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Abstract We expose a mathematical method that permits to treat calculations in
form of multiplications of distributions that arise in various areas of mathematical
physics, starting with an analysis of the famous Schwartz impossibility result (1954),
then a construction of products of distributions, with examples and references of use
in various domains of physics: classical and quantum mechanics, stochastic analysis
and general relativity.

1 Introduction

In 1954 L. Schwartz published a celebrated note “Impossibility of the multiplication
of distributions” [27], which had a strong impact on the subsequent development of
physics (axiomatic field theory). Later in 1983 L. Schwartz presented (to the acad-
emy) a note “A general multiplication of distributions” by one of the authors [8].
We analyze this apparent contradiction in a very simple way and we observe that
the impossibility proof is no more than the loss of a relatively minor property. To
multiply distributions it suffices to construct a differential calculus in which the ide-
alization that transforms the “irregular functions that represent physical quantities”
into mathematical generalized functions is less crude than in distribution theory,
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in other words mathematics closer to physics than distribution theory. This will be
explained throughout the paper. We sketch how this permits to give a mathematical
sense to calculations in physics and to state equations of physics in a more pre-
cise way which can resolve ambiguities usually connected with the appearance of
products of distributions which are not defined within distribution theory.

2 An Analysis of the Schwartz Impossibility Result

To prove his claim L. Schwartz stated a list of properties to be satisfied by any
hypothetical differential algebra A(R) containing at least some distributions (here
we assume D′(R) ⊂ A(R) for simplicity and we abbreviate these spaces by D′ and
A respectively), and he put in evidence a contradiction in this set of properties
[13, 19, 24, 27], starting calculations with the continuous functions x(ln|x | − 1)
and x2(ln|x | − 1) because he stated the properties with continuous functions. As a
consequence his proof does not put (3) in evidence, as it stems here from the extreme
simplicity of (1) and (2). For clarity we start here with the Heaviside function. To
understand the whole situationwe compare the two formulas (1) and (2) belowwhere
H denotes the Heaviside function (H(x) = 0 if x < 0, H(x) = 1 if x > 0, H(0)
undefined). These formulas are

∫
R

(H 2(x) − H(x))φ(x)dx = 0 ∀φ ∈ C∞
c (R), (1)

and ∫
R

(H 2(x) − H(x))H ′(x)(x)dx =
[
H 3

3
− H 2

2

]+∞

−∞
= 1

3
− 1

2
�= 0. (2)

These two formulas are clear if one assumes that the Heaviside function is an ideal-
ization of a smooth function with a jump from the value 0 to the value 1 on a very
small region around x = 0. Formula (1) shows that H 2 = H inD′ ⊂ A and formula
(2) shows that H 2 �= H in A, hence a contradiction which proves the impossibility
of the multiplication of distributions. But there is a subtle mistake hidden in this
reasoning! In (2) H 2 is the square of H in A since (2) does not make sense in D′.
To compare (2) with (1) the H 2 in (1) should be the same as in (2). Therefore, for
comparison, the quantities (H 2 − H) in (1) and (2) are both the same and are an
element of A; nothing tells it is an element of D′. Therefore (1, 2) prove that in A

∫
F(x)φ(x)dx = 0 ∀φ ∈ C∞

c (R) � F = 0. (3)

Indeed choose F = H 2 − H above. The lack of validity of the familiar implication
that fails from (3) does not prove the impossibility of the multiplication of distribu-
tions and does not prohibit the existence of a suitable algebra A.
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In D′ one has H 2 = H from (1); in A one has H 2 �= H from (2). Again this
looks very much like an absurdity!. The explanation is that the square of H is not
the same inD′ andA. Is this an incoherence, i.e. are these two objects, both denoted
H 2, really different? Contrarily to all appearance the answer is no! Look at (H 2 in
A). We want to observe that it is (H 2 inD′), i.e. H ; to this end we observe of course
this object (H 2 in A) in the way the objects of D′ are defined i.e. we consider

∫
R

(H 2 in A)(x)φ(x)dx

and from (1) we observe nothing other than (H in D′). In conclusion (H 2 in A) is
different from (H in A) but when (H 2 in A) is observed according to the definition
of distributions to compare with the classical objects in D′ it appears to be H as
this should be for coherence. The above systematically holds for all operations in
the algebra G(Ω) considered in the next section. Therefore in this algebra there is a
perfect coherence between all new and all classical calculations.

3 A Differential Algebra Containing the Distributions

One can construct a differential algebra G(Ω) containing a copy isomorphic to the
vector space D′(Ω), Ω ⊂ R

n open, in the situation

C∞(Ω) ⊂ C0(Ω) ⊂ D′(Ω) ⊂ G(Ω). (4)

The partial derivatives inG(Ω) induce onD′(Ω) the partial derivatives in the sense
of distributions; the multiplication in G(Ω) induces the classical multiplication of
C∞ functions: C∞(Ω) is a faithful subalgebra of G(Ω). The Schwartz impossibility
result implies that the algebra C0(Ω) is not a subalgebra of G(Ω), but if f, g are
two continuous functions on Ω and if f • g ∈ G(Ω) denotes their (new) product in
G(Ω), then we have the coherence

∫
Ω

( f • g)(x)φ(x)dx =
∫

Ω

f (x)g(x)φ(x)dx ∀φ ∈ C∞
c (Ω) (5)

for a natural integration in G(Ω). The basic idea is that the elements of G(Ω)

are mathematical idealizations (that can represent physical quantities) that remain
closer to physics than distributions: they are equivalence classes of families ( fε)
of C∞ functions for a rather strict equivalence relation such that the property
(limε→0

∫
Ω

fε(x)φ(x)dx = 0 ∀φ ∈ C∞
c (Ω)) does not imply that the family ( fε) is

null in the quotient defining G(Ω), as this is the case in distribution theory.
L. Nachbin and L. Schwartz supported fast publication in book form to speed

divulgation [11, 12], that were soon complemented by [5, 13, 23, 24]. This theory is
presented in form of a differential calculus dealing with infinitesimal quantities and
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infinitely large quantities in [3, 4], as well as in various expository texts [10, 14], …
and has been extended to manifolds in view of its use in general relativity [18–22,
28–31], …

The problem that served as a first application in 1986 was the one of calculating
jump conditions for a system used in industry (design of armor) to model very strong
collisions [9, 13]. The system showed multiplications of distributions of the form
H × δ where δ is the Dirac distribution. We observed the existence of different
possible jump conditions, all of them stable [17].

We recall that in G(Ω) one has two concepts that can play the role of the equality
of functions: of course the equality in G(Ω) which is coherent with all operations
(on particular the multiplication and the derivation) and the concept in left hand side
of the non-implication (3) that we state as “association” since it is not really a weak
equality (since different elements of G(Ω) can be associated) and denote by the
symbol ≈:

F ≈ G ⇔
∫

Ω

(F − G)(x)φ(x)dx = 0 ∀φ ∈ C∞
c (Ω). (6)

The association is coherent with the derivation but not with the multiplication. We
recall from (1, 2) that H 2 �= H and H 2 ≈ H .

A solution was obtained as follows: state with the equality in G(Ω) the laws
of physics which are considered true at a very small scale (may be 10−7 meters)
and state with the association the laws or properties valid only at a far larger scale
(may be 10−4 meters). This is explained in detail in [13] p. 69, with calculations of
shock waves for nonconservative systems and references. The results that followed
from this statement were in perfect agreement with observations and experiments. In
various interesting cases one obtains the remarkable result that the jumps of different
physical variables are represented by the sameHeaviside function inG(R), [13] p. 72.
Same explanations for another problem are given in [2].

4 Calculations of the Hamiltonian Formalism
of Interacting Fields

The canonical Hamiltonian formalism (exposed in detail in [15, 16]) consists in a
formal solution of the interacting field equations

(
−∂2

t +
3∑

i=1

∂2
xi − m2

)
Φ(x, t) = gΦ(x, t)N , Φ(x, τ ) = Φ0(x, τ ) (7)

wherem, g ∈ R andΦ0(x, t) is the free field operator (explicitly known: it is a distri-
bution valued in a space of unbounded operators on aHilbert space). TheHamiltonian
formalism constructs a solution of (7) according to a formula
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Φ(x, t) = exp(−i(t − τ )H0(τ ))Φ0(x, τ )exp(i(t − τ )H0(τ )) (8)

where H0(τ ) is obtained by plugging formally the free field into the formula of the
total Hamiltonian corresponding to (7). Further calculations give the related formula

Φ(x, t) = (Sτ (t))
−1Φ0(x, t)(Sτ (t)) (9)

which gives the interacting field as a function of the free field at the same time. The
formal operator S = S−∞(+∞) is called the scattering operator. Note that it depends
on the real parameter g called coupling constant. If Φ1, Φ2 are two normalized
orthogonal states then the formula | < Φ1, SΦ2 > | represents the probability that
the state Φ2 would become Φ1 after interaction.

What can be done with the context of Sect. 2 as mathematical tool? First one
remarks the basic point that in these formal calculations, see for instance [15, 16],
two basic mathematical difficulties are intimately mixed: multiplications of distrib-
utions, treated as C∞ functions, and unbounded operators, treated as bounded oper-
ators. Indeed the free field Φ0 is a distribution in x , not a function. The context of
Sect. 2 is adapted to multiplication of distributions but brings nothing concerning
unbounded operators, therefore it does not elucidate completely nicely these cal-
culations. Anyway all calculations finally make sense mathematically [16] and one
obtains a scattering operator S = S(g) and transition probabilities | < Φ1, SΦ2 > |.
What are these mathematical objects (which in the context of Sect. 3 make sense
mathematically)?

The exponentials in (8) make sense from a proof that H0(τ ) admits a self-
adjoint extension and one obtains a scattering operator S = S(g) [16]. What is
| < Φ1, S(g)Φ2 > |?: it depends on a parameter ε that tends to 0 and for each value
of ε it is in between 0 and 1. We believe as quasi certain it has no limit (in the usual
sense) when ε → 0 and therefore it oscillates endlessly inside the real interval [0, 1]
when ε → 0. As an obvious example of such an oscillating object consider |cos( g

ε
)|.

Because of the periodicity of the function cosine, to this objects one can associate
a well defined real number, here 2

π
, to be checked at once from numerical calcula-

tions by computing an average for a large number of very small values of ε chosen
at random. Such average values exist for all quasi periodic functions, see [15]. The
presence of complex exponentials and the self-adjointness property of H0(τ ) suggest
that | < Φ1, S(g)Φ2 > | is a quasi periodic function in the variable 1

ε
and therefore

this oscillating function of ε would have a mean value as ε → 0 (the variable ε is
of course not intrinsic but it plays only an auxiliary role and does not influence the
final result, which appears very robust). In short the infinite quantities in the formal
perturbation series are replaced by oscillations to be treated by computer calcula-
tions of an average value. To test this method one should compute the numerical
value so obtained in a case for which one has an experimental result. The computer
calculations look difficult and this has not been done after the premature death of A.
Gsponer in 2009.
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5 Stochastic Analysis

Stochastic differential equations (SDEs) serve to model many important phenomena
in mathematical physics. An important class of SDEs in R

d is of the following form

∂tU (t, x) = LU (t, x) + η(t, x), U (0, x) = F(x) (10)

where L is a differential operator and η(t, x) is a space-time noise. The solutions
of (10) are necessarily in a space of generalized functions because of the non-
differentiability of the process driven by the equation. Therefore the meaning of
the nonlinear part ofL is not obvious. One way to sort out this problem is to consider
the solutions of (10) as generalized stochastic processes, that is, processes whose
paths are generalized functions. More precisely, by analogy with the association (6),
we say that a family of smooth martingales (Uε)ε>0 is a weak solution of the equation
(10) in the sense (6) if both 1 and 2 below hold:

∀φ ∈ C∞
c (]0, T [×R

d , R
d) limε→0 < LUε,φ >=

∫
[0,T ]×Rd

φ(t, x)dη(t, x) (11)

and
Uε(0, x) = F(x) ∀ε > 0. (12)

One notices that

1. S.Albeverio,M.Oberguggenberger andF.Russo, amongothers, proposed already
in the nineties to solve nonlinear SDEs in the framework of G(Ω), [1, 25, 26].

2. One observes that if ηε is a regularisation of the noise η and if Uε is a solution
of (10) driven by the noise ηε, then under very general conditions (Uε)ε > 0 is a
weak solution of the Eq. (10) in the sense (6).

3. Choosing the Burgers operator LU = ∂tU − �xU − ∇x‖U‖2 and η = ∇x∂t

W (t, x), where W (t, x) is a space-time white noise, we obtain the stochastic
Burgers equation. The Cole-Hopf family is a weak solution of the Burgers equa-
tion in the sense (10), see [7].

4. In the case d = 1 the Hopf-Cole family is associated to a distribution, see [6].

6 Conclusion

After an analysis of the Schwartz impossibility result we have presented a context of
multiplication of distributions having all natural requested properties. Then we have
presented selected applications in continuum mechanics, quantum mechanics and in
stochastic PDEs. For general relativity we refer to [19–22, 28–31].
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