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Introduction to Anomalies

Dileep P. Jatkar

4.1 Introduction

Anomalies are important in quantum field theories, particularly in the gauge
field theories because they determine quantum consistency of the theory. The
word anomaly, in fact, is bit of a misnomer, and a more accurate description of
anomaly is quantum mechanical symmetry breaking. Symmetries of a classical
field theory can be broken in various different ways. One of them is explicit
symmetry breaking, which corresponds to adding a term to the Lagrangian
density which does not respect the symmetry. Another way of breaking the
symmetry is what is called the spontaneous symmetry breaking. In this case
the classical Lagrangian density has a symmetry which is not respected by
the ground state. In both the cases listed above symmetry is broken at clas-
sical level. The situation in the case of anomalies is different. The symmetry
of the theory is intact at classical level but quantum mechanical effects do
not respect the symmetry. It is in this sense that the word ‘anomaly’ is a
misnomer.

More specifically, consider the action S of a classical field theory. Let us
assume that this action is invariant under transformations of classical fields
under a symmetry group G. The symmetry group G is anomalous if the full
quantum theory does not respect this symmetry. Thus anomalous symmetries
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are legitimate symmetries of the classical field theory but fail to survive when
quantum effects are taken into account. Nature of the anomaly and its effects
on the physics of the quantum theory depend on the role of the symmetry group
G in the theory. For example, G can be a continuous group or a discrete group.
Similarly, G can be a global symmetry of the theory or it could be a local gauge
symmetry.

Anomaly in the global symmetry has interesting physical consequences
like the neutral pion decay (π0 → γγ). Anomaly in the local gauge symmetries
implies violation of the gauge invariance of the theory. The lack of gauge invari-
ance means the theory is nonunitary. Any gauge theory with anomalous gauge
group is therefore quantum mechanically inconsistent. The only way we know,
as of now, to make sense of such theories is to adjust matter content of such
theories so that the anomaly is canceled. This restores gauge invariance of the
theory at the quantum level. A classic example of this is the Standard model
of particle physics. For a generic matter content as well as charge assignment
the Standard model is potentially anomalous. However, it turns out that the
anomaly is canceled if we have equal number of quark and lepton families. This
is one of the nontrivial consistency checks of the Standard model of particle
physics.

In these lectures, we will begin our discussion of anomalies by studying
the Schwinger model, i.e., the two dimensional electrodynamics. We will see
that the anomaly in this model is due to the level crossing as one changes
the background gauge field. In this model we have two classically conserved
currents, the vector current and the axial vector current. The anomaly due to
level crossing implies that in the quantum theory we cannot have simultaneous
conservation of both the currents. Since the vector current is coupled to the
gauge field we will preserve conservation on the vector current. This in turn
means the axial vector current is not conserved. We will illustrate this computa-
tion using the point splitting regularization method as well as the Pauli-Villars
regularization method. The reason for doing this computation in two different
regularization scheme is to show that the anomaly is independent of the choice
of regularization scheme. We will then discuss vacuum degeneracy by studying
n-vacua as well as θ-vacua in this model. After studying the anomaly in the
Schwinger model, we will consider anomalies in four dimensional gauge theories.
We will begin the discussion with the abelian gauge theory and then discuss
the non-abelian gauge theory. Path integral formalism is briefly introduced so
that derivation of anomalies can be carried out using path integral methods.
Finally we will apply it to the Standard model of particle physics and establish
the criterion for the model to be anomaly free.
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4.2 Two Dimensional Gauge Theory

Let us start with a toy model, the Schwinger model on a circle. The Schwinger
model is a two dimensional U(1) gauge theory coupled to a massless Dirac
fermion. The Lagrangian density is given by

L = − 1

4e2
FμνF

μν + Ψ̄iγμDμΨ, (4.1)

where, Ψ is a two component spinor field and

Fμν = ∂μAν − ∂νAμ, Dμ = ∂μ + iAμ. (4.2)

The gamma matrices are: γ0 = σ2, γ
1 = iσ1 and γ5 = σ3. We define the chiral

fermions ΨL and ΨR as

ΨL =

(
ψ1

0

)
, ΨR =

(
0
ψ2

)
; ΨL = γ5ΨL, ΨR = −γ5ΨR. (4.3)

In the two dimensional electrodynamics, there are no transverse degrees of
freedom for Aμ(the photon), however, the Coulomb interaction does exist. The
Coulomb interaction in two dimensions grows linearly with the distance. This
leads to the confinement of charged particles for any non-zero value of the
coupling constant e. Here we are not interested in studying the confinement in
this model. Our interest is to study possible anomaly in this theory.

To minimize the effect of the Coulomb potential, let us consider the model
defined on a circle. We will take the circumference of the circle to be L. If we
choose L in such a way that eL � 1 then the Coulomb interactions never
become large. We can then ignore the Coulomb interactions in the first approx-
imation and can include them perturbatively.

Let us impose following boundary conditions on the fields

Aμ

(
x = −L

2
, t

)
= Aμ

(
x =

L

2
, t

)
,Ψ

(
x = −L

2
, t

)
= −Ψ

(
x =

L

2
, t

)
.

(4.4)
Using these boundary conditions we can expand Aμ and Ψ in terms of the
Fourier modes as

Aμ(x, t) =
∞∑

k=−∞
aμ(k, t) exp

(
2πikx

L

)

Ψ(x, t) =

∞∑
k=−∞

bk(t) exp

(
2πi(k + 1

2 )x

L

)
. (4.5)
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The Lagrangian density is invariant under the local gauge transformation

Ψ(x, t) → exp(iα(x, t))Ψ(x, t), Aμ(x, t) → Aμ(x, t)− ∂μα(x, t). (4.6)

Using the periodic boundary condition, we can write A1(x, t) as

A1(x, t) =
∑
k

a1(k, t) exp

(
2πikx

L

)
(4.7)

If we choose

α(x, t) =
∑
k

L

2πik
a1(k, t) exp

(
2πikx

L

)
, (4.8)

then we can gauge away A1(x, t) except for the zero mode, i.e., k = 0 mode
of A1(x, t). The gauge parameter α(x, t) in (4.8) is periodic on the circle and
therefore it is a legitimate gauge transformation. Since only k = 0 mode of
A1(x, t) cannot be gauged away, it implies A1(x, t) is independent of x. Thus
only non-trivial gauge field component that we need to consider is a constant
mode.

However, the gauge transformation (4.6) does not cover all possible gauge
transformations. That is, after fixing this gauge, we are left with a residual
gauge symmetry. This residual gauge symmetry comes from the non-periodic
gauge transformations,

α(x, t) =
2π

L
nx, n = ±1,±2, · · · (4.9)

This gauge transformation parameter(4.9) does not obey the periodicity of
the spatial direction, but ∂α/∂x = constant, and ∂α/∂t = 0 as a result the
periodicity of Aμ(x, t) is still preserved.

Recall that the fermion wavefunction picks up a local phase, exp(iα(x, t)),
under the gauge transformation. In the interval x ∈ [−L

2 ,
L
2 ], the phase picked

up by the fermion wavefunction is exp(iα(x = L, t)) = exp(2πin), where n is an
integer. Therefore the fermion wavefunction is left invariant by this non-periodic
gauge transformation(4.9). We thus conclude that the gauge field component
A1(x, t) does not take values in the interval (−∞,∞) but is valued between
[0, 2π] with points A1, A1 ± 2π/L, A1 ± 4π/L, · · · being identified due to the
linear non-periodic gauge transformation(4.9).

In addition to the local gauge symmetry, the Lagrangian density is invari-
ant under the global gauge transformation,

ψ(x, t) → exp(iα)ψ(x, t). (4.10)
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This invariance corresponds to conservation of the electric charge. Using the
Noether procedure we can write the conserved current,

Jμ = ψ̄γμψ, ψ̄ = ψ†γ0, (4.11)

with ∂μJμ = 0, using the equations of motion.
The conserved charge is

Q =

∫
dxψ†ψ . (4.12)

The Lagrangian(4.1) is invariant under another symmetry transformation,

ψ(x, t) → exp(iαγ5)ψ(x, t). (4.13)

The conserved current corresponding to this symmetry is

J5
μ = ψ̄γμγ

5ψ, (4.14)

with ∂μJ5
μ = 0, again using the equations of motion and the conserved charge

is

Q5 =

∫
dxψ†γ5ψ . (4.15)

Notice that for the massive fermions, the current J5
μ is not conserved.

∂μJ5
μ = 2imψ̄γ5ψ, (4.16)

where, m is the mass of the fermion. We have chosen gamma matrix convention
in such a way that γ5 = σ3. Therefore, Q5 charge of ψL is +1 and that of ψR

is −1. The conservation of Q and Q5 for massless fermions implies separate
conservation of

QL =
Q+Q5

2
, and QR =

Q−Q5

2
. (4.17)

We can decompose the interaction term in the Lagrangian density, namely
ψ̄γμψAμ as

ψ̄γμψAμ = ψ†
LψL(A0 +A1) + ψ†

RψR(A0 −A1). (4.18)

This implies that within the perturbation theory, the photon does not change
the chirality of fermions. This would lead us to conclude that both Q and
Q5 are conserved in the quantum theory. However, the exact answer is more
interesting, we will see that only one of these two classical symmetries survive
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in the quantum theory. Before we embark on this, let us first observe that in
two dimensions, Jμ and J5

μ are related to each other.

J5
μ = εμνJ

ν , (4.19)

where, εμν is the Levi-Civita tensor in two dimensions.
However, conservation of Jμ does not imply conservation of J5

μ and vice
versa.

We will now ‘derive’ the anomaly using a heuristic argument. For simplic-
ity we will assume A0 = 0. This, to be precise, is not correct, because electric
charges in two dimensions feel only the Coulomb interactions, which implies
A0 �= 0. However, if we take the circumference of the spatial circle small, i.e.,
eL � 1, then A0 = 0 is a good approximation. This is because the Coulomb
potential A0 = e|x|, which gives rise to linear confinement of electric charges
does not take significant value for −L/2 ≤ x ≤ L/2. Therefore, to the leading
order we are justified in setting A0 = 0. We cannot set the gauge field com-
ponent A1 to zero. Periodicity of A1 implies any value of A1 is identified with
A1 + 2πn/L, n ∈ Z. Only the constant mode of A1 along the spatial direction
is relevant because this spatially constant mode cannot be gauged away.

We will now look at the fermion dynamics in this gauge field background.
The Dirac equation is[

i
∂

∂t
+ σ3(i

∂

∂x
−A1)

]
ψ(x, t) = 0. (4.20)

Let us look for the stationary state solutions,

ψ(x, t) = exp(−iEkt)ψk(x). (4.21)

The Dirac equation then becomes

Ekψk(x) = −σ3

(
i
∂

∂x
−A

)
ψk(x). (4.22)

On the spatial circle, we have imposed the anti-periodic boundary condition on
the fermion wavefunction. The spatial part of the wavefunction consistent with
this boundary condition is

ψk(x) ∼ exp[2πix(k + 1/2)], k ∈ Z. (4.23)

Using this wavefunction we can write the energy spectrum for the left moving
and the right moving fermions

Ek(L) =

(
k +

1

2

)
2π

L
+A1, Ek(R) = −

(
k +

1

2

)
2π

L
−A1 (4.24)
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Figure 4.1: Level crossing for the left moving fermion (solid lines) and that for the

right moving fermion (dashed lines).

At A1 = 0 and A1 = 2πn/L, the left moving and the right moving fermion
energy levels are degenerate(4.24) (Also see figure 4.1).

Due to the gauge invariance, points A1 = 0 and A1 = 2π/L are identified,
but this identification occurs in a nontrivial way. By the time we move from
A1 = 0 to A1 = 2π/L , all the left moving fermion energy states(4.24) have
moved upwards by one unit and all the right moving fermion energy states(4.24)
have moved downwards by one unit. We will now see that this rearrangement
of fermion energy levels is responsible for the chiral anomaly.

To see this we will switch from the single particle state formulation to the
field theory. First thing that we need to do is to define the fermion vacuum.
Let us denote the unoccupied states by |0L,R; k〉 and the occupied states by
|1L,R; k〉. For A1 ≈ 0, we define the fermion vacuum as

Ψ
(0)
ferm =

⎛⎝ ∏
k=−1,−2,···

|1L; k〉
⎞⎠⎛⎝ ∏

k=0,1,2,···
|0L; k〉

⎞⎠
×

⎛⎝ ∏
k=−1,−2,···

|0R; k〉
⎞⎠⎛⎝ ∏

k=0,1,2,···
|1R; k〉

⎞⎠ . (4.25)

Notice that for all the left moving particles negative energy levels correspond
to k < 0 and for the right moving particles negative energy levels correspond
to k ≥ 0 for A1 ≈ 0.
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Now we will vary A1 slowly until it becomes A1 = 2π/L. At A1 = 2π/L,
we see that one negative energy level of the left moving fermion has moved
up and one negative energy level of the right moving fermion(hole) has moved
down. Thus at A1 = 2π/L, we have a particle-hole pair over the vacuum defined
at A1 ≈ 0. As far a the electromagnetic charge Q is concerned, this state with
a particle-hole pair is still electrically neutral, i.e., ΔQ = 0. However, this is
not true for the charge Q5, because the Q5 charge of a right moving hole is the
same as that of the left moving particle. Therefore, ΔQ5 = 2. The Q5 charge of
the fermion vacuum at A1 ≈ 0 is zero by construction. Therefore we find that
slow variation of A1 from A1 = 0 to A1 = 2π/L takes us from Q5 = 0 state to
Q5 = 2 state. Using this fact we can write

ΔQ5 =
L

π
ΔA1. (4.26)

Treating this as an adiabatic variation of the axial charge, we get

dQ5

dt
=

L

π

dA1

dt
⇒ d

dt

(
Q5 − L

π
A1

)
= 0. (4.27)

Thus we find that the conserved charge is modified and is given by∫
dx

(
J0
5 − 1

π
A1

)
. (4.28)

The current corresponding to this conserved charge is

J̃μ
5 = Jμ

5 − 1

π
εμνAν . (4.29)

This new current J̃μ
5 is conserved,

∂μJ̃
μ
5 = 0 ⇒ ∂μJ

μ
5 =

1

2π
εμνFμν . (4.30)

While the new conserved charge is gauge invariant under small gauge trans-
formations, the new conserved axial current is not gauge invariant. Another
point to notice is that the original axial current, which is gauge invariant, is
not conserved anymore.

Thus we find ourselves in a situation where the conserved axial current
is not gauge invariant and the gauge invariant axial current is not conserved.
Since the gauge invariance is important to maintain consistency of the quantum
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theory, we give up on conservation of the gauge invariant axial current. Thus

∂μJ
μ
5 =

1

2π
εμνFμν . (4.31)

This is the axial anomaly in the Schwinger model. In this picture we see that
the axial anomaly is a statement of crossing of the zero energy levels.

In this derivation we have implicitly assumed some ultraviolet cutoff of
the theory. We have also assumed that whenever a state crosses zero energy
level and appears on the positive energy side, one state exits the ultraviolet
cutoff on the positive energy side and one state enters the ultraviolet cutoff on
the negative energy side. Although we have used infrared methods for counting
number of levels crossing zero energy, in most practical applications we need to
use the ultraviolet regularization method to derive the anomaly. This is because
many gauge theories, including the QCD, are much harder to analyze in the
infrared limit. The asymptotic freedom in these theories make the ultraviolet
analysis easy to carry out.

Let us now use the ultraviolet regularization to derive the axial anomaly.
There are various ways by which we can see the need for the ultraviolet regula-
tor. One way to see this is to notice that the fermion vacuum state with filled
Dirac sea involves an infinite product of fermion levels |1L; k〉 and |1R; k〉. Thus
the energy of the fermion vacuum is

E ∼ −
∞∑
k=0

(
k +

1

2

)
2π

L
. (4.32)

This is a divergent sum. To make sense of E we need to regularize this sum. If we
choose a regularization procedure which throws away states with |k| > |kmax|
then we get a finite answer for E but this regularization is not gauge invariant.
If we violate the gauge invariance, it would lead to the non-conservation of the
electric charge. We can instead choose to regulate this sum by restricting the
values of p+A. This would be a gauge invariant regulator. We will implement
this using the point splitting regularization. Another way to see the need to
use the ultraviolet regulator is to notice that the classical conserved currents
are written in terms of products of fields defined at a coincident space-time
point. In a quantum field theory, a product of two or more fields at a coin-
cident space-time point is ill-defined. Such a product gives rise to the short
distance singularities. These singularities are taken care of in the quantum field
theory using the ultraviolet regularization method. The regulated currents are
defined by writing the fields at non-coincident points and at the same time en-
suring that they continue to remain gauge invariant. This is the point-splitting
regularization procedure.
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4.3 The Point-Splitting Regularization Method

We define regulated expressions for the classically conserved currents using the
point-splitting regularization method as follows:

JReg
μ = ψ̄(x+ ε, t)γμψ(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)

J5Reg
μ = ψ̄(x+ ε, t)γμγ

5ψ(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.33)

The exponential factor ensures that the regularized expression of currents is
gauge invariant. The regularized expressions for Q and Q5 obtained from the
regularized currents is

Q =

∫
dxJReg

0 (x, t) and Q5 =

∫
dxJ5Reg

0 (x, t). (4.34)

The charge QL = (Q + Q5)/2 measures the left moving fermion charge and
QR = (Q−Q5)/2 measures the right moving fermion charge. We will now mea-
sure QL and QR charge of the Dirac vacuum state. The regularized expressions
for QL and QR are

QL =

∫
dxψ†

L(x+ ε, t)ψL(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)

QR =

∫
dxψ†

R(x+ ε, t)ψR(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.35)

The fermion wavefunctions with appropriate normalization on a circle of cir-
cumference L are

ψk(x, t) =
1√
L
exp

(
−iEkt+ i

2π

L

(
k +

1

2

)
x

)
. (4.36)

We can expand ψL and ψR in terms of this basis. However, to evaluate QL and
QR on the Dirac vacuum state we do not need full decomposition of ψL and
ψR in terms of ψk. Only information we need is that in the vacuum state, the
left moving particles occupy states with negative k values and the right moving
particles occupy states with non-negative k values. Thus positive k modes of
ψL do not contribute to vacuum value of QL and negative k modes of ψR do
not contribute to vacuum value of QR. Expressions for QL and QR therefore
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are

QL =
1

L

∑
k<0

∫ L/2

−L/2

dx exp

(
−2π

L
i

(
k +

1

2

)
(x+ ε)

)
×

exp

(
2π

L
i

(
k +

1

2

)
x

)
exp

(
−i

∫ x+ε

x

A1dx
′
)
, (4.37)

QR =
1

L

∑
k≥0

∫ L/2

−L/2

dx exp

(
−2π

L
i

(
k +

1

2

)
(x+ ε)

)
×

exp

(
2π

L
i(k +

1

2
)x

)
exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.38)

Since A1 is independent of x we can simplify these expressions by explicitly
carrying out integration over x.

QL =
∑
k<0

exp

[
−iε

(
2π

L

(
k +

1

2

)
+A1

)]
(4.39)

QR =
∑
k≥0

exp

[
−iε

(
2π

L

(
k +

1

2

)
+A1

)]
, (4.40)

where k ∈ Z. Although expressions for QL and QR look the same, the sum over
k is over different values. The range of values of k in the summation are chosen
for |A1| < π/L.

Let us first notice that in the ε → 0 limit, both QL and QR reduce to
an infinite series

∑
k 1. Although k takes different values for QL and QR, this

fact is irrelevant for this infinite series, which is divergent. Point splitting is a
covariant regulator because it cuts off states with |p1 +A1| ≥ 1/ε.

Both QL and QR are written in terms of geometric series. It is easy to
sum both of them.

QL =
exp[−iε( πL +A1)]

exp[−2iπε
L ]− 1

, QR =
exp[−iε( πL +A1)]

1− exp[−2iπε
L ]

. (4.41)

Expanding these sums in terms of a power series in ε gives

QL = − L

2iπε
+

L

2π
A1 + o(ε) (4.42)

QR =
L

2iπε
− L

2π
A1 + o(ε). (4.43)

The first term in both the expression diverges as we take the limit ε → 0. This
is just a reflection of the fact that original series were divergent.
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It is easy to see that the electric charge of the vacuum state,

Q = QL +QR = 0, (4.44)

in spite of the fact that QL and QR are individually divergent quantities.
Though QL and QR depend explicitly on A1, the electric charge Q is indepen-
dent of A1 once we remove the regulator, i.e., ε → 0. This ensures conservation
of electric charge.

The axial charge, on the other hand, has two contributions,

Q5 = QL −QR =
L

iπε
+

L

π
A1 + o(ε). (4.45)

The first term is divergent as ε → 0, however, this divergence can be removed
by defining normal ordered expression for Q5. The second contribution is finite
as ε → 0, and it shows that the regularized axial charge depends on A1. Thus
as A1 goes from 0 to 2π/L, Q5 changes by two units. This result is identical to
the one obtained by counting the number of levels crossing zero energy in the
earlier computation.

If we change A1 adiabatically then

dQ5

dt
=

L

π

dA1

dt
⇒ ∂μJ

μ
5 =

1

2π
εμνFμν . (4.46)

We have got the anomaly equation with correct normalization. Recall in the
infrared picture we got non-conservation of axial charge due to crossing of zero
energy level. This time around we have obtained the anomaly by imposing
ultraviolet cutoff. Non-conservation of the axial charge is now understood as
follows. As we change A1 adiabatically from A1 = 0 to A1 = 2π/L, one right
moving fermion level exits the Dirac sea from its lower boundary, i.e., −1/|ε|
and one left handed fermion level enters the Dirac sea from the same boundary.

In fact, both infrared and ultraviolet phenomena occur simultane-
ously. Compatibility of these two methods of determining axial charge non-
conservation is stated in terms of ’t Hooft consistency condition. ’t Hooft’s
consistency condition states that singularities of the amplitudes computed in
the ultraviolet theory should be reproducible from the amplitudes computed in
the infrared theory.

4.4 The Pauli-Villars Regularization Method

We will compute this anomaly one more time. This time we will use Pauli-
Villars regularization scheme. The reason for doing this computation once again



4.4. The Pauli-Villars Regularization Method 153

is to show that the axial anomaly computed using point-splitting regularization
method is not an artifact of specific choice of the regularization scheme. In other
words, anomaly equation is independent of regularization scheme.

Since anomaly is intrinsically quantum mechanical, its manifestation is
seen at loop level in the perturbation theory. Loop diagrams are generically di-
vergent and we will use Pauli-Villars regularization method to evaluate loop in-
tegrals. For simplicity we will use background field method, i.e., we will assume
a fixed gauge field background and evaluate loop integrals in this background.
The relevant diagrams for computation of axial anomaly in the Schwinger model
are

μ   5
X X

γ γ

ψ χ

γ  γ γ  γ
μ   5

First graph is a one-loop contribution from the massless fermion, and the
second graph is one-loop contribution from the Pauli-Villars regulator fermion
χ with mass M0. γμγ5 corresponds to axial current vertex for both ψ and
χ. In the Pauli-Villars regularization procedure, loop of the regulator fermion
does not pick up negative sign. The regulator fermion thus cancels all high
frequency modes of the fermion ψ in the loop. This cancellation occurs for all
frequencies ω > M0. The regulator is removed by taking M0 to infinity. For all
low frequency modes of ψ, M0 acts as a gauge invariant cutoff. The regularized
axial current is

Jμ
5 = ψ̄γμγ5ψ + χ̄γμγ5χ. (4.47)

Due to existence of massive fermion we do not expect conservation of the axial
current. Equations of motion for ψ and χ are

D/ψ = 0, and D/χ = −iM0χ. (4.48)

Using these equations of motion we can evaluate divergence of the axial current,

∂μJ
μ
5 = 2iM0χ̄γ5χ. (4.49)

We will now evaluate the vacuum expectation value of ∂μJ
μ
5 in the background

field formalism. If the current is conserved then this vacuum expectation value
should vanish as we remove the regulator, i.e., take M0 → ∞. To evaluate the
vacuum expectation value of the divergence of the axial current, it is easiest to
work with the right hand side expression in the coordinate space representation.

2iM0〈χ̄(x, t)γ5χ(x, t)〉 = 2iM0〈Tr(γ5χ(x, t)χ̄(x, t))〉. (4.50)
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In spite of having χ and χ̄ defined at the same space-time point, the vacuum
expectation value 〈χ(x, t)χ̄(x, t)〉 gives a formal coordinate space propagator
for χ. The coordinate space propagator satisfies the Green’s function equation

(iD/−M0)S(x, y) = iδ2(x− y). (4.51)

Due to coincident space-time point, momentum space representation of S(x, x)
is

S(x, t;x, t) = i

∫
d2p

(2π)2
1

Π/−M0
, Πμ = pμ +Aμ. (4.52)

Notice the exponential factor in the expression of propagator is missing. The
momentum p serves as the loop momentum. Let us list a few standard manip-
ulations

•
1

Π/−M0
=

Π/+M0

Π/Π/−M2
0

=
Π/+M0

Π2 −M2
0 − i

2ε
μνFμνγ5

(4.53)

• [Πμ,Πν ] = −[Dμ, Dν ] = iFμν .

• In two dimensions γμγν = ημν + εμνγ5 .

Using these relations vacuum expectation value of ∂μJ
μ
5 can be written as,

〈∂μJμ
5 (x, t)〉 = −2M0

∫
d2p

(2π)2
Tr

(
γ5

Π/−M0

)
= −2M0

∫
d2p

(2π)2
Tr

[
γ5

(Π/+M0)

Π2 −M2
0 − i

2ε
μνFμνγ5

]
. (4.54)

Expanding the denominator in a power series gives,

〈∂μJμ
5 (x, t)〉 = −2M0

∫
d2p

(2π)2
Tr

[
γ5(Π/+M0)

×
(

1

Π2 −M2
0

+
1

Π2 −M2
0

(
i

2
εμνFμνγ5

)
1

Π2 −M2
0

+ · · ·
)]

(4.55)

It is easy to see that the first term vanishes due to trace of the integrand. Third
term onwards all terms drop out as M0 → ∞. Only relevant term is the second
term and therefore the effective one loop integral is

〈∂μJμ
5 (x, t)〉 = −2iM2

0

∫
d2p

(2π)2
εμνFμν

(Π2 −M2
0 )

2
(4.56)

A few comments are in order at this point.
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• Π/ does not contribute because trace vanishes.

• We get a factor of 2 because Tr 12×2 = 2.

We will now replace Πμ by pμ and neglect Aμ. we can do this because terms
proportional to Aμ are not divergent as p → ∞ and hence can be dropped when
computing the anomaly. The loop integral now becomes

〈∂μJμ
5 (x, t)〉 = −2iM2

0

∫
d2p

(2π)2
εμνFμν

(p2 −M2
0 )

2
. (4.57)

We will evaluate this integral by first performing Wick rotation in the momen-
tum space, i.e., (p0, p1) → (ip2, p1). Define p2E = p21 + p22. Substituting this in
the loop integral gives

〈∂μJμ
5 (x, t)〉 = 2M2

0

∫
dpEpE
2π

εμνFμν

(p2E +M2
0 )

2

= −M2
0

2π
εμνFμν

1

p2E +M2
0

∣∣∣∣∞
pE=0

=
εμνFμν

2π
. (4.58)

Thus we see that the Pauli-Villars regularization procedure for removing ultra-
violet divergences gives the same anomaly equation as the one derived using
level crossing and point-splitting method. We therefore argue that the anomaly
is independent of choice of regularization scheme.

4.5 n-vacua and θ-vacua

It is now time to check if our assumptions are consistent with the results we
have obtained. Let us first recall what is our working hypothesis. We have
assumed that fermions are fast variables and gauge field is a slow variable. We
have taken eL � 1 and neglected A0. In the absence of A0, the gauge kinetic
term becomes

− 1

4e2
FμνF

μν =
1

2e2
Ȧ2

1. (4.59)

Since A1 is independent of x, contribution of the kinetic term to the effective
Lagrangian is LȦ2

1/2e
2.

Let us now look at the fermion Hamiltonian

H = −
∫

ψ†(x, t)σ3(i
∂

∂x
−A1)ψ(x, t)dx. (4.60)
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We will regularize this Hamiltonian using the point-splitting method.

H = −
∫

dxψ†(x+ ε, t)σ3(i
∂

∂x
−A1)ψ(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.61)

Since σ3 is the γ5-matrix we can split the energy spectrum into EL and ER.
Using Fourier modes (4.36) we can determine the energy of the Dirac sea

EL =

−∞∑
k=−1

Ek(L) exp(−iεEk(L)) (4.62)

ER =
∞∑
k=0

Ek(R) exp(iεEk(R)), (4.63)

where, Ek(L) and Ek(R) are given in eq.(4.24). These are regulated expressions
and are valid for |A1| < π/L. If we take ε → 0 then we will get divergent sums.

Let us now notice that expressions for EL and ER can be obtained by
differentiating QL and QR (see eq.(4.37) and (4.38)) with respect to ε. Thus
energy of the Dirac sea is

E0 = EL + ER = i
∂

∂ε
(QL −QR). (4.64)

Since QL = QR = {i exp(−iεA1)}/{2 sin(πε/L)}(see eq.(4.41)),

E0 = i
∂

∂ε

(
i exp(−iεA1)

sin(πε/L)

)
=

L

2π

(
2A2

1 −
π2

L2
+

1

ε2

)
. (4.65)

After dropping the constant term and soaking up the divergent term in the
normal ordering prescription we find that the energy of the Dirac sea generates
an effective potential for A1. The effective Lagrangian for A1 degrees of freedom
is

L =
L

2e2
Ȧ2

1 −
L

π
A2

1. (4.66)

This is just the harmonic oscillator problem with the spring constantK = 2L/π,
mass m = L and � = e. The energy spectrum is,

E =

(
n+

1

2

)√
2

π
e. (4.67)

Thus we see that characteristic energies of A1 quanta is EA ∝ e whereas char-
acteristic energies of ψ quanta is Eψ ∝ 1/L. Therefore EA/Eψ ∼ eL � 1. This
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implies A1 quanta are low energy or slowly varying variables compared to ψ
quanta. This justifies our procedure of studying ψ quanta in the adiabatically
varying A1 background. It is easy to determine the ground state wavefunction
of the gauge field problem, since it is a harmonic oscillator problem

Ψ0(A1) ∝ exp

(
− LA2

1√
2πε2

)
. (4.68)

Thus the total vacuum wavefunction is

Ψ0(A1, ψ) = Ψ
(0)
fermΨ0(A1)

∝
⎛⎝ ∏

k=−1,−2,···
|1L; k〉

⎞⎠⎛⎝ ∏
k=0,1,2,···

|0L; k〉
⎞⎠

×
⎛⎝ ∏

k=−1,−2,···
|0R; k〉

⎞⎠⎛⎝ ∏
k=0,1,2,···

|1R; k〉
⎞⎠

× exp

(
− LA2

1√
2πε2

)
, (4.69)

provided |A1| < π/L. This wavefunction is invariant under small gauge trans-
formations. Recall small gauge transformations imply A1 is independent of x.
Small gauge transformations therefore shift the centre of the A1 harmonic os-
cillator slightly away from A1 = 0. Note that small gauge transformations, by
definition, are those which transform the initial configuration, say, |A1| < π/L
to the gauge transformed configuration |Ã1| < π/L.

Large gauge transformations are the ones which take A1 to A1 + 2πk/L,
where (k = ±1,±2, · · · ). The vacuum wavefunction is not invariant under large
gauge transformations. Although A1 ≈ 0 and A1 ≈ 2π/L are related by gauge
transformation, we know from our study of the fermion energy levels that the
fermion vacuum at A1 ≈ 0 is different from that at A1 ≈ 2π/L. In particular,
at A1 ≈ 2π/L we have fermion spectrum containing a particle-hole pair. This
state is a gauge transform of the fermion vacuum at A1 ≈ 0. Clearly a particle-
hole pair over vacuum is not a legitimate vacuum state at A1 ≈ 2π/L. In
other words, the correct vacuum state of fermions at A1 = 2π/L has a different
description in the neighbourhood of A1 = 0. It is certainly not the fermion
vacuum at A1 = 0. From the level crossing picture, we know that as we increase
A1, left moving fermion energy states move upwards and right moving fermion
energy states move downwards. The fermionic energy spectrum, nevertheless, is
identical for A1 and A1 +2πn/L (n ∈ Z). Level crossing affects the occupation
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number of these energy states. The fermion vacuum state at A1 appears as
a state with n left moving fermionic particles and n right moving fermionic
holes.excited over the Dirac sea at A1 + 2πn/L with n > 0. However, we want
to define fermionic vacuum at every value of n, and we will describe this state
in terms of the fermionic state defined in the interval −π/L < A1 < π/L.

Suppose we want to define fermionic vacuum at A1 ≈ 2π/L. It is now
obvious from the level crossing argument (see Fig.4.1) that the state at A1 ≈ 0
which evolves into a fermionic vacuum at A1 ≈ 2π/L is

Ψ
( 2π

L )

ferm =

⎛⎝ ∏
k=−2,−3,···

|1L; k〉|0R; k〉
⎞⎠

×
⎛⎝ ∏

k=−1,0,1,···
|0L; k〉|1R; k〉

⎞⎠ . (4.70)

This state gives correct description of the Dirac sea at A1 = 2π/L. It is now
easy to write down the full vacuum wavefunction

Ψ1(A1, ψ) =
∏

k=−2,−3,···
|1L; k〉|0R; k〉

×
∏

k=−1,0,1,···
|0L; k〉|1R; k〉Ψ0(A1 − 2π/L). (4.71)

This argument can be generalized in a straight forward manner to write down
the fermionic state describing the Dirac sea at A1 ≈ 2πn/L. This implies we
have degenerate ground states labeled by an integer n corresponding to a large
gauge transformation A1 → A1 + 2πn/L, n ∈ Z. Appropriate vacuum wave-
function for nth sector is

Ψ1(A1, ψ) =
−∞∏

k=−1−n

|1L; k〉|0R; k〉

×
∞∏

k=−n

|0L; k〉|1R; k〉Ψ0

(
A1 − 2πn

L

)
, (4.72)

where n ∈ Z. A large gauge transformation takes us from Ψn to Ψn′ . Therefore
these wavefunctions are not invariant under large gauge transformations. These
degenerate vacua are called “n-vacua”. It is, in fact, possible to write down a
new vacuum state which is invariant, up to an overall phase, under large gauge
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transformations. Define

Ψ
(0)
θ (A1, ψ) =

∑
n

Ψn(A1, ψ) exp(inθ). (4.73)

This state depends on a continuous parameter θ, which is called the vacuum
angle.

Let us now see the effect of a large gauge transformation on the new vac-

uum state Ψ
(0)
θ (A1, ψ). For illustration, consider a large gauge transformation

which takes A1 to A1+2π/L. From the expression of n-vacuum state, it is clear
that this large gauge transformation takes us from Ψn to Ψn−1. This in effect
means

Ψ
(0)
θ → exp(iθ)Ψ

(0)
θ . (4.74)

This overall phase is not observable. The state Ψ
(0)
θ is not unique because for any

angle θ it is invariant under large gauge transformations. The states represented

by Ψ
(0)
θ (A1, ψ) is called the “θ-vacuum”. All physical quantities obtained by

averaging over θ-vacua are invariant under all gauge transformations.
Existence of θ-vacua can be incorporated in the Lagrangian density by

adding a term

Lθ =
θ

2π
εμνFμν , (4.75)

to the original Lagrangian density. This quantity is called the topological den-
sity. Since Lθ is a total derivative, addition of it to the original Lagrangian
density does not affect equations of motion. Classical physics is therefore unal-
tered. The topological density contributes only if∫

dt

∫ L/2

−L/2

dx
dA1

dt
�= 0∫ L/2

−L/2

dx[A1(x, t = ∞)−A1(x, t = −∞)] �= 0. (4.76)

Partition function of the Schwinger model in the Lagrangian formulation and
with the inclusion of the topological density is

Z =
∑

{A,ψ}
exp

(
i

∫
d2x(L+ Lθ

)
, (4.77)

where the summation is over all field configurations of ψ and Aμ. The original
Lagrangian density is invariant under both small and large gauge transfor-
mations. Invariance of the partition function under all gauge transformations
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means the topological density should change by a factor 2π× integer. Since we
are looking at adiabatic variation of the gauge field, integral of the topological
density itself must be 2π× integer. Thus we need∫ L/2

−L/2

dx[A1(x, t = ∞)−A1(x, t = −∞)] = 2πn. (4.78)

Using small gauge transformation we can set A1 to be independent of x. We
can then choose A1 varying adiabatically from A1 at t = −∞ to A1 + 2πn/L
at t = ∞. Thus,

A1(x, t = ∞)−A1(x, t = −∞) =
2π

L
n. (4.79)

Putting this back into the integral (4.78) and noticing that it is independent of
x and carrying out the integral gives us the desired answer. However, A1 and
A1 + 2πn/L, n ∈ Z are related by a large gauge transformation. That means
our final gauge field configuration is a gauge transform of our initial gauge field
configuration.

A1(x, t = ∞) = A1(x, t = −∞)− ∂αn

∂x
, (4.80)

where, αn = −2πnx/L. The topological density therefore can be written as∫ L/2

−L/2

dx[A1(x, t = ∞)−A1(x, t = −∞)] = −
∫ L/2

−L/2

dx
∂αn

∂x
. (4.81)

We are now in a position to understand why we call Lθ, a topological density.
Spatial direction in our model is periodic with periodicity L. The gauge field
component A1 is also periodic with periodicity 2π/L. As we traverse x from
−L/2 to L/2, αn changes by −2πn and as a result A1 changes from A1 to
A1 + 2πn/L. Since both x and A1 are periodic we can treat them as variables
parametrizing a circle. The circle parametrized by x has a circumference L
whereas the circle parametrized by A1 has circumference 2π/L. Going around
x circle once takes us around A1 circle n times. αn defines a map from x-circle
to A1-circle. Maps from x-circle to A1-circle which wind the A1-circle n times
are not continuously connected to the maps that wind A1-circle m times for
m �= n.

Thus these maps are divided into different equivalence classes according
to number of times they wrap the A1-circle. These wrappings are parametrized
by an integer called the winding number. Mathematically, maps from a circle
to a circle are classified by the first homotopy group or the fundamental group
π1. Windings parametrized by an integer is a statement π1(S

1) = Z. It is easy
to see that π1(S

1) forms a group.
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• For every element which gives a map with winding number n, there exists
a map of winding number −n. Composition of these two maps gives a map
with winding number zero.

• A map with winding number zero is in the equivalence class of identity
maps.

• A map with winding number n and a map with winding number m can
be composed together to get a map with winding number m+ n.

π1(S
1) is an abelian group.
Why do we need θ-vacua? The n-vacuum, denoted by Ψn, is invariant

under small gauge transformations and that is sufficient to ensure conservation
of electric charge. We can then ignore the fact that Ψn is not invariant under
large gauge transformations. If we are going to work within the perturbation
theory then we will not see such a large change in the field configuration anyway.

The problem with this line of argument is that Ψn violates the cluster
decomposition property of the quantum field theory. Suppose we are studying
vacuum expectation value of the time ordered product of some local operators,
then the cluster decomposition property implies that this vacuum expectation
value is reducible to the sum over intermediate states including the vacuum
state and all the excitations over it. The fact that Ψn would violate this property
is easy to see. Consider a two point function of the operator

O(t) =

∫
ψ̄(x, t)(1 + γ5)ψ(x, t)dx, (4.82)

G2(t) = 〈Ψn|T{O†(t)O(0)}|Ψn〉. (4.83)

We are evaluating this two point function in Ψn state. The operator O changes
the axial charge by minus two units. We therefore expect that G2(t) will be
non-vanishing. Now if we use the cluster decomposition property then we can
insert complete set of states between O† and O. If we restrict ourselves to Ψn

sector then G2(t), by cluster decomposition property depends on 〈ψ̄(1+ γ5)ψ〉.
Since ψ̄(1+ γ5)ψ changes Ψn to Ψn+1, 〈ψ̄(1+ γ5)ψ〉 = 0 in the Ψn sector. This
contradicts our earlier expectation that G2(t) is non-vanishing. If, instead of

Ψn, we use Ψ
(0)
θ then the cluster property is restored. This is because in the

θ-vacuum we can have non-diagonal vacuum expectation value.

〈Ψn+1|ψ̄(1 + γ5)ψ|Ψn〉 ∝ 1

L
exp

(
iθ − (2π)3/2

eL

)
. (4.84)

Violation of cluster property leads to violation of causality as well as violation
of unitarity. It is therefore imperative that we work with θ-vacua and not with
an n-vacuum.
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4.6 Four Dimensional Gauge Theory

We will start with the four dimensional abelian gauge theory coupled to a
massless Dirac fermion. The classical action for this theory is given by

S =

∫
d4x

(
−1

4
FμνF

μν + Ψ̄iD/Ψ

)
, (4.85)

where, Dμ = ∂μ − ieAμ and D/ = γμDμ. Our conventions are

gμν = gμν = diag(1,−1,−1,−1); γμ = (γ0, γi), γμ = (γ0,−γi)

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
(4.86)

γ5 = iγ0γ1γ2γ3 =

( −1 0
0 1

)
.

Since the fermion is massless, we can write it in terms of left handed and right
handed components.

ΨL =
1

2
(1 + γ5)Ψ, ΨR =

1

2
(1− γ5)Ψ. (4.87)

Let us also consider four dimensional non-abelian gauge theory with gauge
group SU(N) coupled to nf massless fermions. The classical action for this
theory written in terms of left handed and right handed components of the
fermion is

S =

∫
d4x

(
−1

4
Ga

μνG
aμν +

nf∑
m=1

Ψ̄mLiD/ΨmL +

nf∑
m=1

Ψ̄mRiD/ΨmR

)
, (4.88)

where, Ga
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν and fermions Ψm are all in the

fundamental representation, N of SU(N). The covariant derivative is defined
as Dμ = ∂μ − igAa

μT
a, where T a, a = 1, · · · , N2 − 1 are generators of the Lie

algebra of SU(N), in the fundamental representation.

[T a, T b] = ifabcT c, Tr(T aT b) =
1

2
δab. (4.89)

Let us enumerate symmetries of these actions,

1. Local gauge invariance: In case of abelian gauge theory, the action is in-
variant under

Ψ(x) → Ψ′(x) = e−ieα(x)Ψ(x), (4.90)

Aμ(x) → a′μ(x) = Aμ(x)− ∂μα(x). (4.91)
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For non-abelian gauge theory, the action is invariant under

Ψm(x) → Ψ′
m(x) = U(θ)Ψm(x), (4.92)

A′
μ(x) = U(θ)Aμ(x)U

−1(θ)− i

g
∂μU(θ)U−1(θ), (4.93)

where, U(θ) = exp(−iT aθa(x)).

2. Global symmetries:

(a) Apart from obvious Poincare invariance, both abelian and non-
abelian gauge theory actions are invariant under the scale trans-
formation. This gives conserved dilatation current.

Aμ(x) → A′
μ(x) = λAμ(λx), (4.94)

Ψ(x) → Ψ′(x) = λ3/2Ψ(λx). (4.95)

(b) Both the actions are invariant under the phase transformations

Ψ(x) → eiαΨ(x), or Ψm(x) → eiαΨm(x), (4.96)

and

Ψ(x) → eiβγ5Ψ(x), or Ψm(x)→eiβγ5Ψm(x). (4.97)

These two symmetries give rise to conserved vector current

Jμ(x) = (Ψ̄γμΨ)(x) [(Ψ̄mγμΨm)(x)], (4.98)

and conserved axial current

Jμ
5 (x) = (Ψ̄γμγ5Ψ)(x) [(Ψ̄mγμγ5Ψm)(x)]. (4.99)

Action of these symmetries on left handed and right handed fermion
is (for vector transformation)

ΨL(x) → Ψ′
L(x) = e−iαΨL(x), (4.100)

ΨR(x) → Ψ′
R(x) = e−iαΨR(x), (4.101)

and (for axial vector transformation)

ΨL(x) → Ψ′
L(x) = eiβΨL(x), (4.102)

ΨR(x) → Ψ′
R(x) = e−iβΨR(x). (4.103)
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(c) In addition to these symmetries, the non-abelian gauge theory action
has SU(nf )L × SU(nf )R flavor symmetry. To see this symmetry we
first write nf fermions in a column vector

Ψ(x) =

⎛⎜⎜⎜⎝
Ψ1

Ψ2

...
Ψnf

⎞⎟⎟⎟⎠ (x). (4.104)

An nf × nf unitary matrix U mixes these fermions into each other.
This unitary matrix is an element of SU(nf ) group. Since we have
decomposed fermions into left handed and right handed components
with no term in the action which couples left and right components,
we can do independent rotations of left handed and right handed
fermions. This corresponds to the transformations

ΨL(x) → Ψ′
L(x) = UΨL(x) (4.105)

ΨR(x) → Ψ′
R(x) = ŨΨR(x). (4.106)

Thus in case of massless fermions we have SU(nf )L × SU(nf )R
chiral flavor symmetry. This symmetry can also be written as
SU(nf )V × SU(nf )A flavor symmetry. This can be seen by recog-
nizing that vector transformation acts on ΨL(x) + ΨR(x) and axial
vector transformation acts on ΨL(x)−ΨR(x).

We are interested in the axial U(1) transformation symmetry. To study that let
us choose Fock-Schwinger gauge, i.e., xμAa

μ(x) = 0. We will make this gauge
choice both for abelian as well as non-abelian gauge theories. However, to see
the utility of this gauge we will carry out manipulations in the non-abelian
gauge theory. The Fock-Schwinger gauge implies we can write down the gauge
field Aa

μ in terms of the field strength Ga
μν as

Aa
ν(x) =

∫ 1

0

dααxμGa
μν(αx). (4.107)

It is trivial to see that this gauge field satisfies the Fock-Schwinger gauge con-
dition. However, it is instructive to check this relation explicitly. To do that let
us write

Aa
μ(y) = ∂μ(A

a
ρ(y)y

ρ)− yρ∂μA
a
ρ(y)

= −yρ∂μA
a
ρ(y) (4.108)

= −yρGa
μρ(y)− yρ∂ρA

a
μ. (4.109)
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The last relation is true because

yρGa
μρ(y) + yρ∂ρA

a
μ = yρ(∂μA

a
ρ − ∂ρA

a
μ + gfabcAb

μA
c
ρ)

+ yρ∂ρA
a
μ. (4.110)

The non-linear term vanishes due to gauge choice leaving us with

yρGa
μρ(y) + yρ∂ρA

a
μ = yρ∂μA

a
ρ(y). (4.111)

We can now rearrange the equation (4.108) as

yρGa
ρμ(y) = Aa

μ(y) + yρ∂ρA
a
μ. (4.112)

Let us now write yμ = αxμ, which allows us to rewrite the equation (4.112) as

αxρGa
ρμ(αx) =

d

dα
(αAa

μ(αx)). (4.113)

Putting this expression back into (4.107) gives us the identity. Explicit expres-
sion for Aa

μ(x) can be obtained by Taylor expanding the field strength and
carrying out integration over α.

Aa
μ(x) =

∫ 1

0

dααxρGa
ρμ(αx) =

xρGa
ρμ(x)

2

+
xβxρ∂βG

a
ρμ(x)

3
+

xλxβxρ∂λ∂βG
a
ρμ(x)

8
+ · · · (4.114)

Using the gauge condition we can replace ordinary derivatives by covariant
derivatives.

Aa
μ(x) =

xρGa
ρμ(x)

2
+

xβxρDβG
a
ρμ(x)

3

+
xλxβxρDλDβG

a
ρμ(x)

8
+ · · · (4.115)

Similarly, Taylor expansion of the fermion field can also be expanded in terms
of covariant derivatives

Ψ(x) = Ψ(0) + xμDμΨ(0) +
1

2
xμxνDμDνΨ(0) + · · · (4.116)

Let us now consider the fermion propagator. we will ignore flavor indices on
the fermion.

S(x, y) = 〈T{Ψ(x)Ψ̄(y)}〉. (4.117)
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The propagator satisfies the Green’s function equation

(iγμ∂μ + gγμAμ(x))S(x, y) = iδ4(x− y). (4.118)

We will use the background field method, i.e., we will fix the classical gauge field
background Aμ(x) = Aa

μ(x)T
a. We cannot determine the propagator exactly,

however, we can express it in terms of the free propagator using the Dyson
series.

S(x, y) = S(0)(x− y) + g

∫
d4z S(0)(x− z)A/(z)S(0)(z − y) + · · · (4.119)

The free propagator in the coordinate space is given by

S(0)(x− y) =
i

2π2

x/− y/

(x− y)4
. (4.120)

This form of the propagator can be obtained by using following identities

• 1
∂/ = −∂/ 1

�
⇒ S(0)(x− y) = −∂/

∫
d4k
(2π)4

e−ik·(x−y)

k2+iε

• ∫∞
−∞ dx exp(−x2

2 ) =
√
2π ⇒ Volume of S3 = 4π2

• Fourier Transform of 1/k2 is 1/x2.

This form of the propagator can also be determined by dimensional analysis.
We will now choose Aa

μ(z) = zρGa
ρμ(0)/2. Higher order terms are regular. Sub-

stituting this in the expression of the propagator

S(x, y) = S(0)(x− y)

+
g

8π2

∫
d4z

x/− z/

(x− z)4
zρGρμγ

μ z/− y/

(z − y)4
+ · · ·

=
i

2π2

x/− y/

(x− y)4
+

i

4π2

xα − yα

(x− y)2
gG̃αβγ

βγ5 + · · · (4.121)

where G̃αβ = 1
2εαβγδG

γδ. This result can also be derived using momentum
space representation of the propagator and expanding exact formal propagator
in terms of free propagator.

Le us now look at the U(1) axial current in this theory.

Jμ
5 = Ψ̄(x)γμγ5Ψ(x). (4.122)

We will consider only single fermion flavour and multiply the final result by nf

to accommodate contribution of all fermion flavours. The axial current in the
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quantum theory is ill-defined due to product of operators at same space-time
point. We will use point-splitting regularization method to define Jμ

5 (x).

Jμ
5 = Ψ̄(x+ ε)γμγ5 exp

(
ig

∫ x+ε

x−ε

Aρdy
ρ

)
Ψ(x− ε). (4.123)

Let us compute divergence of this current. Using equation of motion it is easy
to show that the divergence vanishes except for a contribution coming from
the derivative acting on the gauge field in the exponent. We thus get (using
Aρ = 1

2y
μGμρ(y))

∂μJ
μ
5 = Ψ̄(x+ ε)γμγ5ε

βGμβ(x) exp

(
ig

∫ x+ε

x−ε

Aρdy
ρ

)
Ψ(x− ε). (4.124)

Let us now evaluate vacuum expectation value of ∂μJ
μ
5 in the classical gauge

field background.

〈∂μJμ
5 〉 = 〈Ψ̄(x+ ε)γμγ5ε

βGμβ(x) exp

(
ig

∫ x+ε

x−ε

Aρdy
ρ

)
Ψ(x− ε)〉

= −〈Tr(igγμγ5ε
βGμβ(x)Ψ(x− ε)Ψ̄(x+ ε))〉

= −Tr
(
igγμγ5ε

βGμβ(x)〈S(x− ε, x+ ε)〉)
= Tr

(
igγμγ5ε

βGμβ(x)

{
1

2π2

−2ε/

(2ε)4

− igεα

2π2(2ε)2
G̃αργ

ργ5 + · · ·
})

=
g2

16π2
Ga

μνG̃
aμν , (4.125)

where, we have used the relation Tr(T aT b) = 1
2δ

ab and anticipating the fact that
in the point splitting method we eventually take ε → 0 we have retained only
non-vanishing terms. We will take ε → 0 limit in such a way that the Lorentz
invariance is recovered. This corresponds to taking this limit in a symmetric
manner,

εαεβ

ε2
=

1

4
gαβ . (4.126)

In this way we get the axial anomaly equation in four dimensional abelian and
non-abelian gauge theories. In case of non-abelian gauge theory this anomaly
is computed using single fermion flavour. Taking into account contribution of
nf flavours gives

〈∂μJμ
5 〉 =

g2

16π2
nfG

a
μνG̃

aμν . (4.127)
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4.7 Path Integral Method

We know how to study quantum mechanics and quantum field theory using
canonical operator formalism.We have developed elaborate techniques to com-
pute physically relevant quantities in this formalism and have compared them
with laboratory results. We will now briefly introduce path integral methods
and use them to compute anomalies. There are several reasons to take re-
sort to the path integral methods. Firstly, operator method is not manifestly
Lorentz invariant, although the final result is Lorentz invariant. Secondly op-
erator method becomes cumbersome if the interaction Hamiltonian contains
derivative terms. Path integral method is well suited for quantizing non-abelian
gauge theories.

We have developed good intuition in classical physics. However, many of
these classical physics intuitions encounter problems in quantum theory in the
operator formalism due to operator ordering ambiguity, normal ordering, time
ordering of operators in the correlations functions etc. A quantization approach
which avoids these roadblocks and allows extension of classical intuition to the
quantum theory domain is most desirable. This is precisely what is achieved
in the path integral method. Of course, this can not be achieved at no cost.
In the path integral approach we not only sum over all classical trajectories
but we also sum over all other trajectories connecting initial and final point.
Advantage of this method is, we work with classical variables.

4.7.1 Path Integral Approach to Quantum Mechanics

The utility of the path integral approach is easy to illustrate in quantum me-
chanics. We will show that the canonical operator method in quantum mechan-
ics is identical to the path integral method. Let us start with the Hamiltonian
operator

Ĥ =
p̂2

2m
+ V (q̂). (4.128)

This is derived from the classical Hamiltonian

H =
p2

2m
+ V (q). (4.129)

The corresponding Lagrangian is

L =
1

2
mq̇2 − V (q). (4.130)
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Figure 4.2: Classical trajectory of a particle.

The action associated with a given path q(t) is

S =

∫ t2

t1

dt

(
1

2
mq̇2 − V (q)

)
. (4.131)

Any path joining q1 at t = t1 and q2 at time t = t2 gives a number for the
action. Extremization of the action functional gives the classical path. Let us
use Heisenberg picture to describe quantum mechanics, i.e., states are time
independent and operators are time dependent. Using the Heisenberg equation
of motion for an operator Ô,

dÔ
dt

=
∂Ô
∂t

+ i[Ĥ, Ô], (4.132)

we can write
Ô(t) = exp(iĤt), (4.133)

where for simplicity we have set � = 1. Let us define position eigenstates. |q′〉
and |q′′〉, with eigenvalues q′ and q′′ respectively. Let us now define the kernel
K(q′, t′; q′′, t′′) as

K(q′, t′; q′′, t′′) = 〈q′′| exp(−iĤ(t′′ − t′)|q′〉. (4.134)

K(q′, t′; q′′, t′′) give the probability amplitude of a state created at a point q′

at time t′ and measured at a point q′′ at time t′′. We now claim that

K(q′, t′; q′′, t′′) = N
∫

[Dq] exp

(
iS

�

)
(4.135)
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where N is the normalization factor and
∫
[Dq] is a sum over all paths in

q"

t

q

t

t

’

"

q’

Figure 4.3: Path Integral representation of motion of a quantum mechanical particle.

(q, t) space which begins at (q′, t′) and end at (q′′, t′′). We sum over all paths
connecting q′ and q′′ with the weight exp(iS/�). This sum over paths is carried
out by discretizing time interval (t′′− t′) into N units, Δ = (t′′− t′)/N , N large
but fixed. Using this the action can be written in the discretized form as

S =

∫ t′′

t′
dt

(
1

2
mq̇2 − V (q)

)
= Δ

N∑
i=1

{
m

2

(
qi+1 − qi

Δ

)2

− V (qi)

}
, (4.136)

where qi = q(ti) and ti = t′ + (i − 1)Δ. The kernel in the discretized form
becomes

K(q′, t′; q′′, t′′) = 〈q′′| exp(−iĤNΔ)|q′〉. (4.137)

By writing exp(−iĤNΔ) = exp(−iĤΔ) · · · exp(−iĤΔ) N -times and introduc-
ing complete set of position eigenstates between them, we get

K(q′, t′; q′′, t′′) =

∫
dq2 · · · dqN 〈q′′| exp(−iĤΔ)|qN 〉

〈qN | · · · |q2〉〈q2| exp(−iĤΔ)|q′〉. (4.138)

Let us look at one matrix element

〈qi+1| exp(−iĤΔ)|qi〉 =
〈
qi+1

∣∣∣∣exp(−i

[
p̂2

2m
+ V (q̂)

])∣∣∣∣ qi〉 . (4.139)
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We will now use the following results

exp

(
−iΔ

[
p̂2

2m
+ V (q̂)

])
= exp

(
−iΔ

p̂2

2m

)
exp (−iΔV (q̂))

× exp(−o(Δ2))

q̂|qi〉 = qi|qi〉
|qi〉 =

∫
dp|p〉〈p|q〉

〈p|q〉 = exp(−ipq)

p̂|p〉 = p|p〉, 〈p̃|p〉 = δ(p− p̃)

Using these results we can write the matrix element as〈
qi+1

∣∣∣∣exp(−iΔ(
p̂2

2m
+ V (q̂))

)∣∣∣∣ qi〉=

∫
dpdp̃ exp(−iΔV (qi))

× exp

(
−iΔ

p2

2m

)
exp(iΔp̃qi+1)δ(p− p̃) exp(−iΔpqi) (4.140)

Carrying out the integration over the δ-function and using the following identity∫
dp exp

(
−a

p2

2
+ ip(x− y)

)
=

√
2π

a
exp

(
− (x− y)2

2a

)
, (4.141)

we get

〈qi+1| exp(−iĤΔ)|qi〉 = exp(−iΔV (qi)) exp
(
i
m

2Δ2
(qi+1 − qi)

2
)
. (4.142)

Substituting this expression back in the expression for the kernel gives

K(q′, t′; q′′, t′′) = N
∫

dq2 · · · dqN

exp

(
iΔ

N∑
i=1

{
m

2

(
qi+1 − qi

Δ

)2

− V (qi)

})
. (4.143)

The term in the exponent is precisely the discretized form of the action. The
final expression for the kernel does not contain any operator. It contains only
eigenvalues/numbers. Therefore description in terms of classical action makes
sense. In this formalism, vacuum expectation value of time ordered product of
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operators can be written as

〈q′′| exp(−iĤt′′)T

(
n∏

i=1

q̂(ti)

)
exp(iĤt′|q′〉∫

[Dq] exp(iS)qn(tn) · · · q1(t1). (4.144)

Note that in the path integral q1 · · · qn are all classical variables. We can or-
der them any which way we want, but when we evaluate the path integral it
naturally gives thee time ordered expression.

4.7.2 Path Integral Approach to Quantum Field Theory

Results of quantum mechanics can be generalized to quantum field theory.
Quantum mechanical degrees of freedom q̂i(ti), p̂i(ti) go over to quantum field

theoretic degrees of freedom φ̂i(x), Π̂i(x). In the path integral picture we re-
place Lagrangian of the classical mechanical system by the Lagrangian density
of the classical field theory.

S =

∫
dtL(q, q̇) −→ S =

∫
d4xL(φ(x), ∂μφ(x)). (4.145)

In case of the free scalar field theory we write the path integral as

Zfree =

∫
[Dφ]]exp(iS[φ]), (4.146)

where,

S[φ] =

∫
d4x

[
1

2
ημν∂μφ∂νφ− 1

2
m2φ2

]
, (4.147)

and [Dφ] is the integration measure defined over the space of field configu-
rations. Vacuum expectation value of time ordered product of field operators
φ(xi) is given by

〈T (φ̂(x1) · · · φ̂(xn))〉 =
∫
[Dφ] exp(iS[φ])φ(x1) · · ·φ(xn). (4.148)

It is worth noting that on the left hand side we have expectation value of
product of quantum operators and on the right hand side we have classical
action functional and classical fields. In path integral approach we do not need
to put in explicit time ordering. This method can be extended to any field
theory involving bosonic fields.
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Let us now discuss path integral with fermionic fields. The Dirac field
satisfies anticommutation relations

{ψ̂α(x, t), ψ̂β(y, t)} = 0 (4.149)

{ψ̂†
α(x, t), ψ̂

†
β(y, t)} = 0 (4.150)

{ψ̂α(x, t), ψ̂
†
β(y, t)} = �δαβδ

3(x− y). (4.151)

Note ψ̂†
α(x, t) is the momentum conjugate to ψ̂α(x, t). In the � → 0 limit we find

that all anticommutation relations vanish. This is not a regular classical limit,
because in the classical limit the functions should have commuted but instead
they seem to anticommute. Thus there exists no classical limit of fermions, and
the classical theory would be a formal construction. Path integrals for fermions
also are formal procedures.

The formal action for a free fermion is

S[ψ] =

∫
d4xψ̄(x)(iγμ∂μ −m)ψ(x), (4.152)

and the path integral is ∫
[Dψ][Dψ̄] exp(iS[ψ]). (4.153)

ψ and ψ̄ are anticommuting variables. We need to define the notion of inte-
gration over anticommuting variables. Anticommuting variables are called the
Grassmann variables. They have following properties.

Suppose θi, (i = 1, · · ·n), are n Grassmann variables, then

• Anticommutativity: θiθj = −θjθi, ∀i, j,
• Suppose F (θ) is a function of Grassmann variables then it has a finite
Taylor series expansion in powers of θs.

F (θ1, θ2, · · · , θn) = f0+
∑
i

f (i)θi+ · · ·+
∑

i1,···in
f (i1···in)
n θi1 · · · θin , (4.154)

where fi are ordinary numbers. F (θ) is an even(odd) function if
f2m+1(f2m) vanish for all m.

• Differentiation:
∂θi
∂θj

= δji . (4.155)
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This implies
∂

∂θi
(FG) =

∂F

∂θi
G+ (−1)FF

∂G

∂θi
, (4.156)

where, (−1)F is 1 if F is an even function and −1 if it is an odd function.
Since differentiation anticommutes ∂2F/∂θ2i = 0.

• Integration: We define integration using the property that integration if a
total derivative term vanishes.∫

dθ
∂

∂θ
F (θ) = 0. (4.157)

This implies
∫
dθF (θ) = ∂F (θ)/∂θ. This is effect means∫

dθ = 0, and

∫
dθθ = 1. (4.158)

Consider an integral involving ordinary variables∫
dx1 · · · dxnf(x1, · · ·xn). (4.159)

If we make a change of variables xi → yi = Aijxj then define∫
dx1 · · · dxnf(A1ixi, · · ·Anixi). (4.160)

Let us not relate these two integrals. To do that let us notice that

dy1dy2 · · · dyn = (detA)dx1dx2 · · · dxn. (4.161)

Thus ∫
dx1 · · · dxnf(A1ixi, · · ·Anixi) =

(detA)−1

∫
dy1 · · · dynf(y1, · · · yn). (4.162)

By relabelling y as x we get∫
dx1 · · · dxnf(A1ixi, · · ·Anixi) =

(detA)−1

∫
dx1 · · · dxnf(x1, · · ·xn). (4.163)
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Let us now consider an integral involving Grassmann variables,∫
dθmdθm−1 · · · dθ1F (θ1, θ2, · · · , θm), (4.164)

and relate it to ∫
dθmdθm−1 · · · dθ1F (Ã1iθi, Ã2iθi, · · · , Ãmiθi). (4.165)

It is easy to see by explicitly expanding F (Ãθ) in terms of the Taylor series
that ∫

dθmdθm−1 · · · dθ1F (Ã1iθi, Ã2iθi, · · · , Ãmiθi) =

±(det Ã)

∫
dθmdθm−1 · · · dθ1F (θ1, θ2, · · · , θm). (4.166)

Let us also compare the Dirac δ-function for ordinary variables and for Grass-
mann variables. For ordinary variables∫ ∞

−∞
dxδ(x)f(x) = f(0), (4.167)

and for Grassmann variables∫
dθδ(θ)F (θ) = F (0). (4.168)

In particular, if F (θ) = a+ bθ then F (0) = a, implying δ(θ) = θ.
Let us now define complex Grassmann variables

θj = φj + iψj , and θ†j = φj − iψj , (4.169)

whereφj and ψj are real Grassmann variables. Same rules for differentiation
and integration extend to complex Grassmann variables.

4.8 Path Integral Formalism for Anomalies

Let us start with the discussion of symmetries and conservation laws. Since
the path integral formulation of quantum field theory is in terms of classical
action and classical field variables, it is trivial to implement Noether procedure
and derive conservation laws corresponding to the symmetries of the action.
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However, path integral approach is designed to give us results in the quantum
theory. That would imply all classical symmetries and conservation laws would
trivially carry over to the quantum theory. If this is so then what is the status
of anomalies? How do we derive them from path integral approach?

Although classical action is invariant under symmetry transformations,
we have not checked if the integration measure is invariant or not. If the inte-
gration measure is not invariant then under symmetry transformation we will
get a Jacobian factor. It is this Jacobian factor which can potentially carry
information about anomalies.

Having spotted possible location for finding anomalies in the classical
symmetries let us proceed with the analysis of the integration measure in gauge
theories coupled to fermions. For simplicity, let us consider SU(N) gauge theory
coupled to a single Dirac fermion. The Minkowski space action is

S =

∫
d4xL, L = −1

4
Ga

μνG
aμν + ψ̄iD/ψ. (4.170)

The fermion belongs to the fundamental representation N of SU(N). In the
path integral approach it is convenient to work in the Euclidean space. This
cane be achieved by Wick rotating time direction x0 → −ix4 and A0 → iA4.
We define iγ0 = γ4 and D/ = γiDi + γ4D4. Like γi, γ4 is antihermitian but
γ5 = iγ0γ1γ2γ3 = −γ1γ2γ3γ4 is hermitian. The metric on the Euclidean space
is gμν = diag(−1,−1,−1,−1).

To define path integral measure, let us decompose the Dirac field in terms
of the complete set of eigenfunctions of D/.

ψ(x) =
∑
n

anφn(x), ψ̄(x) =
∑
n

φ†
n(x)b̄n, (4.171)

where,
D/φn(x) = λnφn(x), (4.172)

and ∫
d4xφ†

n(x)φm(x) = δn,m, (4.173)

where an and b̄n are elements of Grassmann algebra. In terms of this decom-
position of ψ, the path integral measure becomes∏

x

[DAμ(x)]Dψ(x)Dψ̄(x) =
∏
x

[DAμ(x)]
∏
n

dan
∏
m

db̄m. (4.174)

Since we will not be concerned too much with the gauge field measure, we will
not bother to define it properly. To derive conserved current corresponding to
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the chiral transformation, we will follow Noether’s prescription. Consider the
local chiral transformation.

ψ(x) → ψ′(x) = exp(iα(x)γ5)ψ(x) (4.175)

ψ̄(x) → ψ̄′(x) = ψ̄(x) exp(iα(x)γ5). (4.176)

Under this transformation the Lagrangian density of the Dirac field transforms
as

ψ̄iγμDμψ → ψ̄iγμDμψ − ∂μα(x)ψ̄γ
μγ5ψ. (4.177)

Effect of this chiral transformation on the fermion modes is

ψ′(x) =
∑
n

a′nφn(x) =
∑
n

ane
iα(x)γ5φn(x). (4.178)

Using this relation and orthogonality of φn(x), we can write a′n in terms of an,

a′m =
∑
n

∫
d4xφ†

m(x)eiα(x)γ5φn(x)an =
∑
n

Amnan. (4.179)

Similarly,

b̄′m =
∑
n

∫
d4xφ†

n(x)e
iα(x)γ5 b̄nφm(x) =

∑
n

Amnb̄n. (4.180)

Since
∫
dθ is same as ∂/∂θ,∏

m

da′m =
1

(detAmn)

∏
n

dan (4.181)

and ∏
m

db̄′m =
1

(detAmn)

∏
n

db̄n. (4.182)

Therefore, ∏
m

da′mdb̄′m =
1

(detAmn)2

∏
n

dandb̄n. (4.183)

Let us now evaluate this determinant for infinitesimal chiral transformation.

Am,n =

∫
d4xφ†

m(x)(1 + iα(x)γ5)φn(x) + · · ·

= δmn +

∫
d4xiα(x)φ†

m(x)γ5φn(x) + · · · (4.184)
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Thus,

[detAm,n]
−1 = det

[
δmn + i

∫
d4xα(x)φ†

m(x)γ5φn(x)

]−1

= exp

(
−Tr ln

[
δmn + i

∫
d4xα(x)φ†

m(x)γ5φn(x)

])
= exp

(
−i

∑
n

∫
d4xα(x)φ†

n(x)γ5φn(x)

)
. (4.185)

As a result we find∏
m

da′mdb̄′m =
∏
n

dandb̄ne
−2i

∑∫
d4xα(x)φ†

n(x)γ5φn(x). (4.186)

Thus the Jacobian factor is

exp

(
−2i

∑∫
d4xα(x)φ†(x)γ5φn(x)

)
= exp

(
−2i

∫
d4xα(x)A(x)

)
. (4.187)

We will evaluate this Jacobian by regularizing the term in the exponent. For
global chiral transformations α(x) is independent of coordinates and can be
pulled out of the integral.

Let us now look at the infinite sum in the exponent,

A(x) =
∑
n

φ†
n(x)γ5φn(x) = lim

M→∞

(∑
n

φ†
n(x)γ5e

−(λn/M)2φn(x)

)
. (4.188)

We regularize the infinite sum by introducing the Gaussian cut off. This not
only gives a smooth cut off for eigenvalues λn > M but also maintains the
gauge invariance. For simplicity we will change basis vectors from φn(x) to
plane wave basis, i.e., eik·x

A(x) = lim
M→∞

(∑
n

φ†
n(x)γ5e

−(D//M)2φn(x)

)

= lim
M→∞

(
Tr

∫
d4k

(2π)4
γ5e

−ik·xe−(D//M)2eik·x
)
. (4.189)

Using the expansion Π/Π/ = Π2 + [γμ, γν ]Gμν/2 and Πμ = (ikμ +Aμ(x)),

A(x) = lim
M→∞

Tr

∫
d4k

(2π)4
γ5e

−{2(ikμ+Aμ)
2+[γμ,γν ]Gμν}/2M2

. (4.190)
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We need to pull down [γμ, γν ] factors enough number of times to get non-zero
trace. Since Aμ is not relevant in trace manipulations, we will ignore it. We will
then be left with a Gaussian integral over k.

A(x) = lim
M→∞

Trγ5([γ
μ, γν ]Gμν)

2 1

(2M2)2
1

2

∫
d4k

(2π)4
e−kμkμ/M

2

=
1

16π2
TrGμνG̃

μν , G̃μν =
1

2
εμνρσG

ρσ. (4.191)

We will now substitute A(x) back into the Jacobian factor. The Jacobian factor
is

e−2α
∫
d4xA(x) = e

iα
8π2

∫
d4xTrGμνG̃

μν

. (4.192)

Total variation of the path integral is∫
[DAμ(x)]DψDψ̄ exp(−S[A,ψ, ψ̄]) →∫
[DAμ(x)]Dψ′Dψ̄′ exp(−S[A,ψ′, ψ̄′])

=

∫
[DAμ]DψDψ̄e−S[A,ψ,ψ̄]−∫

d4x∂μα(x)ψ̄γμγ5ψ

×e
i

8π2

∫
d4xα(x)(TrGμνG̃

μν). (4.193)

Thus we get the anomalous conservation law

∂μJ
μ
5 (x) = − i

8π2
TrGμνG̃

μν , (4.194)

where, Jμ
5 (x) = ψ̄(x)γμγ5ψ(x).

Analytic continuation from the Euclidean space back to the Minkowski
space gets rid of i factor in front of the anomaly term. The imaginary factor
has important implications in the Euclidean version of the theory. Another
point to note is that the exponent of the Jacobian factor is given by

A(x) =
∑
n

φ†
n(x)γ5φn(x). (4.195)

The basis vectors φn(x) satisfy the Dirac equation with eigenvalue λn

D/φn(x) = λnφn(x). (4.196)
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Multiplying this equation by γ5 we get

D/γ5φn(x) = −λnγ5φn(x). (4.197)

Thus for every eigenvector φn(x) with eigenvalue λn, there exists an eigenvector
γ5φn(x) with eigenvalue −λn. Therefore φn(x) and γ5φn(x) are orthogonal to
each other. This implies∫

d4xA(x) =

∫
d4x

∑
n

φ†
n(x)γ5φn(x) = 0, (4.198)

except for the zero modes, i.e., when λ = 0. When λ = 0, we can rewrite A(x)
as ∫

d4xA(x) =

∫
d4x

∑
n

φ†
n(x)γ5φn(x)

=

∫
d4x

(
n+∑
i=1

φ†
iR(x)φiR(x)−

n−∑
i=1

φ†
iL(x)φiL(x)

)
, (4.199)

where φL(R) are left handed (resp. right handed) zero modes, and∫
d4xA(x) = n+ − n−. (4.200)

In other words, the anomaly term is equal to the number of positive chirality
zero-modes minus the number of negative chirality zero-modes. This is the
Atiyah-Singer index theorem.

Yet another point to notice is that computation of the Jacobian factor
gives the anomaly term in any even space-time dimensions. Number of factors
of [γμ, γν ]Gμν that we pull down depends on dimensionality of space-time or
equivalently on the definition of γ5. It is also easy to see that in two dimensions
non-ablelian gauge theory cannot have anomaly because TrGμν = 0.

Let us now consider a theory with parity violating gauge couplings. The
Lagrangian density is

L = ψ̄L(x)iD/ψL(x)− 1

4
Ga

μνG
aμν , (4.201)

where ψL = (1− γ5)ψ/2, ψL belongs to representation N of SU(N). Using the
fact that γ5φn(x) has eigenvalue −λn if φn has eigenvalue λn, we can decompose
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the eigenvectors into left and right chirality modes as

φnL(x) =
1− γ5√

2
φn(x), for λn > 0 (4.202)

=
1− γ5

2
φn(x) for λn = 0 (4.203)

φnR(x) =
1 + γ5√

2
φn(x), for λn > 0 (4.204)

=
1 + γ5

2
φn(x) for λn = 0. (4.205)

Using these modes we can decompose the chiral fermion as

ψL(x) =
∑
λn≥0

anφnL(x) (4.206)

ψR(x) =
∑
λn≥0

b̄nφ
†
nR(x). (4.207)

Under global U(1) chiral transformation,

ψL(x) → e−iα(x)ψL(x) (4.208)

ψ̄L(x) → ψ̄L(x)e
iα(x), (4.209)

where we have kept α to be x dependent only to carry out the Noether pre-
scription. The change in the Lagrangian density due to this transformation
is

L → L+ ∂μαψ̄Lγ
μψL. (4.210)

The integration measure also changes under this transformation. It is now easy
to see that the Jacobian factor is

exp

⎛⎝i

∫
d4xα(x)

∑
λn≥0

[φ†
nL(x)φnL(x)− φ†

nR(x)φnR(x)]

⎞⎠
= exp

(
−i

∫
d4xα(x)

∑
λn

φ†
n(x)γ5φn(x)

)

= exp

(
−i

∫
d4xα(x)A(x)

)
. (4.211)

This phase factor is half of the factor obtained with the Dirac fermion. If we
define the current

Jμ
L = ψ̄Lγ

μψL, (4.212)
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then

∂μJ
μ
L = − i

16π2
TrGμνG̃

μν . (4.213)

It is now trivial to extend this result by replacing abelian chiral transformation
by non-abelian chiral transformations. Consider a chiral transformation,

ψL(x) → exp(−iαa(x)T a)ψL(x), (4.214)

where, T a are generators of the gauge group G. The classically conserved cur-
rent in this case is

Ja
μ(x) = ψ̄L(x)γμT

aψL(x). (4.215)

Since the generator T a does not affect our computation except for contributing
to group theory trace, it is easy to write down the anomaly factor

Aa(x) =
∑
n

φ†
n(x)γ5T

aφn(x) =
1

2

( −1

8π2

)
Tr(T aGμνG̃

μν). (4.216)

Due to Bose symmetry of gauge bosons the anomaly factor can be written as

Aa(x) =
1

4

( −1

8π2

)
Gb

μνG̃
dμνTr(T a{T b, T d}). (4.217)

This is called the gauge anomaly. It is now easy to see that this anomaly
vanishes for SU(2) gauge theory. For SU(2) theory

{T b, T d} = 2δbd ⇒ Tr(T a{T b, T d}) = Tr(T a) = 0. (4.218)

Let us now look at the Standard Model of particle physics. This model
is based on a gauge theory with gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y . Of
these SU(3)c is not a chiral gauge theory and hence is free from anomalies.
SU(2)L ⊗ U(1)Y theory can be potentially anomalous.

However, we will see that for the anomaly to cancel we will get constraints
on the matter content of the theory. Let us look at the fermionic matter content
of the Standard Model and their quantum numbers.

• Quarks (
u
d

)Y=1/3

L

,

(
c
s

)Y=1/3

L

,

(
t
b

)Y=1/3

L

(4.219)

uR(Y = 4/3), dR(Y = −2/3), cR(Y = 4/3),

sR(Y = −2/3), tR(Y = 4/3), bR(Y = −2/3). (4.220)



4.8. Path Integral Formalism for Anomalies 183

• Leptons (
νe
e

)Y=−1

L

,

(
νμ
μ

)Y=−1

L

,

(
ντ
τ

)Y=−1

L

(4.221)

eR(Y = −2), μR(Y = −2), τR(Y = −2). (4.222)

Let us look at only one generation of leptons and one generation of quarks.
Result obtained in this case generalize naturally to three generations. We will
see that the Standard Model anomalies cancel in each generation provided
quarks come in three colours. Potentially anomalous traces in the Standard
Model are

Tr(Y 3), andTr({T a, T b}Y ), (4.223)

where, T a are generators of SU(2)L and Y is a generator of U(1)Y . There
are two more traces but they do not contribute due to tracelessness of SU(2)
generators and the fact that every member of SU(2)L multiplet has same Y
quantum numbers. Let us now concentrate on Tr({T a, T b}Y ) term. Due to the
fact that for SU(2) group {T a, T b} = 2δab, we get

Tr({T a, T b}Y ) = 2δabTr(Y ). (4.224)

It is now easy to see that hypercharges of u, d quarks when added up give
Yq = −Yl/3, where Yq is the total hypercharge of quarks in one generation and
Yl is the total hypercharge of leptons in one generation.

Yq =
1

3
+

1

3
+

4

3
+

−2

3
=

4

3
(4.225)

Yl = −1− 1− 2 = −4. (4.226)

Thus hypercharge anomaly cancels if quarks come in three colours. That is

3Yq + Yl = 0. (4.227)

Let us now look at Tr(Y Y Y ) anomaly. First of all notice that hypercharge gauge
field Bμ(x) does not couple hypercharged matter through vector coupling. For
example, coupling of Bμ(x) to left handed electron is different from coupling
to right handed electron.

DμeL =

(
∂μ + i

g′

2
Bμ

)
eL (4.228)

DμeR = (∂μ + ig′Bμ)eR. (4.229)
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We will split this interaction into vector and chiral coupling. We will choose the
vector coupling in such a way that chiral coupling involves only right handed
fields. Of course, this is purely a matter of choice. It is always possible to adjust
vector coupling so that chiral coupling are purely left handed. The latter choice
is more physical as we will see below.

For anomaly computation, this splitting means we can write Y = YV +YR.
Let us do this assignment for the first fermion generation.

Y q
V : Y u

V =
1

3
, Y d

V =
1

3
; Y l

V : Y ν
V = −1, Y e

V = −1 (4.230)

Y q
R : Y u

R = 1, Y d
R = −1; Y l

R : Y ν
R = 1, Y e

R = −1. (4.231)

Substituting this in pure hypercharge anomaly term gives

Tr(Y Y Y ) = Tr ((YV + YR)(YV + YR)(YV + YR))

= Tr(YV YV YV ) + 3(Tr(YV Y
2
R)

+Tr(Y 2
V YR)) + Tr(Y 3

R). (4.232)

However, we know that the triangle diagram with three vector current insertions
is not anomalous. We are thus left with

Tr(Y Y Y ) = 3(Tr(YV Y
2
R) + Tr(Y 2

V YR)) + Tr(Y 3
R). (4.233)

It is trivial to see that Tr(Y 3
R) cancels within quark generation ans lepton

generation separately. However, the term (Tr(YV Y
2
R + YRY

2
V )) cancel between

a quark generation and a lepton generation provided there are three coloured
quarks.

Tr(YV Y
2
R + YRY

2
V )q =

(
1

9
− 1

9
+

1

3
+

1

3

)
=

2

3
(4.234)

Tr(YV Y
2
R + YRY

2
V )l = −1− 1 = −2 (4.235)

3Tr(YV Y
2
R + YRY

2
V )q + Tr(YV Y

2
R + YRY

2
V )l = 0. (4.236)

Let us now look at the Standard Model anomaly cancellation from low
energy point of view. This would be a check of ’t Hooft’s anomaly matching
condition. At low energy we are left with the quantum electrodynamics. This
theory has only vector coupling and we know that a theory with vector coupling
does not have gauge anomalies. This may seem like a trivial result but if er
demand ’t Hooft’s anomaly matching condition and turn the argument on its
head, we would say that the theory defined in the ultraviolet limit better be an
anomaly free theory because QED is free from gauge anomalies.
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Although it is trivial to see that the infrared theory is anomaly free, it is
still instructive to see how that affects the anomaly cancellation in the Standard
Model. To do this we will split the hypercharge gauge coupling into vector
coupling and left handed coupling. This is a familiar decomposition. This tells
is how electric charge is related to the third component of SU(2)L generator
and the hypercharge.

Q = T3 +
Y

2
⇒ Y = 2(Q− T3). (4.237)

Since T3 is a purely left handed charge and Q is purely vector charge, this gives
us the desired decomposition of the hypercharge. With this decomposition,
the Standard Model anomaly cancellation is the statement that if quarks have
three colours then the Standard Model fermionic matter is ‘electrically neutral’
in each generation, i.e., the sum of electric charges of all fermions in a given
generation vanishes. To see the relation between these two statements, let us
proceed with the analysis of the gauge anomalies.

The first kind of term is Tr(Y ) = 2Tr(Q− T3) = 2Tr(Q). Total charge in
the quark sector (u, d) = 1/3 and total charge in the lepton sector (νe, e) = −1.
This implies Tr(Q) = 0 only if quarks come in three colours.

The second type of anomaly is Tr(Y 3).

Tr(Y 3) = 2Tr(Q3 − 3Q2T3 + 3QT 2
3 − T 3

3 ). (4.238)

Of these terms we already know that Tr(Q3) = 0 because the vector coupling
is not anomalous. We also know that Tr(T 3

3 ) = 0 due to the tracelessness of
odd powers of T3. Thus we are left with

Tr(Y 3) = −24Tr(QT3(Q− T3)) = −12Tr(QT3Y ). (4.239)

Now using the fact that Q = T2 + Y/2, we can write

Tr(Y 3) = −12Tr(T 2
3 Y )− 6Tr(T3Y

2). (4.240)

The second term in eq.(4.240) vanishes because T3 is traceless and that the
hypercharge of all the members of a given SU(2)L multiplet is same. Thus we
are reduced only to one term and since T 2

3 = 12×2,

Tr(Y 3) = −12Tr(Y ) = −12Tr(2(Q− T3))

= −24Tr(Q) = 0. (4.241)

Thus we have seen that the Standard Model anomaly cancellation means that
the fermionic matter of the Standard Model is ‘electrically neutral’ when all
charges of the fermions is a given generation are added up.
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