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Abstract There is a differential graded operad associated to quadratic configuration
spaces, whose class of algebras naturally contains the class of all vertex algebras. We
have found that under certain shift of the degree in the cohomology these operads
are isomorphic in cohomology for any even spatial dimension.

1 Real Configuration Spaces and Related Operads

Configuration spaces have been studied long ago in mathematics (see [3]). By defi-
nition, the real n-th configuration space over R

D is the set of all configurations of n
points in R

D , which are distinct. It is shortly denoted by FR,n ,

FR,n (≡ F(D)

R,n ) := {(x1, . . . , xn) | x1, . . . , xn ∈ R
D, x j �= xk (1 � j < k � n)} .

(1)
These spaces obey a very rich structure. In particular, there are several operads that
are associated to the sequence of all configuration spaces (over R

D). One of the most
simple operads is the so called little balls/cubes operad (see [8, Sect. 2.2]).

Before explaining the latter operad let us remind that the operads provide a gener-
alization of the notion of a “type of algebra”. They consists of a sequence of spaces
M(n) equippedwith several structuremaps. If we think ofM(n) as a space of “n-ary
operations” (i.e., operations with n inputs and one output) then there are structure
maps that axiomatize the composition,

M(n) × M( j1) × · · · × M( jn) � (μ, μ1, . . . , μn) �−→ μ ◦ (μ1, . . . , μn) ∈ M(�) , (2)

of an n-ary operation μn ∈ M(n) with n other operations μ1 ∈ M( j1), . . . , μn ∈
M( jn), and it gives a result that belongs to the space M(�) of operation with
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� = j1 + · · · + jn (3)

inputs. In addition, the permutation group Sn is supposed to act onM(n) for every n
axiomatizing the exchange of inputs of an n-ary operation. There are natural condi-
tions of associativity for the operadic compositions and equivariance (compatibility)
for the compositions with respect to the permutation actions. The reader can find
further information in [7].

In the case of the little balls operad, the space M(n) consists of all closed balls
B1, . . . , Bn in R

D , which do not intersect each other and are contained in an open
ball B0,

M(n) = {
(B0; B1, . . . , Bn)

∣
∣ B1, . . . , Bn ⊂ B0 , B j ∩ Bk = ∅ (1 � j < k � n)

}

(4)

The operadic composition

(B0; B1, . . . , Bn) ◦ (
(B1,0; B1,1, . . . , B1, j1), . . . , (Bn,0; Bn,1, . . . , Bn, jn )

)

= (B0, B
′
1,1, . . . , B

′
1, j1 , . . . , B

′
n,1, . . . , B

′
n, jn ) (5)

is then obtained by transforming each configuration (Bk,0, Bk,1, . . . , Bk, jk ) with
translations and dilations in such a way that we can plug Bk,0 into Bk , i.e.,

(Bk,0, Bk,1, . . . , Bk, jk )

translations
& dilations�−→ (B ′

k,0, B
′
k,1, . . . , B

′
k, jk ) , so that B ′

k,0 = Bk (6)

for every k = 1, . . . , n. Note thatM(n) is homotopy equivalent to the configuration
space FR,n and hence, the above opearadic compositions induce maps between the
homology spaces (with rational coefficients),

H•
(M(n), Q

) = H•(FR,n, Q) . (7)

In this way, the sequence of spaces H•(FR,n, Q) becomes an algebraic operad, i.e.,
an operad whose operadic spaces are vector spaces and the operadic compositions
are multilinear maps.

There is a straight forward generalization of the little balls operad. Let

r � R
D × R

D (8)

be a homogeneous, closed, binary relation and denote

Fr ; n := {(x1, . . . , xn) | x1, . . . , xn ∈ R
D, (x j , xk) /∈ r (1 � j < k � n)} (9)

M(r)(n) = {
(B0; B1, . . . , Bn)

∣
∣ B1, . . . , Bn ⊂ B0 ⊂ R

D ,

(B j × Bk) ∩ r = ∅ (1 � j < k � n)
}
, (10)
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with operadic composition given by (2). Then we obtain again an operad and the
sequence

H•
(M(r)(n), Q

) ∼= H•(Fr ; n, Q) (11)

is an algebraic operad.

2 Quadratic Configuration Spaces and Related Operads

As a particular example of the operadM(r)(n) (10) let us consider the complex vector
space C

D (∼=R
2D as a real vector space) equipped with a quadratic homogeneous

relation

r ⊂ C
D × C

D , r := {(x, y) ∈ C
D | (x − y)2 = 0} , (12)

x2 ≡ x · x := (x1)2 + · · · + (xD)2 for x := (x1, . . . , xD) ∈ C
D . (13)

Then, following [9, 10] we call Fr ; n (9) a quadratic configuration space and denote
it by FC,n

FC,n := {
(x1, . . . , xn) ∈ (CD)×n

∣
∣ (x j − xk)

2 �= 0 (1 � j < k � n)
}
. (14)

Note in particular, that
FC,n ∩ (RD)×n = FR,n . (15)

Weobserve also thatFC,n are complex affine varieties and the ring of regular functions
on FC,n coincides with the algebra of rational functions with quadratic singularities,

Õn := O
(
FC,n

) = C
[
x1, . . . , xn

]
[( ∏

1 j < k � n

(x j − xk)
2

)−1]
. (16)

In physics terminology, one can say that the elements of Õn are the rational n-point
functions with light-cone singularities. One can divide the configuration spaces by
the action of the translations and pass to the reduced configuration spaces Fn

/
C

D ,
whose algebra of regular functions On consists of the translation invariant functions
belonging to Õn

On := O
(
FC,n

/
C

D
) = C

[
x1 − xn, . . . , xn−1 − xn

]
[( ∏

1� j < k � n

(x j − xk)
2

)−1]

(17)
As the quotient by the translations do not change topology up to a homotopy equiv-
alence we obtain the same operad structure on the homology spaces.
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Let us remind the result of Grothendieck [4], which identifies the algebraic de
Rham cohomologies of Õn (resp.,On) with the Betti cohomology of the correspond-
ing complex affine variety FC,n (resp., FC,n/C

D). In the case of Õn (as well as, On)
the algebraic de Rham complex has a simple construction,

Ωk
(
OC,n

) := ∧k
OC,n

Ω1
(
OC,n

) := Span
C

{
f dxμ1

j1
∧ · · · ∧ dxμk

jk

∣
∣
∣ (18)

f ∈ ÕC,n , μ1, . . . ,μk = 1, . . . , D , j1, . . . , jk = 1, . . . , n
}

.

Then

Hk
(
ÕC,n

) :=
Ker

(
Ωk

(
ÕC,n

) d→ Ωk+1
(
OC,n

))

Image
(
Ωk−1

(
OC,n

) d→ Ωk
(
OC,n

)) , (19)

with respect to the de Rham differential:

d
(
f dxμ1

j1
∧ · · · ∧ dxμk

jk

)

:=
n∑

j=1

D∑

μ=1

∂ f

∂xμ
j

dxμ
j ∧ dxμ1

j1
∧ · · · ∧ dxμk

jk
, (20)

where f (x1, . . . , xn) ∈ OC,n . Now, the Grothendieck’s theorem implies that

Hk
(
Õn

) ∼= Hk
(
FC,n; C

)
. (21)

In fact, Hk
(
ÕQ,n

) ⊗Q C ∼= (
Hk

(
FC,n; Z

) ⊗Z C
)∗
, where ÕQ,n is the algebra Õn (16)

with coefficients in Q (instead of C), and the natural Z-bilinear paring Hk
(
FQ,n

) ×
Hk

(
FC,n; Z

) → C gives rise to the space (Z-module) of periods related to the
quadratic configuration spaces FC,n , which play a very important role in renor-
malization theory as residues of Feynman amplitudes in massless Quantum Field
Theories (see [11, 13]). Furthermore, there is a differential graded operad associ-
ated to the sequence of algebras On , whose cohomologies coincide with the operad(
H•(FC,n, Q)

)
n�2 and it has an application to both: the theory of vertex algebras and

the renormalization [10, 12].

Remark 1 For the operadic point of viewonvertex algebraswewould like tomention
also the papers [5, 6], where certain partial operads are proposed for this purpose.
However, the operad suggested in [10] is not a partial operad but an “ordinary”
symmetric operad (as defined for example in [7]). The price for this simplification is
perhaps that the latter operad has more algebras than the vertex algebras. Neverthe-
less, there is a simple criterion for separating the class of vertex algebras among all
others (more details will be published in [12]).
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3 Cohomologies of Quadratic Configuration Spaces
up to Three Points and Their Application in the Theory
of Vertex Algebras

Themain new result in the present work is the computation of the cohomology spaces
of FC,n for n = 2, 3. In general, the problem of finding all cohomology spaces of
FC,n for all n = 2, 3, . . . is very difficult.

A standard approach for studying configuration spaces is via the sequence ofmaps

qn+1 : FC,n+1 −→ FC,n : (x1, . . . , xn+1) �−→ (x1, . . . , xn) (22)

that forget about the last point (for n = 2, 3, . . . ). The fiber of qn+1 at the point
(x1, . . . , xn) ∈ FC,n is

Mx1,...,xn := {
z ∈ C

D
∣
∣ (z − x j )

2 �= 0 for all j = 1, . . . , n
} = C

D
∖ n⋃

j=1

Qx j ,

(23)
i.e., it is the complement of union of quadrics of a type

Qx := {
z ∈ C

D
∣
∣ (z − x)2 = 0

}
. (24)

In case C �→ R the fibers are

MR

x1,...,xn = {
z ∈ R

D
∣
∣ z �= x j for all j = 1, . . . , n

}
,

their homeomorphism type does not depend on (x1, . . . , xn), and each of them is
homotopy equivalent to a bouquet of (D − 1)-spheres. In particular the projections
qn are fibrations and one may use iterated Leray–Serre spectral sequences or the
Leray–Hirsch theorem in order to obtain the Betti cohomology of FR,n , see [1–3].

Let us point out that for both cases, C and R, the maps (22), qn+1 : FC,n+1 −→
FC,n and qn+1 : FR,n+1 −→ FR,n (respectively) are fiber bundles for n = 1, 2. This
is due to the fact that in these cases the bases FC,n are homogeneous spaces of
the group of Euclidean motions with dilations on C

D . In the real case, the maps
qn+1 : FR,n+1 −→ FR,n remain fiber bundles for any n (the fibers being homotopy
equivalent to a bouquet of spheres, as we have pointed out). However, over C and
n > 2 the fibers Mx1,...,xn (23) are in general non-isomorphic.

The case n = 2 is relatively simple. We have an isomorphism

FC,2
∼= M0 × C

D : (x1, x2) �→ (x1 − x2, x2) . (25)
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For M0 = C
D\Q0 then we use the projection

M0 −→ C\{0} : x1 − x2 �−→ (x1 − x2)
2 , (26)

which is a bundle with fibers isomorphic to the complex (D − 1)-sphere S
D−1
C

. For
even D > 2 we then derive by the Leray–Hirsch theorem that

Hk(FC,2) = 0 for k �= 0, 1, D − 1, D , (27)

H 1(FC,2) = C

⎡

⎣
D∑

μ=1

zμdzμ

z2

⎤

⎦ , (28)

HD−1(FC,2) = C

⎡

⎣
D∑

μ=1

(−1)μ+1 zμ dz1 ∧ · · · ∧ d̂zμ ∧ · · · ∧ dzD

(z2)
D
2

⎤

⎦ , (29)

HD(FC,2) = C

[
dz1 ∧ · · · ∧ dzD

(z2)
D
2

]
, (30)

where z = x1 − x2. The role of the fact that D is restricted to be even is that only then
are the representatives of the cohomology classes in (29) and (30) rational functions.

Let us introduce

ω(1)
j,k :=

D∑

μ=1

(xμ
j − xμ

k ) d(xμ
j − xμ

k )

(x j − xk)2
,

ω(D−1)
j,k :=

D∑

μ=1

(−1)μ+1 d(xμ
j − xμ

k )

(
x j − x2k

) D
2

d(x1j − x1k ) ∧ · · ·

∧ ̂d(xμ
j − xμ

k ) ∧ · · · ∧ d(xD
j − xD

k ) , (31)

for j, k = 1, . . . , n and j �= k, while for j = k we set for convenience

ω(m)

(k,k) := 0 .

We also have
ω(m)

j,k = ω(m)
k, j .

Then we have found the following basis for the cohomologies of OC,3 (ordered by
the form degree):
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deg. 0 : [1] ,

deg. 1 : [ω(1)
1,2] , [ω(1)

1,3] , [ω(1)
2,3] ,

deg. 2 : [ω(1)
1,2 ω(1)

1,3] , [ω(1)
1,2 ω(1)

2,3] , [ω(1)
1,3 ω(1)

2,3] ,

deg. 3 : [ω(1)
1,2 ω(1)

1,3 ω(1)
2,3] ,

deg. D − 1 : [ω(D−1)
1,2 ] , [ω(D−1)

1,3 ] , [ω(D−1)
2,3 ] ,

deg. D : [ω(1)
1,2 ω(D−1)

1,2 ] , [ω(D−1)
1,2 ω(1)

1,3] , [ω(D−1)
1,2 ω(1)

2,3] ,

[ω(1)
1,2 ω(D−1)

1,3 ] , [ω(1)
1,2 ω(D−1)

2,3 ] , [ω(1)
1,3 ω(D−1)

1,3 ] ,

[ω(1)
2,3 ω(D−1)

2,3 ] , [ω(1)
1,3 ω(D−1)

2,3 ] ,

deg. D + 1 : [ω(1)
1,2 ω(D−1)

1,2 ω(1)
1,3] , [ω(1)

1,2 ω(D−1)
1,2 ω(1)

2,3] ,

[ω(D−1)
1,2 ω(1)

1,3 ω(1)
2,3] , [ω(1)

1,2 ω(1)
1,3 ω(D−1)

1,3 ] ,

[ω(1)
1,2 ω(1)

2,3 ω(D−1)
2,3 ] , [ω(1)

1,2 ω(1)
1,3 ω(D−1)

2,3 ] ,

deg. D + 2 : [ω(1)
1,2] [ω(D−1)

1,2 ] [ω(1)
1,3] [ω(1)

2,3] ,

deg. 2D − 2 : [ω(D−1)
1,2 ω(D−1)

1,3 ] , [ω(D−1)
1,2 ω(D−1)

2,3 ] ,

deg. 2D − 1 : [ω(1)
1,2 ω(D−1)

1,2 ω(D−1)
1,3 ] , [ω(1)

1,2 ω(D−1)
1,2 ω(D−1)

2,3 ] ,

[ω(D−1)
1,2 ω(1)

1,3 ω(D−1)
1,3 ] , [ω(D−1)

1,2 ω(1)
2,3 ω(D−1)

2,3 ] ,

[ω(D−1)
1,2 ω(1)

1,3 ω(D−1)
2,3 ] ,

deg. 2D : [ω(1)
1,2 ω(D−1)

1,2 ω(1)
1,3 ω(D−1)

1,3 ] ,

[ω(1)
1,2 ω(D−1)

1,2 ω(1)
2,3 ω(D−1)

2,3 ] ,

[ω(1)
1,2 ω(D−1)

1,2 ω(1)
1,3 ω(D−1)

2,3 ] .

In particular, with the shift D �→ 2 we obtain an isomorphism in cohomology for al
even spatial dimensions.

For the applicationof the above result to the theoryof vertex algebras it is important
that the vertex algebras can be viewed as algebras over an operad built only by the
first two quadratic configuration spaces FC,n for n = 2, 3 [12]. The key argument
for this is that the axiomatic conditions on vertex algebras are formulated only for
Operator Product Expansions of two fields and hence, they use only two and three
point functions on the spatial variables. This indicates a new kind of “homotopy
equivalence” of the theories on operadic level for any even spatial dimension D.
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