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Perturbative Quantum

Chromodynamics

V. Ravindran

3.1 Structure of Hadrons

Quantum Chromodynamics (QCD) is the theory of strong interaction force
among hadrons. It is a gauge theory based on a non-Abelian gauge group
namely SU(3). In the following, I will describe the perturbative aspects of
QCD that is relevant for studying high energy scattering processes involving
hadrons.

Strong interaction force is responsible for binding the nucleons inside the
nucleus. It is a short range force which is effective within few Fermi (of the
order of 10−13cm). Thus, the typical cross section for the process mediated by
strong interaction is of the order of square of few Fermi which is 10−26cm2

(10 milli-barn (mb)). The characteristic energy scale of strong interaction force
is of the order of few hundred million electron volt (MeV) and the life time
of any excitation will be around inverse of few hundred MeV. However, its
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interaction strength is several hundred times larger than those of weak (wk)
and electromagnetic (em) forces(α ≈ 1/137).

Hadrons such as baryons (proton, neutron, Λ,Δ,Ω, etc. having 1/2 integer
spins) and mesons (π0, π±,K, ρ having integer spins) being composite objects
are classified in terms of their constituents: quarks and anti-quarks. They are
spin-1/2 point-like particles carrying fractional charges. There are six types of
quarks with different flavour quantum numbers denoted by up (u), down (d),
charm (c), strange (s),top (t) and bottom (b). The u, c, t quarks carry 2/3 and
d, s, b carry −1/3 units of electron charge. In addition to flavour quantum num-
ber, these quarks carry three colour quantum numbers, namely red (R), blue

(B) and green (G). We denote them by states namely qfi where f = u, d, c, s, t, b

and i = R,B,G. These states qfi transform like a vector in the fundamental rep-
resentation of SU(nf ) group, called flavour group with nf number of flavours.
SU(nf ) is a set of nf × nf unitary matrices denoted by U satisfying the con-
dition detU = 1. These transformations are space-time independent, usually
called global or phase transformations. In addition, these states transform like
a vector under SUc(3) group, called colour group. Hadrons by themselves can
carry definite flavour quantum number and hence the hadronic wave functions
can be non-singlets under SU(nf ) transformation. On the other hand, there
is so far no experimental evidence for a hadron with non-zero colour quan-
tum number. Hence, hadronic wave functions are always singlets under SUc(3)
transformations. Mesonic states can be obtained by combining quark and anti-
quark states, i.e.,

∑
i q

f1
i qf2i can be a meson with an effective flavour quantum

number obtained using f1, f2 and they are colour singlets. Baryonic states are
obtained by combining three quark states, i.e.,

∑
ijk εijkq

f1
i qf2j qf3k where εijk

is anti-symmetric tensor in i, j, k. They are again colour singlets with definite
flavour. The anti-symmetrization of colour indices in the baryonic wave func-
tions is needed in order to preserve the Pauli exclusion principle in the states
with three spin-1/2 quarks.

Though, the static properties of hadrons can be obtained using the flavour
quantum numbers of the their constituents, the nature of strong interaction
force can not be explained by models based only on global continuous sym-
metries such as SU(nf ). Understanding the dynamics of the strong interaction
force in terms of the constituents is an important task in hadronic physics. The
task is to look for a suitable gauge theory that describes the dynamics of these
constituents and also the mechanism behind the binding force.

The crucial inputs to construct a suitable theory of strong interaction
force come from various elastic and inelastic experiments involving hadrons.
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Elastic scattering of lepton on a hadron provides low energy description of
hadrons, namely the electric and magnetic charge distributions inside the
hadrons. Consider an elastic scattering process:

e−(k) + P (p) → e−(k′) + P (p′) (3.1)

where the incoming electron e− and proton P carry momenta k and p respec-
tively, k′ and p′ are their momenta after the scattering. The scattering takes
place by exchanging a virtual photon of momentum q = k′−k which is space-like
(q2 < 0). This is the lowest order process in quantum electrodynamics (QED)
where photon interacts with charged particles. The interaction vertex of the
photon with the electron and its propagator are known from QED. It is given
by −iejμA

μ where jμ is the electro-magnetic current of the electron and Aμ is
the photon field. In QED, the electromagnetic current is given by jμ = ψγμψ
where, ψ is the wave function of the electron. On the other hand the wave
function of the proton and proton-photon interaction vertex are not known.
They can be obtained by first modeling them based on the symmetries and
then by fitting against the experiments. In other words, one first parameterises
the current of the hadron that couples to the photon in terms of trial wave
functions denoted by Ψ(p) and Ψ(p′) and a set of form factors F̃i(q

2), (i = 1, 2)
multiplying suitable vectors constructed out of pμ, p

′
μ, γμ. In momentum space,

the typical interaction term is given by

eÃμ(q)Ψ(p′)

[
F̃1(Q

2) γμ +
κ

2MP
F̃2(Q

2) iσμνq
ν

]
Ψ(p) (3.2)

where σμν = i[γμ, γν ]/2, κ the anomalous magnetic moment and MP the mass

of the proton. The scalar functions F̃i(Q
2) parameterise the structure of the

hadron in terms of the scale Q2 = −q2. The elastic cross section is found
to be

d2σ

dΩedE′ =
4α2E

′2

q4

{
G2

E(Q
2) + Q2

4M2
P
G2

M (Q2)

1 + Q2

4M2
P

cos2
θ

2

− Q2

2M2
P

G2
M (Q2) sin2

θ

2

}
δ

(
ν − Q2

2MP

)
(3.3)
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where dΩe is the solid angle of the scattered electron in the laboratory frame,
E′ its energy. We have

α =
e2

4π
, Q2 = 4EE′ sin2

θ

2
, ν = p.q/MP

GE(Q
2) = F̃1(Q

2)− κQ2

4M2
P

F̃2(Q
2)

GM (Q2) = F̃1(Q
2) + κF̃2(Q

2) (3.4)

where κ depends on the magnetic moment. The elastic form factors (F̃i(Q
2),

equivalently Gi(Q
2), i = E,M) describe the electric charge and magnetic mo-

ment distributions of the proton as a function of a scale denoted by Q of the
photon that probes the proton. Experimentally, one finds that GE(Q

2) and
GM (Q2)/(1 + κ) decrease as 1/Q4 when Q increases. This implies the elas-
tic scattering cross section falls off rapidly at large angles. The distribution of
these charges in terms of energy easily translates to a spatial picture of the
proton.

We will now study a different kind of experiment called (deep) inelastic
scattering in which the proton is bombarded with very high energetic photon
that breaks the proton into pieces. That is, we consider e−(k)+P (p) → e−(k′)+
X(pX) where X are final state hadrons carrying momentum denoted by pX .
We restrict ourselves to inclusive cross section where all the final states but the
scattered lepton are summed over. To lowest order in em, the differential cross
section can be written as a product of leptonic part Lμν , and a hadronic part
Wμν :

d2σ

dΩedE′ =
E′

E
Lμν(k, q)

α2

Q4
Wμν(q, p) (3.5)

where

Lμν(k, q) =
1

2

∑
s1,s2

(u(k′, s2)γμu(k, s1)) (u(k′, s2)γνu(k, s1))
∗

(3.6)

Wμν(q, p) =
1

8MPπ

∑
pX ,s

〈p, s|Jμ(0)|pX〉〈pX |Jν(0)|p, s〉

(2π)4δ(4)(q + p− pX) (3.7)
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The lepton part is fully computable in QED. On the other hand the hadronic
part requires the knowledge of the matrix element of electromagnetic cur-
rent Jμ between proton states. Jμ is Hermitian and conserved. Using trans-
lational invariance, Jμ(x) = eip̂·xJμ(0)e−ip̂·x and the completeness relation∑

pX
|pX〉〈pX | = 1,

Wμν(q, p) =
1

4MPπ

∫
d4xeiq·x

1

2

∑
s

〈p, s|Jμ(x)Jν(0)|p, s〉. (3.8)

Since ∫
d4xeiq·x

∑
s

〈p, s|Jν(x)Jμ(0)|p, s〉 = 0 (3.9)

which follows from energy conservation along with the condition q0 > 0, we
find

Wμν(q, p) =
1

4MPπ

∫
d4xeiq·x

1

2

∑
s

〈p, s|
[
Jμ(x), Jν(0)

]
|p, s〉 (3.10)

This commutator vanishes for x2 < 0, so the integral has support only for
x2 > 0. To proceed further with the hadronic tensor Wμν(q, p), we exploit the
symmetries at our disposal such as Lorentz covariance (that is, second rank
nature) of Wμν(q, p), qμW

μν(q, p) = qνW
μν(q, p) that follows from the current

conservation ∂μJ
μ(x) = 0 and finally parity and time reversal invariance of the

interaction. To this end we parameterise the hadronic tensor as

Wμν(q, p) =
(
− gμν +

qμqν
q2

)
W1(q

2, p2, p · q)

+
(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

) 1

M2
P

W2(q
2, p2, p · q) (3.11)

where Wi, i = 1, 2 are called structure functions which are functions of Lorentz
invariants q2 = −Q2, p2 and p · q. Since p2 = M2

P , we suppress obvious p2

dependence in the rest of the analysis. The summation over spin in the lep-
tonic tensor gives traces over gamma matrices which can be easily evaluated.
Substituting the resultant Lμν and Wμν in eqn.(3.5), we get in the laboratory
frame,

d2σ

dΩedE′ =
4α2E

′2

Q4

[
W2(Q

2, p · q) cos2 θ

2
+ 2 W1(Q

2, p · q) sin2 θ

2

]
(3.12)
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In the above formula, the structure functions Wi (i = 1, 2) are still unknowns.
Using this formula and measuring the differential cross section, these structure
functions can be extracted for various values of Q2 and p · q. Alternatively, the
qualitative feature of these functions can be obtained by studying them in the
infinite momentum frame. The study of the hadronic tensor in the infinite mo-
mentum frame where pz component of the proton tends to very large value(say
∞) reveals much simplified form for these structure functions. In particular,
when Q2 → ∞ with the ratio Q2/2p · q fixed, usually called Björken limit
(denoted by Bj), one finds

lim
Bj

MPW1(Q
2, p · q) = F1(xBj)

lim
Bj

p · q
MP

W2(Q
2, p · q) = F2(xBj) (3.13)

where xBj = Q2/2p·q. In the Björken limit, the structure functions are no longer
functions of two invariants Q2 and p · q but the ratio xBj = Q2/2p · q,called
Björken variable. The deep inelastic scattering cross section following form

lim
Bj

d2σ

dΩedE′ =
4α2E

′2

Q4

[
MP

p · qF2(xBj) cos
2 θ

2
+

2

MP
F1(xBj) sin

2 θ

2

]
(3.14)

implying “scaling” behavior of appropriately normalised cross section in terms
of the the variable xBj . Such a scaling is called Björken scaling and deep inelas-
tic scattering experiments at SLAC, Stanford confirmed it. We will come back
to the physical interpretation of this scaling after we study the hadronic tensor
in the Björken limit using a more rigorous approach called operator product
expansion (OPE).

3.2 Operator Product Expansion and Parton Model

We have already seen that the hadronic tensor Wμν(q, p) has support only for
x2 > 0. Now we will show that the dominant contribution to the hadronic
tensor in the Björken limit comes from the light-cone region x2 = 0. Let us first
find out how this limit can be applied to the integral in eqn.(3.10). Note that

q · x ≈ p · q
MP

(x0 − x3)− Q2MP

4p · q (x0 + x3) (3.15)

This implies that it diverges in the Björken limit provided x0 − x3 is very
different zero. If so, the exponential of i q · x will be highly oscillatory leading
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to vanishing integral. This oscillation gets suppressed only in the position space
x, when x0 − x3 ≤ MP /p · q and x0 + x3 ≤ const.p.q/Q2. This corresponds to
the region where x2 ≤ x2

0 − x2
3 ≈ 0. The region where x2 ≈ 0 is called light-

cone region. The summary of the above simple exercise is that the dominant
contribution to Wμν(q, p) in the Björken limit comes from the light-cone region
of the integral.

The hadronic tensor Wμν(q, p) can be written as

Wμν(q, p) =
1

2πi

[
Tμν(q

0 + iε)− Tμν(q
0 − iε)

]
(3.16)

where

Tμν(q, p) =
i

2MP

∫
d4xeiq·x

1

2

∑
s

〈p, s|T (Jμ(x)Jν(0)) |ps〉 (3.17)

In this representation, we can easily apply Björken limit as can be shown be-
low. The task now is to study the time ordered product of two electromagnetic
currents on the light cone, that is, limx2≈0 T (Jμ(x)Jν(0)). It is understood that
the currents are already normal ordered. In quantum field theory, care is needed
to define the product of quantum field operators, the composite operators (nor-
mal ordered product of quantum field operators) at the same space-time point.
Same is true for the product of such operators on the light cone. The reason
is that they are often singular and ill-defined and a prescription is needed to
define them. Wilson proposed a systematic method to organise such product of
quantum field operators and composite operators as a series expansion in terms
of well defined local operators with appropriate singular coefficients organised
in such a way that the most singular/dominant terms appear first and the less
singular and regular terms appear successively in the expansion. This goes un-
der the name operator product expansion (OPE). We can now apply OPE to
T (Jμ(x)Jν(0)) on the light cone. Since incoming leptons are unpolarised, the
leptonic tensor Lμν is symmetric in the indices μ, ν and hence only symmetric
part of Tμν will be considered for our study below:

lim
x2≈0

T (Jμ(x)Jν(0)) = (∂μ∂ν − gμν∂
2)OL(x, 0)

+
(
gμλ∂ρ∂ν + gρν∂μ∂λ − gμλgρν∂

2

−gμν∂λ∂ρ

)
Oλρ

2 (x, 0) (3.18)
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where the operators Oi(x, 0), i = L, 2 are given by

OL(x, 0) =
∑
a,n

Ca
L,n(x

2)xμ1 · · · xμnOa
L,μ1,···,μn

(0)

Oλρ
2 (x, 0) =

∑
a,n

Ca
2,n(x

2)xμ1 · · · xμnOaλρ
2,μ1,···,μn

(0) (3.19)

The local operators Oa
L,μ1,···,μn

(0) and Oaλρ
2,μ1,···,μn

(0) are well-defined in the
sense that their matrix elements between physical states are finite. On the
other hand, the coefficients Ca

i,n(x
2), i = L, 2 are singular when x2 ≈ 0. These

coefficients are called Wilson’s coefficients. Using OPE on the light cone, the
symmetric part of Tμν becomes,

lim
x2≈0

T{μν} = −i
(
qμqν − q2gμν

)1
2

∑
s

〈p, s|Oa
L,μ1,···,μn

(0)|p, s〉

×
∑
a,n

∫
d4xeiq·xxμ1 · · · xμnCa

L,n(x
2)− i

(
gμλqρqν + gρνqμqλ

−gμλgρνq
2 − gμνqλqρ

)1
2

∑
s

〈p, s|Oaλρ
2,μ1,···,μn

(0)|p, s〉

×
∑
a,n

∫
d4xeiq·xxμ1 · · · xμnCa

2,n(x
2) (3.20)

It can be simplified further using the method of tensor decomposition as follows:

∫
d4xeiq·xxμ1 · · · xμnCa

L,n(x
2) = −i

(
− 2

q2

)n+1

qμ1 · · · qμn Ĉa
L,n(−q2)

+i

(
− 2

q2

)n+1

q2
{
gμ1μ2qμ3 · · · qμn

}
S
C̃a

L,n(−q2)

+ · ·· (3.21)

where the subscript S means symmetrisation of all the indices inside the paren-
thesis. A similar expansion defines Fourier coefficients Ĉa

2,n(−q2), C̃a
2,n(−q2), · · ·

for the Wilson’s coefficient Ca
2,n(x

2). The operator matrix elements can be writ-
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ten as

1

2

∑
s

< p, s|Oa
L,μ1,···,μn

(0)|p, s > = Âa
L,n(p

2)pμ1 · · · pμn

+B̂a
L,n(p

2)p2
{
gμ1μ2pμ3 · · · pμn

}
S

+ · · ·
1

2

∑
s

< p, s|Oaλρ
2,μ1,···,μn

(0)|p, s > = Âa
2,n+2(p

2)
{
pλpρpμ1 · · · pμn

}
S

+B̂a
2,n(p

2)p2
{
gμ1μ2p

λpρpμ3 · · · pμn

}
S

+ · ·· (3.22)

On the light cone, terms proportional to metric tensor in the eqns. (3.21,3.22)
are suppressed because they give contributions that are proportional to x2 or
p2/Q2. Hence only Ĉa

L,n(−q2), Ĉa
2,n(−q2) and Âa

L,n(p
2), Âa

2,n(p
2) contribute to

T{μν}(q, p):

T{μν} = 2
∑
i,n

wn

[
eμνÂ

a
L,n(p

2)Ĉa
L,n(−q2) + dμνÂ

a
2,n(p

2)Ĉa
2,n(−q2)

]
(3.23)

where

w =
2p · q
Q2

, eμν = gμν − qμqν
q2

dμν = −gμν − pμpν
q2

(p · q)2 +
pμqν + pνqμ

p · q (3.24)

Translation invariance implies,

T{μν}(−w) = T{μν}(w) (3.25)

It is clear from eqn.(3.23) that T{μν}(w) has a branch cut |w| > 1. If T{μν}(w)
is analytically continued to a complex plan spanned by complex w, then branch
cuts will be along Re(w) ≥ 1 and Re(w) ≤ −1. Consider a contour C enclosing
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the origin and leaving the branch cuts outside. Then,∫
C
dw

T{μν}(w)
w

=
1

iπ

∫ ∞

1

dw
T{μν}(w + iε)− T{μν}(w − iε)

wm

=
2

π

∫ 1

0

dξξm−2Wμν(ξ,Q
2) (3.26)

where ξ = 1/w. Using the identity (2πi)−1
∫
C w

n−mdw = δn,m−1, we find∫ 1

0

dxBjx
m−1
Bj Wμν(xBj , Q

2) =
∑
a

[
eμνÂ

a
L,m−1(p

2)Ĉa
L,m−1(Q

2)

+dμνÂ
a
2,m−1(p

2)Ĉa
2,m−1(Q

2)
]

(3.27)

The structure functions satisfy the following relation:∫ 1

0

dxBjx
N−1
Bj Fi(xBj , Q

2) =
∑
a

Âa
i,N (p2)Ĉa

i,N (Q2), i = L, 2 (3.28)

The structure functions Fi(xBj , Q
2) are in general functions of p2, Q2 and p · q.

Using OPE, we have shown here that in the Björken limit, the Nth moment
of the structure functions with respect to xBj factorises into product of purely

p2 dependent functions Âa
i,N (p2) and functions Ĉa

i,N (Q2) that depend only Q2.

The hadronic matrix elements, Âa
i,N (p2), parametrise the long distance physics

of the process. On the other hand the Wilson’s coefficients Ĉa
i,N (Q2) capture all

the short distance part of the process. The scaling behaviour of the structure
functions in the Björken limit now corresponds to situation in which the Wil-
son’s coefficients become Q2 independent when Q2 → ∞. Hence, any candidate
model or a theory for strong interaction force should result in Q2 independent
Wilson’s coefficients for the structure functions Fi(xBj , Q

2).
Let us now express the differential cross given in eqn.(3.14) in the Björken

limit in terms of these structure functions:

lim
Bj

d2σ

dΩedE′ =

∫ 1

0

dy

∫ 1

0

dzyF2(y)
[4α2E

′2

Q4

2MP

Q2
cos2

θ

2
δ(1− z)

]
δ(xBj − yz)

+

∫ 1

0

dy

∫ 1

0

dzF1(y)
[4α2E

′2

Q4

2

MP
sin2

θ

2
δ(1− z)

]
δ(xBj − yz)

(3.29)
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The above result offers an elegant interpretation: let us recall the expression
for the elastic scattering cross section for a point like particle, that for the for
process, e+ μ → e+ μ, we have

d2σ

dΩedE′ =
4α2E

′2

Q4

[
2MP

Q2
zδ(1− z) cos2

θ

2
+

2

MP
δ(1− z) sin2

θ

2

]
(3.30)

where the dimensionless variable z = Q2/2pμ · q. Comparing eqn.(3.29) with
the eqn.(3.30), we find that the inelastic scattering in the Björken limit can be
thought of as the weighted sum (integration) of elastic scattering cross sections.
The weight factors here are nothing but the structure functions that depend
on the variable y = xBj/z. Since the cross sections are basically probabilities,
the weight factors can be interpreted as some probabilities. This simple minded
interpretation of the deep inelastic hadronic cross section in the Björken limit
in terms of elastic scattering cross sections of point like particles leads to a
picture of hadrons at high energies (Björken limit belongs to this category)
which goes under the name Parton Model. In this model, the hadrons at high
energy or equivalently at short distances are described in terms of what are
called free partonic states. These states correspond to elementary point-like
particles, called partons that constitute the hadrons. These free partons can
interact with other standard model particles through electromagnetic (em) or
weak interactions. For example an electrically charged parton can interact with
a photon through em interaction and with Z boson through weak interaction.
Since the model does not contain any mechanism for the binding of nucleons
at low energies, the corresponding long distance physics of these partons is
parametrised in terms of some unknown quantities which are usually extracted
from the experiment. The above picture of hadrons in terms of free partonic
states can be easily justified by studying the inelastic cross section of hadrons
in the rest of frame of the virtual photon. In this frame, the hadron is Lorentz
boosted which leads to length contraction of its size along the boosted direc-
tion. This reduces the distance traversed by the electron during the scattering.
In addition, the internal interaction of the partonic states, which is responsible
for binding the partons inside the hadron, is time dilated. This means that
the partonic states live longer than the time scales associated with the inter-
action of an electron(i.e., the virtual photon) with the single partonic state.
Therefore, the electron or equivalently the virtual photon scatters off on only
a single partonic state. The scattering cross section is then proportional to the
probability of finding this partonic state in the proton. Hence, the hadronic
cross section is incoherent sum of cross sections of various partonic states of
the hadron with appropriate probabilities. If we denote f̂a/h(y), the probability
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of finding a partonic state a inside the proton with momentum fraction y of the
proton momentum and dσ̂ea(z,Q

2) the elastic cross section of an electron on
the partonic state, then the inelastic cross section in the Björken limit is given
by

lim
Bj

dσeh(xBj , Q
2) =

∑
a

∫ 1

0

dy

∫ 1

0

dzf̂a/h(y)dσ̂ea(z,Q
2)δ(xBj − yz) (3.31)

Note that the above formula is a generalisation of the result given in eqn.(3.29)
with Fi replaced by fa/h and terms within the square brackets replaced by

dσ̂ea. Here f̂a/h(y) is called parton distribution function. It depends only the
type of parton a and the hadron h and they are process independent. These
functions can not be calculable within the model and hence should be extracted
from the experiments. On the other hand, dσ̂ea(z,Q

2), called partonic cross
sections, which result from the scattering of point-like partons with electron
through electromagnetic and/or through weak interactions. The above formula
reproduces the scaling behaviour of the deep inelastic scattering in the Björken
limit given in eqn(3.29). It is straightforward to relate the hadronic structure

functions Fi(y) with the partonic distribution functions f̂a/h(y). In the case of
proton, the structure functions can be expressed as

F1(xBj) =
1

2

∑
a=u,d

e2af̂a/P (xBj) (3.32)

F2(xBj) = xBjF1(xBj) (3.33)

where we have assumed that the proton is made up of ”up”(u) and ”down”(d)
type partons inspired by the classification of hadrons in terms of quarks.

3.3 Gauge Symmetry

In this section we will study the role played by gauge symmetry in constructing
classical actions that can describe various forces of nature. Let us first study
the theory of electrons and electromagnetic fields. The classical Lagrangian that
describes free electrons is given by,

Lψ = ψ(x)[i �∂ −m]ψ(x) (3.34)

where ψ is a 4-component Dirac field, m their mass and �∂ = γμ∂
μ. This La-

grangian is invariant under global (space time independent) transformation
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given by:

ψ(x) → eieλψ(x) (3.35)

eieλ is an element of a one parameter unitary group denoted by U(1). However,
it does not have local U(1) symmetry. The local symmetry corresponds to
replacing the parameter λ by the one which depends on both space and time,
i.e., λ → λ(x). Because of the derivative which can now act on λ(x), the free
fermion Lagrangian is no longer invariant under this local U(1) transformation.
The local U(1) invariant (ie., gauge invariant) Lagrangian can be constructed
provided one introduces local vector fields Aμ(x) (also called electromagnetic
gauge field) with the transformation law under local U(1) given by

Aμ(x) → Aμ(x) + ∂μλ(x). (3.36)

The following Lagrangian with these gauge fields

ψ[i( �∂ − ie �A)−m]ψ (3.37)

is invariant under the combined transformations, given by eqns. (3.35,3.36),
usually called U(1) gauge transformations. Notice that the second term in the
eqn.(3.37) describes the interaction of electrons with the gauge fields with the
interaction strength given by e. In the quantised version of this theory, the
gauge fields will correspond to photons. The kinetic part of the gauge fields can
be obtained from the following gauge invariant Lagrangian:

−1

4
FμνF

μν (3.38)

where

Fμν = ∂μAν − ∂νAμ (3.39)

The U(1) gauge invariant Lagrangian describing the theory of electrons and
the em gauge fields is given by

LQED = ψ[i( �∂ − ie �A)−m]ψ − 1

4
FμνF

μν (3.40)

We would now like to study how the above construction can be generalised to
cases where the gauge symmetry is SU(N). In other words, we will construct,
in the following, a local SU(N) gauge invariant action. Before we do this, let
us very briefly review the groups U(N) and SU(N).
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Set of N × N unitary matrices forms a group called U(N). Elements
of U(N) satisfying detU = 1 form a sub group called SU(N). An element
of SU(N) group depends on N2 − 1 (unitarity gives N2 real constraints and
unit determinant given one real constraint) independent real parameters. An
element of group can be obtained by parametrising it infinitesimally close to
its identity element. For example, we can write this element as

U = I − iεω

Here ε is a small real parameter and ω is an N ×N matrix. Unitarity of these
elements give

U†U = I + iε(ω† − ω) +O(ε2)

which implies that ω is hermitian, ω† = ω. The condition detU = 1 implies
that ω is traceless. Since one requires N2 − 1 independent real parameters to
parametrise each element of the group, we can expand ω as

εω =
N2−1∑
a=1

εaT a

= εaT a

These matrices, T a, are called generators of the group and they are nor-
malized as

Tr(T aT b) = Tfδ
ab.

where Tf = 1/2 and they form Lie algebra given by

[T a, T b] = ifabcT c

Here fabc are called structure constants which are real and anti-symmetric in
all the indices (abc).

We will take ψ to transform under fundamental representation of SU(N)
so we require N fermionic fields ψi(x) with i = 1, . . . , N . The transformation
of these fields under SU(N) is given by

δψi(x) = ψ′
i(x)− ψi(x) = −i

N2−1∑
a=1

N∑
j=1

εa(T a)ijψj(x) (3.41)

In the following we will use the summation convention for both i and a. It
is easy to see that the following Lagrangian is invariant under global SU(N)
symmetry,

ψ(i�∂ −mI)ψ (3.42)
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where we have introduced matrix notation for the fermionic fields:

ψ(x) =

⎛⎜⎝ ψ1(x)
...

ψN (x)

⎞⎟⎠ , ψ†(x) =
(
ψ†
1(x), . . . , ψ

†
N (x)

)
(3.43)

The local gauge invariant Lagrangian with N fermionic fields can be achieved
by introducing N2 − 1 gauge fields denoted by Aa

μ with a = 1, . . . , N2 − 1 with
the transformation property

δAd
μ = − 1

gs
∂με

d − fdabAa
με

b (3.44)

It is a straightforward exercise to show that the Lagrangian given by

ψ[i(I�∂ − igs �AaT a)−mI]ψ (3.45)

is invariant under the local SU(N) transformations given by eqns. (3.41,3.44).
Analogous to the tensor field Fμν(x) given in eqn.(3.38), the kinetic energy part
of the SU(N) gauge fields can also be constructed using N2 − 1 second rank
tensor fields given by

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gsf

abcAb
μA

c
ν (3.46)

Since F a
μν transforms as

δF a
μν = F

′a
μν(x)− F a

μν(x) = −fabcF b
μν(x)ε

c(x) (3.47)

under the transformation given by eqn.(3.44), the following action

−1

2
Tr[F a

μνT
aFμνbT b] (3.48)

is invariant under gauge transformations.
The complete SU(N) gauge invariant action is given by

LYM = −1

2
Tr[F a

μνT
aFμνbT b] + ψ[i(I�∂ − igs �AaT a)−mI]ψ (3.49)

The above Lagrangian is usually called the Yang-Mills (YM) Lagrangian. Since
SU(N) is a non-Abelian group, the SU(N) gauge symmetry is called a non-
Abelian gauge symmetry and the gauge fields are called non-Abelian gauge
fields. Notice that the action describes not only the interaction of N fermions
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with N2 − 1 gauge fields, but also describes the interaction of gauge fields
among themselves. The interaction of gauge fields among themselves comes
from terms proportional to F a

μν(x) in the action eqn.(3.49) which contains a

term gsf
abcAb

μ(x)A
c
ν(x) (see 3.46). This feature is characteristic of theories with

non-Abelian gauge symmetry. Since the theory of electrons and em gauge fields
has an invariant Abelian symmetry i.e., U(1), the em gauge fields do not interact
with each other. We will show that the non-Abelian Yang-Mills Lagrangian with
N = 3 can describe strong interaction dynamics. In the following we describe
the quantization of classical Yang-Mills action:

SYM =

∫
d4xLYM (Aa

μ(x), ψ(x), ψ(x),m, gs) (3.50)

In the canonical formalism of quantization, one replaces the classical fields
by operators and their canonical commutation relations with their conjugates.
The equations of motion that result from the least action principle and their
solutions in the Fourier space, subjected to the canonical commutation rela-
tions, lead to set of operators that can create and annihilate single particle
states. Using this approach one can compute propagation of the quantum par-
ticles and their interaction in terms of the scattering matrix, called S matrix.
The S matrix elements are nothing but the residues of vacuum expectation
value of time ordered product of quantum field operators on the mass-shell. An
alternate approach to quantization is the path integral formulation, in which
the quantum fields are treated as commuting variables/functions. The quantum
vacuum expectation value of time order product of quantum field operators is
given by

〈0|T (Φj1(x1) . . .Φjn(xn)) |0〉 ≡ 〈Φj1(x1) . . .Φjn(xn)〉

where

Φi(x) = {ψ(x), ψ(x), Aa
μ(x)}

|0〉 denotes the vacuum, and T means time ordering of the operators. It is also
called Green’s function in the literature. The path integral formalism provides
a prescription to compute these Green’s functions:

〈Φj1(x1) . . .Φjn(xn)〉 =
∫ ∏

i DΦi Φj1(x1) . . .Φjn(xn)e
iS[{Φ}]∫ ∏

i DΦi eiS[{Φ}]
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1 The momentum space Green’s functions can also be obtained using path
integrals as

〈Φ̃j1(k1) . . . Φ̃jn(kn)〉 =
∫ ∏

i DΦ̃i Φ̃j1(k1) . . . Φ̃jn(kn)e
iS̃[{Φ̃}]∫ ∏

i DΦ̃i eiS̃[{Φ̃}]

where the Fourier components Φ̃i(k) are defined by

Φ̃i(k) =

∫
d4xeik·xΦi(x)

The generating functional to compute the Green’s functions is given by

Z({J̃}) =
∫ ∏

i

DΦ̃iexp

[
iS̃(Φ̃) + i

∫
d4k

(2π)
4 J̃j(−k)Φ̃j(k)

]

where J̃i are the source fields. Using,

δJ̃i(k1)

δJ̃j(k2)
= (2π)4δ(4)(k1 − k2)δij

we obtain,

〈Φ̃j1(k1) . . . Φ̃jn(kn)〉 =
1

Z[0]

(
−i(2π)4

δ

δJ̃i1(−k1)

)
. . .

(
−i(2π)4

δ

δJ̃in(−kn)

)

×Z({J̃})
∣∣∣∣∣
{J̃i}=0

(3.52)

1The path integral measure
∫ DΦi can be visualised if we replace the continuous the space-

time by a 4-dimensional lattice with a lattice constant a (distance between two neibouring

lattice points). That is,

xμ → (a n0, a n1, a n2, a n3)

where a is real and ni are integers. We will suppress the label i on Φi for notational clarity.

The fields are given by

Φ(x) → Φn0,n1,n2,n3 , (3.51)
∫

d4x → a4
∑

n0,n1,n2,n3

and the measure
∫ DΦ takes the form

∫
DΦ →

∫ ∏

n0,n1,n2,n3

dΦn0,n1,n2,n3
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We will interrupt the discussion of Yang-Mills theory to exemplify the calcu-
lation of the Green’s function by the path integral method in a simpler case
of a real scalar field and calculate the 2-point Green function G̃2(p1, p2). This
2-point function is also called propagator of the theory if it only involves the
free part and does not include the interaction terms.
The free part of the action is

S0 =

∫
d4x

[
1

2
φ(x)(−∂2 −m2)φ(x) + J(x)φ(x)

]
(3.53)

where we have introduced the source field J(x) and m is the mass parameter in

the Lagrangian. To express action in φ̃, the Fourier transform of φ, we substitute

φ(x) =

∫
d4k

(2π)
4 e

−ik·xφ̃(k),

J(x) =

∫
d4k

(2π)
4 e

−ik·xJ̃(k)

in the above expression. We can do the integral over x using the definition of
Dirac delta function∫

d4x e−i(k1+k2)·x = (2π)4δ4(k1 + k2),

and use this delta function to integrate out one of the momenta and obtain

S0 =
1

2

∫
d4k

(2π)
4

[
φ̃(−k)M(k)φ̃(k) + 2J̃(k)φ̃(−k)

]
=

1

2

∫
d4k

(2π)
4

[
−J̃(−k)M−1(k)J̃(k)

+
(
φ̃(−k) + J̃(−k)M−1(k)

)
M(k)

(
φ̃(k) + J̃(k)M−1(k)

)]
where M(k) = k2 −m2. Note that M(k) = M(−k). We can now do a change
of variable by defining

φ̃′(k) = φ̃(k) +M−1J̃(k)

φ̃′(−k) = φ̃(−k) +M−1J̃(−k)

This gives finally

S0 =
1

2

∫
d4k

(2π)
4

[
φ̃′(−k)M(k)φ̃′(k)− J̃(−k)M−1(k)J̃(k)

]
.
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Substituting this in the expression of generating functional and doing the path
integral over the fields we obtain for Z0,

Z0[J̃ ] = N exp

[
− i

2

∫
d4k1
(2π)4

∫
d4k1
(2π)4

(2π)4δ4(k1 + k2)

×J̃(−k1)M
−1(k1)J̃(−k2)

]
where N is a normalization factor. From this we can obtain the two point Green
function.

G̃2(p1, p2) =
1

Z0[0]

(
−i(2π)4

δ

δJ̃(−p1)

)(
−i(2π)4

δ

δJ̃(−p2)

)
Z[J̃ ]

∣∣∣∣∣
J̃=0

= i(2π)4δ4(p1 + p2)M
−1(p1)

Substituting M−1 = 1/(k2 −m2) we get

G̃2(p1, p2) =
i

k2 −m2
(2π)4δ4(p1 + p2). (3.54)

With this experience let us now continue with Yang-Mills theory. To proceed
further with the path integral approach, we split the Lagrangian as

S [{Φ}] = S0 [{Φ}] + SI [{Φ}] (3.55)

where the first term S0 contains terms which are quadratic in Φ̃, for example
it contains terms of the form Φ̃i(k)Φ̃i(k

′). SI contains the rest. In the case of
YM Lagrangian, the S0 is given by

S0

[
ψ, ψ,Aa

μ

]
=

∫
d4x

[
ψ(x) (i/∂ −m)ψ(x)

−1

4

(
∂μA

a
ν(x)− ∂νA

a
μ(x)

)
(∂μAνa(x)− ∂νAμa(x))

]
(3.56)

and SI is given by

SI

[
ψ, ψ,Aa

μ, gs,m
]
= Sψ,A

[
ψ,ψ,Aa

μ, gs
]
+ SA3

[
Aa

μ, gs
]
+ SA4

[
Aa

μ, gs
]
(3.57)

where Sψ,A describes the interaction of fermions with the gauge bosons and
SA3 and SA4 are triple and quartic gauge boson interaction terms.
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The free action S0 can be expressed in terms of Fourier components of the
fields as

S̃0

[
ψ̃, ψ̃, Ãa

μ

]
= i

∫
d4k

(2π)4

[
ψ̃(−k)(/k −m)ψ̃(k)

+
1

2
Ãa

μ(−k)
(
kμkν − k2gμν

)
Ãa

ν(k)

]
(3.58)

Notice that the above integral exists only if (/k − m) and (kμkν − k2gμν) are
invertible. The fermionic part Mψ(k) = /k−m has an inverse /k +m/(k2−m2).
On the other hand the corresponding part of the gauge fields given by

MA(k) ∝ 1

2

(
kμkν − k2gμν

)
(3.59)

does not have inverse since dotting it with kν gives zero, and hence the path
integral for the gauge fields is ill-defined.

3.4 Gauge Fixing

In the previous section, we found that the path integral for the gauge fields
is ill-defined. We will now try to understand the reason behind this. This will
also help us to construct well defined Green’s functions of the gauge fields.
In the following we restrict ourselves to physically relevant quantities such as
expectation value of the product of gauge invariant operators

∏
l Ol(xl). Few

examples of Ol(xl) are F a
μν(x)F

μνa(x), ψ(x)i(/∂ − igs/A
a(x)T a)ψ(x). Since the

fermionic part of the action does not play much role in the following discussion
we drop them and keep only gauge fields in the action. Now, in the Fourier
space, we have〈

ΠlÕl

(
k, Ãb

μ

)〉
=

∫ DÃa
μe

iS̃A[Ãb
μ]
∏

l Õl(k, Ã
b
μ)∫ DÃa

μe
iS̃A(Ãb

μ)
(3.60)

The gauge field Aa
μ(x) and the gauge transformed Aaθ

μ (x) given by

Aθ
μ(x) = − i

gs
(∂μU)U † + UAμ(x)U

† (3.61)

obtained by the finite SU(N) gauge transformation U(θ) = exp(−igsθ
a(x)T a)

are said to be in the same gauge orbit. Since they describe same physics, Aμ(x)
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and Aθ
μ(x) are called gauge equivalent gauge field configurations. Notice that

the action as well as the composite operator Õl(k, Ã
a
μ) are gauge invariants.

On the other hand the measure does depend on the gauge parameter. We can
write the measure as

DÃa
μ ≈ DAa

μ|ineqDÃa
μ|θorbit (3.62)

then we observe that the integral over DÃa
μ|θorbit part of the measure in the

numerator (Ñ ) as well as in the denominator (D̃)of the eqn.(3.60) gives di-
vergent contributions. This is the reason why we obtained an ill-defined path
integral for the gauge fields earlier. Notice that even though the Ñ and D̃ are
individually divergent, the ratio Ñ/D̃ is well defined and finite. If we can man-

age to factor out the divergent (ill-defined) parts from both Ñ and D̃ of the
eqn.(3.60), cancel them, then the remaining numerator and denominator are
finite. The resultant path integral is well defined and suitable for computation
of gauge invariant objects. This can be achieved by the method called ”gauge
fixing”. Gauge fixing involves path integration over inequivalent gauge orbits.
One has to do this in such a way that the result is independent of the choice
of the path. It can be achieved by doing the integrations over the path that
intersects the gauge orbits only once. we know that each point in the group
space is parametrised by N2 − 1 independent variables. Hence, we need N2 − 1
conditions to define a path in the group space. Also, these conditions have to
be gauge dependent. The gauge fixing conditions can be written as

Ga(Aμ(x)) = Ba(x), a = 1, · · ·N2 − 1 (3.63)

where Ga(Aμ(x)) are single valued functions of Aa
μ(x). The choice

Ga(Aμ(x))) = ∂μA
μ(x) is called Lorenz gauge and Ga(Aμ(x))) = nμA

μ(x)
(where n is an arbitrary vector), the axial gauge. We have to implement the

gauge fixing conditions to both Ñ and D̃ of the eqn.(3.60) in such a way that

the numerical value of Ñ/D̃ is unaffected.
Let us first prove the following identity:∫
dx1

∫
dx2δ (f1(x1, x2)) δ (f2(x1, x2))

[
det

(
∂ 	f

∂	x

)]
x1=x0

1,x2=x0
2

= 1 (3.64)

where,

det

(
∂ 	f

∂	x

)
=

∣∣∣∣∣ ∂f1
∂x1

∂f2
∂x1

∂f1
∂x2

∂f2
∂x2

∣∣∣∣∣
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and (x0
1, x

0
2) is the unique solution to the equations f1 = 0, f2 = 0. The identity,

eqn.(3.64), can be easily proved by defining

f1(x1, x2) = u, f2(x1, x2) = v

and using the Jacobian of the transformation:

dudv =

[
det

(
∂ 	f

∂	x

)]
dx1dx2

If (x0
1, x

0
2) are the unique solutions to the equations

f1(x
0
1, x

0
2) = 0, f2(x

0
1, x

0
2) = 0

then, the eqn.(3.64) becomes∫
du

∫
dvδ(u)δ(v) = 1 (3.65)

The generalisation of the above identity is given by∫ N∏
i

(dxiδ (fi(	x)))

[
det

(
∂ 	f

∂	x

)]
�x=�x0

= 1 (3.66)

where 	x0 is the unique solution to the equations 	f(	x) = 0. The above identity
involving parametric integrals can be generalised for functional integrals:∫

Dθ̃a
∏
a,k

δ
(
G̃a

(
k, Ãa

μθ

)
− B̃a(k)

)
det

⎛⎝∂ 	̃G(Ãa
μθ)

∂	̃θ

⎞⎠ = 1 (3.67)

Inserting the above identity in eqn.(3.60), we find for the numerator,

Ñ =

∫
Dθ̃a

∫
DÃa

μ

∏
l

Õl

(
k, Ãa

μ

)
eiS̃A[Ãa

μ]

×
∏
a,k

δ
(
G̃a

(
k, Ãa

μθ

)
− B̃a(k)

)
det

[
K
(
Ãa

μθ

)]
(3.68)

where,

K
(
Ãa

μθ

)
=

⎛⎝∂ 	̃G(Ãa
μθ)

∂	̃θ

⎞⎠ (3.69)
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Since

DÃa
μ = DÃa

μθ, Õl(k, Ã
a
μ) = Õl(k, Ã

a
μθ), S̃A

[
Ãa

μ

]
= S̃A

[
Ãa

μθ

]
(3.70)

the eqn.(3.68) becomes,

Ñ =

∫
Dθ̃a

∫
DÃa

μθ

∏
l

Õl

(
k, Ãa

μθ

)
eiS̃A[Ãa

μθ]

×
∏
a,k

δ
(
G̃a

(
k, Ãa

μθ

)
− B̃a(k)

)
det

[
K
(
Ãa

μθ

)]
(3.71)

Since Aa
μθ is dummy variable inside the functional integral, we can make the

replacement: Aa
μθ → Aa

μ which gives,

Ñ =

[∫
Dθ̃a

] ∫
DÃa

μ

∏
l

Õl

(
k, Ãa

μ

)
eiS̃A[Ãa

μ]

×
∏
a,k

δ
(
G̃a

(
k, Ãa

μ

)
− B̃a(k)

)
det

[
K
(
Ãa

μ

)]
(3.72)

Notice that
∫ Dθ̃a has factored out from the rest of the integral. Similar exercise

for the denominator also results in an integral where the same θ dependent
measure factors out and hence we can cancel this in the ratio Ñ/D̃.

We use the following integral representation for detK so that we can apply
standard techniques of path integration formalism.

det
(
K(Ãa

μ)
)

=

∫
Dχ̃

aDχ̃bexp

(∫
d4k1
(2π)4

∫
d4k2
(2π)4

× χ̃c(k1)Kcd

(
k1, k2, Ã

a
μ

)
χ̃d(k2)

)
(3.73)

where χ̃a and χ̃a are anti-commuting variables called Grassmanian variables.
We also insert the identity,

C(ξ)
∫

DB̃aexp

(
− i

2ξ

∫
d4k

(2π)4
B̃a(−k)B̃a(k)

)
= 1 (3.74)
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to express the Dirac delta function in a form suitable for computation. Here
ξ is an arbitrary parameter but our final results do not depend on it. Using
eqn.(3.73,3.74), we find 〈∏

l

Õl

(
Ãa

μ

)〉
=

N
D (3.75)

where N = Ñ/Dθ̃a and D = D̃/Dθ̃a. Hence

N =

∫
DÃa

μ

∫
Dχ̃

aDχ̃b
∏
l

Õl

(
k, Ãa

μ

)

× exp

[
i

(
S̃A

[
Ãa

μ

]
+ S̃GF

[
Ãa

μ, χ̃
a
, χ̃b

]
+ S̃GH

[
Ãa

μ

])]
(3.76)

D =

∫
DÃa

μ

∫
Dχ̃

aDχ̃b

× exp

[
i

(
S̃A

[
Ãa

μ

]
+ S̃GF

[
Ãa

μ, χ̃
a
, χ̃b

]
+ S̃GH

[
Ãa

μ

])]
(3.77)

The various pieces of the action are given by

S̃GF

[
Ãa

μ

]
= − 1

2ξ

∫
d4k

(2π)4
G̃a(−k, Ãa

μ(−k))G̃a(k, Ãa
μ(k)) (3.78)

S̃GH

[
Ãa

μ, χ̃
a
, χ̃b

]
= −i

∫
d4k1
(2π)4

∫
d4k2
(2π)4

χ̃c(k1)Kcd

(
k1, k2, Ã

a
μ

)
χ̃d(k2)

(3.79)

Let us now compute Kcd for the gauge fixing condition:

Ga(Aa
μ) = ∂μA

μa(x) (3.80)

This implies

δGa
(
Aa

μθ

)
= ∂μδAa

μθ(x) (3.81)

where

∂μδAa
μθ(x) = ∂2δθa(x)− gsf

abc∂μ
(
Ab

μθ(x)δθ
c(x)

)
(3.82)
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In the momentum space we find,

δG̃a
(
k, Ãa

μθ

)
= k2δθ̃a(k) + igsf

abckμ
∫

d4k1
(2π)4

Ãb
μθ(−k1 + k)δθc(k1) (3.83)

This implies

Kcd(k, k
′, Ãa

μθ) =
δG̃c(k)

δθd(k′)
= k2(2π)4δ(4)(k − k′)δcd

+igsf
cadkμÃa

μθ(−k′ + k) (3.84)

Substituting the gauge fixing condition in the momentum space given by

G̃a(k, Ãa
μ) = −ikμÃa

μ(k) (3.85)

in the eqn.(3.78), we get

S̃GF

[
Ãa

μ

]
= − 1

2ξ

∫
d4k

(2π)4
Ãa

μ(−k)kμkνÃa
ν(k) (3.86)

This additional term modifies the quadratic part of the path integral action as

Mμν
A = −k2gμν +

(
1− 1

ξ

)
kμkν (3.87)

which is invertible. Hence, using the method of gauge fixing, the propagator of
the gauge fields can be computed. In fact, the entire path integral in terms of
N and D is well defined and now suitable for further computation.

Substituting Eq. (3.84) in Eq. (3.79), we get

S̃GH

[
Ãa

μ, χ̃
a
, χ̃b

]
= −i

∫
d4k1
(2π)4

∫
d4k2
(2π)4

χ̃c(k1)

[
k21(2π)

4δ(4)(k1 − k2)δcd

+igsf
cadkμ1 Ã

a
μθ(−k2 + k1)

]
χ̃d(k2) (3.88)

The fields appearing in the eqn.(3.73) are anti-commuting variables, usually
called Grassman variables or fields. The first term in the above equation de-
scribes the kinetic part of the Grassman fields χ̃c and χ̃d. Even though these
fields are anti-commuting (fermonic fields), their propagation is bosonic in na-
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ture. Hence they are called ghost fields. The second term describes the inter-
action of the ghost fields with the gauge fields.

3.5 Regularisation and Renormalisation of YM

Theory with nf Fermions

In the last section, we demonstrated the quantization of YM theory using path
integral approach. We also derived Feynman rules to compute gauge invariant
products of quantum field operators. Using these Feynman rules, it is straight-
forward to compute observables such as scattering cross sections, decay rates
etc. We can apply the standard techniques of perturbation theory treating the
coupling constant gs as an expansion parameter,

We know from quantum electrodynamics, the quantum corrections that
enter via loops are often divergent. It comes from the large momentum region of
the loop momenta and is called ultra-violet (UV) divergence. This remains to be
the case for quantised YM theory as well. The standard approach to deal with
UV divergences and to make reliable predictions involves two important steps:
regularization and renormalization. Regularisation involves modifying the the-
ory by introducing a suitable regulator so that the loop integrals appearing in
the quantum corrections are made finite. The next step involves redefinition of
fields and parameters of the regularised theory in such a way that the physical
predictions of the theory are finite when the regularization (regulator) is re-
moved, this is called renormalization. This redefinition is allowed because the
parameters and fields appearing in the Lagrangian are not physical observables.

We will use dimensional regularization as it preserves all the symmetries
of the theory. Here, the space-time dimension is taken to be n = 4 + ε with
ε < 0 which regularises the UV divergences appearing in the loop integrals.
The renormalization is carried out by writing the original Lagrangian in n
dimensions as follows:

L = LR

[
ψR, ψR, A

a
μ,R, χ

a
R, χ

a
R, gsn,R,mR, ξR, n, μR

]
+Lc

[
ψR, ψR, A

a
μ,R, χ

a
R, χ

a
R, gsn,R,mR, ξR, n, Zi, μR

]
(3.89)

where, LR is obtained by simply replacing all the parameters and fields by the
respective ones with the subscript denoted by R. That is,

LR(ΦR, αR, n, μR) = L(Φ → ΦR, α → αR, n, μ → μR) (3.90)
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with Φ = {ψ, ψ,Aa
μ, χ

a, χa} and α = {gs,m, ξ}. Lc is so chosen that it preserves
all the symmetries of the theory. We define,

Lc = (Z2 − 1)ψR(i�∂ −mR)ψR − Z2(Zm − 1)mRψRψR

+(Z1/2
g Z2Z

1/2
3 − 1)gsn,RψR �Aa

RT
sψR

−1

4
(Z3 − 1)(∂μA

a
ν,R − ∂νA

a
μ,R)(∂

μAνa
R − ∂νAμa

R )

−1

2

(
Z

1
2
g Z

3
2
3 − 1

)
gsn,Rf

abc(∂μA
a
ν,R − ∂νA

a
μ,R)A

μb
R Aνc

R

−1

4

(
ZgZ

2
3 − 1

)
g2sn,Rf

abef cdeAa
μ,RA

b
ν,RA

μc
R Aνd

R

+(Z̃3 − 1)i ∂μχa
R∂μχ

a
R

−
(
Z̃

1
2
g Z̃3Z

1
2
3 − 1

)
igsn,Rf

abc∂μχa
Rχ

b
RA

c
μ,R (3.91)

In n-dimension, the coupling constant has mass dimension [M ](4−n)/2. We de-
note this dimensionful coupling constant by gsn,R. This can be written in terms
of a dimensionless coupling constant using

gsn,R = μ
4−n
2

R gs,R(μ
2
R) (3.92)

where μR is an arbitrary mass scale and gs,R(μ
2
R) is a dimensionless coupling

constant. It is straightforward to show that after rescaling all the fields and the
parameters as

Z
1/2
3 Aa

μ,R = Aa
μ, Z

1/2
2 ψR = ψ,

Z̃
1/2
3 χa

R = χa, Z̃
1/2
3 χa

R = χa,

Z1/2
g gsn,R = gs(μ

2)μ
4−n
2 , Z

1/2
3 ξR = ξ, ZmmR = m (3.93)

we reproduce the original Lagrangian in n dimensions,

LR + Lc = L (
ψ, ψ,Aa

μ, χ
a, χa, gs,m, ξ, n, μ

)
(3.94)

In the above we have introduced a scale μ so that gs is dimensionless in n-
dimensions. In the following we will use the Feynman rules derived from LR
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and Lc to compute the Green’s functions. The difference in this approach is that
we will be computing all the Green’s functions in terms of the renormarlised
parameters and fields and the results will explicitly contain the unknown con-
stants Zi and Z̃i, which are called renormalization constants. Our next step is
to make various Green’s functions finite, which were originally UV divergent, by
adjusting the Zi and Z̃i suitably. We determine some of these renormalization
constants order by order in perturbation theory in what follows.

In the following we will restrict ourselves to the determination of the
renormalization constant Zg which defines the renormalised coupling constant.

This is done by computing Z2, Z3 and the combination (ZgZ3)
1
2Z2. Z2 and Z3

are computed using one-loop corrected self energy of the fermionic fields and the
vacuum polarization of gauge fields respectively. The combination (ZgZ3)

1
2Z2

is determined from the one loop corrected fermion-antifermion-gauge boson
vertex.

The vertex contribution comes from two different Feynman diagrams,
namely

igsn,RΓ
μ
1ij = g3sn,R (T aT cT a)ij I

μ
1 (3.95)

where,

Iμ1 =

∫
dnk

(2π)n
γα �kγμ(�k + �p1 + �p2)γα

k2(k + p1)2(k + p1 + p2)2
(3.96)

and

igsn,RΓ
μ
2ij = −ig3sn,Rf

bca
(
T aT b

)
ij
Iμ2 (3.97)

where

Iμ2 =

∫
dnk

(2π)n
γα( �k + �p2)γβΓβμα

3 (k, p1 + p2,−k − p1 − p2)

k2(k + p2)2(k + p2 + p1)2
(3.98)

with

Γβμα
3 (k1, k2, k3) =

[
gβμ(k1 − k2)

α + gμα(k2 − k3)
β + gαβ(k3 − k1)

μ
]

(3.99)

Using Feynman parametrisation and integration in n dimension give∫
dnk

(2π)n
kμkν

k2(k + p1)2(k + p2 + p1)2
= IμνUV + IμνIR (3.100)
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where

IUV
μν = − i

16π2

(−2p1 · p2
4π

)n/2−2
Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)

×
[

gμν
(n− 2)(n− 4)

]
(3.101)

IIRμν = − i

16π2

(−2p1 · p2
4π

)n/2−2
Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)

× 1

p1 · p2

[
p1μp1ν

(
−2(n− 3)

(n− 4)2
+

3

2(n− 4)

)
+ p2μp2ν

(
− 1

2(n− 4)

)

+(p1μp2ν + p1νp2μ)

(
− 1

n− 4
+

1

2(n− 2)

)]
(3.102)

Using these results we obtain,

Iμ1,UV = − i

16π2

(−2p1 · p2
4π

)n/2−2
Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)

n− 2

n− 4
γμ

= − i

16π2
f12fn

n− 2

n− 4
γμ

Iμ2,UV =
−i

16π2
f12fn

(
2n

(n− 2)(n− 4)
+

2

n− 4

)
(3.103)

where

f12 =

(−2p1 · p2
4π

)n/2−2

Γ(3− n/2), fn =
Γ2(n/2− 1)

Γ(n− 2)
(3.104)

Using the identities

(T aT cT a)ij =

(
T c

(
−1

2
CA + T aT a

))
ij

, f bca(T aT b)ij =
i

2
CA(T

c)ij

(3.105)
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where CA = N , we get

igsn,RΓ
μ,c
ij,UV = igsn,R

(
Γμ,c
1ij,UV + Γμ,c

1ij,IR

)
(3.106)

igsn,RΓ
μ,c
ij,UV = g3sn,Rγ

μ

(
− i

16π2
f12fn

)[
n− 2

n− 4

(
T c

(
−1

2
CA + T aT a

))
ij

+

(
2n

(n− 2)(n− 4)
+

2

n− 4

)
1

2
CA(T

c)ij

]
(3.107)

The gauge boson contribution to vacuum polarization is given by

Πg
μν,ab = −1

2
f cadfdbcg2sn,R

∫
dnk

(2π)n
1

k2(k + p)2

×Γ3,λμσ(k, p,−k − p)Γσ λ
3,ν (k + p,−p,−k) (3.108)

Using,∫
dnk

(2π)n
kμkν

k2(k + p)2
= − i

16π2
fpfn

(
−p2

gμν
n

+ pμpν

)( n

2(n− 1)(n− 4)

)
∫

dnk

(2π)n
kμ

k2(k + p)2
= − i

16π2
fpfnpμ

(
− 1

n− 4

)
∫

dnk

(2π)n
1

k2(k + p)2
=

i

16π2
fpfn

(
− 2

n− 4

)
(3.109)

where

fp =

(
− p2

4π

)n/2−2

(3.110)

we obtain,

Πg
μν,ab =

(
− i

16π2

)
g2sn,Rf

cadfdbcfpfn

(
1

n− 4

)
1

2(n− 1)

× [
gμν(−p2)(6n− 5) + pμpν(7n− 6)

]
(3.111)
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The fermionic contribution to vacuum polarization is given by

Πq
μν,ab = −g2sn,R(T

aT b)ii

∫
dnk

(2π)n

[
Tr (γν �kγμ( �k + �p))

k2(k + p)2

]

=
i

16π2
g2sn,R(T

aT b)iifpfn

(
4

n− 4

)

×
(
−n− 2

n− 1

)[−p2gμν + pμpν
]

(3.112)

The ghost loop contribution to the vacuum polarization is

Πgh
μν,ab = g2sn,Rf

acdf bdc

∫
dnk

(2π)n

[
kμ(k + p)ν
k2(k + p)2

]

= − i

16π2
fpfng

2
sn,Rf

acdf bdc 1

2(n− 1)(n− 4)

× [
gμν(−p2) + pμpν(2− n)

]
(3.113)

We finally arrive at

Πμν,ab = Πgh
μν,ab +Πq

μν,ab +Πg
μν,ab

= − i

16π2
fpfng

2
sn,R

1

(n− 1)(n− 4)

[
nf (T

aT b)ii(8− 4n)(−p2gμν + pμpν)

+fcadfdbc(3n− 2)(−p2gμν + pμpν)
]

(3.114)

where nf is the number fermion flavours in the theory. To compute Z1 we need
to compute the self energy of the fermion:

Σij = −g2sn,R(T
aT a)ij

∫
dnk

(2π)n
γμ �kγμ

k2(k + p)2

= − i

16π2
fpfng

2
sn,R(T

aT a)ij �p
(
2− n

n− 4

)
(3.115)

The renormalization constants Zi and Z̃i in Lc are fixed by demanding that all
the Green’s functions of the theory are finite. There is of course orbitraryness in
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determining these constants because they can contain finite terms in addition
to UV divergences when the regularization is removed. This leads to various
renormalization prescriptions or schemes. We will use modified minimal sub-
traction (MS) scheme in the following. We can use fermion-antifermion-gauge
boson vertex, gauge boson propagator and the fermion propagator computed
to one loop level along with the contribution coming from the Lagrangian Lc

to determine the renormalization constants Zg, Z2 and Z3. We find

δab (Z3 − 1) =

{
g2sn,R
16π2

fpfn
1

(n− 1)(n− 4)

[
nf

(
T aT b

)
ii
(4n− 8)

+f cadfdbc(3n− 2)

]}
MS

δij (Z2 − 1) =

{
g2sn,R
16π2

fpfn

[(
n− 2

n− 4

)
(T aT a)ij

]}
MS

T c
ij

(
Z

1
2
g Z

1
2
3 Z2 − 1

)
=

{
g2sn,R
16π2

fpfn

[(
T c

(
−1

2
CA + T aT a

))
ij

n− 2

n− 4

+
1

2
CA (T c)ij

(
2n

(n− 2)(n− 4)
+

2

n− 4

)]}
MS

(3.116)

In the above, the subscript MS means that only those terms that diverge in
the limit n → 4 and those terms proportional to log(4π) and Euler’s constant
γE are kept and rest of the terms are set to zero. This prescription defines the
renormalization constant in MS scheme. We find

Z3 = 1 +
gs,R(μ

2
R)

16π2

(
8

3
nfTf − 10

3
CA

)
1

ε̂

Z2 = 1 +
gs,R(μ

2
R)

16π2
(2CF )

1

ε̂

Z
1
2
g Z2Z

1
2
3 = Z1 = 1 +

gs,R(μ
2
R)

16π2
(2CA + 2CF )

1

ε̂
(3.117)

where

1

ε̂
=

1

ε

(
1 +

ε

2
(− ln(4π) + γE)

)
(3.118)
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This implies

Z
1
2
g =

Z1

Z2Z
1
2
3

= 1 +
g2s,R(μ

2
R)

16π2

(
11

3
CA − 4

3
nfTf

)
1

ε̂
(3.119)

Notice that in MS scheme, the renormalization constant contains a finite piece
(− ln(4π) + γE)/2 along with a divergent piece 1/ε in four dimensions.

Recall that the renormalised coupling constant gs,R(μ
2
R) is related to

gs(μ
2) through Zg as follows:

gs(μ
2)μ− ε

2 = Z
1
2
g

(
gs,R(μ

2
R),

1

ε

)
gs,R(μ

2
R)μ

− ε
2

R (3.120)

In the next section, we will study the scale dependence of the coupling constant
using renormalization group equation.

3.6 Asymptotic Freedom

In the last section, we derived the renormalization constant Zg in MS scheme
using dimensional regularization. If we define âs(μ

2) and as(μ
2
R) by

âs(μ
2) =

g2s(μ
2)

16π2
, as(μ

2
R) =

g2s,R(μ
2
R)

16π2
(3.121)

we find from eqn.(3.120)

âs(μ
2)μ− ε

2 = Zg

(
as(μ

2
R),

1

ε

)
as(μ

2
R)μ

− ε
2

R (3.122)

The fact that the left hand side of the above equation is independent of the
renormalization scale μR, gives what is called renormalization group (RG) equa-
tion. Since

μ2
R

dâs
dμ2

R

= 0 (3.123)

we get

μ2
R

das(μ
2
R)

dμ2
R

= as(μ
2
R)

(
ε

2
− μ2

R

d lnZg

dμ2
R

)
(3.124)
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Defining the beta function β(as(μ
2
R)) through,

μ2
R

das
dμ2

R

= β(as(μ
2
R))

= −
∞∑
i=0

ai+2
s (μ2

R)βi (3.125)

and using the one loop result for the Zg given in eqn.(3.119), we can compute
β0 as:

β0 =
11

3
CA − 4

3
nfTf (3.126)

The solution to eqn.(3.125) is given by

as(Q
2) =

as(μ
2
0)

1 + β0as(μ2
0) ln(Q

2/μ2
0)

+O(a2s(μ
2
0)) (3.127)

The renormalised mass m(μ2
R) is related to m̂(μ2) and is given by

m̂(μ2) = Zm

(
as(μ

2
R),

1

ε

)
m(μ2

R) (3.128)

The renormalization group equation for m(μ2
R) is given by

μ2
R

d lnZm

dμ2
R

+ μ2
R

d lnm

dμ2
R

= 0 (3.129)

We now define

μ2
R

d lnZm

dμ2
R

= γm(as(μ
2
R))

=

∞∑
i=1

γ(i)
m a(i)s (μ2

R) (3.130)

where γm is the anomalous dimension of the mass m. To order as(μ
2
R) one finds,

Zm = 1− 6

ε
CF as(μ

2
R) +O(a2s)

lnZm = −6

ε
CFas(μ

2
R) (3.131)
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This implies

μ2
R

d lnZm

dμ2
R

= −6CF

ε
β(as)

= −6CF

ε
as

(
ε

2
− μ2

R

d lnZg

dμ2
R

)
= −3CFas(μ

2
R) +O(a2s) (3.132)

From this result, we find,

γ(0)
m = −3CF (3.133)

The solution to the eqn.(3.130) to leading order is given by

m(Q2) = m(μ2
0)

(
as(Q

2)

as(μ2
0)

)3CF /β0

+O(a2s(μ
2
0)) (3.134)

In M̄S scheme, the renormalization constant takes the following form:

Zg

(
as(μ

2
R, ξ),

1

ε
, ξ

)
= 1+

Z−1

(
as(μ

2
R, ξ), ξ

)
ε

+
Z−2

(
as(μ

2
R, ξ), ξ

)
ε2

+. . . (3.135)

where, ξ is the gauge fixing parameter. Differentiating eqn.(3.135) with respect
to ξ, we get

das
dξ

+
1

ε

(
dZ−1

dξ
as + Z−1

das
dξ

)
+

1

ε2

(
dZ−2

dξ
as + Z−2

das
dξ

)
+ . . . = 0

where we have suppressed the arguments of Z−i and as for simplicity. Compar-
ing the coefficients of 1/ε on both sides, we obtain,

das
dξ

= 0,
dZ−i

dξ
= 0, i = 1, 2, · · · (3.136)

Hence Zg is independent of gauge fixing parameter. Suppose, we choose a renor-

malization scheme in which the coupling constant renormalization Z̃g has the
following expansion:

Z̃g

(
αs(μ

2
R, ξ),

1

ε
, ξ

)
= Z̃0

(
as(μ

2
R, ξ), ξ

)
+

Z̃−1

(
as(μ

2
R, ξ), ξ

)
ε

+
Z̃−2

(
as(μ

2
R, ξ), ξ

)
ε2

+ . . . (3.137)
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Differentiating eqn.(3.137) with respect to ξ, we get(
dZ̃0

dξ
as + Z̃0

das
dξ

)
+
1

ε

(
dZ̃−1

dξ
as + Z̃−1

das
dξ

)

+
1

ε2

(
dZ̃−2

dξ
as + Z̃−2

das
dξ

)
+ . . . = 0 (3.138)

This implies that the renormalization constant Z̃g is gauge dependent.

The general structure of the renormalization constant Zi and Z̃i can be
found in MS scheme in terms of βi and the corresponding anomalous dimen-
sions (γi for Zi and γ̃i for Z̃i).

μ2
R

d lnZi

dμ2
R

= γi(as(μ
2
R)), μ2

R

d ln Z̃i

dμ2
R

= γ̃i(as(μ
2
R)) (3.139)

We first determine the structure of Zg

Zg = 1 + as
Z

(1)
−1

ε
+ a2s

(
Z

(2)
−2

ε2
+

Z
(2)
−1

ε

)
+ . . . (3.140)

lnZg = as
Z

(1)
−1

ε
+ a2s

[
Z

(2)
−2

ε2
+

Z
(2)
−1

ε
− 1

2ε2
(Z

(1)
−1 )

2

]
(3.141)

μ2
R

d lnZg

dμ2
R

= as
Z

(1)
−1

2
+ a2s

[
Z

(2)
−1 +

1

ε

(
Z

(2)
−2 − (Z

(1)
−1 )

2
)]

(3.142)

On the other hand,

μ2
R

d lnZg(μ
2
R)

dμ2
R

=

(
ε

2
− β

(
as(μ

2
R)
)

as(μ2
R)

)

=
ε

2
+

∞∑
i=0

ai+2
s (μ2

R)βi (3.143)

Comparing the powers of as(μ
2
R) in eqns. (3.142,3.143) we find

Z
(1)
−1 = 2β0, Z

(2)
−1 = β1, Z

(2)
−2 = 4β2

0 (3.144)

Hence,

Zg = 1 + as(μ
2
R)

2β0

ε
+ a2s(μ

2
R)

(
4β2

0

ε2
+

β1

ε

)
+ . . . (3.145)
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3.7 Wilson Coefficients

In this section we will study the renormalization group equation satisfied by
the Wilson coefficients given in eqn.(3.28). Defining

Fi,N (Q2) =

∫ 1

0

dxBjx
N−1
Bj Fi(xBj , Q

2) i = L, 2 (3.146)

In quantum field theory (QFT), the composite operators (say those ap-
pearing in Âa

i,N (p2)) require an over-all renormalization in addition to renor-
malization of the parameters and fields through the renormalization constants
Zi, Z̃i that appear in the Lagrangian. The over-all renormalization constants
for the composite operators are computed in the same way one computes Zi, Z̃i.
We can use dimensional regularization to regulate the new divergences that
emerge from the local nature of the composite operators and renormalise them
using MS scheme. The renormalization introduces a scale at which these op-
erators are renormalised. This scale is analogous to the renormalization scale
and there exists no compelling reason for them to be same. This new scale
is called the factorization scale, μF . Let us denote these new set of renormal-
ization constants by Zab,N (μ2

F , 1/ε). Hence, the renormalised operator matrix
elements are defined by

Âa
i,N (p2) = Zab,N

(
μ2
F ,

1

ε

)
Ab,i,N (p2, μ2

F ) (3.147)

This implies

Fi,N (Q2) =
∑
a,b

Zab,N

(
μ2
F ,

1

ε

)
Ab

i,N (p2, μ2
F )Ĉ

a
i,N (Q2), i = L, 2 (3.148)

The fact that the left side of the above equation is finite implies,

Cb
i,N (Q2, μ2

F ) =
∑
a

Zab,N

(
μ2
F ,

1

ε

)
Ĉa

i,N (Q2), (3.149)

is finite. Hence the eqn.(3.28) now becomes,

Fi,N (Q2) =
∑
a

Aa
i,N (p2, μ2

F )C
a
i,N (Q2, μ2

F ), i = L, 2 (3.150)

To summarise, in QFT, the separation of long distance part denoted by a set of
operator matrix elements Âa

i,N (p2) and the short distance part usually called
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Wilson’s coefficients Ĉa
i,N (Q2) is arbitrary upto a scale that separates them.

This scale is called the factorization scale. Notice that the observable Fi,N (Q2)
does not depend on the scale μF . That is,

μ2
F

d

dμ2
F

Fi,N (Q2) = 0 i = L, 2 (3.151)

This implies∑
a

Ca
i,N (Q2, μ2

F )

(
μ2
F

d

dμ2
F

Aa
i,N (p2, μ2

F )

)
= −

∑
a

Aa
i,N (p2, μ2

F )

(
μ2
F

d

dμ2
F

Ca
i,N (Q2, μ2

F )

)
(3.152)

Since

μ2
F

d

dμ2
F

Âa
i,N (p2) = 0, (3.153)

μ2
F

d

dμ2
F

Aa
i,N (p2, μ2

F ) =
∑
b

Pab,N (μ2
F )Ab,i,N (p2, μ2

F ) (3.154)

where, Pab,N (μ2
F ) is defined as∑

c

Z−1
ac,Nμ2

F

d

dμ2
F

Zcb,N (μ2
F ) = −Pab,N (μ2

F ) (3.155)

Substituting eqn.(3.154) in eqn.(3.152), we get∑
a

(
Iμ2

F

d

dμ2
F

+ PN (μ2
F )

)
ab

(
Ci,N (Q2, μ2

F )
)a

= 0 (3.156)

where we introduce a matrix notation in which Pab,N (μ2
F ) is the ab-th matrix

element of a matrix PN (μ2
F ) and Ca

i,N (Q2, μ2
F ) is a component of a-th vector de-

noted by Ci,N (Q2, μ2
F ). We would like to find out the behavior of Ci,N (Q2, μ2

F )
when Q2 is large for fixed value of N and μ2

F . It is computable using perturba-
tive method. We can write Ci,N as a series expansion in as,

Ci,N (Q2, μ2
F ) =

∞∑
j=0

ajs(μ
2
R)C

(j)
i,N

(
Q2, μ2

F , μ
2
R

)
(3.157)
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The RHS of the above equation is independent of the renormalization scale μR.
Hence we can choose μR = μF for the rest of the analysis. Since the coefficient
is dimensionless,

Ci,N (Q2, μ2
F ) = Ci,N

(
Q2

μ2
F

, as(μ
2
F )

)
(3.158)

The total derivative with respect to μ2
F gives

μ2
F

d

dμ2
F

= μ2
F

∂

∂μ2
F

+ β(as(μ
2
F ))

∂

∂as(μ2
F )

(3.159)

Parametrising Q2 = etQ
2
with Q fixed, we find

∂

∂t
Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= et

Q
2

μ2
F

∂

∂λ
Ci,N

(
λ, as(μ

2
F )
)

μ2
F

∂

∂μ2
F

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= −et

Q
2

μ2
F

∂

∂λ
Ci,N

(
λ, as(μ

2
F )
)

(3.160)

This implies(
− ∂

∂t
+ β(as(μ

2
F ))

∂

∂as(μ2
F )

+ P (as(μ
2
F ))

)
Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= 0 (3.161)

We will solve the above equation by introducing an auxiliary function
as(t, as(μ

2
F )) which depends on t as well as as(μ

2
F ) satisfying

d

dt
as
(
t, as(μ

2
F )
)
= β

(
as
(
t, as(μ

2
F )
))

(3.162)

with the boundary condition

as
(
t = 0, as(μ

2
F )
)

= as(μ
2
F ) (3.163)

This is called running coupling constant. Using the eqn.(3.162), we obtain(
− ∂

∂t
+ β(as(μ

2
F ))

∂

∂as(μ2
F )

)
as
(
t, as(μ

2
F )
)

= 0 (3.164)

which implies that any arbitrary function Ci,N depending on t and as(μ
2
F ) only

through the axillary function as
(
t, as(μ

2
F )
)
will also satisfy(

− ∂

∂t
+ β(as(μ

2
F ))

∂

∂as(μ2
F )

)
Ci,N

(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

= 0 (3.165)
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Hence, the solution to eqn.(3.161) takes the form:

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(∫ as(μ
2
F )

0

dα

β(α)
PN (α)

)

×Ci,N
(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.166)

Rewriting the argument of the exponential as

∫ as(μ
2
F )

0

dα

β(α)
PN (α) =

∫ as(t,as(μ
2
F ))

0

dα

β(α)
PN (α) +

∫ as(μ
2
F )

as(t,as(μ2
F ))

dα

β(α)
PN (α)

=

∫ as(t,as(μ
2
F ))

0

dα

β(α)
PN (α)−

∫ t

0

dt′PN

(
as(t

′, as(μ2
F ))

)
(3.167)

we obtain,

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(∫ as(t,as(μ
2
F ))

0

dα

β(α)
PN (α)

)

× exp

(
−
∫ t

0

dt′PN

(
as(t

′, as(μ2
F ))

))

×Ci,N
(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.168)

We can determine C as follows: at t = 0, we get

Ci,N

(
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(∫ as(μ
2
F )

0

dα

β(α)
PN (α)

)

×Ci,N
(
Q

2

μ2
F

, as(μ
2
F )

)
(3.169)
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Replacing as(μ
2
F ) by as(t, as(μ

2
F )) in the above equation, we get

Ci,N
(
Q

2

μ2
F

, as(t, as(μ
2
F ))

)
= exp

(
−
∫ as(t,as(μ

2
F ))

0

dα

β(α)
PN (α)

)

×Ci,N

(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.170)

Substituting the above equation in the eqn.(3.168), we obtain

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(
−
∫ t

0

dt′PN

(
as(t

′, as(μ2
F ))

))

×Ci,N

(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.171)

Notice that the t dependence of the Wilson coefficients is controlled by the
running coupling constant as(t, as(μ

2
F )). The solution to its renormalization

group equation (eqn.(3.162)) with the boundary condition as(t = 0, as(μ
2
F )) =

as(μ
2
F ) is given by

as(t, as(μ
2
F )) =

as(μ
2
F )

1 + tβ0as(μ2
F )

+O(a2s(μ
2
F )) (3.172)

If we restrict ourselves to non-singlet combinations of structure functions such
as F ep

2 − F en
2 or F νP

2 − F νP
2 where p and n are proton and neutron targets

respectively, then only the non-singlet operator defined by

Oa
μ1···μn

=
in−1

n!

{
ψT aγμ1Dμ2 · · ·Dμnψ

}
S

(3.173)

will contribute. Here, Dμ = ∂μ − igsA
a
μT

a.
As expected the running coupling constant vanishes at large t. Using

PN (α) =

∞∑
j=1

αjP
(j−1)
N

Ci,N

(
Q

2

μ2
F

, α

)
=

∞∑
j=0

αjC
(j)
i,N

(
Q

2

μ2
F

)
(3.174)
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where C
(0)
i,N

(
Q

2
/μ2

F

)
= C

(0)
i,N is independent of Q

2
and μ2

F , we obtain

lim
t→∞Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= C

(0)
i,N (3.175)

which is independent of Q
2
as well as μ2

F and depends only N . This implies

that if we invert N dependent result C
(0)
i,N into xBj we will find that the Wilson

Coefficients will depend only on xBj . In other words, one recovers scaling at
large t (equivalently large Q2). This behavior is attributed to the vanishing of
running coupling constant at large energy scales. As we have already discussed
in the previous section, this behavior of the coupling constant is the important
feature of YM theory with certain number of fermions.

3.8 Infrared Safe Observables

In the last section we studied the behavior of Wilson coefficients of non-singlet
structure function in the Björken limit. Thanks to operator product expansion
and the asymptotic freedom , we can compute them as a power series expansion
in as(μ

2
R) using the perturbation theory and also make predictions that can be

tested in the experiments. In fact we can demonstrate the scaling in the Björken
limit. The logarithmic pattern of scaling violation, an important prediction
of the theory, has been verified by deep inelastic experiments confirming the
correctness of the theory.

In this section, we will study a completely new process namely hadropro-
duction in e+e− annihilation. Here the cross section corresponds to summing
all the final states involving hadrons in the e+e− collision. To lowest order in
strong coupling constant, the leading contribution comes from the production
of a pair of quark (q) and an anti-quark (q). To order as, real gluons emitted
from the quark and anti-quark states and virtual gluons in the loops contribute
to the cross section (see Fig. (3.1)). These quarks,anti-quarks and gluons will
eventually hadronize to produce hadrons which are then summed. Naively one
would expect the cross section for producing these partonic states is identical
to that for producing hadronic states because the sum over all the final states is
carried out. To this order in as and α (electromagnetic coupling constant), only
s channel processes contribute. The tree level cross section e+ + e− → q + q is
straight forward to compute, we denote this by σ̂(0). To order as, there are two
types of processes that contribute to the total cross section: gluon emissions
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and virtual corrections to the tree level process. They are given by

e+ + e− → q + q + g (3.176)

e+ + e− → q + q + one loop (3.177)

Let us begin with the computation of virtual gluon contribution. This involves

(b) (c)(a) p1

p1

p2p2p2

p3

p1

p3

Figure 3.1: Feynman diagrams for the process γ∗ → qq̄ with quantum corrections.

Real diagrams are shown in (a), (b) and virtual diagrams in (c).

computation of an integral given by

I =

∫
d4k

(2π)
4

N (k)

k2(k + p1)2(k − p2)2
(3.178)

where one finds N (k) is regular at k0 = |	k|. The above integral does contain UV
divergence which can be dealt with using standard renormalization procedure
discussed in the beginning of the course. We will demonstrate here the appear-
ance of new type divergences in certain regions of the momentum k. Partial
fractioning the gluon propagator and using Cauchy’s integral formula:

1

k2 + iε
=

1

2|	k|

(
1

k0 − |	k|+ iε
− 1

k0 + |	k| − iε

)
,

∫
dk0
k0

f(k)

k0 − |	k|+ iε
= −2πi

f(k)

2π

∣∣∣∣∣
k0=|�k|

, (3.179)

we get

I = − i

32π2p10p20

∫ ∞

0

d|	k|
|	k|

∫ 1

−1

dcosθ
N (k)|k0=|�k|
1− cos2θ

(3.180)
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We observe that the above integral∫ ∞

0

d|	k|
|	k|

: diverges logarithmically in the soft limit |	k| → 0.∫ 1

−1

dcosθ

1− cos2θ
: diverges logarithmically in the collinear limit θ → 0.

Similarly, we will now show that similar divergences do appear in the processes
where real gluons are emitted from the quark and anti-quarks. The matrix
elements for the real gluon emission processes shown in Fig. (3.1) are

M1 = ūi(p1)(ieqγλ)
i(−�p2 − �p3)
(p2 + p3)2

(igsn,RγαT
a
ij)vj(p2)ε

α∗(p3)

M2 = ū(p1)(igsn,RγαT
a
ij)

i(�p1 + �p3)
(p1 + p3)2

(ieqγλ)vj(p2)ε
α∗(p3)

Using equations of motion:

�p2γα = 2p2α − γα �p2 ; �p2v(p2) = 0 and γα �p1 = 2p1α − �p1γα ; ū(p1)�p1 = 0

taking the soft limit (p3 → 0), we obtain

Msoft
1λ =

ieqgsn,R
2p2.p3

ūi(p1)γλT
a
ijvj(p2)ε

∗
α(p3)(2p

α
2 )

Msoft
2λ =

−ieqgsn,R
2p1.p3

ūi(p1)γλT
a
ijvj(p2)ε

∗
α(p3)(2p

α
1 ) (3.181)

The sum gives

Msoft
1λ +Msoft

2λ = M0λijT
a
ijgsn,R

(
pα2

p2.p3
− pα1

p1.p3

)
ε∗α(p3) (3.182)

where M0λij = ūi(p1)ieqγλvj(p2) is the matrix element for the Born diagram
for the process γ∗ → qq̄. The amplitude squared after multiplying−gλλ′ (virtual
photon propagator ) becomes∣∣∣(Msoft

1λ +Msoft
2λ

)
ελ(q)

∣∣∣2 = M0λijM∗
0λ′i′j′(−gλλ

′
)T a

ijT
a
i′j′

×g2sn,R

∣∣∣∣(p2.ε
∗(p3)

p2.p3
− p1.ε

∗(p3)
p1.p3

)∣∣∣∣2 (3.183)
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The transition rate for the above process is obtained by integrating the matrix
element squared over the three body phase space given by∫

dPS3 =
3∏

i=1

∫
d3pi

(2π)32pi0
(2π)4δ(4)(q − p1 − p2 − p3)

The soft limit of the above 3-body phase space is given by∫
soft

dPS3 =

∫
d3p3

(2π)32p30

[
2∏

i=1

∫
d3pi

(2π)32pi0
(2π)4δ(4)(q − p1 − p2)

]

The p3 integral over the soft part of the matrix elements squared is given by∫
d3p3

(2π)32p30

∑
pol

∣∣∣(Msoft
1λ +Msoft

2λ

)
ελ(q)

∣∣∣2
= |M0|2 Tr(T aT a)g2sn,R

∫
d3p3

(2π)32p30

∑
pol

∣∣∣∣(p2.ε
∗(p3)

p2.p3
− p1.ε

∗(p3)
p1.p3

)∣∣∣∣2
Rewriting the integrand as∣∣∣∣(p2.ε

∗(p3)
p2.p3

− p1.ε
∗(p3)

p1.p3

)∣∣∣∣2 =

(
pα2

p2.p3
− pα1

p1.p3

)(
pβ2

p2.p3
− pβ1

p1.p3

)

×
∑
pol

ε∗α(p3)εβ(p3) (3.184)

and summing gluon polarizations, we get

= |M0|2 Tr(T aT a)g2sn,R

(−2p1.p2
|	p1||	p2|

)
1

2(2π)3

∫
d3p3
|	p3|

1

| 	p3|2
1

1− cos2θ

= |M0|2 Tr(T aT a)g2sn,R

(−2p1.p2
|	p1||	p2|

)
1

2(2π)3

∫ p2max

0

d| 	p3|
|	p3|

×
∫ 2π

0

dφ

∫ 1

−1

dcosθ
1

1− cos2θ
(3.185)

The above integral diverges in the soft limit (p3 → 0). In addition, we find
an additional divergence as cosθ → ±1 This is called collinear singularity.
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This happens when two massless particles become collinear to each other. To
summarise, we have shown that both virtual gluon contribution as well as real
gluon emission processes contain soft and collinear divergences. In the following
we will demonstrate that the total cross section where all the virtual and real
gluon contributions are included is free of any of these divergences.

Since these processes are individually divergent, we first regulate them
using dimensional regularization similar to the way UV divergences were reg-
ulated. We evaluate all the matrix elements in n dimensions and both loop
as well as phase space integrals are performed in n dimensions. The matrix
element corresponding to the one loop correction is given by

MV
λ = ū(p1)ieqΓλv(p2) (3.186)

where

Γλ = −ig2sn,R(T
aT b)

∫
dnk

(2π)n
γα �kγλ( �k − �p1 − �p2)γα

k2(k − p1)2(k − p1 − p2)2
(3.187)

where k is the loop momentum. In n dimensions we have

γμ �a �b �cγμ=−2�c �b �a+ (4− n) �a �b �c, and ū(p1) �p1 = 0; �p2v(p2) = 0 (3.188)

The loop integrals that we require are given by

Jμ1···μn =

∫
dnk

(2π)n
kμ1 · · · kμn

k2(k − p1)2(k − p1 − p2)2
(3.189)

where

Jμν = − 1

2(2− n)
B0(p1 + p2)gμν +

1

4p1 · p2 (3B0(p1 + p2)

+4p1 · p2C0(p1, p2)) p1μp1ν − 1

4p1 · p2B0(p1 + p2)p2μp2ν

− n

4(n− 2)p1 · p2B0(p1 + p2)(p1μp2ν + p1νp2μ)

Jμ =
1

2p1.p2
(B0(p1 + p2) + 2p1 · p2C0(p1, p2)p1μ)

− 1

2p1.p2
B0(p1 + p2)p2μ

J = − 1

p1.p2

n− 3

n− 4
B0(p1 + p2) = C0(p1, p2) (3.190)
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where,

B0(q) = − i

(4π)n/2
(−q2)(n−4)/2 2

n− 4

Γ(3− n/2)Γ2(−1 + n/2)

Γ(n− 2)
(3.191)

Using the above results, we find

Γλ = −g2sn,R
16π2

(T aT a) γλ (−2p1.p2)
ε/2

(
8

ε2
+

2

ε
+ 2

)
Γ(1− ε/2)Γ(1 + ε)

Γ(2 + ε)

(3.192)

where n = 4 + ε is used. The interference of the one loop corrected amplitude

with the Born level amplitude after phase space integrations of the two body

final states is found to be∫
dPS2

∑
a,spin

Mλ(Mv
λ′)∗(−gλλ

′
) = 2ŝ σ(0) g2sn,R

16π2
CF Re(−q2)(ε/2)

×
[
−16

ε2
− 4

ε
− 4

]
Γ(1− ε/2)Γ2(1 + ε/2)

Γ(2 + ε)

(3.193)

where

2ŝσ(0) = αem e2q N

[
(2 + ε)

Γ(1 + ε/2)

Γ(2 + ε)
(q2)ε/2

]
(3.194)

Notice that the result has double as well as single poles in four dimensions.
The double pole terms come from the integration region where the gluons in
the loop that are collinear to quark or anti-quark become soft. The single poles
can originate from soft gluons which are not collinear to quark or anti-quark.
They can also result from hard gluons that are collinear to quark or anti-quark.
Notice that the double and single poles persist even if we do not integrate out
the final state quark and anti-quark.

We now compute the contributions coming from the real emission dia-
grams shown in Fig. (3.1). The matrix elements are given by

M1λ = ū(p1)(ieqγλ)
i(−�p2 − �p3)
(p2 + p3)2

(igsn,RγαT
a)v(p2)ε

∗α(p3)

M2λ = ū(p1)(igsn,RγαT
a)

i( �p1 + �p3)
(p1 + p3)2

(ieqγλ)v(p2)ε
∗α(p3)
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We compute the matrix element squared in n = 4 + ε dimensions:

∑∣∣(M1λM2λ) ε
∗λ(q)

∣∣2 = g2sn,Re
2
qNCFnf

[
(4n2 − 24n+ 32)

= Dc

(
1

Da
+

1

Db
+

Dc

DaDb

)
(8n− 16)

=

(
Da

Db
+

Db

Da

)
(2n2 − 8n+ 8)

]

where Da = (p1 + p3)
2, Db = (p2 + p3)

2, Dc = (p1 + p2)
2. The three body

phase space in n dimensions is given by

dPS3 =

3∏
i=1

dn−1pi
(2π)n−12 pi0

(2π)nδn(q − p1 − p2 − p3) (3.195)

=
q2

16(2π)3

(
q2

4π

)n−4
1

Γ(n− 2)

∫ 1

0

dx

∫ 1

0

dv xn−3(1− x)
n−4
2

×(v(1− v))
n−4
2 (3.196)

where x = (2p1.q)/q
2, (2p1.p3)/q

2 = vx, (2p2.p3)/q
2 = 1 − x. Using the

following integral,∫
dPS3

1

Dα
aD

β
b D

γ
c

=

[
q2

16(2π)3

(
q2

4π

)ε
1

Γ(2 + ε)

]
(q2)1−α−β−γ

×Γ(1 + ε/2− α)Γ(1 + ε/2− β)Γ(1 + ε/2− γ)

Γ(3 + 3ε/2− α− β − γ)
(3.197)

we obtain∫
dPS3

∑∣∣(M1λ +M2λ) ε
∗λ(q)

∣∣2 = 2ŝσ(0)
g2sn,R
16π2

CF (q
2)ε/2

×
(
16

ε2
+

32

ε
+ 22 + 7ε+ ε2

)

× 4

2 + ε

Γ2(1 + ε/2)

Γ(3 + 3ε/2)
(3.198)
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Notice that the above result also contains double and single poles in four dimen-
sions. The origin of these poles can be traced to the existence of soft gluon as
well as of hard gluon that are collinear to quarks or anti-quarks. The poles exist
even if we do not integrate over the phase space of the quark and anti-quark
states.

Even though the virtual correction to the Born process and real emission
processes are independently divergent in four dimensions, their sum is found to
be finite.

2ŝ
(
σ(0) + σv + σR

)
= 2ŝσ(0)

[
1 +

g2s,R
16π2

CF (3)

]
(3.199)

The integration over all the final states involving quarks, anti-quarks and glu-
ons means that we are summing over all possible final states of these particles.
Such a sum washes away not only the nature of these particles and also the
way in which they fragment into final state hadrons. Hence, the sum over fi-
nal state quarks, anti-quarks and gluons is equivalent to sum over all possible
hadronic final states. Hence the total cross section that we have computed with
final states involving quarks, anti-quarks and gluons corresponds to produc-
tion of hadrons in the e+e− annihilation. Hence the total cross section in e+e−

annihilation with hadrons in the final state is infra-red finite.

3.9 QCD Predictions Beyond Leading Order

In a theory with massless fields, transition rates are free of both soft and
collinear divergences provided the summation over the initial and final de-
generate states is carried out. This is called Kinoshita-Lee-Nauenberg (KLN)
theorem. Let us elaborate on what we mean by degenerate states. These are
eigen states having same energy. The states |qgsoft〉 are said to be degenerate
to |q〉 because of the soft gluons carry zero energy. Such states are called soft
degenerate states. The states |{qg}collinear〉 are degenerate to either |q〉 or |g〉.
Such states are called collinear degenerate states. These soft and collinear de-
generate states are the potential sources of divergences in the transition rate.
The theorem ensures that such divergences cancel out if we perform summation
over initial as well as final degenerate states. We found that the cross section
for the hadroproduction in e−e+ annihilation is infra-red finite because we car-
ried out the summation over all the final states that include both degenerate
states. This is in conformity with the KLN theorem. We can construct other
infra-red finite observables for the e+e− annihilation process (see Fig. (3.2)).
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Oe−e+

S =

∫
dPS2 |M |2e−e+→qq̄ S2(p1, p2)

+

∫
dPS3|M |2e−e+→qq̄g S3(p1, p2, p3)

+

∫
dPS4|M |2e−e+→qq̄gg S4(p1, p2, p3, p4)

+ . . . . .

+σe
+
e
−

tot
=

∑
qq̄ −→ |q q̄〉s,c

−→ |qc q̄c gs,c〉

is finite.

s - soft

c - collinear

+ . . .

2

2

+
∑

qq̄g

e+ q

q̄

e+ q

q̄

e+ e+

e−

q

e−

e−

q̄

+

g

g

e−

+ . . .

q

q̄

Figure 3.2: The total cross section for the process e+e− → qq̄ is finite after summing

over all the degenerate states.

The functions Si(p1, .., pi) are chosen in such a way that the observable Oe+e−

is infra-red finite. A choice, Si(p1, ..., pi) = 1 gives

dOe−e+ = σe−e+

tot (3.200)

which is finite.
The Si(p1, ..., pi) are symmetric and the cancellation of soft and collinear

divergences is guaranteed by the following constraints on them:

S3(p1, (1− λ)p2, λp2) = S2(p1, p2); S3((1− λ)p1, p2, λp1) = S2(p1, p2)
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where λ = 0, 1 correspond to the soft region and λ > 0 to the collinear region.
Of course, one can construct different choices of Si and they will give different
infra-red finite observables.

Even though we describe the scattering processes in terms of quarks and
gluons, what one observes experimentally are hadrons in the initial and/or
final states. For example, in the e+e− annihilation process, one observes energy
deposits of hadrons in the hadron calorimeters. We have not been successful
in explaining the mechanism of how the quarks and gluons produced in an
experiment will convert into hadrons. All we know is that all the energy and
momentum of these quarks and gluons produced in the scattering experiments
will be transfered to hadrons. Using these energy and momentum variables,
one can construct and compute observables that do not require the knowledge
of how these quarks and gluons hadronise. For example, in e+e− annihilation,
define an event by a probability that a definite set of energy and momentum is
deposited in the calorimeter. Different sets can give different events. Calculate
the sum of events where in each event, all the center of mass energy of e+e−

collisions but a small fraction ε of it goes to a pair of oppositely directed cones
of hadrons of half angle δ.

Oe+e−
εδ =

∫
dPS2|M |2e−e+→qq̄S2(ΩJ1

,ΩJ2
)

+

∫
dPS3|M |2e−e+→qq̄gS3(ΩJ1 ,ΩJ2 , ε, δ) (3.201)

S3 = 1 if (a) angle between any of (q, q̄, g) particles is less than δ or (b) any
of the particles (q, q̄, g) has energy less than εE and it is outside of any of the
cones with half angle δ. S3 = 0 otherwise. Out of three particles, let us say two
of them make two oppositely directed cones.
(a) If the third particle lies inside one of the cones, it will have both soft and
collinear divergent contributions. These divergences will cancel against those
coming from e+e− → qq̄ + oneloop.
(b) If the third particle is outside the cone, it is free of collinear divergence.
But it can be soft producing soft divergence. This is again canceled against
e+e− → qq̄ + oneloop. Hence, the above observable is infra-red finite. It is
dependent on ε and δ. These events are called Sterman-Weinberg jets.

In the following, we will discuss how the naive parton model can be im-
proved so that it can be used to computer various observables incorporating
higher order radiative corrections in a systematic way (see Fig. (3.3)). Let us
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recall the result of naive parton model for deep inelastic scattering:

lim
Bj

dσeh(xBj , Q
2) =

∑
a

∫ 1

0

dy

∫ 1

0

dzf̂a/h(y)dσ̂ea(z,Q
2)δ(xBj − yz)

=
∑
a

f̂a/h(xBj)⊗ dσ̂ea(xBj , Q
2) (3.202)

where the convolution ⊗ symbol has been introduced for the integrations. The
sum over a corresponds to summing over all the partons that contribute to the
partonic scattering process. Using this, the hadronic structure functions can be

px

p

i

2

=

e(k′)

=

2

z1p z1p z1p z1p

px − px1

∑
incoherent{i}

px − px1

z1p
= ˆf(z1)

e(k)

k′, px

ψa

i
ψ̄a

′

j′

Figure 3.3: The schematic diagram showing that the deep inelastic scattering cross

section can be expressed in terms of the incoherent sum of the partonic cross sections

and the parton densities f(z).

expressed in terms of partonic structure functions Fa
i (xBj, Q

2) as

Fi(xBj, Q
2) =

∑
a

f̂a/h(xBj)⊗Fa
i (xBj, Q

2). (3.203)

The partonic structure functions are computed from the partonic cross sections
σ̂a(z,Q2) as follows:

Fa
i (z,Q

2) = Pμν
i σ̂a

μν(z,Q
2) (3.204)
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where

σ̂a
μν(z,Q

2) =
1

2ŝ

∫ M∏
i=1

(
dn−1pi

(2π)n−12p0i

)
(2π)nδ(n)

(
p+ q −

M∑
i

pi

)∑
|Ma|2μν ,

(3.205)

ŝ = (p + q)2, Pμν
i are projectors and Ma is the matrix element of the process

e+a → e+X involving a parton of type a. To leading order O(a0s), only quarks
and anti-quarks interact with the lepton through electromagnetic interactions:

e+ q → e+ q, e+ q → e+ q (3.206)

We denote the sum of these contributions to the cross section by σ̂q,(0)(z,Q2).
At order as(μ

2
R), the contributions come from two distinct sources. The first one

comes from real gluon emission and virtual gluon corrections through one-loop
to the tree level process given in eqn.(3.206),

e+ q → e+ q + g, e+ q → e+ q + g

e+ q → e+ q + one− loop, e+ q → e+ q + one− loop (3.207)

We denote the resulting partonic cross section by σ̂q,(1)(z,Q2, μ2
R). The second

second source is the contribution coming from the gluon initiated processes:

e+ g → q + q (3.208)

The corresponding partonic cross section is denoted by σ̂g,(1)(z,Q2, μ2
R). Hence

σ̂q(z,Q2) = σ̂q,(0)(z,Q2) + as(μ
2
R)σ̂

q,(1)(z,Q2, μ2
R) +O(a2s) (3.209)

σ̂g(z,Q2) = as(μ
2
R)σ̂

g,(1)(z,Q2, μ2
R) +O(a2s) (3.210)

Since we have used the renormalised parameters and fields, the partonic cross
sections expressed in terms of as(μ

2
R) are UV finite . Notice that the left hand

side of eqns. (3.209,3.210) are renormalization group invariants and hence the
right hand side is independent of μR provided the sum over entire series is
carried over. The truncated perturbative expansion is of course μR dependent.

Notice that in QCD , the running mass parameter vanishes at high ener-
gies. The higher order partonic cross sections denoted by σ̂a,(i) for i > 0 at high
energies often get contributions from large logarithms of the form log(m2

R/Q
2)

that can spoil the reliability of the perturbative expansion. These large loga-
rithms come from the phase space regions of partons where massless partons
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are collinear to each other. Hence, the higher order partonic cross sections
with mass parameter put equal to zero are collinear singular. The predictions
from the perturbative methods can make sense only if we resum these large
logarithms to all orders. A systematic way to organise and resum these large
logarithms is accomplished by the procedure called mass factorization. If the
collinear singularities are regularised by dimensional regularization, that is,
the space time dimension is taken to be n = 4 + εIR:

F̂a(xBj, Q
2) = F̂a

(
xBj, Q

2,
1

εIR

)
(3.211)

The collinear divergences that appear as poles in εIR factorise as

F̂a(xBj) =
∑
b

Zab

(
xBj,

1

εIR
, μ2

F

)
⊗Δb(xBj, Q

2, μ2
F )

Now defining,∑
a

f̂a/h(xBj)⊗Zab

(
xBj,

1

εIR
, μ2

F

)
= fb(xBj, μ

2
F )

and substituting in eqn.(3.203), we find

Fi(xBj, Q
2) =

∑
a

fa/h(xBj, μ
2
F )⊗Δa

i (xBj, Q
2, μ2

F ). (3.212)

Here fa/h(xBj, μ
2
F ) and Δe−q(xBj, μ

2
F ) are called collinear renormalised parton

distribution functions and cross sections respectively. f̂a/h(xBj) is μ
2
F indepen-

dent:

μ2
F

d

dμ2
F

f̂a/h(xBj) = 0

which implies (suppressing the subscripts in the Z and f)(
μ2
F

dZ−1

dμ2
F

)
⊗ f + Z−1 ⊗ μ2

F

df

dμ2
F

= 0

If we define,

P (y, μ2
F ) = −Z ⊗ μ2

F

dZ−1

dμ2
F
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P2

P1

Figure 3.4: Tevatron is a proton anti-

proton collider. Large Hadron Collider is

a proton proton collider. At the LHC, the

center of mass energy is 14 TeV.

H

P1

P2

z1P1

z2P2

PX2

PX1

Figure 3.5: LHC is capable of producing

Higgs through gluon fusion

which is finite, we find

μ2
F

d

dμ2
F

⎛⎝ fq(z, μ
2
F )

fg(z, μ
2
F )

⎞⎠ =

∫ 1

z

dy

y

⎛⎝ Pqq(y, μ
2
F ) Pqg(y, μ

2
F )

Pgq(y, μ
2
F ) Pgg(y, μ

2
F )

⎞⎠⎛⎝ fq(
z
y , μ

2
F )

fg(
z
y , μ

2
F )

⎞⎠
The above equation is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation. The function Pab are called splitting functions
which are computable in perturbative QCD as

Pab = as(μ
2
F )P

(0)
ab (z) + a2s(μ

2
F )P

(1)
ab (z) + · · ·

These splitting functions P
(i)
ab are known upto three loop level.

Typical processes where the QCD improved parton model can be ap-
plied for phenomenlogical study at hadron colliders namely Tevatron and Large
Hadron Collider are given in Figs. (3.4–3.7). The QCD improved parton model
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P2

PX1

PX2

l+

P1

Z ′, Gravition

l−

Supersymmetric

particles

Figure 3.6: New particles predicted by var-

ious models such as those with Z′, extra
dimensions , Supersymmetry can be pro-

duced due to energy available at LHC.

P2

PX1

PX2

P1

Black holes !

Figure 3.7: Short lived black holes can also

be produced at the hadron colliders.

can be used to compute various observables at these colliders using

dσP1P2 =
∑
ab

∫
dx1

∫
dx2f a

P1

(
x1, μ

2
F

)
f b

P2

(
x2, μ

2
F

)
dσ̂ab

(
x1, x2, {pi}, μ2

F

)
,

(3.213)

where fa(x, μ
2
F ) are parton distribution functions inside the hadron P and

are on-perturbative and process independent. σ̂ab(xi, {pi}, μ2
F ) are the partonic

cross sections and are perturbatively calculable. μR and μF are renormaliation
and factorisation scales. The partonic cross sections are computed as a power
series expansion in strong coupling constant. Using the parton distribution func-
tions extracted from other experiments, one can make predictions of various ob-
servables at hadron colliders which can serve to confirm and/or rule out models.
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