ |qα− p|

|q| < max(|p|, |q|)−2. (2.2.3)

Now take N = 2, κ = Q and S consisting of the archimedean absolute value of
Q and define the three linear forms Li(X0, X1, X2) (i = 0, 1, 2) as follows:

L0(X0, X1, X2) = X0−αX2, L1(X0, X1, X2) = X1−αX2, L2(X0, X1, X2) = X2.

Now, with each good approximation p/q to the number α as above we associate
the point (x0 : x1 : x2) = (p : p : q). Then the double product in (2.2.2) becomes

∏
ν∈S

N∏
i=0

|Li,ν(x)|ν
‖x‖ν =

( |p− qα|
max(|p|, |q|)

)2

· |q|
max(|p|, |q|) .

By the above inequality (2.2.3) and the trivial estimate |q| ≤ max(|p|, |q|), we
have the upper bound

∏
ν∈S

N∏
i=0

|Li,ν(x)|ν
‖x‖ν < max(|p|, |q|)−4,

which means that inequality (2.2.2), with e.g. ε = 1/2, admits infinitely many
solutions (x0 : x1 : x2) = (p : p : q) on the projective line of equation X0 =
X1. So, the degeneracy conclusion of Theorem 2.2.1 cannot be replaced by a
finiteness one, even after assuming Li,ν(x) �= 0 for all i, ν.

It will prove useful to have an ‘affine version’ of the Subspace Theorem, of
which Theorem 2.2.1 represents the projective, or homogeneous, formulation.
Here is such an affine version, which can be formally deduced from Theorem
2.2.1:

Theorem 2.2.4. Let κ be a number field, S a finite set of places con-
taining the archimedean ones, N ≥ 2 an integer. Let, for each ν ∈ S,
Lν,1(X1, . . . , XN ), . . . , Lν,N (X1, . . . , XN ) be linearly independent linear forms
with algebraic coefficients in κν . Then the solutions (x1, . . . , xN ) ∈ ON

S to the
inequality ∏

ν∈S

N∏
i=1

|Lν,i(x)|ν < H(x)−ε

lie in the union of finitely many proper linear subspaces of κN .

The Subspace Theorem, like Roth’s theorem, is ineffective; however, the
number of the higher dimensional components of the Zariski-closure of the set
of solutions to (2.2.2) can be bounded (see [28]).

The Subspace Theorem, as we said, is a Diophantine approximation state-
ment in higher dimension; the 1-dimensional case of it reduces precisely to
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Roth’s Theorem. However, there are problems in Diophantine approximation
on the line which can be solved only by going to higher dimension, and then
applying the Subspace Theorem. Let us see a simple example. We have seen
that Ridout’s theorem improves on Roth’s estimate for the rational approxi-
mation to (real) algebraic numbers by rational number whose denominator is
a product of powers of fixed set of primes. For instance, we have the bound∣∣∣α− p

2n

∣∣∣ � 2−(1+ε)n,

where Roth’s exponent 2 + ε is replaced by 1 + ε. We obtained this estimate
after interpreting the special form of the approximant p/2n as being a rational
number close to infinity in the 2-adic absolute value. If we change slightly the
denominator, by replacing 2n by 2n+1, Ridout’s Theorem does not apply any-
more. However, by using the Subspace Theorem, we can indeed recover Ridout’s
1 + ε exponent. Let us see how, following an idea introduced in [14] (see also
[21], page 165). Define the three linear forms L0(X0, X1, X2), L1(X0, X1, X2)
and L2(X0, X1, X2) by putting

L0(X0, X1, X2) = X0, L1(X0, X1, X2) = X1, L2(X0, X1, X2)

= α(X0 +X1)−X2.

Then every solution p/(2n + 1) to the inequality

|α− p/(2n + 1)| < 2−(1+ε)n

gives rise to the point x := (1 : 2n : p) ∈ P2(Q) satisfying(
2∏

i=0

|Li(x)|
‖x‖

)
·
(

2∏
i=0

|Li(x)|2
‖x‖2

)
< H(x)−3−ε.

Hence by the Subspace Theorem 2.2.1, applied with N = 2, the points (1, 2n, p)
would satisfy one of finitely many linear dependence relations; but from this
fact and the starting inequality |α−p/(2n+1)| < 2−(1+ε)n, it is easy to deduce
finiteness.

This example can be naturally generalized to produce the following state-
ment:

Theorem 2.2.5. Let u : N → Q be a sequence defined by

u(n) =
h∑

i=1

aib
n
i ,

where h ≥ 1 is a natural number, a1, . . . , ah are rational numbers and b1, . . . , bh
are positive integers. Let α be a real irrational algebraic number. Then for
every ε > 0 there exist only finitely many pairs of rational numbers of the form
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p/u(n), where p ∈ Z, n ∈ N, such that∣∣∣∣α− p

u(n)

∣∣∣∣ < max(|p|, |u(n)|)−1−ε.

This result is proved in [14]. Note that the exponent −1−ε is Ridout’s exponent,
as it would be in the case the power sum u(n) consisted in a single exponential
function n 
→ bn. If we suppose also that the numerator p in the displayed
inequality if of the form p = v(m) for some power sum m 
→ v(m), then the
exponent can be reduced to −ε, still using the Subspace Theorem. Whenever
both u(n) and v(m) are geometric progressions (i.e. u(n) = abn, v(m) = a′b′m,
then the theory of linear forms in logarithms applies and one can even obtain
an effective result.

2.3 Approximation to higher degree hypersurfaces

We have seen that Schmdit’s Subspace Theorem can be viewed as a statement
about approximating hyperplanes, defined over a number field, by rational
points.

It is then natural to consider the case where the targets are no more linear
sub-spaces, but arbitrary (projective) hypersurfaces. Note that in dimension
one (in the setting of Roth’s Theorem) there is no such distinction, since the
(geometrically) irreducible components of any hypersurfaces are single points,
i.e. hyperplanes.

In this direction we do not dispose neither of a good generlization of Dirich-
let’s Theorem, nor of Roth’s Theorem.

Suppose we want to investigate the rational approximation of a single hyper-
surface; to simplify matters we suppose that such a hypersurface is defined over
Q, by the vanishing of a homogeneous form F (X0, . . . , XN ) ∈ Q[X0, . . . , Xn].
Set d = degF . An analogue of Liouville’s Theorem is represented by the
estimate |F (x)|

‖x‖d ≥ c · ‖x‖−d,

where c > 0 is a constant depending on F , holding for all rational points
x = (x0 : . . . : xN ) ∈ PN (Q) such that F (x) �= 0. Note that the left-hand side
only depends on the projective class of x, so it can be considered as a measure
of the distance between the projective point x and the projective hypersurface
F (X0, . . . , XN ) = 0.

Quoting W. Schmidt [49]: ‘Any improvement of this inequality, even though
perhaps it may apply only to special cases of non-linear hypersurfaces, would
be of great interest and would shed light on certain diophantine equations...”.

Note, however, that whenever the homogeneous form F (X0, . . . , XN ) has
irrational algebraic coefficients in a number field κ, the Liouville’s inequality is
changed into
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|F (x)|
‖x‖d ≥ c · ‖x‖−d[κ:Q] (2.3.1)

(here the absolute values are normalized with respect to Q, since x is still
supposed to lie in PN (Q)).

Of course, one can also consider the affine version, where the involved poly-
nomials are no more supposed to be homogeneous. In that case the ’Liouville’s
inequality’ is expressed as

|f(x)| > c(f) · ‖x‖−d([κ:Q]−1), (2.3.2)

for every polynomial f(X1, . . . , XN ) ∈ κ[X1, . . . , XN ] of total degree d and
every integral point x = (x1, . . . , xN ) ∈ Z

N .

Improvements on ‘Liouville’s inequality’ (2.3.1) have been obtained in [26],
[17], [27]. Their proofs all involve an application of the Subspace Theorem.

To give an example of such improvements on Liouville’s inequality in the
non-linear case, we quote the corollary to the main theorem in [17], Addendum,
which reads as follows

Theorem 2.3.3. Let f(X1, . . . , Xn) ∈ Q̄[X1, . . . , Xn] be a polynomial in n
variables with algebraic coefficients of degree d. For every ε > 0 there exists a
number c > 0 such that for all x ∈ Z

n with f(x) �= 0,

|f(x)| > c · ‖x‖−d(n−1)−ε (2.3.4)

We note at once that whenever the degree of the number field κ generated
by the coefficients of the polynomial f satisfies [κ : Q] ≥ n, the above estimate
cannot be deduced from Liouville’s bound (2.3.2).

The inequality (2.3.4) can be improved after assuming that the approximant
lie in a fixed algebraic sub-variety of An. Also, it can be extended to number
fields and arbitrary set of places. The most general known results can be found
in [27], where the estimates are formulated in projective version.



Chapter 3

The theorems of Thue and Siegel

3.1 Thue’s equation

One of the first finiteness results on Diophantine equations was proved by Axel
Thue in 1909 [58]. It constitutes the starting point of the modern theories of
Diophantine equations and Diophantine approximation.

Theorem 3.1.1 (Thue, 1909). Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous ir-
reducible polynomial of degree ≥ 3. Let c ∈ Z be a non-zero integer. The dio-
phantine equation

F (x, y) = c (3.1.2)

has only finitely many solutions in integers (x, y) ∈ Z
2.

We provide two proofs of this theorem, the second of which uses Siegel’s
theorem for open sets of P1, i.e. Corollary 3.2.4 from next section.

Proof. Our first proof follows Thue’s original path. Let us suppose by contra-
diction that n 
→ (xn, yn) is an infinite sequence of integral solutions to (3.1.2),
with |yn| → ∞ (it is clear that there are only finitely many solutions for each
given y). We factor the form F (X,Y ) in Q̄[X,Y ] by writing

F (X,Y ) =

d∏
i=1

(βiX − αiY ),

where d = degF and (αi, βi) ∈ Q̄
2 are such that F (αi, βi) = 0. Since F (X,Y )

is irreducible (over the rationals), the determinants αiβj − βiαj do not vanish
for any i �= j. Also β1, . . . , βd are all non-zero. From the equation (3.1.2) we
obtain, by taking absolute values,

d∏
i=1

∣∣∣∣βi
xn

yn
− αi

∣∣∣∣ = |c|
|yn|d → 0.
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Then, up to extracting a subsequence from the sequence n 
→ yn and reordering
indices, we can suppose that the sequence of rational numbers n 
→ (xn/yn)
tends to α1/β1. From the above relation we also obtain the inequality∣∣∣∣xn

yn
− α1

β1

∣∣∣∣ ≤ c1
|yn|d ,

holding for all large n in an infinite subsequence, where c1 is any number larger
than |cβd−1

1 |maxi(|α1βi − αiβ1|1−d). The above inequality contradicts Roth’s
Theorem, since d > 2, finishing the proof. ��

As promised, we give a second proof of Thue’s theorem.

Proof. Consider the algebraic curve C ⊂ A
2 defined by Thue’s equation

F (X,Y ) = c. Let U ⊂ P1 be the open set F (X,Y ) �= 0. Then U is the comple-
ment of d ≥ 3 points in P1. The map C → U sending C � (x, y) 
→ (x : y) ∈ U is
a (unramified) cover of U , so if C had infinitely many integral points the same
would be true of U , by Chevalley-Weil. An application of Theorem 3.2.4 gives
the desired finiteness. ��

Some remarks are in order:
(1) Thue did not use Roth’s Theorem, which was not yet known at the time,

but he used instead a weaker version that he proved in the same article; it is
the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > max(|p|, |q|)− d
2−1−ε,

where d = [Q(α) : Q] and ε > 0, holding for all but finitely many rational
numbers p/q.

(2) The same proof, using Roth’s Theorem, applies without changes to prove
the finiteness of integral solutions to equations of the form

F (x, y) = g(x, y)

where F (X,Y ) is an irreducible form and the total degree of the polynomial
g(X,Y ) satisfies deg g < degF − 2.

(3) All curves defined by a Thue’s equation of the form (3.1.2) have d (dis-
tinct) points at infinity; if d ≥ 3, and only in this case, they have non-zero
genus, in other words they are not rational (see below). In contrast, when
d = 2, the conic of equation F (X,Y ) = 0 has two points at infinity, and has
genus zero. The example of Pell’s equation x2 − ay2 = 1, where a > 0 is a
positive non-square integer, shows that the assumption that d ≥ 3 cannot be
omitted.

(4) Replacing Roth’s Theorem by its generalized version, e.g. Theorem 2.1.8,
one can deduce in the same way the more general

Theorem 3.1.3 (Thue-Mahler Theorem). Let κ be a number field, OS ⊂ κ
a ring of S-integers, F (X,Y ) ∈ OS [X,Y ] be a binary homogeneous form with
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S-integral coefficients. Suppose that F (X,Y ) has at least three pairwise non-
proportional linear factors in κ̄[X,Y ]. Then there are only finitely many pairs
(x, y) ∈ O2

S, up to multiplicative constants, such that

F (x, y) ∈ O∗
S . (3.1.4)

Let us sketch an independent proof of the Thue-Mahler Theorem, which does
not use directly Diophantine approximations methods, but rather the S-unit
equation theorem in two variables.

It runs as follows: after factoring

F (X,Y ) =
k∏

i=1

(βiX − αiY )ei (3.1.5)

where βiX − αiY for i = 1, . . . , k are the distinct prime divisors of F (X,Y ) in
Q̄[X,Y ], we can suppose, after enlarging κ and S if necessary, that the βi, αi

belong to κ and the determinants βiαj − βjαi are S-units. Then for every
coprime S-integers x, y, the values βix − αiy, for i = 1, . . . , k, are pairwise
coprime; if (x, y) is a solution to (3.1.4), the product of the βix−αiy is a unit,
so each term is a unit. Let us write

ui = βix− αiy,

for i = 1, . . . , k; since by our hypothesis k ≥ 3, we can consider the first three
terms u1, u2, u3. Eliminating x and y from the relations above we obtain a
linear relation of the form a1u1 + a2u2 + a3u3 = 0, for some non-zero constant
coefficients a1, a2, a3, holding for all the solutions (x, y). An application of the
S-unit equation theorem (Theorem 3.2.1) gives the desired result. �

It is worthwhile to look for a geometric interpretation of the last proof; it
will turn out that this is precisely the second proof of Thue’s theorem given
above.

We can view the solutions (x, y) to (3.1.4) as integral points on A
2, which

moreover are integral with respect to the curve of equation F (x, y) = 0 in A
2.

The latter is a union of k lines intersecting at the origin. Viewing the point
(x, y) ∈ A

2 as a point (x : y : 1) ∈ P2, it becomes integral also with respect to
the line at infinity. Hence we are considering integral points in P2 with respect
to a configuration of k + 1 lines, the first k passing through a single point and
the last one, the line at infinity, being in general position with respect to the
previous k. This variety is isomorphic to the product A

1 × (P1 \ {k points}),
the projection on the last factor being given by (x : y : 1) 
→ (x : y). Hence
its points are degenerate and moreover they lie on finitely many lines x = λiy;
this gives the required finiteness statement.
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3.2 Hyperelliptic curves and sums of two units

The aim of this section is proving the following two theorems and showing their
interdependence.

Theorem 3.2.1 (S-unit Equation Theorem in two variables). Let Γ ⊂ Q̄
∗ be

a finitely generated multiplicative group. Then the equation

u+ v = 1

has only finitely many solutions (u, v) ∈ Γ × Γ .

This theorem is indeed equivalent to Siegel’s Theorem 3.3.1 for the particular
curve C = P1 \ {0, 1,∞}, as explained in §1.2. The following result is Siegel’s
theorem in the case of the so-called hyperelliptic curves, where the points (or
the point) at infinity are fixed by the hyperelliptic involution.

Theorem 3.2.2. Let OS be a ring of S-integers in a number field κ; let f(X) ∈
OS [X] be a polynomial with at least three simple roots in κ̄. Then the equation

y2 = f(x) (3.2.3)

has only finitely many solutions (x, y) ∈ OS × κ.

In other words, there exist only finitely many x ∈ OS such that the value
f(x) is a square in κ. Note that if f(X) has two roots, the conclusion does
not hold in general, as the example of the polynomial f(X) = 2X2 + 1 shows
already for κ = Q and OS = Z. Also, if f(X) has two simple roots, and no
other root in κ̄, then the curve of equation y2 = f(x) is rational, isomorphic to
Gm over a suitable extension of the number field κ. Hence it contains infinitely
many integral points, over a suitable extension of the ring of integers OS .

Let us prove Theorem 3.2.1 by using Corollary 2.1.10. First we can find a
number field κ and a ring of S-integers OS ⊂ κ such that Γ ⊂ O∗

S . Suppose by
contradiction that there exist infinitely many solutions (u, v) to the equation
u + v = 1 of the Theorem. By symmetry, we can suppose that for all our
solutions H(v) ≥ H(u). Now, for each solution (u, v), let T = T (u, v) be the
set of places ν ∈ S such that |v|ν < 1. Since S is finite, there are only finitely
many possibilities for the subset T . So, after extracting a suitable infinite sub-
sequence, we can and shall suppose that T is fixed. Putting γ := −u/v we
obtain γ − 1 = −v−1 so

∏
ν∈T

|γ − 1|ν =
∏
ν∈T

1

|v|ν =
∏
ν∈S

max(1, |v−1|ν) = H(v−1)−1 = H(v)−1,

where the last equality follows from the product formula. Since H(γ) ≤ H(u) ·
H(v) ≤ H(v)2, we obtain ∏

ν∈T

|γ − 1|ν ≤ H(γ)−1/2.
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Hence Corollary 2.1.10, applied with any number ε < 1/2, gives the desired
contradiction, finishing the proof. Note that by inserting on T also the places
for which u is small, we could have ended with the inequality

∏
ν∈T |γ− 1|ν �

H(γ)−1, so a much weaker result than Corollary 2.1.10 would suffice.

Let us now prove Theorem 3.2.2 by using Theorem 3.2.1. Of course, if we
prove finiteness of solutions of (3.2.3) for x in a ring larger thanOS , our theorem
will be proved. Hence we can enlarge the number field κ so that the roots of
f(X) become rational and we also enlarge the ring of S-integers OS so that it
becomes a Principal Ideal Domain. Now equation (3.2.3) can be written as

y2 = a · (x− α1)(x− α2)(x− α3)g(x)

where a, α1, α2, α3 ∈ κ, a �= 0, the αi are pairwise distinct and the polynomial
g(X) ∈ κ[X] does not vanish at αi for any i = 1, 2, 3. Since the two polynomials
h(X) := a(X−α1)(X−α2)(X−α3) and g(X) are coprime, in the ring κ[X], they
generate the unit ideal; in other words, there exist polynomials ϕ(X), ψ(X) ∈
κ[x] such that

ϕ(X)h(X) + ψ(X)g(X) = 1.

Up to enlarging if necessary the ring of S-integers OS , we can suppose
that a ∈ O∗

S and that all the coefficients of all the four polynomials
h(X), g(X), ϕ(X), ψ(X) are S-integers. Now, for every x ∈ OS , from the above
identity it follows that the two S-integers h(x), g(x) generate the unit ideal
(1) = OS , so they must be coprime. Hence, due to unique factorization in OS ,
whenever the product f(x) = h(x)g(x) is a square in κ, both factors should be
squares, up to units. Since the quotient of the group of units modulo squares
is finite, we obtain from the infinitude of the set of solutions to (3.2.3) that for
at least one unit γ ∈ O∗

S the equation

y2 = γ(x− α1)(x− α2)(x− α3)

has infinitely many solutions (x, y) ∈ OS × κ. We observe that x − αi, x −
αj are essentially coprime for i �= j, actually they are coprime whenever the
discriminant ((α1 − α2)(α2 − α3)(α3 − α1))

2 is a unit, which we can suppose
to hold after enlarging S; so, by repeating the previous argument, we deduce
that there exist units γ1, γ2, γ3 such that for infinitely many x ∈ OS and each
i = 1, 2, 3, the elements γi(x − αi) are squares in κ. After enlarging κ we can
suppose that the γi are also squares, so that for infinitely many x ∈ OS there
exist y1, y2, y3 ∈ κ such that we can write

y2i = x− αi for i = 1, 2, 3.

Eliminating x from the first two relations (i.e. those corresponding to i = 1, 2)
we obtain

y21 − y22 = (y1 − y2)(y1 + y2) = α2 − α1

Recall that α2 − α1 is a unit, since the discriminant of h(X) was supposed to
be a unit; then y1− y2 (and also y1+ y2) must be a unit. Then, using the same
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relations for the other pairs of distinct indices i, j in {1, 2, 3}, we obtain that
y1 − y3 and y2 − y3 are also unit. Writing⎧⎨

⎩
y1 − y2 = u3

y2 − y3 = u1

y3 − y1 = u2

for suitable units u1, u2, u3, we obtain the homogeneous S-unit equation

u1 + u2 + u3 = 0.

Putting u := −u1/u3, v := −u2/u3, we get the relation u+v = 1 and Theorem
3.2.1 gives the finiteness of the ratios u1/u3, u2/u3. This in turn gives the
finiteness of the triples (y1, y2, y3) up to multiplicative constants and from this
and the relation y21 − y22 = α2 − α1 it is easy to deduce the finiteness of the
solutions x.

The above proof might seem complicated and unnatural, but it can be en-
lightened using a geometric view-point. Let C be the affine curve defined by our
equation (3.2.3). The main point of the proof is the observation that the three
rational functions x − αi, for i = 1, 2, 3, take perfect square values at integral
points (x, y) (after a fixed enlargement of the ring OS). This is of course con-
nected with the Chevalley-Weil theorem: the three functions in question are lo-
cally a square everywhere, so the function field extension κ(C)(√x− αi)/κ(C) is
unramified over C (it might ramify at infinity, depending on the parity of deg f).
Hence, by Chevalley-Weil, each integral point on C lifts to an integral point on
C′, where C′ is the affine curve corresponding to the integral closure of the ring
κ[C][√x− α1,

√
x− α2,

√
x− α3]. Now, letting yi be square roots of x − αi in

κ[C′], we have that the regular functions u3 := y1−y2, u1 := y2−y3, u2 := y3−y2
have all their zeros and poles at infinity, so they send C′ → Gm. So we obtain

the morphism C′ → G
2
m by sending C′ � p 
→ (−u1(p)

u3(p)
, −u2(p)

u3(p)
) whose image is

the line u+v = 1 inside the torus G2
m; this closed set of the torus is isomorphic

to P1 \{0, 1,∞}, so it contains only finitely many integral points and the proof
is finished.

It could be proved that for a general affine hyperelliptic curve C defined by
an equation (3.2.3) there exists no non-constant morphism C → G

2
m, and, when

such a morphism does exist, its image is a translate of a subtorus; so Theorem
3.2.1 or its generalization Theorem 1.2.2 cannot be used directly. However, the
two-variables S-unit equation theorem can be used, and has been used in the
above proof, after taking an unramified cover C′ → C of the original curve,
since the curve C′ does admit such a non-trivial morphism to G

2
m.

We end by showing that Theorem 3.2.1 immediately implies Siegel’s theorem
in the rational case:

Corollary 3.2.4. Let X ⊂ P1 be an algebraic open set with P1 \X consisting
of at least three points. Then X(OS) is finite, for every ring of S-integers OS.
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Proof. We just repeat the argument given in the introduction. We can suppose,
up to enlarging the field of definition κ, that three of the points of the com-
plement of X in P1 are 0, 1,∞. Then the algebra κ[X] contains the functions
x, 1/x, 1/(x−1). Hence for every integral point p ∈ X(OS) we obtain a solution
(u, v) = (x(P ), 1− x(P )) to the S-equation u+ v = 1 of Theorem 3.2.1. ��

3.3 Siegel’s Theorem on curves

As mentioned, a general theorem of Siegel-Mahler, which we give here in the
most general formulation provided by Lang [39], asserts the finiteness of S-
integral points on a large class of curves, namely all those satisfying the as-
sumption of log-general type appearing in Vojta’s conjecture:

Theorem 3.3.1 (Siegel’s Theorem on curves). Let C be an affine curve defined
over a number field. Suppose either that it has genus > 0 or that it has at least
three points at infinity. Then for each ring of S-integers OS, the set C(OS) is
finite.

Note that we do not assume the curve is smooth; however, the theorem in
the possibly singular case would follow easily from the particular case of smooth
curves.

In the sequel, we shall suppose that C is smooth affine and define C̃ to be
its smooth compactification; let g be the genus of C̃. We denote by D the
complement: D = C̃ \ C.

So Siegel’s theorem asserts that whenever degD ≥ 3 or g ≥ 1, then the
set C(OS) is finite. On the other hand, we have already observed in Chapter
1 that if g = 0 and degD = 1 or 2 the corresponding curve, which is either
Ga = A

1 or Gm = A
1 \ {0} has infinitely many integral points (over a suitable

ring of S-integers). Hence Siegel’s theorem provides a complete classification of
the algebraic curves admitting infinitely many integral points.

Let us analyze this classification in view of the Chevalley-Weil theorem.
Recall that given two (smooth, affine) curves C1, C2 admitting a dominant mor-
phism π : C1 → C2, if C1(OS) is infinite, also C2(OS) will be infinite. On the
other hand, if π : C1 → C2 is an unramified cover, then the two finiteness
properties are equivalent; more precisely, if C2(OS) is finite for every ring of
S-integers OS , the same is true of C1(OS). Let us write, as usual, Ci = C̃i \Di

and denote by gi the genus of C̃i and by si = degDi. The inequalities g1 ≥ g2
and s1 ≥ s2 hold for every dominant morphism π : C1 → C2; moreover, for
unramified morphism the equality holds if either deg π = 1 (which is certainly
the case if C1 = A

1) or C2 = Gm (in which case necessarily C1 = Gm). Hence,
Siegel’s finiteness theorem can be stated as follows:

Theorem 3.3.2 (Siegel’s Theorem - alternate version). Let C be a smooth
affine curve defined over a number field κ. The following are equivalent:

(i) the set C(OS) is finite for every ring of S-integers;
(ii) there exists an unramified cover C′ → C of C such that the genus of C′ is

strictly larger than the genus of C;
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(iii) for every integer g, there exists an unramified cover C′ → C of C such that
the genus of C′ is larger than g;

(iv) there exists an unramified cover C′ → C of C such that C′ has strictly more
points at infinity than C;

(v) for every integer N there exists an unramified cover C′ → C of C such that
C′ has at least N points at infinity;

(vi) the fundamental group of the topological space C(C) is not abelian.

By Chevalley-Weil Theorem and topological classification of algebraic
curves, this means that an apparently weaker statement than Siegel’s, namely
the finiteness of integral points on curves of sufficiently large genus (say genus
> 100) would imply via Chevalley-Weil theorem the full statement in Theorem
3.3.1. The same could be said about the requirement on the number of points
at infinity: the finiteness of integral points on all the curves with at least, say,
one hundred points at infinity, over every ring of S-integers, would imply the
finiteness of integral points on curves with at least three points at infinity, as
well as on those which have positive genus and at least one point at infinity
(i.e. are affine).

Siegel’s proofs. We give a sketch of a proof of Siegels’ Theorem similar to the
original one (but we should mention that Siegel did not treat arbitrary S-
integers in his 1929 paper [52]; the generalization to arbitrary S-integers is due
to Mahler and Lang, see [39]). Actually, Siegel provided two different proofs; we
recommend the paper [63], which we are following now, for a careful discussion
of the different tools needed in the various approaches.

Let us suppose that an affine curve C (say embedded in A
N ) of genus >

0 admits infinitely many S-integral points. Then we can extract an infinite
sequence P1, P2, . . . in C(OS) converging in the projective completion C̃ for
every place ν ∈ S (recall that C̃(κν) is compact).

For each point P ∈ A
N (κ) and each place ν ∈ S, denote by |P |ν the sup-

norm of P . Then the height of an S-integer point P ∈ A
N (OS) is

H(P ) =
∏
ν∈S

max{1, |P |ν},

so H(P ) ≤ max{1, |P |ν0}�(S) where ν0 is such that |P |ν0 ≥ |P |ν for any other
place ν. We can suppose that for our points in the sequence P1, P2, . . . the
place ν0 is one and the same. Let Q = limn→∞ Pn, the limit being taken in the
ν0-adic sense. Then for a suitable local parameter t ∈ κ(C) at Q and a positive
real number δ, we shall have

|t(Pn)| =: dist(Pn, Q) � |Pn|−δ � H(Pn)
−δ/�(S). (3.3.3)

If δ > 2�(S), a direct application of Roth’s Theorem would be sufficient to
conclude. If, however, that δ < 2�(S), inequality 3.3.3 would not suffice. Siegel’s
trick to overcome this difficulty consists in taking an unramified covering C̃′ → C̃
of C. By Chevalley-Weil theorem, the integral points Pn lift to integral points
P ′
n ∈ C′

i(OS), in one of the finitely many twists of C′
i of C′. We can suppose,
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since we may dispose of infinitely many integral points, that all of them lift
to integral points on a same curve C′. The rate of convergence at infinity of
the P ′

n is the same, since the given covering is unramified (even at infinity).
On the other hand, the height of the new points P ′

n is smaller then that of
the Pn by a factor equal to the degree of the cover. Working with a cover of
degree > 2�(S)/δ one is in the situation of applying Roth’s theorem and we
may conclude.

In connection with Siegels’ Theorem, we end this section by showing that
the results about Thue-Mahler and hyperelliptic equations fit into this frame.

Let us start by proving that the algebraic curve defined by Thue’s equation
(3.1.2) is non-rational, as soon as the hypotheses appearing in the statement
of Thue’s Theorem are satisfied: this is the content of the following

Theorem 3.3.4. Given a homogeneous form F (X,Y ) ∈ C[X,Y ] of degree
degF = d ≥ 3, with no repeated linear factors, for every non-zero complex
number c ∈ C

∗ the equation

F (x(t), y(t)) = c

has no solutions (x(t), y(t)) ∈ C(t)2 in non-constant rational functions.

Proof. Homogenizing, we are reduced to showing that the homogeneous equa-
tion

F (X,Y ) = cZd

has no non-constant solutions in coprime polynomials x(t), y(t), z(t) ∈ C[t].
Factoring the homogeneous form as in (3.1.5) and dividing all factors by y(t)
we obtain

d∏
i=1

(
x(t)

y(t)
− αi

βi

)
= C

(
z(t)

y(t)

)d

,

where C = c
β1···βd

. Here we are assuming that all βi are non-zero, but the proof

would not be really different if (at most) one βi vanishes. As mentioned, the
points γi := αi/βi, i = 1, . . . , d, are pairwise distinct. Each time the rational
function f(t) := x(t)/y(t) takes one of these values, the function z(t)/y(t)
takes the value zero. Since deg(z(t)/y(t)) ≤ deg f , the cardinality of the set
f−1({γ1, . . . , γd}) cannot exceed deg f ; on the other hand, the pre-image of a
set of cardinality d has at least d deg(f) − R points, where R is the degree of
the ramification divisor of f ; the latter is equal to 2 deg(f) − 2 by Riemann-
Hurwitz formula or direct computation. Hence (d−3) deg f+2 ≤ 0 from which
it follows that d ≤ 2, finishing the proof. ��

It is also easy to see that the number of points at infinity is precisely d; so
the curves defined by Thue’s equations have two good reasons for the set of
their integral points to be finite.

We now consider the geometry of the algebraic curve defined by the hyper-
elliptic equation

y2 = f(x), (3.3.5)
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where f(X) ∈ C[X] is a polynomial with no repeated factors. The above equa-
tion defines a smooth affine curve in the plane A2; however, whenever deg f ≥ 4
its natural completion in P2 turns out to be singular at its only point at infinity;
its desingularization has two points at infinity. Let us denote by C̃ this smooth
projective model.

Theorem 3.3.6. Let f(X) ∈ C[X] be, as before, a non-constant polynomial
without repeated roots and let C̃ be a smooth complete model of the affine curve
defined by the above equation (3.3.5). If deg f ≥ 3, then C̃ is non-rational.

Proof. One could apply the well-known genus formula to prove that the genus
of C̃ is d

2 − 1 if d = deg f is even, d−1
2 if d is odd: hence it is > 0 whenever

d ≥ 3. Nevertheless, we prefer a proof which is closer in spirit to our proof of
the finiteness of integral solutions. We exibit a non-zero class in H1(C̃, {±1}),
recalling that this group is isomorphic to the quotient

{f ∈ C(C̃)∗ : ordp(f) ≡ 0 (mod 2) ∀p ∈ C̃}/{f2 : f ∈ C(C̃)∗}.

In fact, supposing for simplicity d ≡ 0 (mod 2), d ≥ 4, and writing f(X) =
a(X − α1) · · · (X − αd), for complex numbers α1, . . . , αd, a ∈ C, a �= 0, we
see at once that each rational function x − αi has a double zero at (αi, 0).
It has a simple pole at each of the two points at infinity; so the product f =
(x−α1)(x−α2) is a square locally everywhere. Let us show that it is not globally
a square in C(C̃); if it were so, we would have C(C̃) = C(x)(

√
f); however, this

extension is unramified over x = α3, while the extension C(C̃)/C(x) does ramify
over x = α3. ��

3.4 A Subspace Theorem approach to Siegel’s Theorem

The aim of this section is to provide a complete proof of Siegel’s Theorem on
curves assuming the Subspace Theorem (in the version given in Theorem 2.2.1).

Let us go back to the proof of Thue’s theorem. Recall that the equation
under examination was

F (x, y) = c,

where F (X,Y ) =
∏d

i=1(βiX − αiY ), d ≥ 3, the linear factors are pairwise
coprime and c �= 0. Letting C be the algebraic curve defined by the above
equation, the main point of the proof consisted in considering one of the rational
functions βix− αiy on C, viewed as a morphism C → A

1. We can extend it to
the complete curve C̃ (defined by the homogeneous equation F (X,Y ) = cZd)
by sending C̃ � (X : Y : Z) 
→ (βiX − αiY : Z) ∈ P1. Then we applied Roth’s
theorem, i.e. a result on Diophantine approximation on the line. The choice of
such a rational functions was dictated by the fact that it is regular on C (i.e. its
poles lie at infinity) and vanishes at sufficiently high degree on an accumulation
point for an infinite sequence of integral points on C (supposed to exist).
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This strategy does not work in general: for instance, if a curve C has only
one point at infinity, such a point will be an accumulation point for every
infinite sequence of integral points on C, and there exist no non-constant regular
function on C vanishing at infinity. Even if there are more points at infinity, it
may be that no function with the desired property exists. Let us see a concrete
example:

Example. Consider the algebraic curve of equation

C : x3 − 2y3 = x+ y + 1. (3.4.1)

Its genus is one, and moreover it has three points at infinity, so by Siegel’s
theorem it should have only finitely many integral points. Each sequence
(xn, yn), n ∈ N in C(Z) should converge to the point A := ( 3

√
2 : 1 :

0) ∈ P2 (considering the natural compactification C̃ of C given by the equa-
tion X3 − 2Y 3 = Z2(X + Y ) + Z3). The other two points at infinity are
B := (ζ 3

√
2 : 1 : 0) and B̄ = (ζ̄ 3

√
2 : 1 : 0), where ζ is a primitive third

root of unity. Every regular function f ∈ κ[C] is a polynomial function of
x = X/Z, y = Y/Z. If κ = Q, then, since A,B, B̄ are Galois-conjugated over
Q, such a function must have poles at each of the three points or be constant.
However, working over the cubic field κ = Q( 3

√
2) we can find a function having

a zero at A, for instance the function x+ 3
√
2y. Now from the equation (3.4.1)

we deduce that

(x− 3
√
2y) =

x+ y + 1

x2 + 3
√
4xy + y2

.

When the pair (x, y) tends to infinity (i.e. to A) on the curve C the asymp-
totic estimations |x + y + 1| � max(|x|, |y|) = |x| and |x2 + 3

√
4xy + y2| �

max(|x|, |y|) = x2 hold. Hence the left hand side tends to zero asymptotically
as x−1, not faster; dividing by y one obtains |x/y − 3

√
2| � H(x/y)−2 which is

not sufficient to deduce a contradiction via Roth’s theorem.

We can, however, try to consider more functions f1, . . . , fr ∈ Q( 3
√
2)[C],

giving rise to a morphism C → A
r, and then try to apply Diophantine approx-

imation results in the larger space A
r, like the Subspace Theorem.

Let us now give the details, following [15]. Precisely, we want to prove the
following

Theorem 3.4.2. Let C be a smooth affine curve with r ≥ 3 points at infinity,
defined over a number field κ. Then for every ring of S-integers OS ⊂ κ, the
set C(OS) is finite.

The full Siegel’s theorem then follows by applying Chevalley-Weil theorem.

Proof. Let Q1, . . . , Qr be the points (valuations) at infinity of the curve C. They
are defined over a finite extension of κ. For a large integer N put

VN = H0(C̃, N(Q1 + . . .+Qr)) = {f ∈ κ̄[C] : (f) ≥ −N(Q1 + . . .+Qr)}.
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Let f1, . . . , fd, where d = h0(N(Q1 + . . . + Qr)) = rN + O(1), be a basis of
VN . Since the divisor Q1 + . . .+Qr is defined over κ, we can choose f1, . . . , fd
defined over κ, i.e. with fi ∈ VN ∩ κ[C] for i = 1, . . . , d.

As in the previous sketch of the proof, if C(OS) is infinite, we can find a
sequence P1, P2, . . . of integral points in C(OS) such that for each place ν ∈ S
the sequence converges to a point Rν ∈ C̃(κν). We let S′ to be the set of places
for which the limit Rν lies at infinity.

After multiplying the fj by a suitable constant, we can suppose that fj(Pn) ∈
OS for all j, n.

For every ν ∈ S, consider the filtration V = Wν,1 ⊃ Wν,2 ⊃ . . . defined as

Wj = Wν,j = {f ∈ VN : ordRνf ≥ j − 1−N}.

We have dim(Wj/Wj+1) ≤ 1 for each j; in particular dimWj ≥ d− j + 1.

Now, for each ν ∈ S′, choose a basis of VN containing a basis of each subspace
Wν,j (for each j such that Wν,j �= {0}). These functions can be expressed
as linear combinations of the basis (f1, . . . , fd), i.e. as values of linear forms
Lν,j(f1, . . . , fd), where Lμ,j(X1, . . . , Xd) has its coefficients in κ̄. Clearly

ordRνLν,j(f1, . . . , fd) ≥ j −N + 1.

For ν ∈ S \ S′ we just put Lν,j(f1, . . . , fd) = fj .

For each ν ∈ S′ choose a local parameter tν ∈ κ(C) at Rν . The above
displayed inequality implies that

|Lν,j(f1(Pn), . . . , fd(Pn))|ν � |tν(Pn)|j−1+N
ν .

Now, observe that we dispose of d = rN + O(1) rational functions
Lν,j(f1, . . . , fd) , of which at most N have poles and approximately (r − 1)N
have zeros at Rν . Estimating the order of the product

∏
j Lν,j(f1, . . . , fd) we

have that this order is positive, and actually > (r− 2)N +O(1) for large N (a
stronger asymptotic estimates in fact holds, but we do not need it).

Put x = (f1(Pn), . . . , fd(Pn)) ∈ Od
S and let as before |x|ν be its sup-norm

in the ν-adic absolute value. Observing that for ν �∈ S′ the absolute values of
fj(Pn) are uniformly bounded, we can deduce that

∏
ν∈S

d∏
j=1

|Lν,j(x)|ν
|x|ν �

∏
ν∈S′

(|tν(Pn)|)(r−2)N
.

On the other hand, the height is easily estimated byH(x) � ∏
ν∈S′ (|tν(Pn)|)N .

Finally we obtain ∏
ν∈S

d∏
j=1

|Lν,j(x)|ν
|x|ν � H(x)2−r.

The Subspace Theorem then implies that infinitely many vectors x lie on a
hyperplane; this is impossible, since the functions f1, . . . , fd are linearly inde-



3.4 A Subspace Theorem approach to Siegel’s Theorem 43

pendent, so every non-trivial linear combination of f1, . . . , fd can have only
finitely many zeros.

Another approach to Siegel’s theorem on integral points involving non-
standard analysis has been proposed by Robinson and Roquette [46]. Their
proof implicitly uses Mordell-Weil theorem on the Jacobian of the curve, al-
though it does not mention explicitly Jacobians.

Finally, Gasbarri [33] gave a different proof of Siegel’s theorem, which uses
ideas coming from the proof of Thue-Siegel-Dyson-Gelfond theorem on Dio-
phantine approximation. Basically, he reproves this approximation theorem for
integral points lying on a curve, and deduces a finiteness statement whenever
there are three points at infinity. ��



Chapter 4

Hilbert Irreducibility Theorem

4.1 Hilbert Irreducibility Theorem

In this section we shall be interested in discussing proofs, generalizations and
geometric formulations of the so-called Hilbert Irreducibility Theorem (HIT in
the sequel).

Here is the original statement, proved by Hilbert in 1894:

Theorem 4.1.1 (Hilbert Irreducibility Theorem). Let F (X,Y ) ∈ Z[X,Y ] be a
polynomial, of degree ≥ 1 in Y , irreducible in the ring Q[X,Y ]. Then there exist
infinitely many integers n ∈ Z such that the specialized polynomial F (n, Y ) ∈
Z[Y ] is irreducible in the ring Q[Y ].

In the case when degY F ≥ 2, the only interesting one, as a corollary we
obtain that:

Under the above hypothesis on the polynomial F (X,Y ), for infinitely many
n ∈ Z the specialized polynomial F (n, Y ) has no rational root.

Consider the plane algebraic curve of equation C : F (x, y) = 0; it is endowed
with a map C → A

1 defined by the x function: C � (x, y) 
→ x ∈ A
1. The above

weak conclusion of HIT asserts that the map x : C(Z) → Z is not surjective.
The full HIT predicts that for infinitely many points n ∈ Z = A

1(Z), the pre-
image x−1(n) is irreducible, i.e. forms a single orbit for the natural action of
the Galois group.

A natural generalization to several variables and arbitrary number fields
reads as follows:

Theorem 4.1.2. Let κ be a number field, d ≥ 1 a positive integer,
F (X1, . . . , Xd, Y ) ∈ k[X1, . . . , Xd, Y ] an irreducible polynomial of degree ≥ 1
in Y . Then for a Zariski-dense set of rational points (a1, . . . , ad) ∈ κd the
specialized polynomial F (a1, . . . , ad, Y ) ∈ κ[Y ] is irreducible.
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We provide an equivalent geometric formulation:

Theorem 4.1.3. Let V be an irreducible affine algebraic variety of dimension
d ≥ 1, π : V → A

d a dominant morphism, all defined over a number field κ;
there exists a Zariski-dense subset of rational points (a1, . . . , ad) ∈ A

d(κ) = κd

such that each of their fibre π−1(a1, . . . , ad) is irreducible.

By irreducible, we mean of course irreducible over κ; it will be a finite set of
points of V (κ̄), all conjugate over κ to a single point.

The link between Theorems 4.1.2 and 4.1.3 is clear: a polynomial
F (X1, . . . , Xd, Y ) ∈ κ[X1, . . . , Xd, Y ] defines the affine variety in A

d+1 of equa-
tion F = 0, which is naturally endowed with a dominant morphism to the affine
space A

d (projection on the first d coordinates). If the polynomial F is monic
in Y , such a projection is also a finite map; we then speak of ramified covering
of the affine space.

Remark. Since the affine spaces are simply connected, each covering of
degree > 1 of A

d must ramify somewhere, actually over a codimension one
subvariety.

Hilbert Irreducibility Theorem (H.I.T.) is in a sense a converse to the
Chevalley-Weil Theorem discussed in the previous section. While the Chevalley-
Weil theorem applies in the situation where an unramified covering of algebraic
varieties is given (and it predicts a sort of surjectivity over the set of rational
points) H.I.T. holds for certain coverings of rational varieties, which do ramify.
A weak conclusion of H.I.T. is the non-surjectivity of the set-theoretic map
between the sets of rational points.

We shall see in a moment that actually this seemingly weaker statement
asserting non-surjectivity over rational points is in fact equivalent to the full
H.I.T. provided one admits coverings by possibly reducible varieties. The fol-
lowing statement will be regarded as the general Hilbert Irreducibility Theorem,
and will be proved to be equivalent to Theorem 4.1.2:

Theorem 4.1.4. Let κ be a number field, X be an algebraic variety defined
over κ of dimension d and π : X ��� A

d a dominant rational map, also defined
over κ. Suppose that π admits no section θ : Ad ��� X. Then the set Ad(κ) = κd

is not contained in the image π(X(κ)) of the rational points of X. Moreover,
the set Ad(κ) \ π(X(κ)) is Zariski-dense on A

d.

Remarks. (1) If X is irreducible, then the rational map π admits no section
if and only if it has degree > 1; in general, the existence of a section is equivalent
to the existence of an irreducible component of X where the restriction of π is a
birational isomorphism to A

d. (2) Due to the birational invariance of the above
statement, the affine space A

d could be replaced by any κ-rational variety.

Following Serre [48] we call thin the sets of rational points which are images
of morphisms admitting no section. Precisely:

Definition. Let Y be an algebraic variety defined over a field κ. A subset
A ⊂ Y (κ) is said to be thin with respect to κ if there exists an algebraic variety
X with dimX ≤ dimY and a rational map π : X ��� Y defined over κ such
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that π admits no sections and A is contained in the image π(X(κ)) of the
rational points of X.

We can always decompose the variety X as X = X ′ ∪ X ′′, for two closed
subvarieties X ′, X ′′, where X ′ is of pure dimension d = dimX = dimY or is
empty and every component of X ′′ (which might also be empty) has dimension
< d. Now a rational map π : X → Y admits a section if and only if it is of
degree one when restricted to a suitable irreducible component of X ′. Also,
note that the image of X ′′ is contained in a hypersurface of Ad.

Hence thin sets in A
d according to Serre’s definition above are union of sets

of two kinds: (1) sets of rational points contained in a proper closed subvariety;
(2) images of rational points of a variety of pure dimension d under a map
admitting no rational section. Again, type (2) sets could be alternatively defined
as finite union of images of rational dominant maps of degree > 1 defined on
an irreducible variety of the same dimension.

We shall prove that those of type (1) are in fact contained in sets of type
(2). This is the content of the following lemma (compare with [12], Lemma 5.2)

Lemma 4.1.5. Let Y ⊂ A
d be a proper closed subvariety defined over a field

κ. There exists an irreducible algebraic variety X of dimension d and a finite
map π : X → A

d of degree > 1 such that Y (κ) ⊂ π(X(κ)).

Proof. Let P (X1, . . . , Xd) ∈ k[X1, . . . , Xd] be a non-zero squarefree polynomial
vanishing identically on Y . Let X ⊂ A

d+1 to be the variety defined by the
equation Y 2 = P (X1, . . . , Xd). Then X is irreducible (since P is square-free,
in particular not a square); projection π : X → A

d onto the x-coordinates
provides a finite map such that Y (κ) ⊂ π(X(κ)). ��

In view of the above lemma, we could rephrase the definition of thin set by
saying that a subset Z ⊂ A

d(k) is thin with respect to κ if it is contained in the
image π(X(κ)) where X is a union of irreducible varieties each of dimension d
and π : X → A

d is dominant of degree > 1 on each component of X.

In view of the above consideration, Theorem 4.1.4 becomes equivalent to
the statement where “variety of dimension d” is replaced by “variety of pure
dimension d”. Also, it is equivalent to the following statement: the set Ad(κ) is
not thin. To justify that this last statement does imply also the last sentence
of Theorem 4.1.4, namely that A

d(κ) \ π(X(κ)) is Zariski-dense, note that if
it were not, up to adding a type (1) subset to π(X(κ)) (which is possible by
Lemma 4.1.5), we would obtain the emptiness of Ad(κ) \ π(X(κ)), contrary to
the fact that Ad(κ) is not thin.

Finally, it remains to us to prove Theorem 4.1.4 in some of its equivalent for-
mulations discussed above and to prove that it formally implies the apparently
stronger Theorem 4.1.3.

Proof of Theorem 4.1.4. We start by proving its 1-dimensional analogue:

Theorem 4.1.6. Let C be an algebraic curve defined over a number field κ,
π : C ��� A

1 be a rational dominant map admitting no section. Then A
1(κ) �⊂

π(C(κ)).
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Proof. We easily reduce to the case where C is smooth and π : C → A
1 is a finite

morphism; this might affect the set π(C(κ)) only by a finite set. Then decom-
pose C into the union C1 ∪ . . . ∪ Cr of its irreducible components. We know by
hypothesis that the restriction π|Ci

has degree > 1 for each i = 1, . . . , r and we
have to prove that A1(κ) �⊂ ⋃r

i=1 π(Ci(κ)). Let us choose a finite set S of places
of κ containing the archimedean ones. Since the ring extension κ[C]/π∗κ[A1] is
integral, after enlarging if necessary the set S, we can suppose that the ring
extension OS [C]/π∗OS [A

1] is also integral. By this we mean that the each com-
ponent Ci is defined by an equation Pi(X,Y ) = 0, where Pi(X,Y ) ∈ OS [X,Y ]
has S-integral coefficients, is monic in Y and the map π : C → A

1 is the projec-
tion on the X-coordinate. Clearly, it suffices to prove that A1(OS) �⊂ π(C(κ)),
but in view of the integrality of the ring extension OS [C]/π∗OS [A

1], each κ-
rational pre-image of an S-integer is necessarily an S-integer point of C. If
C(OS) is finite, we are done, since A

1(OS) = OS is an infinite set. Otherwise,
consider the different components Ci of C endowed with maps πi : Ci → A

1, for
i = 1, . . . , r. By hypothesis, for each i ∈ {1, . . . , r}, the map πi : Ci → A

1 has
degree > 1. Now, consider a non-constant polynomial p(t) ∈ OS [t], which will
be chosen later; it defines a finite morphism p : A1 → A

1. We can construct for
each i ∈ {1, . . . , r} the fiber product C′

i → A
1 of πi : Ci → A

1 and p : A1 → A
1,

namely the curve

C′
i := {(α, β) ∈ Ci × A

1 : πi(α) = p(β)},

endowed with its natural projection on A
1, sending (α, β) 
→ β. Let us choose

the polynomial p(t) in such a way that each corresponding curve C′
i is irreducible

and has positive genus. It suffices for this to choose p(t) = t3+ c, where c ∈ OS

is chosen outside the zero branch locus of any of the πi. Hence we have a choice
working for all components Ci. Now, the points of A1 which are both of the
form p(β) for β ∈ OS and πi(α), for α ∈ Ci(OS), are images of S-integral points
of C′

i, by our construction of C′
i. However, by Siegel’s Theorem all the curves

C′
i have only finitely many S-integral points; hence only finitely many of the

points of the set p(OS) ⊂ A
1(OS) can be images of S-integral points of C, so

infinitely many of them lie outside π(C(OS)). ��
End of the proof of Theorem 4.1.4. Let us assume that π : X ��� A

d is as
above; again, one easily reduces to the case where π : X → A

d is actually a
morphism. Suppose by contradiction that Ad(κ)\π(X(κ)) is not Zariski-dense,
so it is contained in a hypersurface Z ⊂ A

d. Let us choose a line l ⊂ A
d,

defined over κ such that: (1) l �⊂ Z; (2) the pre-image π−1(l) is a curve; (3) C
and π|C : C → l admits no section. The existence of such a line can be proved
by standard application of Bertini’s theorem. Then Theorem 4.1.6 provides the
desired contradiction. �
Proof of Theorem 4.1.3. As promised, we now prove Theorem 4.1.3, by deducing
it from Theorem 4.1.4. Recall that we are given an irreducible affine variety V
of dimension d and a dominant rational map π : V ��� A

d of degree > 1. We
want to prove that for a Zariski-dense set of rational points in A

d(κ), each pre-
image is irreducible over κ. Again, it is easy to reduce to the case of dimension 1
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and of a finite morphism π : V → A
1 (here V is an irreducible curve). We note

at once that if the degree of π is two or three, then Theorem 4.1.4 immediately
implies our conclusion: actually, if the pre-image of a point, which consists of
two or three algebraic points, contains no rational point, it means that such
pre-image is made of Galois conjugate elements (in other words: if a polynomial
in one variable of degree two or three has no roots, then it is irreducible). To
explain the strategy of our proof, let us consider the case of a map π : V → A

1

of degree four. Then, for a point α ∈ A
1(κ), having a rational pre-image is not

equivalent to having a reducible pre-image: it may be that the pre-image is
made of two Galois orbits of quadratic points. Let us define the fibered square
V ×π V of V with respect to π as

V ×π V := {(x, y) ∈ V × V : π(x) = π(y)};

it is a curve, endowed with a natural projection to A
1; let us also define its

symmetric fibered square as the quotient of the variety V ×π V by the natural
involution interchanging x and y, and denote it by V (2); it is a reducible curve,
contains canonically V via the diagonal embedding V ↪→ V ×πV . The reducible
curve V (2) is still endowed with a natural projection to A

1, which we denote
by π2. If π has degree 4, which we are assuming, then deg(π2) = 4 + 6 = 10.
Now, for a point α ∈ A

1(κ), the existence of a rational point in the pre-image
π−1
2 (α) is equivalent to the reducibility of the pre-image π−1(α) ⊂ V (κ̄). So,

Theorem 4.1.4 implies the conclusion of Theorem 4.1.3 in this case.
The general case is analogous: if n denotes the degree of the map π, it

suffices to consider the union of the curves V (i), where each V (i) is the i-th fold
symmetric fiber product of V with itself (with respect to π), for i = 1, . . . , [n/2].

�

4.2 Universal Hilbert Sequences

Let us consider the simplest case treated by Hilbert himself, namely that of
a polynomial P (X,Y ) ∈ Z[X,Y ], irreducible of degree ≥ 1 in Y . By Hilbert
Irreducibility Theorem 4.1.1, there exists an infinite sequence x0 < x1 < x2, <
. . . of integers such that the polynomial P (xn, Y ) is irreducible in Q[Y ] for
every n. One can ask whether there exists a single sequence working for all
irreducible polynomials: of course, we must neglect a finite set depending on
the given polynomial, namely the precise question is: does there exist a sequence
x0 < x1 < x2, < . . . of integers such that for every irreducible polynomial
P (X,Y ) ∈ Z[X,Y ] of positive degree in Y there exists an index n0(P ) such
that for every n > n0(P ) the specialized polynomial P (xn, Y ) is irreducible in
Q[Y ]? A positive answer to this question can be given via a diagonalization
argument, starting from the original result of Hilbert. It is however tempting
to search for explicit sequences with the above property. They are commonly
called Universal Hilbert Sequences. The first examples, to our knowledge, have
been provided by Sprindzuk [53]; other examples have been constructed by Bilu
[5] and Dèbes and Zannier [24].
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We shall content to show one example, drawn from the paper [14], which
classifies Universal Hilbert Sequences among power sums. By a power sum we
mean in this context a function N → Q of the form

n 
→ u(n) = b1a
n
1 + . . .+ bka

n
k ,

where k ∈ N and a1, . . . , ak are natural number and b1, . . . , bk are rational
numbers. Theorem 4 of [14] reads as follows:

Theorem 4.2.1. Let u : N → Q be a power sum as above. The following are
equivalent:

(1) the sequence u(0), u(1), . . . is a Universal Hilbert Sequence;
(2) there exist no integer d ≥ 2, polynomial P (X) ∈ Q[X] of degree d and

power sum v : N → Q such that identically u(nd) = P (v(n)).

As an example, the sequence n 
→ 2n + 3n is a U.H.S.. Clearly, it is not
the case for the sequence n 
→ u(n) := 2n, or any other geometric progression;
actually for the last sequence u, note that putting P (X) = X2 one has u(2n) =
P (u(n)), so condition (2) is not satisfied.

We now give a sketch of the proof that the sequence u(n) := 2n + 3n is a
U.H.S.; the general proof of Theorem 4.2.1 is obtained by following the same
path.

As in the deduction of Theorem 4.1.3 from Theorem 4.1.4, we reduce to
proving the following:

Proposition 4.2.2. Let P (X,Y ) ∈ Z[X,Y ] be an irreducible polynomial of
degree d ≥ 2 in Y . Then the equation P (2n + 3n, y) = 0 has only finitely many
solutions (n, y) ∈ N× Z.

Proof. Suppose by contradiction that the equation P (2n + 3n, y) = 0 has in-
finitely many integral solutions. Then by Siegel’s finiteness theorem on integral
points (Theorem 3.3.1), the curve of equation P (X,Y ) = 0 must have genus
zero and only one or two points at infinity. In algebraic language, there exist
two non-constant rational functions f(t), g(t) such that P (f(t), g(t)) ≡ 0, and
such that for infinitely many n ∈ N, 2n + 3n = f(tn) for a suitable tn ∈ Q.
Moreover, the degree of f(t) equals d = degY P and f(t), g(t) can have only
one or two poles (all together). In the first case, after a change of variables,
we obtain that f(t), g(t) ∈ Q[t] are polynomials. We then have, again by our
assumptions on the infinitude of the integral solutions to the original equation,
that the equation 2n + 3n = f(t) has infinitely many solutions (n, t) ∈ N×Q.
After a translation of the form t 
→ t+ c, we can suppose that the polynomial
f(t) ∈ Q[t] is of the form f(t) = atd+a2t

d−2+ . . .+ad. Since the denominators
of t must be bounded, we can suppose after another change of variable that t
is in fact an integer, so the equation 2n+3n = f(t) has infinitely many integral
solutions, where f(t) has degree d and no term of degree d − 1. In particular,
for infinitely many pairs (n, t) ∈ N× Z we shall have

|2n + 3n − atd| � |t|d−2.
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Working on each arithmetic progression modulo d and writing n = md + r,
we can say that for at least one value of r ∈ {0, . . . , d− 1} and a positive real
number c1, the Diophantine inequality

|2r2md + 3r3md − atd| < c1|t|d−2

has infinitely many integral solutions (m, t) ∈ N× Z. ��

Now we can rewrite the above inequality as∣∣∣∣2r2md + 3r3md

td
− a

∣∣∣∣ < c1|t|−2,

so ∣∣∣∣∣3
r/d3m d

√
1 + 2r2md3−r3−md

t
− a1/d

∣∣∣∣∣ < c2|t|−2,

for a suitable constant c2. Here 3
r/d and a1/d denote suitable real d-th roots of

3r and a. Now let us express by Taylor development d
√
1 + u as 1+δ1u+δ2u

2+
O(u3) where δ1, δ2 are the rational numbers δ1 =

(
1/d
1

)
= 1

d , δ2 =
(
1/d
2

)
= 1−d

2d2 .

Putting αi = δi · 2ri

3ri for i = 1, 2 and noting that 26m

36m � t−2 (since t tends to
infinity as 3m), we obtain from the above displayed inequality that∣∣∣∣

(
3r/d3m

t

)(
1 + α1

2md

3md
+ α2

4md

9md

)
− a1/d

∣∣∣∣ < c2
1

t2
.

Observe that the term 3r/d3m

t converges to a non-zero limit for m → ∞; so after
multiplying both sides by 9md · t

3r/d3m
we obtain we obtain that the inequality

|9md + α16
md + α24

md − a1/d3−r/dt3m| < c39
(d−1)m (4.2.3)

holds for infinitely many positive integers m. Note that the left-hand side is
a linear combination, with algebraic coefficients, of S-units and an S-integer:
namely, it is the value of a homogeneous linear form at the point

x = (9md, 6md, 4md, t3m) ∈ O∗
S
3 ×OS ,

where OS = Z[1/6]. We now proceed to apply the Subspace Theorem, with
κ = Q, N = 4, S consisting of the archimedean absolute value and the 2-adic
and 3-adic ones. Let us define the following linear forms: for the archimedean
place, denoted by∞, put L∞,1(X1, . . . , X4) = X1+α1X2+α2X3−a1/d3−r/dX4,
then complete to a basis by putting L∞,i(X1, . . . , X4) = Xi for i = 2, 3, 4. For
each p-adic place (p = 2, 3), put Lp,i = Xi. The double product appearing in
the statement of the Subspace Theorem becomes

4∏
i=1

∏
ν∈{∞,2,3}

|Li,ν(x)|ν ≤ 9−md · t · c39(d−1)m ≤ c43
−m.
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Since the height of the point x is � 9md, the Subspace Theorem 2.2.4, applied
with any ε < 1/(2d), implies that all but finitely many solutions to the inequal-
ity (4.2.3) satisfy finitely many linear dependence relations with integral coeffi-
cients. But now, this would yield that a relation like t = b13

m+b22
md3(1−d)m+

b34
md3−(2d−1)m, for suitable rational numbers b1, b2, b3, would hold infinitely

often; this is impossible: by integrality considerations, b2, b3 would vanish, and
we would have t = b13

m; however, an equation like

P (2r2md + 3r3md, 3md) = 0

can have only finitely many solutions m ∈ N.

The case where the rational functions f and g parametrizing the curve
P (X,Y ) = 0 have two poles is similar; details can be found in [14], [60] and [6].

4.3 Hilbert Irreducibility over algebraic groups

In this section, where we give no proofs at all, we shall connect Hilbert irre-
ducibility theory with algebraic groups. Let us start from the original version
given by Hilbert himself. Recall that it can be rephrased by saying that given
a curve C and a morphism π : C → A

1 from the curve to the line, the set N

of natural numbers cannot be contained in the image π(C(Q)) of the rational
points on C (unless the map π : C → A

1 admits a section).

Now, observe that the line A
1 is the underling algebraic variety of the ad-

ditive group Ga and that the set N of natural numbers is a Zariski-dense sub-
semigroup. It is then natural to try to ask the following: given an algebraic
group G defined over a number field κ, a variety V of the same dimension as
G and a dominant map π : V → G admitting no section, and given a Zariski-
dense sub-semigroup Γ ⊂ G(κ), the set Γ cannot be contained in the image
π(V (κ)) of the rational points of V .

Actually, the above statement does not hold, as shown by the simple example
below:

Example. Choose κ = Q and G = V = Gm to be the multiplicative group,
and π : Gm → Gm be the degree-2 isogeny: π(x) = x2. Letting Γ = {4n : n ∈
N}, say, we have that Γ is entirely contained into π(Gm(κ)).

More generally, whenever V is itself an algebraic group and π : V → G an
isogeny, one can construct a counterexample by choosing first a Zariski-dense
subgroup in V (κ) taking for Γ its image. Starting with the group Ga this will
not be possible, since the latter is simply connected.

It is then natural to ask if such counterexamples are in a sense the only
possible ones. In the case of linear algebraic groups, this is the content of the
following result, proved in [12]:

Theorem 4.3.1. Let G be a connected linear algebraic group defined over a
number field κ; let V be an algebraic variety with dimV = dimG and π : V ���
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G a rational dominant map, all defined over κ. Let Γ ⊂ G(κ) be a Zariski-
dense sub-semigroup. If Γ ⊂ π(V (κ)) then there exists an algebraic group G′,
an isogeny p : G′ → G and a rational map θ : G′ ��� V , all defined over κ,
such that π ◦ θ = p.

Let us see that a particular but significant case is connected with Theorem
4.2.1: consider the case where G = G

2
m is the two-dimensional torus, Γ is the

semigroup generated by the pair (2, 3) ∈ G
2
m; it is Zariski-dense, since the

two numbers 2 and 3 are multiplicatively independent. Take any irreducible
polynomial P (X,Y ) ∈ Q[X,Y ] of degree ≥ 2 in Y . Then the surface V ⊂ G

2
m×

A
1 defined by the equation P (X1 +X2, Y ) = 0, provided with the projection

π : (X1, X2, Y ) 
→ (X1, X2), gives an example of a ramified covering of G2
m

admitting no section. Theorem 4.2.1 assures that only finitely many points of
Γ have a rational pre-image in V , so in particular π(V (Q)) does not contain
Γ .

More generally, one can consider Diophantine equations involving linear re-
current sequences. We recall that a linear recurrent sequence is a sequence
u : N → κ which can be expressed in the form

u(n) =

h∑
i=1

pi(n)α
n
i ,

where p1(T ), . . . , ph(T ) are polynomial in κ̄[T ] and α1, . . . , αh ∈ κ̄∗, called roots
of the recurrence, are non-zero scalars.

Consider the simple-looking Diophantine equation like u(n) = y2, to be
solved in (n, y) ∈ N × κ, which consists in finding perfect squares (in a given
number field) in a linear recurrent sequence. We shall show how this equation
can be viewed as a problem on integral points on covers of algebraic groups.
Namely, let d be the multiplicative rank of the group generated by the roots,
which we suppose for simplicity to be torsion-free (we can however always re-
duce to this case); let β1, . . . , βd be a basis for this multiplicative group. Put
G = Ga ×G

d
m and let Γ be the cyclic group generated by γ := (1, β1, . . . , βd).

For simplicity, we suppose that each αi, so each βi, is κ-rational (so the same
holds for the polynomials pi); in that case Γ consists of κ-rational points of
G and the sequence u can be expressed as u(n) = f(γn), where f ∈ κ[G] is
a regular function on G. Now, let V ⊂ G

d
m × A

1 be defined by the equation
Y 2 = f(X1, . . . , Xd). Projection π : V → G

2
m onto the X coordinates provides

a dominant map without sections, unless the given linear recurrent sequence
is identically a square (i.e. a square in the ring of linear recurrent sequences).
One can then conjecture finiteness of integral solutions to the original equa-
tion, which would follow (via an elementary reasoning) from the degeneracy of
integral points on V .

A theorem of Zannier [59] (previously a conjecture of Pisot) proves that
the sequence cannot take always perfect square values in a given number field,
thus proving that the projection π(V (κ)) cannot contain Γ ; this is exactly the
content of Theorem 4.3.1 in that case. More generally, Ferretti and Zannier
[32] proved Theorem 4.3.1 for variety V and map π : V → Ga × G

d
m, at
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least whenever Γ is cyclic. The extension to arbitrary linear algebraic groups,
provided in Theorem 4.3.1, is based on that result, and carried out in [12].

As mentioned, at least when G is a torus, and π : V → G is a finite map, ad-
mitting ramification (which prevents V to be a torus itself) one could conjecture
that in fact V (OS) is degenerate. This would follow from Vojta’s conjecture,
and would e.g. imply the finiteness of the solutions to equations of the form
yd = 2a + 3b + 1, which we already mentioned (and will be reconsidered again
in the next chapter). For d = 2 and κ = Q, the above equation has been solved
completely by Leitner [36], using ad hoc methods.

Of course, it is worthwhile to consider also the case of non-linear algebraic
groups. WheneverG is a simple abelian variety, and V is an irreducible algebraic
variety provided with a dominant morphism V → G, then either V is itself is
an abelian variety (which happens if and only if the morphism is unramified),
or V is of general type. In the second case its integral (i.e. rational) points
should be degenerate. This particular case of Lang-Vojta conjecture, however,
is far from being proved at present. A weaker statement, suggested by Serre, is
that whenever G(κ) is Zariski-dense, π(V (κ)) should not coincide with G(κ),
or even should be sparse in some sense. Partial results in this direction are the
object of the paper [62].



Chapter 5

Integral points on surfaces

Let us now consider two-dimensional problems, i.e. problems reducing to the
distribution of integral points on surfaces.

Let us start with the question of the density of rational points: given a
smooth projective surface X̃ defined over a number field, we would like to
decide whether there exists a number field κ, containing a field of definition for
X̃, such that the set X̃(κ) of κ-rational points of X̃ is Zariski-dense. Unlike the
case of curves, this problem is by far still open.

It is natural to see what would result assuming Vojta’s conjecture, which in
our case boils down to Bombieri’s conjecture. We recall the (classical) birational
classification of algebraic surfaces (see e.g. [3]).

• Rational surfaces. These are the surfaces birationally isomorphic to the
plane; it is the case of all smooth hypersurfaces of degree ≤ 3 in projec-
tive 3-space.

• Ruled surfaces, i.e. surfaces birationally isomorphic to a product C̃ × P1,
where C is a curve (if C is the line, then the resulting surface will be rational).

• Elliptic surfaces. They can be thought of as elliptic curves over a 1-
dimensional function field; in other words they are surfaces admitting a
dominant map X̃ ��� C̃ whose generic fibre has genus one. Unlike other
authors, we do not exclude that they are also ruled or rational, K3,....

• Abelian surfaces, i.e. abelian varieties of dimension two.

• K3 surfaces. These are (smooth projective) surfaces which are simply con-
nected and whose canonical bundle is trivial. Being simply connected, they
admit no non-zero regular 1-forms, so their cotangent bundle is certainly not
trivial, unlike what happens for abelian surfaces. They might admit a fibra-
tion to P1, with elliptic generic fiber, so they can be elliptic in our sense. All
smooth quartics in P3 are K3 surfaces, as well as the smooth hypersurfaces
of multi-degree (2, 2, 2) in P

3
1.

• Kummer, bielliptic and Enriques surfaces. They are obtained as quotients
of abelian or K3 surfaces. For instance, a Kummer surface is the desingu-
larization of a quotient of the form A/ ± Id, where A is an abelian surface
and −Id is the involution of A sending P 
→ −P .

© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2016
P. Corvaja, Integral Points on Algebraic Varieties, HBA Lecture Notes in
Mathematics, DOI 10.1007/978-981-10-2648-5_5
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• Surfaces of general type: all the remaining ones. They are characterised
by having a canonical divisor which is big. It is the case for all smooth
hypersurfaces of P3 of degree ≥ 5.

According to the Bombieri-Lang-Vojta conjecture, the latter should have
only degenerate sets of integral points. For instance, every smooth surface in
P3 of degree ≥ 5 should have only degenerate rational points.

Concerning the other classes: the rational surfaces have a Zariski-dense set
of rational points over a suitable number field. The same is true of abelian
surfaces and a fortiori holds for their quotients. One can conjecture the same
conclusion for general K3 surfaces, but this is established only in particular
cases.

Whenever a surface X̃ admits a dominant map X̃ ��� C̃ to a curve of genus
≥ 2, then by Faltings’ theorem its rational points are contained in finitely
many fibers of such a map (plus possible indetermination points), so they are
not Zariski dense. This excludes ruled surfaces, apart those having a rational
base (rational surfaces) or an elliptic base; for these, the rational points are
Zariski dense, over a suitable number field.

We shall concentrate now on integral points, so our geometric datum will be
a pair (X̃,D), where X̃ is smooth projective and D ⊂ X̃ is a divisor. We shall
be interested in S-integral points with respect to D. As usual, such a set will
be denoted by X(OS), where X = X̃ \D is the corresponding quasi-projective
surface.

We recall from §1.2 a general result of Vojta: let A be a semi-abelian variety,
X ⊂ A a closed irreducible subvariety, both defined over a ring of S-integers of
a number field. If X is not a translate of a subgroup of A, then the set X(OS)
of its integral points is not Zariski-dense.

Such a theorem applies also to varieties which cannot be embedded into
semi-abelian varieties, but admit morphisms to a semi-abelian variety, whose
image is not a (translate of a) subgroup: an example in the compact case has
been shown above, where a morphism from a surface X̃ to a curve C̃ of genus
≥ 2 can be prolonged to a morphism X̃ → C̃ ↪→ J(C̃) to the Jacobian of that
curve.

Hence, given an algebraic varietyX, realized as X̃\D, for a smooth complete
variety X̃ and a hypersurface D, it is natural to look at all possible morphisms
X → A to semi-abelian varieties A. These morphisms are in some sense clas-
sified by the so-called generalized Albanese variety, which is constructed by
integrating logarithmic 1-forms: it is an extension of the ordinary Albanese va-
riety of X̃ by a torus, which depends on the divisor at infinity D. It has the
property that every morphism X → A′, where A′ is any semi-abelian variety,
factors through the generalized Albanese of X. By removing a ‘sufficiently big’
divisor D, the dimension of the toric part increases and eventually one man-
ages to embed the resulting variety into a semi-abelian one (actually even in a
torus). From the algebraic point of view, this operation corresponds to produc-
ing many never vanishing regular functions on X, whose values at S-integral
points will be S-units. However, if the divisor at infinity is ‘too small’, it may
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be that the generalized Albanese variety has dimension ≤ dimX; in that case
Vojta’s theorem will not be applicable. One such case occurs whenever X is
simply connected (by this we mean that the topological space X(C) is simply
connected): in that case the generalized Albanese variety reduces to one point,
and every map to a semi-abelian variety will be constant. Also, whenever X
is rational the compact factor of its generalized Albanese, i.e. the ordinary Al-
banese variety of X̃, vanishes, so Vojta’s theorem applies if and only if the
S-unit equation theorem can be applied.

It is then particularly interesting to study the distribution of integral points
on rational surfaces, also in view of the fact that the rational points on such
surfaces are Zariski-dense (up to enlarging the base field).

In next paragraph, we present some recent results which in particular can
be applied to prove degeneracy of integral points on some surfaces to which
methods based on semi-abelian varieties cannot be used.

5.1 The Subspace Theorem approach

Let, as before, X̃ be a smooth projective surface defined over a number field
κ, D = D1 ∪ . . . ∪Dr be a finite union of curves on X̃. We try to prove, under
suitable conditions on D, that the integral points on X = X̃ \D are not Zariski-
dense. Let us try to repeat the argument, based on the Subspace Theorem, that
we used for curves in §3.4. Letting VN = H0(X̃,ND) be the space of regular
functions on X having poles of degree at most N at infinity, we look for the
subspaces Wi,j := H0(X̃,ND− jDi) of those functions which moreover have a
zero of order at least j−N at Di (or a pole of order ≤ N − j if j ≤ N). Unlike
the case of curves, the cost of each vanishing condition on Di depends on the
curve Di and also on j; there is no uniform upper bound for the codimension
of Wi,j in Wi,j−1. We can see this fact already from a simple example in P2:
take r = 2, D1 the line at infinity and D2 another curve. Take j = N + 1, so
W2,j−1 is the space of polynomials of degree ≤ N while W2,j is the subspace
of those polynomials vanishing on the curve D2. Letting d be the degree of D2

and f(x, y) = 0 an affine equation for D2, we have that each polynomial in
W2,j is of the form f(x, y)g(x, y) for a polynomial g(x, y) of degree ≤ N − d.

Hence the codimension of W2,j in W2,j−1 is equal to
(
N+2
2

)−(
N+2−d

2

)
, provided

d ≤ N . At the next step, we will have to calculate the codimension of W2,j+1

in W2,j ; this will be equal to
(
N+2−d

2

)− (
N+2−2d

2

)
.

In general, we dispose of an upper bound for such codimension, in terms of
intersection indices of D with the Di. The general estimate is the following:

Lemma 5.1.1. Let X̃ be a smooth complete surface, D a divisor on X̃, C
an irreducible curve on X̃. Then dim(H0(X̃,D)/H0(X̃,D − C)) ≤ max{0, 1 +
(D.C)}.
Proof. The proof is obtained via standard cohomological methods: consider the
short exact sequence of sheaves on X̃:

0 → OX̃(D − C) → OX̃(D) → OX̃(D)|C → 0.
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The long-exact on cohomology gives an embedding

H0(X̃,OX̃(D))/H0(X̃,OX̃(D − C)) ↪→ H0(C,OX̃(D)|C).

The last vector space is the space of sections of a line bundle of degree D · C
on the curve C, hence its dimension is bounded as in the Lemma. ��

As a consequence, we do not obtain any degeneracy result for integral points
simply assuming to have a large number of curves at infinity (such a result
would be trivially false, anyway), but we must assume some inequalities on the
intersection matrix.

The main result in [16] (see also [19]) reads as follows:

Theorem 5.1.2. Let X̃ be a smooth projective surface, D1, . . . , Dr be irre-
ducible curves, no three of them intersecting. Assume there exist positive inte-
gers p1, . . . , pr such that

• the divisor D = p1D1 + . . .+ prDr is big and numerically effective;
• for each i = 1, . . . , r, letting ξ being the minimal (real) solution to the equa-

tion
D2

i ξ
2 − 2(D.Di)ξ +D2 = 0,

the inequality
2ξD2 > (D.Di)ξ

2 + 3piD
2 (5.1.3)

holds.

Then the set X(OS) of S-integral points on X := X̃ \ |D| is not Zariski-dense.
One can moreover prove that the Zariski closure of the set X(OS) consists

of a finite set depending on the number field κ and on S plus a finite union of
curves from a set which only depends on X. We postpone to the end of this
paragraph a sketch of the proof of Theorem 5.1.2; full details are given in [16];
see also Theorem 5.2, Corollaries 5.6 and 5.7 in [6] and the subsequent proofs
provided therein.

The numerical condition on the intersection products might look cumber-
some, but some concrete examples show that the above statement is in a sense
optimal. In fact, Levin [37] deduced from it the following nice corollary, (see
also Theorem 5.8 of [6]):

Corollary 5.1.4. Let X̃ be a smooth projective surface, D1, . . . , D4 be irre-
ducible curves, no three of which intersect. Suppose that each curve Di is a big
divisor. Put X = X̃ \ (D1 ∪ . . . ∪D4). Then X(OS) is not Zariski-dense.

The example of three lines in general position on the plane, whose comple-
ment is isomorphic to G

2
m, shows that the requirement of having at least four

big curves at infinity cannot be weakened. Also, the example of the four divisors
in P1 × P1 provided by two horizontal and two vertical lines, whose comple-
ment is again G

2
m, shows that one cannot remove completely the ampleness

hypothesis.
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Another corollary is the following (see [16], Theorem 1):

Corollary 5.1.5. Let X̃ be as before, D1, . . . , D5 be five curves, no three of
them intersecting. Put X = X̃ \ (D1 ∪ . . . ∪ D5). Suppose that D2

i = 0 for
i = 1, . . . , 5 and for suitable positive integers p1, . . . , p5, c, pipj(Di.Dj) = c for
all i �= j. Then X(OS) is not Zariski-dense.

Again, easy counterexamples are constructed with only four divisors as
above.

A typical example of a rational surface is provided by cubic surfaces in P3;
the theory of smooth cubic surfaces is classical; in particular, it is well-known
that each smooth cubic surface contains exactly twenty-seven lines (over an
algebraically closed field), and that each such line is contained in a hyperplane
section consisting of three lines. The canonical divisors of such surfaces are
equivalent to the opposite of a hyperplane section. Hence, after Vojta’s conjec-
ture one should obtain degeneracy of integral points on any open set obtained
by removing two hyperplanes sections (not sharing components).

One corollary of Theorem 5.1.2 provides exactly this conclusion, but de-
mands that such hyperplane sections be completely reduced:

Corollary 5.1.6. Let X̃ be a smooth cubic surface in P3 and let D1, . . . , D6 be
six lines lying in two planes, no three of them intersecting. Put X = X̃ \ (D1 ∪
. . . ∪D6). Then X(OS) is not Zariski-dense.

This is Theorem 1 in [22]. Again, the number of lines to be removed cannot
be lowered, and the requirement that they lie in two planes cannot be omitted.
Other corollaries of Theorem 5.1.2 will be given in the following paragraph.

As promised, we give a sketch of the proof of Theorem 5.1.2, following closely
§3 of [16].

First remark that the theorem would follow if we prove that for each infinite
set of integral points there exists a curve containing infinitely many of them.
This equivalence is obtained by numbering all the curves on the surface which
are defined over the given number field. Secondly, we reduce to the case where
all the divisors Di are defined over a the fixed given field, denoted by κ.

Let {Pi}i∈N be an infinite sequence of pairwise distinct integral points on
X. By the above observation, we may suppose that for each place ν ∈ S, the
sequence converges to a point Pν ∈ X̃(κν).

For a positive integer N , which will be taken to be sufficiently large at the
end of the proof, we denote by VN the vector space

VN = H0(X̃,ND) = {ϕ ∈ κ(X̃) : div(ϕ) +ND ≥ 0}.

It is a finite dimensional sub-vector space of the ring κ[X] of regular functions
on X = X̃ \ D. By the asymptotic Riemann-Roch theorem, its dimension
satisfies

d = dN := dimVN =
D2

2
N2 +O(N)
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for N → ∞. (Note that D2 > 0 by the assumption that D is big and nef). Let
ϕ1, . . . , ϕd be any base of VN . After multiplying by a suitable non-zero scalar,
we may suppose that each ϕj(Pi) lies in the ring OS .

Our aim is to construct, for each place ν ∈ S, independent linear forms
L1,ν , . . . , Ld,ν in ϕ1, . . . , ϕd, which will be ν-adically ’as small as possible’ when
calculated on the sequence of integral points P1, P2, . . .. More precisely, we
would like to have the bound

d∏
j=1

|Lj,ν(Pi)|ν �
(
max

j
(|ϕj(Pi)|ν)

)−μν

(5.1.7)

for suitable μν > 0, and where the implied constant does not depend on i. (Here
we denote by Lj,ν the linear form calculated on ϕ1, . . . , ϕd, so that it becomes a
function on X and it makes sense to calculate it on Pi.) The application of the
Subspace Theorem will provide the conclusion. In order to have small values
of the left-hand side in (5.1.7) we try to construct regular functions Lj,ν such
that their product has a zero at the ν-adic limit point Pν of the sequence Pi.

To reach this goal, we distinguish three cases:

(i) Pν does not belong to the support of D (i.e. Pν ∈ X(κν));
(ii) Pν lies in exactly one component Dν of D;
(iii) Pν lies at the intersections of two components Dν , D

∗
ν of D.

In case (i) we simply take Lj,ν = ϕj for each j = 1, . . . , d. Since both sides in
(5.1.7) are uniformely bounded (i.e. bounded independently of i) the inequality
holds e.g. for μν = 1 (thanks to the constant implicit in the symbol �).

We now consider case (ii), where Pi → Pν ∈ Dν and the limit Pν does not
belong to any other component ofD. Consider the filtrationW1 = VN ⊃ W2 . . .,
where

Wj,ν = Wj := {ϕ ∈ VN | ordDνϕ ≥ j − 1−Npν}.
(Here pν is the weight pi relative to the unique index i ∈ {1, . . . , r} such that
Dν = Di.) We can certainly find a basis L1,ν , . . . , Ld,ν of VN (whose elements
can be expressed as linear forms in ϕ1, . . . , ϕd) containing a basis for each
sub-space Wj ; simply take a basis of the smallest nonzero Wj and complete it
successively to bases of the previous spaces of the filtration. this basis contains
exactly dim(Wj/Wj+1) elements in the set Wj \ Wj+1, for each index j such
that Wj is nonzero. Also the order at Dν of every such element is precisely
j − 1−Npν . Hence we have

ordDν

(
d∏

i=1

Li,ν

)
=

d∑
i=1

ordDν (Li,ν) =
∑
j≥1

(j − 1−Npν) dim(Wj/Wj+1).

In order to prove that the product on the left-hand side vanishes at Dν , we need
a lower bound for the sum on the right-hand side. Since

∑
j dim(Wj/Wj+1 =

dimVN = d, we have
∑

j(−1 − Npν) dim(Wj/Wj+1) = (−1 − Npν)d, inde-
pendently of the filtration. On the contrary, to estimate

∑
j j dim(Wj/Wj+1),
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we need some estimates on the relative dimensions dim(Wj/Wj+1). Taking into
accounts that the total sum

∑
j dim(Wj/Wj+1) must give the fixed value d (in-

dependent of the filtration), it turns out that what we need is an upper bound
for the dimension dim(Wj/Wj+1) (basically, we need the existence of ‘large’
Wj for large values of the index j; in other words, we need to prove that one
can construct ‘many’ regular functions with high vanishing order at Dν . We
shall use for this scope Lemma 5.1.1 which gives the upper bound

dim(Wj/Wj+1) ≤ 1 +N(D.Dν)− jD2
ν .

Now, by a simple combinatorial lemma (see Lemma 3.1 in [16]), it turns out that
the worst situation would occur when the relative dimensions dim(Wj/Wj+1)
coincide with the above upper bound; so in any case∑

j

j dim(Wj/Wj+1) ≥
∑
j

j(1 +N(D.Dν)− jD2
ν) =

∑
j

jUj ,

where the sum runs over those positive integers j such that Uj := 1+N(D.Dν)−
jD2

ν ≥ 0. Now let ξ = ξν be the minimal positive solution to the equation

D2
νξ

2 − 2(D.Dν)ξ +D2 = 0.

So ξν = ξi whenever Di = Dν . The solutions to the above quadratic equation
are shown to be indeed real by an easy application of Hodge Index Theorem
(see Lemma 2.4 in [16]) and at least one of them is positive, so ξν is well defined.
By the assumption 5.1.3 and little calculations left to the reader, we can find
a real number λ with 0 < λ < ξ and

λ2(D.Dν)

2
− λ3D2

ν

3
− D2pν

2
> 0. (5.1.8)

From the definition of ξ and the inequality λ < ξ it follows that

(D.Dν)λ− D2
νλ

2

2
<

D2

2
.

Put R = [λN ] (integral part) and recall that Uj = 1 +N(D.Dν)− jD2
ν . Then

R∑
j=1

Uj = RN(D.Dν)− R2D2
ν

2
+O(R+N) ≤ N2

(
(D.Dν)λ− D2

νλ
2

2

)
+O(N).

By the above inequality, the number between parenthesis is < D2/2 and by the
mentioned asymptotic Riemann-Roch theorem d = dN = N2(D2/2) + O(N);
so for large N we shall have

R∑
j=1

Uj ≤ d.
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We then estimate
∑

j j dim(Wj/Wj+1) as

∑
j

j dim(Wj/Wj+1) ≥
R∑

j=1

jUj =

[λN ]∑
j=1

j(1 +N(D.Dν)− jD2
ν).

The right-hand side is N3
(

λ2(D.Dν)
2 − λ3D2

ν

3 +O(1/N)
)
. Finally the quantity∑

j≥1 ordDν (Lj,ν) =
∑

j≥1(j − 1−Npν) dim(Wj/Wj+1) that we want to esti-
mate satisfies the lower bound∑

j≥1

ordDν
(Lj,ν) =

∑
j≥1

j dim(Wj/Wj+1)− (1 +Npν)d

≥ N3

(
λ2(D.Dν)

2
− λ3D2

ν

3
− D2

2

)
+O(N2)

By (5.1.8) it is strictly positive for large values of N . Now, take a local equation
tν = 0 for Dν at Pν and write each function Lj,ν as

Lj,ν = t
ordDν (Lj,ν)
ν ρj,ν

for some rational function ρν , regular at Pν . In particular, the values ρj,ν(Pi)
are well-defined for large i and uniformly bounded as i varies. So for each j we

have |Lj,ν(Pi)| � t
ordDν (Lj,ν)
ν (Pi)|ν , so
d∏

j=1

|Lj,ν(Pi)|ν � |tν(Pi)|
∑d

j=1 ordDν (Lj,ν)
ν .

By a similar argument, taking into account that ϕj has a pole of order at most
Npν at Dν , and no other poles at divisors containing pν , we can bound

max
j

(ϕj(Pi)) ≤ tν(Pi)|−Npν
ν .

Hence we obtain relation (5.1.7) for some positive μν independent of Pi.

Let us now consider case (iii), where the sequence Pi converges ν-adically to
a point Pν ∈ Dν ∩D∗

ν . By assumption, Pν does not belong to any other divisor
Di. Let us consider two filtrations Wj ,W

∗
j in VN as before, one for each of the

divisors Dν , D
∗
ν . By an elementary fact from linear algebra (see e.g. Lemma

3.2 in [16]) we can choose a basis L1,ν , . . . , Ld,ν adapted to both filtrations,
i.e. containing bases for all the subspaces Wj and W ∗

j (however, this would be
in general impossible for three filtrations). Let tν , t

∗
ν be two regular functions

at Pν providing local equations for Dν , D
∗
ν respectively. Then each rational

function Lj,ν can be written as

Lj,ν = t
ordDν (Lj,ν)
ν t∗ν

ordD∗
ν
(Lj,ν)ρj,ν ,
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where ρj,ν is regular at Pν . By the above calculations, we have that both∑
j ordDν (Lj,ν) and

∑
j ordD∗

ν
(Lj,ν) can be made strictly positive for large

values of N . Hence the relation (5.1.7) holds also in this last case.

We can now apply the Subspace Theorem 2.2.1. We take x ∈ Pd−1(κ) to be
the point x = (ϕ1(Pi) : . . . : ϕd(Pi)). For each ν ∈ S, the ν-adic term appearing
on the left-hand side of (2.2.2) is bounded as

d∏
j=1

Lj,ν

‖x‖ ≤ ‖x‖−d−μn
ν ,

so, putting μ = minν∈S(μν), the double product on the left side of (2.2.2) is
bounded as ∏

ν∈S

d∏
j=1

|Lj,ν(x)|ν
‖x‖ ≤

(∏
ν∈S

‖x‖ν
)−d−μ

.

Since the values ϕi(P ) are all S-integers, the term
(∏

ν∈S ‖x‖ν
)
represents the

height of the projective point x. Hence the above inequality implies (2.2.2), so
the conclusion of the Subspace Theorem holds. In particular, there will be a
hyperplane in Pd−1 containing infinitely many points (ϕ1(Pi) : . . . : ϕd(Pi)).
This implies that a nonzero regular function on X vanishes on infinitely many
integral points of the sequence Pi, so these points lie on an algebraic curve on
X. As remarked, this concludes the proof.

5.2 Divisibility problems

Siegel’s finiteness theorem in the case of rational curves can be restated as
follows:

Theorem 5.2.1. If f(X), g(X) are coprime polynomials with S-integral coef-
ficients such that for infinitely many S-integers x ∈ OS, f(x) divides g(x) in
the ring of S-integers, then the polynomial f(X) has at most one (complex)
root.

Proof. Let us factor f(X) over Q̄[X] as f(X) = a · (X − α1) · · · (X − αd),
where d = deg(F ), a ∈ Q̄

∗, α1, . . . , αd ∈ Q̄. Suppose that α1 �= α2; we shall
deduce from Siegel’s theorem that only finitely many x ∈ OS satisfiy f(x)|g(x).
Enlarging S we can suppose that a, α1, α2 ∈ OS . Let us write, for i = 1, 2, the
polynomial g(X) as g(X) = (X − αi)hi(X) + ri, for some S-integer ri, which
must be non-zero since f(X), g(X) are supposed to be coprime. Then for every
x ∈ OS such that f(x)|g(x) we have that (x − αi)|g(x) for i = 1, 2, and so
(x−αi)|ri; after further enlarging OS , we can suppose that r1, r2 are units, so
x − αi must be units; since their difference is the non-zero constant α2 − α1,
only finitely many possibilities for x can occur. ��

We shall see that some extension of this fact to two variables polynomials is
possible, and leads to questions on integral points on surfaces, more precisely
on rational surfaces.
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First consider the S-unit equation theorem in three variables, providing the
degeneracy of the solutions in S-units to the equation x+ y + z = 1. One can
rephrase the statement as follows: the pairs of S-integers (x, y) ∈ A

2(OS) such
that x|1, y|1, (x+ y − 1)|1 are not Zariski-dense on the plane.

We are then considering three polynomials fi(X,Y ) ∈ OS [X,Y ], for i =
1, 2, 3, (in the above examples the polynomials X,Y,X+Y −1) and three more
polynomials gi(X,Y ) ∈ OS [X,Y ] (in our example all the three are equal to the
constant 1) and we look for the points (x, y) ∈ O2

S such that

fi(x, y)|gi(x, y) for i = 1, 2, 3. (5.2.2)

This corresponds to the system of Diophantine equations fi(x, y)·zi = g(x, y)
in the unknowns (x, y, z1, z2, z3), to be solved over the ring OS ; the complex
solutions define a rational affine surface. Under natural conditions on the poly-
nomials fi, gi we can prove the degeneracy of integral points on such a surface,
i.e. the degeneracy of the set of solutions to the divisibility problem 5.2.2. This
is the content of the following result from [22]:

Theorem 5.2.3. Let fi(X,Y ), gi(X,Y ) ∈ OS [X,Y ], i = 1, 2, 3, be two triple
of non-zero polynomials satisfying deg fi ≥ deg gi; suppose also they satisfy
the generic position assumption below. Then the solutions (x, y) ∈ O2

S to the
divisibility problem 5.2.2 are not Zariski-dense in the plane.

Note that in particular it applies whenever deg fi = deg gi = 1, thus provid-
ing, in the case f1 = X, f2 = Y, f3 = X + Y − 1, a stronger statement than the
S-unit equation theorem.

The mentioned generic position conditions are the following:

• for each 1 ≤ i < j ≤ 3 the curves of equation fi = 0 and fj = 0 have no
common points at infinity (after embedding A

2 ↪→ P2 in the usual way).
• there exist no common zero to the three polynomials f1, f2, f3;
• for each i such that gi is non constant the two affine curves fi = 0 and gi = 0

intersect transversely;
• for 1 ≤ i < j ≤ 3 and h ∈ {i, j}, the three curves fi = 0, fj = 0 and gh = 0

have no point in common.

The mentioned case where deg fi = deg gi = 1 is of particular geometric
interest, since it corresponds to a simply connected smooth surface. It is the
first example of a smooth simply connected variety for which the degeneracy
of integral points (over arbitrary ring of S-integers) could be proved (note that
no example can exist in dimension one). Such a surface could be intrinsically
defined as follows: starting from the affine plane, take three lines in general
position L1, L2, L3 and three points Pi ∈ Li, i = 1, 2, 3, outside the intersections
of the lines. Then let X̃ be the surface obtained by blowing up the three points
P1, P2, P3 and X the open subset obtained by removing the strict transforms of
the lines L1, L2, L3. Integral points on X correspond bijectively with solutions
to the divisibility problem fi(x, y)|gi(x, y). Once reformulated in this way, the
proof of Theorem 5.2.3 is an application of Theorem 5.1.2.
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Other results on degeneracy of solutions to divisibility problems can be de-
duced form the Main Theorem of [18]. They concern problems of the form

f(u, v)|g(u, v), (5.2.4)

where f(x, y), g(x, y) ∈ OS [x, y] are coprime polynomials. They correspond
to integral points on surfaces in the following way: consider the projective
plane P2, with projective coordinates (X1 : X2 : X3). Consider the three lines
D∗

i : Xi = 0, for i = 1, 2, 3. Letting F (X,Y, Z), G(X,Y, Z) be the homogeneous
forms associated to the polynomials f(x, y), g(x, y), we let P1, . . . , Pk be the
points defined by F = G = 0. Define X̃ as the blow-up of the plane over
P1, . . . , Pk and D4 the strict transform of the plane curve F = 0 (which can
be supposed to be irreducible) and, for i = 1, 2, 3, let Di be the pull-back
of D∗

i . Then, at least whenever the mentioned curves on the plane intersect
transversely, the divisibility problem (5.2.4) is equivalent to finding integral
points on X := X̃ \ (D1 ∪ . . . ∪D4).

The proof of the Main Theorem in [18] does not use explicitly any geometry
on surfaces, in particular it does not use Riemann-Roch theorem; however, it
does make use of Schmidt’s Subspace Theorem, which is applied to very explicit
linear forms. The main difference from the proof of Theorem 5.1.2 is that in
[18] one uses a suitably chosen non-complete linear system instead of our space
VN , and in that case this fact constitutes an advantage. Instead of just proving
the degeneracy of solutions to (5.2.4), by the methods of [18] one finds a strong
upper bound for the ‘g.c.d.’ of the values of f(u, v) and g(u, v) at S-unit points,
proving in particular that this g.c.d. is asymptotically negligible with respect
to the height of f(u, v).

A concrete example of a problem which can be reduced to a divisibility one
arises in the work [9] by Canci, about rational periodic points for endomor-
phisms of the line. There Canci considers the families of pairs (f, P ) formed
by a degree-two morphism f : P1 → P1 and a point P ∈ P1, periodic for
the iteration of f , of fixed order n. The group PGL2 acts by conjugation on
such pairs, and the quotient space turns out to be a quasi-projective surface
(a quadratic rational function is defined by five parameters, while the group
PGL3 has dimension three).

Let us consider the pairs (f, P ) defined over a number field κ, where f : P1 →
P1 is a quadratic endomorphism having bad reduction only over a fixed set of
places S of κ; this means that the degree of the reduction of f modulo every
place outside S remains equal to 2. Such pairs are parametrized by S-integral
points on an open surface Xn. Theorems 1.2 and 1.4 from [9] read as

Theorem 5.2.5. Let κ be a number field, S a finite set of places containing
the archimedean ones. Let n ≥ 4 be an integer. Then up to conjugation by
elements of PGL2(κ), there are only finitely many rational functions of degree
two, defined over κ, with good reduction outside S, admitting a periodic point
of order n. For n = 3, all but finitely many such functions are of the form
f(z) = (z − 1)(uz + 1)/uz2, for a unit u ∈ O∗

S.
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The theorem can be viewed as a finiteness (or degeneration) statement about
integral points of the corresponding moduli space Xn.

The proof for n ≥ 4 consists essentially in producing a morphism Xn →
P1 \ {0, 1,∞} and then applying Siegel’s theorem (so working in dimension
one). In the case n = 3, on the contrary, such a method cannot work, since
the corresponding (rational) surface does not admit such morphisms. Then
the proof proceeds by exploiting some divisibility conditions, which can be
interpreted as integrality with respect to blown-up divisors, and eventually
applying the main theorem of [18].

5.3 Constructing integral points on surfaces

We have seen in Chapter 1.2 that whenever a curve C̃ \D does not satisfy the
hypothesis of Vojta’s conjecture, namely when deg(D+KC̃) ≤ 0, such a curve
admits a Zariski-dense set of integral points, provided we allow finite degree
extensions of the ring of integers.

The situation is much more complicated and mysterious for surfaces, even
for rational ones. However, a good description is possible for complements of
curves with normal crossing singularities on the plane. Namely, we have:

Theorem 5.3.1. Let D ⊂ P2 be a curve with normal crossing singularities (if
any) satisfying degD ≤ 3, defined over a number field κ. Let X = P2 \D be its
complement. Then there exists a finite extension of κ and a finite set of places
S such that the set X(OS) of S-integral points is Zariski-dense in X.

The crucial case, arising when D is a smooth cubic, has been proved by
Beukers [4].

We first give the proof in the easy cases when degD ≤ 2 or D is a singular
cubic.

We have already seen the case when D is a configuration of lines (necessarily
on general position, due to our assumption on normal crossing singularities).
Suppose now that D is the union of a smooth conic and a non-tangent line.
Up to projective automorphisms, we can suppose that the line is the one at
infinity and that in affine coordinates (x, y) the conic has equation xy = 1.
Then the integral points correspond to pairs of S-integers (x, y) ∈ O2

S such
that u := xy − 1 is a unit. These can be obtained by letting u run over the
units and factoring u+1 into a product in all possible ways. Clearly, we obtain
a Zariski-dense set. Note that this case also covers the case of a single conic,
since adding an extra component at infinity can only diminish the set of integral
points.

We now treat the case of an irreducible singular curve; we only consider
nodal curves, since we assume that the singularities are of normal crossing
type. Let D be such a cubic and L1, L2 be the principal tangents at its singular
point O, i.e. the only lines intersecting D only at O (with multiplicity three).
We prove a stronger statement, namely that integral points on the complement
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of D+L1 +L2 are Zariski-dense. In fact, consider the pencil Λ of lines passing
through O: each such line L, if it is different from both L1, L2, intersects D at
a second point p(L). Then the surface X := P2 \ (D + L1 + L2) is endowed
with a map X → Λ \ {L1, L2} whose fibers are isomorphic to the complement
of two points in P1. Notice that these missing points are also ordered (e.g. the
first is O, the second p(L)), so we obtain a principal Gm-bundle with basis
Λ \ {L1, L2} � Gm. To show that this principle bundle is rivial, it suffices to
exhibit a regular section1. To do this, just take another nodal curve with the
same principle tangents at the nodal point2 and to each line in Λ associate the
intersection with the second nodal curve, which will be always distinct from
the intersections with the first one. We have then proved that X � G

2
m, so in

particular X(OS) is Zariski-dense for a suitable ring of integers OS .

The much more sophisticated case of the complement of a smooth cubic
is treated by constructing infinitely many affine curves on the complement
of D, each admitting infinitely many integral points. We have seen that a
genus zero curve with at most two points at infinity contains infinitely many
S-integral points, provided we allow a finite extension of the ring of S-integers.
The problem is that we need to work with infinitely many curves, since we
want to produce a set of integral points which is dense on the plane, and we
allow only finitely many finite extensions of the ring of integers. Hence we need
a criterion for the infinitude of integral points on curves over a fixed ring of
S-integers.

The sought criterion follows from the following two lemmas. The first one is
a reformulation of (a generalization of) well known facts in the theory of Pell’s
equation:

Lemma 5.3.2. Let κ be a number field, OS ⊂ κ be a ring of S-integers; let
C̃ ⊂ P2 be a smooth conic defined over P2. Let L ⊂ P2 be a line defined over
κ, not tangent to C. Suppose that either (i) L ∩ C consists of two conjugated
quadratic points P, P ′ and one place of S splits in the corresponding quadratic
extension of κ, or (ii) the group of units O∗

S is infinite. Then the group G ⊂
PGL3(OS) of projective transformations

G := {g ∈ PGL3(OS) : g(L) = L, g(C) = C}

is infinite.

Proof. Since the group PGL3(OS) acts transitively on the lines of P2 defined
over κ, we can suppose that L is the line at infinity Z = 0. Then, in affine
coordinates for the complement P2 \ L, the equation for C = C̃ \ (L ∩ C̃) takes
the form:

C : ux2 + vxy + wy2 + ax+ by = c,

1 or to invoke the triviality of the Picard group of Gm � A1 \ {0}
2 if e.g. the first cubic curve is defined by the affine equation y2 = x3 + x2, one can take for
the second one that of equation y2 = 2x3 + x2
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for suitable S-integers u, v, w, a, b, c. Let q(x, y) := ux2 + vxy + wy2 be the
quadratic form appearing in the equation above. Note that the two points of
L∩C are (ξ : 1 : 0) where ξ satisfies uξ2+ vξ+w = 0. It is well known that the
corresponding orthogonal group SO(q,OS) ⊂ SL2(OS), namely the group of
matrices T ∈ SL2(OS) preserving the quadratic form q, is infinite and contains
elements of infinite order (in the classical case of the form x2 − dy2 over the
integers, d being positive and non-square, this is the infinitude of the solutions
to Pell’s equation). Here we use the fact that O∗

S is infinite or becomes infinite
after extending κ by adding the roots of the polynomial uξ2 + vξ + w.

If a = b = 0 we have finished. Otherwise, we must operate a change of
variables, translating the centre of symmetry of the conic to the origin, but
this translation might carry integral points of the plane to rational non-integral
ones. Precisely, the baricenter of the affine conic C defined above is the point
(α, β) satisfying the equation

A ·
(
α

β

)
=

(
a

b

)
,

where A =

(
2u v
v 2w

)
. The determinant of A being det(A) = 4uw − v2 �= 0,

the solution (α, β) is defined in the group (4uw − v2)−1 · OS . Now take for T
an element of infinite order in SO(q,OS); let m ≥ 1 be an integer such that
Tm ≡ I (mod (4uw − v2) · OS). Then the affine transformation of the plane(

x

y

)

→

(
α

β

)
+ Tm ·

(
x− α

y − β

)
= Tm ·

(
x

y

)
+ (I − Tm)

(
α

β

)

is defined over OS and preserves the conic C. ��
From the lemma we deduce the

Corollary 5.3.3. Let C̃ be a smooth projective conic and L a line, not tangent
to C̃, both defined over the number field κ. Let OS ⊂ κ be a ring of S-integers.
Suppose that (i) or (ii) of the lemma above are satisfied and that C = C̃ \(C̃ ∩L)
contains one integral point. Then C(OS) is infinite.

Proof. The deduction is obtained after noticing that the infinite group defined
in the above lemma acts freely on C(OS). ��

We now state and prove the crucial case of Beukers’ Theorem 5.3.1:

Theorem 5.3.4. Let D ⊂ P2 be a smooth cubic defined over a number field κ,
containing a κ-rational flexus O. Let S be a finite set of places of κ, containing
the archimedean ones and the places of bad reduction for D and such that O∗

S

is infinite. Then (P2 \D)(OS) is infinite.

Proof. Due to the presence of a rational flexus and our hypothesis on good
reduction, we can write the equation for D in ‘almost Weierstrass form’:

X3 + ZG(X,Y, Z) = 0 (5.3.5)
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where G(X,Y, Z) ∈ OS [X,Y, Z] is a quadratic form. Here the rational point O
takes coordinates (0 : 1 : 0) and the line at infinity takes the equation Z = 0.
Also, the curve D is invariant under the involution Φ : P2 → P2 defined by
Φ(X : Y : Z) = (X : −Y : Z).

Consider the set of conics which are also invariant under such an involution:
they form the disjoint union of two linear systems, a three-dimensional one
and a one-dimensional one, corresponding to the quadratic forms Q satisfying
Q(X,Y, Z) = Q(X,−Y, Z) (resp. Q(X,Y, Z) = −Q(X,−Y, Z)). Let us denote
by Λ the three-dimensional linear system of invariant conics arising in the first
case.

We have the following

Claim. For each (complex) point P ∈ D, not fixed by Φ, passes exactly one
conic C̃P , belonging to the set Λ, with C̃P ∩ D = {P,Φ(P )}. Such a conic is
smooth if P is not a flexus.

The Claim is proved by dimension counting: since the intersection product
C̃ · D must be equal to 6, the intersection multiplicities at P,Φ(P ) must be
both equal to 3, and this condition will be also sufficient for the set theoretic
intersection being {P,Φ(P )} (we have used the fact that by symmetry the
two local intersection products at P and at Φ(P ) must be equal). Now, if we
impose the three conditions that the intersection product at P be at least 3:
(C̃ · D)P ≥ 3, we obtain at least one solution C̃ in Λ, since the latter has
dimension three. As we remarked, by symmetry we shall automatically have
also (C̃ ·D)Φ(P ) ≥ 3. This guarantees the existence of a solution. If we had two
solutions, we would have a pencil of solutions, and a suitable member of that
pencil would have intersection ≥ 4 at P and Φ(P ), which is impossible.

The last assertion is also clear: if C̃ were singular, it would be the union of
the two tangent lines at P and Φ(P ), but then P,Φ(P ) would be flexi.

Let us consider, for each point of the form Au := (u : 1 : 0), u ∈ κ, the
‘vertical’ line Lu joining Au to O = (0 : 1 : 0). It intersects D at two more
distinct points Pu, Φ(Pu), apart for at most three exceptions, when such line is
tangent.

Let C̃u be the conic arising from the previous claim, namely intersecting D
only at the two points Pu, Φ(Pu). Put Cu := C̃u \ {Pu, Φ(Pu)} = C̃U \ (Lu ∩ C̃u).
By Corollary 5.3.3, if we find one integral point on Cu, we can deduce that there
are infinitely many integral points on Cu; these points will be integral points
of the plane with respect to D, since C̃u ∩ D = C̃u ∩ Lu = {PuΦ(Pu)}. If we
can ensure that Cu(OS) is infinite for infinitely many values of u, we will have
proved that the integral points on P2 \D form a dense set in the plane.

The idea to perform this last step is to choose u in such a way that the
intersections Cu ∩ H be a pair of integral points on H \ {O} = H \ (H ∩ D).
Note that the 1-dimensional family of conics C̃u is not a linear system, so in
general the condition of passing through a fixed point will not be a linear one;
in particular, given a rational point P ∈ P2(κ), it is not always true that a
conic of the form C̃u defined over κ and passing through P exists. However, we
shall prove that this holds whenever P lies on the line at infinity H.
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For this purpose, observe that the pencil of cubics containing D and 3Lu

consists of the cubics intersecting D with multiplicity ≥ 3 at the points
Pu, Φ(Pu), O; this pencil contains the sum of the conic C̃u and the line H. In
algebraic terms, if Qu(X,Y, Z) = 0 is an equation for C̃u, Q being a quadratic
form, then for a suitable scalar λu:

Z ·Qu(X,Y, Z) = X3 + ZG(X,Y, Z) + λu(X − uZ)3

(recall that the equation of the cubic has the form (5.3.5), the line H has
equation Z = 0 while the line Lu has equation X − uZ = 0). Now, comparing
the term X3 on the two sides of the above displayed equality, we obtain that
λu must be equal to −1 for every u. Hence the quadratic form Qu appearing
in the equation of the conic C̃u is given by

Qu(X,Y, Z) = G(X,Y, Z) + 3uX2 − Z(3u2X − u3Z) (5.3.6)

Let now P = (α : β : 0) be a point at infinity. The condition that C̃u passes
through P amounts to Q(α, β, 0) = 0, i.e. in view of (5.3.6), G(α, β, 0)+3uα2 =
0; then u must be taken to be equal to −G(α, β, 0)/3α2, which is rational if α, β
are rational, i.e. if P is rational. Now, we choose P to be integral with respect
to D, which amounts to taking P = (1 : β : 0), with β ∈ OS ; the corresponding
conic C̃u = C̃−G(1,β,0)/3 will be defined over κ and it will have an integral point,
namely P , so infinitely many integral points, concluding the proof. ��

It is worth noticing that a cubic curve in the plane lies in the anticanonical
class, which is ample (the projective plane is a Del Pezzo surface). A natural
generalization to Beukers’ theorem has been provided by Hassett and Tschinkel
[34]: they proved that given a smooth anti-canonical curve on a smooth Del
Pezzo surface, the integral points on its complement are potentially dense.
Their proof is inspired by Beukers’. Other results in this direction are provided
in [22].

5.4 Higher dimensional results

Little is known about the degeneracy of integral points on varieties of dimension
larger than two. The general mentioned theorem of Faltings and Vojta still
applies, so whenever a variety admits a non-trivial morphism to a semi-abelian
variety one can prove degeneracy of integral points, apart when the image of
such morphism is itself a semi-abelian variety. This idea has been exploited by
Noguchi and Winkelmann [43], who proved the following

Theorem 5.4.1. Let X̃ be a smooth projective variety defined over a number
field κ. Let q(X̃) be its irregularity3 and ρ(X̃) be the rank of its Néron-Severy

3 We recall that the irregularity q(X̃) of an algebraic variety is the dimension of its Albanese
variety.
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group. Let D1, . . . , Dl be hypersurfaces of X̃ in general position. Put X :=
X̃ \ (D1 ∪ . . . ∪Dl). If

l > dim X̃ + ρ(X̃)− q(X̃),

then the set X(OS) is not Zariski-dense in X̃, for any ring of S-integers OS ⊂
κ.

If q > m the image of X̃ on its Albanese variety is a proper subvariety, which
cannot be a translate of an abelian subvariety; one can then apply Falting’s
theorem. In general, after removing dim(X̃) + ρ − q + 1 hypersurfaces in gen-
eral position, one is lead to a situation where Vojta’s theorem on semi-abelian
varieties can be applied.

The method discussed in this chapter, which is based on the Subspace Theo-
rem, also admits an extension to higher dimension; this is the content of Aaron
Levin’s thesis, reproduced in [37]. In [13] these methods are applied to the
three-dimensional case. P. Autissier in [1], [2] further developed the method,
introducing interesting technical improvements.

For instance, Levin’s Theorem 5.1.4 on a surface minus four ample curves
admits the following generalization to the three-dimensional case:

Theorem 5.4.2. Let X̃ be a smooth threefold defined over a number field. Let
D1, . . . , D6 be ample hypersurfaces in general position. The integral points on
the affine surface X := X̃ \ (D1 ∪ . . . ∪D6) are never Zariski-dense.

This theorem is proved, among other results of the same flavour, by Autissier
in [2]. We note that, on every threefold X̃, the sum KX̃ + D1 + . . . + D5 of
the canonical divisor KX̃ plus five ample hypersurfaces is big: hence, after
Vojta’s conjecture it is likely that the minimal number of hypersurfaces to
remove in Autissier’s theorem could be lowered to five, but it seems that such
an improvement will require essentially new techniques.
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10. P. Corvaja, Autour du Théorème de Roth. Monatshefte f. Math. 124 (1997), 147-175.
11. P. Corvaja, Problems and results on integral points on rational surfaces. Diophantine

Geometry, U. Zannier ed., 123-141, CRM Series, 4, Ed. Norm., Pisa, (2007).
12. P. Corvaja, Rational fixed points for linear group actions. Ann. Sc. Norm. Super. Pisa

Cl. Sci. (5) (2007), no. 4, 561-597.
13. P. Corvaja, A. Levin, U. Zannier, Integral points on threefolds and other varieties, Tohoku

Math. Journal (2) 61 (2009), 589-601.
14. P. Corvaja, U. Zannier, Diophantine equations with power sums and universal Hilbert

sets, Indag. Math. N. S. 9 (1998), 317-332.
15. P. Corvaja, U. Zannier, A subspace theorem approach to integral points on curves. C.

R. Math. Acad. Sci. Paris 334 (2002), no. 4, 267-271.
16. P. Corvaja, U. Zannier, On integral points on surfaces. Ann. of Math. (2) 160 (2004),

no. 2, 705-726.
17. P. Corvaja, U. Zannier, On a general Thue’s equation. Amer. J. Math. 126 (2004), no.

5, 1033-1055, Addendum ibidem 128 (2006), no 4, 1057-1066.
18. P. Corvaja, U. Zannier, A lower bound for the height of a rational function at S-unit

points. Monatsh. Math. 144 (2005), no. 3, 203-224
19. P. Corvaja, U. Zannier, On the integral points on certain surfaces. Int. Math. Res. Not.

2006, 20 pp. (2006).
20. P. Corvaja, U. Zannier, Some cases of Vojta’s conjecture for integral points over function

fields. J. Alg. Geom. 17 n.2 (2008), 295-333.
21. P. Corvaja, U. Zannier, Applications of the Subspace Theorem to certain Diophantine

Problems, in H.-P. Schlickewei, K. Schmidt, R. Tichy (eds) Diophantine Approximation
- Festschrift for Wolfgang Schmidt, Springer Verlag 2008.

© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2016
P. Corvaja, Integral Points on Algebraic Varieties, HBA Lecture Notes in
Mathematics, DOI 10.1007/978-981-10-2648-5

73



74 References

22. P. Corvaja, U. Zannier, Integral points, divisibility between values of polynomials and

entire curves on surfaces, Advances in Math. 225 (2010), 1095-1118.

23. O. Debarre, Higher Dimensional Algebraic Geometry, Springer Verlag 2001.
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