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Abstract The Heun functions are often called the hypergemeotry successors of the
21st century, because of the wide number of their applications. In this proceeding we
discuss their application to the problem of perturbations of rotating and non-rotating
black holes and highlight some recent results on their late-time ring-down obtained
using those functions.

1 The Heun Functions

The Heun functions are gaining popularity due to the vast number of their appli-
cations. The Heun project, a site dedicated to gathering scientists working in this
area, has already accumulated more than 500 articles on the theory and the appli-
cations of those functions. Among the topics are the Schrödinger equation with
anharmoic potential, the Teukolsky linear perturbation theory for the Schwarzschild
and Kerr metrics, transversable wormholes, quantum Rabi models, confinement of
graphene electrons in different potentials, quantum critical systems, crystallinemate-
rials, three-dimensional atmospheric and ocean waves, single polymer dynamics,
economics, genetics e.t.c (see the bibliography section in [10]).

The general Heun function is defined as the local solution of the following second
order Fuchsian ordinary differential equation (ODE) [5, 6]:
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z
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]
dH(z)

dz
+ αβz − q

z(z − 1)(z − a)
H(z) = 0 (1)

normalized to 1 at z = 0. Here ε = α + β − γ − δ + 1. This equation posses 4 reg-
ular singularities: z = 0, 1, a,∞ and it generalizes the hypergeometric function, the
Lamé function, the Mathieu function, the spheroidal wave functions etc. Its group of
symmetries is of order 192.

For comparison, the hypregeometric differential equation has 3 regular singulari-
ties z(z − 1) d

2w(z)
dz2 + [c − (a + b + 1)z] dw(z)

dz − abw(z) = 0 with group of symme-
tries of order 24.

Recalling the definition of irregular singularity:

Definition 1 For an ODE of the form: P(x)y′′(x) + Q(x)y′(x) + R(x)y(x) = 0,
the point x0 is singular if Q(x)/P(x) or R(x)/P(x) diverge at x = x0. If the limits
limx→x0

Q(x)
P(x) (x − x0) and limx→x0

R(x)
P(x) (x − x0)2 exist and are finite then the point

x0 is regular singularity, otherwise, it is irregular or essential singularity. The point
x0 = ∞ is treated the same way under the change x = 1/z.

The general Heun function has 4 regular singularities, from which under
the process called confluence of singularities, one obtains 4 different types of
confluent Heun functions with fewer singularities but of higher s-rank (See Fig. 1 for
illustration).

General Heun function (GHE)
Singularities: regular={0, 1, a,∞}
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Confluent Heun function (CHE)
Singularities: regular={0, 1}, irregular={∞1}
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Biconfluent Heun function (BHE)
Singularities: regular={0}, irregular={∞2}
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Doubleconfluent Heun function (DHE)
Singularities: regular={}, irregular={−11 , 11}
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Triconfluent Heun function (THE)
Singularities: regular={}, irregular={∞3}

d2

dz2
H(z)− (γ + 3z
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d

dz
H(z)+(α + βz − 3z)H(z)=0

Fig. 1 A scheme of the different confluent ODEs obtainable from the ODE of the general Heun
function (in Maple’s notations). The subscript next to the irregular singularities is their rank
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For the confluent Heun function which we will use below, this process means the
redefinition of β = βa, ε = εa, q = qa and taking the limit a → ∞. This gives us
the following ODE:

d2

dz2
H(z) −

(
ε − δ

z − 1
− γ

z

)
d

dz
H(z) −

(
α β − qz

z − 1
+ q

z

)
H(z) = 0 (2)

In Maple notations, the default form of the solution of this type of ODE
is denoted as HeunC(α,β, γ, δ, η, z) which we adopt. To obtain from Maple’s
default form Eq.1, one needs to set α = −(ε20 − 4q0)1/2,β = γ0 − 1, γ = −1 + δ0,
δ=−α0β0 + (1/2)δ0ε0 + (1/2)ε0γ0, η = −(1/2)δ0γ0 − (1/2)ε0γ0 + q0 + 1/2 and
vise versa (the “0” subscript denotes the parameters in Eq.2.

2 Applications of the Heun Functions in Astrophysics

2.1 Teukolsky Angular Equation and Teukolsky
Radial Equation

In the frame of the Teukolsky linear perturbations theory, the late-time ringing of a
black hole due to a perturbation of different spin is described by oneMaster equation.
Under the substitution �(t, r, θ,φ) = ei(ωt+mφ)S(θ)R(r) (where m = 0,±1,±2)
this equation splits in two second order ODEs of the confluent Heun type – The
Teukolsky Angular Equation (TAE):

d
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) d
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)
+

(
(aωu)2 + 2aωsu+E−s2 − (m+su)2

1−u2

)
Slm(u) = 0,

(3)
and the Teukolsky Radial Equation (TRE):
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+ +
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where Δ = r2 − 2Mr + a2 = (r − r−)(r − r+), K = −ω(r2 + a2) − ma,
λ = E − s(s + 1) + a2ω2 + 2amω and u = cos(θ). Here r± = M ± √

M2 − a2

are the inner and outer horizon of the rotating black hole. Being interested in elec-
tromagnetic perturbations we fix the spin to s = −1.

In this system, the unknownquantities are the complex frequenciesωl,m,n giving us
the spectrum and the constant of separation El,m,n which for a = 0 is E = l(l + 1)
(for s = −1). The only physical parameters of the system, in agreement with the
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No-Hair Theorem, are the rotational parameter a and the mass of the black hole M ,
which we here fix to M = 1/2.

The singularities of the two equations are as follows: for the TRE r = r± – regular
and r = ∞ – irregular. For the TAE, the regular singularities are: θ = ±π and the
irregular is again θ = ∞.

2.2 Boundary Conditions

In order to find the spectrum, we need to solve the central two-point connection
problem, imposing appropriate boundary conditions on two of the singular points.
Details on the boundary conditions, as well as on the whole approach and the explicit
values of the parameters, can be found in [1–4, 7–9]. In brief, we require:

1. On the TAE:

a. Quasi-normal modes (QNMs): we require angular regularity. This translate
into the following determinant

W [S1, S2] = HeunC′(α1,β1, γ1, δ1, η1, (cos (π/6))2)

HeunC(α1,β1, γ1, δ1, η1, (cos (π/6))2)
+

HeunC′(α2,β2, γ2, δ2, η2, (sin (π/6))2)

HeunC(α2,β2, γ2, δ2, η2, (sin (π/6))2)
+ p = 0 (5)

where details on the parameters can be seen in [1, 4, 7, 8].
b. Jet modes: A qualitatively new boundary condition has been used in [8] to

obtain the so-called primary jet modes. The condition was that of angular
singularity which translates into polynomial condition for the solutions of
the TAE, i.e.:

δ

α
+ β + γ

2
+ N + 1 = 0

ΔN+1(μ) = 0

where ΔN+1(μ) is tridiagonal determinant [3].

2. On the TRE:

a. Black hole boundary conditions: For any m, the solution R2 is valid
for frequencies for which �(ω) /∈ (− ma

2Mr+ , 0) and also that: sin(arg(ω)+
arg(r))< 0.

b. Quasi-bound boundary conditions: For any m, the solution R1 is valid
for frequencies for which �(ω) /∈ (− ma

2Mr+ , 0) and also that: sin(arg(ω)+
arg(r))> 0.
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Fig. 2 Examples of the different spectra obtained from the spectral system. a Complex plot of the
first 7 modes in the QNMs (crosses) and primary jet modes (diamonds) b QNMs (point-line) and
the non-physical spurious modes (solid lines) for a = [0, M]

2.3 Numerical Results

The so described boundary conditions lead to a two-dimensional spectral system
on the unknowns ω and E . Because of the complexity of the confluent Heun func-
tions, we use an algorithm developed by the team to find the roots of the system.
The numerical results give different spectra of discrete complex frequencies some
of which can be seen on Fig. 2. As part of our study, we examined how those spectra
change with introduction of rotation (a �= 0), up to the limit a→M , and we tested
the numerical stability of the so-obtained frequencies, in order to ensure they rep-
resent physical quantities and not a numerical artifact (an example can be seen on
Fig. 2b).

The physically interesting results are the qualitatively different spectra
(Fig. 2a), depending on the boundary conditions imposed on the system, which can
be used as an independent tool to discover the nature of the physical object emitting
electromagnetic or gravitational waves.

3 Conclusion

In this proceeding we discussed the application of the Heun functions to the problem
of quasinormal modes of rotating and non-rotating black holes. We presented some
of our latest numerical results, key to which is the development of the theory of the
Heun functions and their numerical implementation.



308 D. Staicova and P. Fiziev

Acknowledgements This articlewas supported by the Foundation “Theoretical andComputational
Physics and Astrophysics”, by the Bulgarian National Scientific Fund under contracts DO-1-872,
DO-1-895, DO-02-136, and Sofia University Scientific Fund, contract 185/26.04.2010, Grants of
the Bulgarian Nuclear Regulatory Agency for 2013, 2014 and 2015.

References

1. Fiziev P. P., Class. Quantum Grav. 23 2447–2468 (2006)
2. Fiziev P. P., Class. Quantum Grav. 27 135001 (2010)
3. Fiziev P. P., J. Phys. A.: Math Theor. 43 035203 (2010)
4. Fiziev P., Staicova D., Phys. Rev. D 84, 127502 (2011)
5. Heun K., Math. Ann. 33 161, (1889)
6. Ronveaux, A., ed. Heun’s Differential Equations. Oxford, England: Oxford University Press,

1995.
7. Staicova D. R., Fiziev P. P. Astrophys Space Sci 332: 385–401 (2011)
8. Staicova D. , Fiziev P. Bulgarian Astronomical Journal 23, 83, (2015)
9. Staicova D., Fiziev P. Astrophysics and Space Science, 358:10 (2015)
10. The Heun Project http://theheunproject.org/bibliography.html

http://theheunproject.org/bibliography.html

	The Heun Functions and Their Applications in Astrophysics
	1 The Heun Functions
	2 Applications of the Heun Functions in Astrophysics
	2.1 Teukolsky Angular Equation and Teukolsky  Radial Equation
	2.2 Boundary Conditions
	2.3 Numerical Results

	3 Conclusion
	References


