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Abstract Numerous toolkits are available for developing speech-based dialogue
systems. We survey a range of currently available toolkits, highlighting the different
facilities provided by each. Most of these toolkits include not only a method for rep-
resenting states and actions, but also a mechanism for reasoning about and selecting
the actions, often combined with a technical framework designed to simplify the task
of creating end-to-end systems. This near-universal tight coupling of representation,
reasoning, and implementation in a single toolkit makes it difficult both to compare
different approaches to dialogue system design, as well as to analyse the properties
of individual techniques.We contrast this situation with the state of the art in a related
research area—automated planning—where a set of common representations have
been defined and are widely used to enable direct comparison of different reasoning
approaches. We argue that adopting a similar separation would greatly benefit the
dialogue research community.

Keywords Interaction management · Automated planning · Representation and
reasoning · Systems integration

1 Introduction

A fundamental component of any dialogue system is the interaction manager [1],
whose primary task is to carry out action selection: that is, based on the current
state of the interaction and of the world, the interaction manager makes a high-level
decision as to which spoken, non-verbal, and task-based actions should be taken next
by the system as awhole. In contrast tomore formal, descriptive accounts of dialogue
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(e.g., [2]), which aim tomodel the full generality of language use, work on interaction
management has concentrated primarily on developing end-to-end systems and on
evaluating them through interaction with human users [3, 4].

A number of toolkits are available to support the construction of such end-to-
end dialogue systems. Such a toolkit generally incorporates three main features.
First, it provides a representational formalism for specifying states and actions.
Second, the state/action representation is usually tightly linked to a reasoning strategy
that is used to carry out action selection. Finally, most toolkits also include a set
of infrastructure building tools designed to support modular system development.
While these three features can clearly simplify the task of implementing an individual
end-to-end system, the fact that the features are so tightly connected does complicate
the task of comparing representational formalisms or reasoning strategies: in general,
to carry out such a comparison, there is no alternative but to re-implement the entire
system across multiple frameworks [5, 6].

In this chapter, we argue that the dialogue community could benefit from the
wider use of system development techniques that break these tight connections
among action selection, representation, and technical middleware. As motivation
for this view, we use a related research field as as an example: automated planning.
At a basic level, the core problem studied in automated planning is also one of
context-dependent action selection. However, in the planning community, the focus
has been on defining domains in common representation languages and on compar-
ing different action-selection (i.e., planning) strategies within this common context,
especially through a series of regularly organised planning competitions [7]. This
has had important benefits for the planning community, such as allowing planning
engines and domains to be directly compared and shared; also, the study of the rep-
resentation languages themselves has led to a better understanding of the inherent
trade-offs in choosing different representations. We believe that a similar approach
could also benefit the dialogue community.

This chapter is structured as follows. We begin with a survey of available interac-
tion management toolkits, summarising the representation, reasoning, and technical
facilities provided by each. We then outline certain research directions in the auto-
mated planning community, concentrating on how common representations are used
and exploited. We also present a recent example of relevant work where an off-
the-shelf planner has been used to support interaction management for a socially
intelligent robot bartender. Finally, we discuss the potential benefits of developing
interaction management strategies that separate representation, reasoning, and inte-
gration, and outline our plans for future research in this area.

2 A Survey of Interaction Management Toolkits

In the traditional three-level architecture (Fig. 1) that is typical of a multimodal
interactive system [8, 9], the interaction manager sits at the highest level and rea-
sons about the most abstract structures, such as knowledge and action, usually
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Fig. 1 Typical multimodal system architecture

represented in a logical form, and chooses high-level action specifications for the
system to perform. The mid-level components deal with abstract, cross-modality
representations of states and events: for input, multimodal fusion [10] combines
continuous information from the low-level input sensors into a unified representa-
tion, while for output, multimodal fission [11] translates high-level communicative
actions into concrete specifications for the individual output components. Finally, the
components at the low level deal withmodality-specific, highly detailed information:
on the input side, this might include coordinates from a vision system or hypotheses
from a speech recogniser, while the low-level output components would deal with
instructions such as motion specifications for an embodied agent or content for a
speech synthesiser.

In this section, we survey a representative set of dialogue systems toolkits, includ-
ing several well-established, widely-used ones as well as a number of more recently
developed toolkits. In particular, we concentrate on the representations used to sup-
port high-level interaction management, but also discuss the reasoning mechanisms
and relevant details of any accompanying technical architecture.

2.1 TrindiKit/DIPPER

One of the widely used approaches to dialogue management is the Information State
Update (ISU) approach, which is exemplified by TrindiKit [12] and its lighter-weight
Java reimplementation DIPPER [13]. The core of this approach is the use of an
information state which represents the state of the dialogue and which is updated by
applying update rules following a given update strategy. The details of an informa-
tion state are determined by the needs of a particular application. For example, the
information state might include external aspects such as variables and their assign-
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ments (as in a slot-filling dialogue), or it might include internal agent states such
as goals and beliefs (for a more plan-based dialogue strategy). TrindiKit and DIP-
PER both make use of the Open Agent Architecture (OAA) [14], which provides a
middleware for integrating software agents into a distributed system.

A similar ISU approach has also been taken in more recent dialogue systems,
but using other infrastructure. For example, the MATCH system [15] uses a similar
approach to modelling the information state, while the Flipper toolkit [16] and the
dialoguemanager for theEMOTE robot tutor [17] both implement ISU-style dialogue
management using XML rules.

2.2 Ravenclaw

Another widely-used toolkit is Ravenclaw [18], which is based around a dialogue
task specification representing the domain-specific aspects of the control logic. This
representation forms a hierarchical plan for the interaction and is executed by a
domain-independent engine at run time. The specification consists of a tree of dia-
logue agents, each of which handles a sub-task of the dialogue (e.g., greeting the
user). The dialogue engine traverses the tree in a depth-first order, putting agents
from the tree onto an execution stack and removing them when they are completed.
The agents are defined through C++ macros that communicate by exchanging user-
defined data structures through a message-passing system.

2.3 COLLAGEN/DISCO

COLLAGEN [19] is a toolkit based on the collaborative interface paradigm, which
assumes that a software agent is collaborating with a user to operate an application
programme, with both agents communicating with each other as well as interacting
with the application. COLLAGEN has been used to implement a range of interface
agents, including ones for travel booking and for controlling a programmable ther-
mostat. More recently, COLLAGEN has been extended into an open-source tool
called DISCO [20], which combines hierarchical task networks (HTNs) with tra-
ditional dialogue trees to permit semi-automated dialogue authoring and dialogue
structure reuse. The target scenario is specified as a collection of recipes—rules for
decomposing a goal into subgoals and for accomplishing those subgoals. In contrast
to Ravenclaw, where the dialogue flow must be specified, COLLAGEN and DISCO
only need a specification of the tasks; the dialogue is then generated automatically
via a generic rule framework.
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2.4 OpenDial

OpenDial [21] is a domain-independent toolkit for developing spoken dialogue sys-
tems. Its primary goal is to support robust dialogue management, using a hybrid
framework that combines logical and statistical approaches through probabilistic
rules to represent the internal models of the framework. OpenDial also includes a
Java-based blackboard architecture where all modules are connected to a central
information hub which represents the dialogue state, along with a plugin framework
allowing new modules to be integrated.

2.5 IrisTK

IrisTK [22] is a toolkit for the rapid development of real-time systems for face-to-
face multi-party interaction which accompanies the Furhat robot head [23]. IrisTK
provides an XML-based scripting language for defining statecharts [24] that map
input events to output events depending on the system state, along with an event-
based distributed architecture that allows a system to be built by integrating modules
such as speech recognition and synthesis; it also incorporates pre-built modules for
such common tasks.

2.6 InproTK

InproTK [25] is designed for the development of systems which are able to support
incremental processing through a network of modules which continuously read input
and output the processed result as Incremental Units (IUs). IUs are passed between
modules, with the connections between modules specified through a configuration
file. InproTK comeswith a selection of pre-built modules, and also allows developers
to write their own. While the original InproTK used its own internal middleware, a
more recent system update [26] adds support for three message-passing protocols
(XML-RPC, the Robotics Service Bus [27], and InstantReality [28]), along with a
meta-communication layer which mediates among the three protocols.

2.7 Pamini

The Pamini approach [29] was specificially designed to support human-robot inter-
action. It includes a task-state protocol which abstracts away from the details of
processing in the robot system (e.g., perceptual analysis, motor control, or output
generation); it also provides a set of generic interaction patterns (such as action
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requests and clarification processes) which allow it to support rapid prototyping and
combination. Pamini also includes support for mixed-initiative interaction and for
online learning during an interaction. Action selection is carried out through inter-
leaving of a set of patterns on a stack: whenever a new piece of input is detected, it is
sent to all of the active patterns in turn until one is able to deal with it. Pamini makes
use of the XCF middleware [30], which is written in C++ and based on the Internet
Communications Engine (Ice) middleware protocol [31].

2.8 Summary

As highlighted throughout this section, and as summarised in Table1, each of the
described toolkits provides a different representation of the information needed for
action selection, including declarative update rules, statecharts, interaction patterns,
or the more procedural representations used by toolkits such as Ravenclaw and COL-
LAGEN. Each toolkit also incorporates its own reasoning mechanism to make use of
the defined representation—in fact, the representation and reasoning components are
often so tightly related that they cannot be fully distinguished. Finally, themajority of
the toolkits described either provide or make use of a specific technical middleware
framework. As a result, the task of choosing a specific toolkit generally also means
adopting both its reasoning strategy and its associated technical infrastructure.

This diversity of toolkit approaches has had a clear impact on the research car-
ried out in the dialogue systems field. In particular, while it is common to compare
interactionmanagement strategies within a single framework—for example, by com-
paring action-selection policies that are learnt from data against hand-coded policies

Table 1 Summary of toolkits considered

Toolkit Representation Reasoning Technical

Trindikit/DIPPER Information state Update/selection rules Open Agent
Architecture (C++)

COLLAGEN/DISCO Recipes Generic rule
framework

Java API

Ravenclaw Task tree, agenda Tree traversal C++ macros, message
passing

OpenDial Probabilistic rules Event-based state
update

Java-based blackboard
architecture

IrisTK XML state charts Event-based state
update

Java event-based
distributed architecture

InproTK Modules, incremental
units

Incremental
processing

Various middleware
options

Pamini Interaction patterns Stack of active
patterns

XCF middleware
(Ice/C++)
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[32]—it is relatively uncommon to compare the representational ability and reason-
ing performance across different frameworks. One of the few studies that did carry
out this sort of cross-toolkit comparison is [5], in which the same interactive sys-
tem was separately implemented using Ravenclaw, DIPPER, Collagen/DISCO, and
Pamini. The target domainwas the “CuriousRobot”: a humanoid robot able to engage
in an interactive object learning and manipulation scenario. Note that carrying out
this comparison required the entire dialogue system to be implemented separately
in each formalism; there was no possibility of transferring any representations or
reasoning components across the implementations. The overall conclusion of this
experiment was that, while all of the toolkits were able to support basic one-on-one
spoken interactions, there was more diversity in their approach to and support for
more advanced interactive tasks such as multimodal fusion/fission and multi-party
interaction. In addition, the different systems were found to offer a range of methods
for linking the dialogue state with the task state, which was a feature that was par-
ticularly relevant for the Curious Robot scenario. In a more recent study comparing
DISCO andRavenclaw [6], the comparison again required the entire dialogue system
to be implemented end-to-end in each individual formalism; in a small-scale user
study, few differences were found in the resulting implementations.

3 The Separation of Representation and Reasoning
in Automated Planning

The overall problem of selecting high-level actions for an intelligent agent is not
unique to dialogue systems, but is a problem addressed in a variety of research
communities including automated planning. In planning, the emphasis is on applying
problem-solving techniques to find an ordered sequence of actions (called a plan)
that, when chained together, transform an initial state into a state where a set of
specified goal objectives are achieved.1 The general planning problem is usually
divided into two parts: a description of the planning domain and the definition of
a planning problem instance to be achieved within that domain [33]. A planning
domain provides a definition of the symbols and actions used by the planner. Symbols
are used to specify the objects, properties, states, and knowledge that make up the
planning agent’s operating environment, normally defined in a logic-like language.
Actions are typically specified in terms of the state properties that must be true to
execute that action (the action’s preconditions) and the changes that the action makes
to the state when it is executed (the action’s effects). A planning problem provides
a definition of the initial state the planner begins its operation in, and a description
of the goals to be achieved. A central goal of planning research is to build domain-

1This differs somewhat from the task of interaction management, where the goal is (usually) to find
the next system action, rather than a complete action sequence. However, we note that a system that
is able to achieve the latter can also be used in the former context.
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independent planning systems that are able to solve a range of planning problems in
a variety of domains, rather than just a single problem in a single domain.

One important feature of research in automated planning is that the tools devel-
oped by this community usually support one of a number of common representation
languages, such as PDDL [34], PPDDL [35], or RDDL [36], among others. Many of
these languages have been developed or extended as part of the International Plan-
ning Competitions (IPC) [7, 37]—a series of competitions in which different plan-
ning systems compete against each other on a common set of planning problems—
which have run approximately every other year since 1998 within the context of the
International Conference on Automated Planning and Scheduling (ICAPS).2 Even
when some planners implement their own representation languages, which may dif-
fer (usually syntactically) from the standard planning languages, additional work is
often performed to establish the relationship between such languages and the more
common representations.

These activities have led to some important benefits for the planning community.
First, by adopting common representations, the task of modelling a planning prob-
lem can be separated from the task of implementing an efficient engine for solving
those problems. This allows different planning engines to be developed and directly
compared, either quantitatively or qualitatively, on a common set of inputs (i.e.,
planning problems). Second, planning domains and planning engines can be shared,
leading to the development of common benchmarks for future planning systems, as
well as an improvement in the baseline systems that can solve problems in these
domains. In particular, the IPC has contributed greatly to these activities by creating
and requesting new domains, which has in turn helped spur the development of more
powerful planning tools. The activities of the IPC have also resulted in a reposi-
tory of planning domains which can be studied, analysed, and reused as necessary
[37], with additional efforts from the community aimed at making planning tools
and domains more accessible.3 Finally, the representation languages themselves—
and the planning problems they support—can be studied and compared, leading to
a better understanding of the complexity of particular classes of domains and prob-
lems [38], and the tradeoffs of using one language over another. This work has close
connections to related communities such as knowledge representation and reason-
ing (KR&R) formal logic. It has also produced some interesting research directions,
such as a range of compilation approaches which seek to transform more complex
planning problems into simpler forms that are solvable in an efficient manner with
existing tools [39, 40].

We believe that similar approaches could be applied within the dialogue systems
research community, leading to similar positive results. In the following section, we
give a concrete example of this approach, where a domain-independent automated
planner is used for the task of interaction management in a scenario involving a
socially intelligent humanoid robot.

2http://www.icaps-conference.org/.
3http://planning.domains/.

http://www.icaps-conference.org/
http://planning.domains/
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4 Plan-Based Interaction Management in a Robot
Bartender Domain

The JAMES robot bartender (Fig. 2)4 has the goal of supporting socially appropriate
multi-party interaction in a bartending scenario. Based on (uncertain) observations
about the users in the scene provided by the vision and speech recognition com-
ponents, the system maintains a model of the social context and the task state, and
decides on the socially-appropriate responses that are required to respond to human
users in that setting.

In this context, high-level action selection is performed by a domain-independent
planner whichmanages the interactions with customers, tracks multiple drink orders,
and gathers additional information as needed with follow-up questions [41]. In par-
ticular, the task of interacting with human customers is mixed with the physical task
of ensuring that the correct drinks are delivered to the correct customers. Plans are
generated using PKS (PlanningwithKnowledge and Sensing) [42, 43], a planner that
works with incomplete information and sensing actions. Figure3 shows an exam-
ple of two actions from the robot domain, defined in the PKS representation. Here,
ask-drinkmodels an information-gathering dialogue action that asks a customer
for their drink order, while serve is a physical robot action for serving a drink to
a customer. The complete planning domain description also includes actions such

Fig. 2 The JAMES robot bartender

4http://jamesproject.eu/.

http://jamesproject.eu/
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Fig. 3 Example PKS actions in the JAMES bartender domain

Table 2 A partial list of actions in the robot bartender planning domain

Action Description

greet(?a) Greet agent ?a

ask-drink(?a) Ask agent ?a for a drink order

serve(?a,?d) Serve drink ?d to agent ?a

bye(?a) End an interaction with agent ?a

wait(?a) Tell agent ?a to wait

ack-order(?a) Acknowledge agent ?a’s order

ack-wait(?a) Thank agent ?a for waiting

ack-thanks(?a) Acknowledge agent ?a’s thanks

inform-drinklist(?a,?t) Inform agent ?a of the available drinks of type
?t

Table 3 A plan for interacting with a single customer in the bartender domain

Plan steps Description

greet(a1), Greet agent a1

ask-drink(a1), Ask agent a1 for a drink order

ack-order(a1), Acknowledge agent a1’s order

serve(a1,request(a1)), Serve a1 the drink that was ordered

bye(a1). End the interaction with agent a1

as greet(?a) (a purely social action to greet customer ?a), bye(?a) (end an
interaction with ?a), and wait(?a) (tell ?a to wait, e.g., by nodding), among
others. A partial list of the actions in the robot bartender domain is given in Table2.
The planner uses these actions to form plans by chaining together particular action
instances to achieve the goals of a planning problem. For instance, Table3 shows a
five step plan for interacting with a single customer in the bartender domain.

An important design decision for the robot bartender was to define the state and
action representations separately from the tools used to reason about them, and also
from the infrastructure needed for the planner to communicate with the rest of the
system (which employs the Ice object middleware [31]). In addition to supporting
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the modular, distributed development of the system, this also permitted the PKS
planner to be exchanged with a completely separate interaction manager based on
Markov Decision Processes [32], with no other changes needed to the system. In
terms of our particular planning approach, PKS’s representation can be compiled into
a variant of standard PDDL, allowing the bartender domain to be tested with other
planning systems. Using this approach, we performed a series of offline experiments
with other planners to study particular aspects of the planner’s performance in the
bartender domain, for instance how it scales when the number of agents or the
number of subdialogues is increased [44]. The modular design of our approach
also means that, if necessary, the planner could be replaced in the robot system
with an alternative domain-independent planners, with few changes needed to the
underlying domain representation or the high-level software infrastructure. Similarly,
our planning approach could be easily integrated into other interactive systems using
its existing application programming interface [45].

5 Summary and Future Work

We have examined a number of toolkits designed to support the development of
speech-based dialogue systems. While the features provided by these toolkits sim-
plify the prototyping and deployment of an individual end-to-end system, each indi-
vidual toolkit also tends to be very tightly linked to the representations, reasoning
techniques, and even technical infrastructure used to connect the interactionmanager
to the rest of the system. Thismakes it difficult either to compare different approaches
or to analyse the properties of individual techniques without re-implementing the
entire system from the ground up in multiple frameworks.

We argue that the approach taken in the automated planning community—where
domains have long been defined in common representation languages, and action-
selection strategies compared within this common context—could also benefit the
dialogue systems community, by permitting diverse approaches to be benchmarked
and compared more easily. Although some early work was carried out in this area
[46–50], the approach has for the most part been largely overlooked (with the excep-
tion of approaches like [51–55]). Note that common tasks such as the Dialogue
State Tracking challenge [56] do exist in the dialogue community; however, to our
knowledge, there has never been a successful effort to develop standard, high-level
representations for use in interaction management.

There are also opportunities for the automated planning community to benefit
from closer collaboration with the dialogue systems community. For instance, prob-
lems in dialogue systems can also serve as the basis for new challenge domains
for planning, showcasing planning tools and techniques, and possibly extending the
standard planning representations with the features needed to model new types of
problems. Beyond the opportunity for novel test domains, there are also some impor-
tant general lessons that the planning community can learn from dialogue systems.
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For instance, dialogue systems are inherently application driven and, as such, any
adoption of planning techniques must be situated in the context of larger, more com-
plex systems of which planning is a single component. This often requires a degree
of maturity in tool development that goes beyond offline lab-tested code, with a focus
on robustness and the development of standard application programming interfaces
(APIs). While there have been recent attempts to build such systems within the plan-
ning community [57], more work is still needed. Finally, the issue of user evaluation
is at the heart of dialogue systems work, with a focus on (non-expert) users actually
using the developed tools. As a result, dialogue systems domains are often driven
by the needs of the real-world application, rather than lab-based assumptions, which
could help facilitate the wider adoption of planning approaches in such settings.

More generally, the work described here is situated in the context of a larger
research programme aimed at revisiting the use of techniques from automated plan-
ning in the context of natural language interaction. We believe that the time is
right for the natural language community—and, in particular, the dialogue systems
community—to benefit from recent advances in the area of automated planning.
We have already demonstrated that components from the two communities can be
successfully combined in the JAMES bartender [41]; we plan to continue our work
in this area by exploring the challenges and opportunities that arise from the inter-
section of these two research fields. In particular, we believe that the adoption of
common, formally understood representation languages for states and actions that
are separated from reasoning mechanisms and technical infrastructures can facilitate
closer links between the two research communities.
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