
User Involvement in Collaborative
Decision-Making Dialog Systems

Florian Nothdurft, Pascal Bercher, Gregor Behnke
and Wolfgang Minker

Abstract Mixed-initiative assistants are systems that support humans in their
decision-making and problem-solving capabilities in a collaborative manner. Such
systems have to integrate various artificial intelligence capabilities, such as knowl-
edge representation, problem solving and planning, learning, discourse and dialog,
and human-computer interaction. These systems aim at solving a given problem
autonomously for the user, yet involve the user into the planning process for a col-
laborative decision-making, to respect e.g. user preferences. However, how the user
is involved into the planning can be framed in various ways, using different involve-
ment strategies, varying e.g. in their degree of user freedom. Hence, here we present
results of a study examining the effects of different user involvement strategies on
the user experience in a mixed-initiative system.
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1 Introduction

Most contemporary dialog systems (DS) manage the interaction between human
and machine in a uni-directional dependency. Most common, users interact with a
DS to solve domain-dependent tasks. However, this is usually limited to informa-
tion retrieval or exchange tasks, such as searching for bus connections or restaurants,
where usually the user is exclusively in charge. Contrary to that, futureDSwill evolve
towards being companions [1] for the user (i.e. intelligent personal assistants) that
help the user not only in simple but also in complex tasks. These companions solve
complex problems collaboratively with the user, if either the user or the DS is not
able to solve the problem on its own, to the liking of the other, or simply if the user’s
load should be reduced. Companions may, for example, provide assistance in form
of artificial intelligence problem solving skills (i.e. planning), that are intrinsically
different from human problem solving skills. AI planning may solve combinatory
problems that are too complex for humans, due to the need of mathematical com-
putations or fast information storage and retrieval of large data. In addition, such
systems may have knowledge and problem solving skills for a domain, the user is
not an expert in.

However, the automatic and autonomous generation of a solution (i.e., a plan)
to a user-provided problem by such artificial skills potentially does not respect the
user’s individual needs and preferences, and is per se not always the best solution
to the problem. The generated plan is usually only a solution, and not one which is
best-suited for the user. Integrating preferences into planning [2] is a solution, yet
requires the user to specify his preferences a priori in an expressible (e.g. action or
method costs) way, which is likely to result in user frustration or even interaction
stop. In addition, the planning process is done autonomously and exclusively by
the planning system. However, this exclusion of the user from the decision-making
process will lead to a couple of problems, we described in previous work [3]. For
example, if humans are not involved into a decision-making process, they are less
likely to follow or execute a proposed plan or solution. In addition, in decisions that
involve grave risks, e.g. in military settings [4] or spaceflight [5], humans must have
the final decision on which actions are to be contained in the plan.

Therefore, we proposed a collaborative decision-making assistant, in Nothdurft
et al. [3], that combines AI planning and human problem-solving skills into a col-
laborative decision-making process. This results in a mixed-initiative planning sys-
tem (MIP) [4–6], or more general a mixed-initiative assistant (MIA) [7] that supports
users in problem solving and finding appropriate solutions. A collaborative decision-
making process has the intent of solving a problem the user is not able to solve at all
or only with great effort. It aims at relieving the user’s cognitive load and simplifying
the problem at hand. In general, the intertwining of human and AI decision-making
skills should lead to an increased user-experience by more preferable and individual
solutions for the user. In addition, MIP also facilitates the adaptation of a companion
to its owner. The companion may learn from past interaction episodes and direct the
future decision-making processes to the user’s liking. Since not only the companion
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may adapt to the user over time, but the user to the decision-making capabilities of
the system as well, this process may be described as a co-adaptation of two parties.

However, intertwining user and AI planning systems into a MIP system, does not
only facilitate more intelligent and competent systems, but does also raise new ques-
tions. In previous work we described the potentials, challenges, and risks involved
in such MIP systems, along a prototypical MIP system architecture. Some of these
challenges, for example, how to maintain coherent models for the participating com-
ponents [8], or how to deal with occuring phenomena, such as backtracking in a
collaborative MIP process [3], were already tackled.

2 Mixed-Initiative Planning

In general, the interaction between AI planning and user has to begin with a dialog
to define the statement of an objective. This first dialog has the goal of defining
the task in a way understandable for the planner. Once the problem is passed to the
planner the interactive planning itself may start. Using a selected search strategy
(here: depth-first search) the plan is refined by selecting appropriate modifications
for open decisions. In order to decide whether to involve the user or not during
this process, an elaborate decision model, integrating various information sources,
is used. Relevant information sources are, e.g. the dialog history (e.g. was the user’s
decision the same for all past similar episodes?), the kind of open plan decision (e.g.
is this decision relevant for the user?), the user profile (e.g. does the user have the
competencies for this decision?), or the current situation (e.g. is the current cognitive
load of the user low enough for interaction?). These information sources are used
in a superordinate component, the decision model, to decide whether to involve the
user. The decision model can either initiate a user interaction or determine by itself
that the planner should make the decision. This is equivalent with the user signaling
no explicit preference in the decision-making. Furthermore, it is important whether
the additional interaction is critical and required, to successfully continue the dialog.
Additional dialogs may contribute to achieving short-term goals, but risk the user’s
cooperativeness, in the long run, e. g. by overstraining his cognitive capabilities or
boring him.

In case of user involvement the information on the current plan decision has to be
communicated to the user. This means that the open decision and the corresponding
choice between available modifications have to be represented in a dialog suitable
for the user. Hence, the corresponding plan actions or methods (i.e. the set of possi-
ble actions for a upcoming decision) needs to be mapped to human-understandable
dialog information. As this mapping is potentially required for every plan action
or method, and vice versa for every dialog information, coherent models between
planner and DS become crucial for MIP systems. The thorough matching of both
models would be an intricate and strenuous process, requiring constant maintenance,
especially whenmodels need to be updated. Thus, a more appropriate approach is the
automatic generation or respectively extension of the respective models using one
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Fig. 1 Essential components of a MIP system (cf. [3])

mutual model as source, themutual knowledge model (cf. [8]). From this model—in
this case an OWL ontology [9]—the dialogs and their hierarchy can be derived, using
the topmost elements as entry points for the dialog between user and machine. This
is, for example, needed for the user to specify the objective for the planner, or to
present the available plan modifications (i.e. the options in the decision-making),
that have to be translated to a format understandable to the user (cf. [3]). The model
is also used to extend the planning domain: hierarchical structures (i.e. decomposi-
tion methods) are derived using declarative background knowledge modeled in the
ontology (cf. [8]). Using a mutual model addresses one of the challenges of MIP
(cf. [3]), since translation problems between dialog and planner semantics can be
prevented, even when updating the domain (e.g. by acquiring new knowledge, such
as new workouts or rehabilitation methods). Another challenge related to the spe-
cific interaction between man and machine is if, how, and at what specific point in
the dialog user-involvement is necessary or useful. This is one of the most essential
challenges, as the integration process, and how the shift of initiative towards one of
the parties is framed, affects how effective and user-friendly the MIP will be (Fig. 1).

Our multimodal MIP system was implemented using a knowledge-based cogni-
tive architecture. The multimodal interface uses mainly speech, and graphical user
interfaces as input and output. In addition, gestures, and sensory information such
as the user location can be used as input. The use of multiple modalities enables us
to vary the means of collaboration from uni- to multimodal interaction. The Dialog
Management uses a modality-independent representation, communicating with the
user via theFission [10],User Interface [11], Sensors [12], andFusion [13] modules.

3 Related Work

Initial work on combing dialog and planning in a mixed-initiative fashion has been
done by George Ferguson and James Allen in their TRAINS [14] and TRIPS [15]
systems. Their systems include the collaborative capabilities of reasoning, planning,
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execution, and communication and are based on the belief-desire-intention (BDI)
model of agency [16]. Important work, approaching the problem from a different
perspective, has been done by Rich et al. in COLLAGEN [17], aiming at applying
collaborative discourse theory to human-computer interaction. Their work is based
on the SharedPlans theory [18], and models the dialog state of the agents (i.e. user
and system) as they interact and perform activities. More recent work involving
mixed-initiative interaction has been done in various application domains (e.g. [4, 5,
19, 20]). One of the most well known is MAPGEN [5], applying a mixed-initiative
planning and scheduling approach for the ground operations system for the Mars
Exploration Rover of NASA. Abstract goals were planned by the user, yet the plan-
ner assured that all constraints, which is very complex in such a setting, are satisfied.
Another example is DiamondHelp [21], a generic collaborative task-guidance sys-
tem, which may also integrate the COLLAGEN system. DiamondHelp can be used
for a multitude of tasks (e.g. help the user in programming a washing machine or
thermostat).

What these work is missing is to investigate how the user’s involvement should
be framed. If the user is to be involved, the question arises how this should be ren-
dered, i.e. what kind of integration is the most beneficial. In addition, if the user is
not involved in the decision-making, it has to be decided if and how the user may
be informed about the decisions the planner has made. The decision whether and
how to involve the user into the planning process is not only controlled by a degree
of necessity dependent on the current task and situation, but should also take into
consideration the effects on the user’s system experience. Usually, the user involve-
ment is done by presenting a list of possible options for upcoming decisions to the
user. If this form of user involvement is always necessary or simply best for the user
experience is rather questionable. User involvement strategies may actually range
from almost unrestricted decision-making (i.e. set of options), limited only by valid
solution constraints, over explicit confirmations of system-preselected decisions, to
only informing the user of made decisions. Hence, we designed the study examining
the effects of different strategies of user involvement on the user experience.

4 User Study About User Involvement Strategies

For this study, we used our prototypical MIP system [3] and implemented several
strategies to involve the user into the decision-making. This means that we evaluated
different degrees of user involvement into a planning process, ranging from only
informing the user of system-made decisions to explicitly requesting a user confir-
mation for the proposed system decision. In this scenario the user’s task was to create
individual strength training workouts. In each strength training workout at least three
different muscle groups had to be trained and exercises chosen accordingly. The user
was guided through the process by the system, which provided a selection of exer-
cises for training each specificmuscle group necessary for the workout. For example,
when planning a strength training for the upper body, the user had to select exercises
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to train the chest. This selection is an involvement of the user into the MIP process.
The decision how to refine the task of training the chest is not made by the system,
but left to the user. The system decision was based on previously made selections by
the user. This means that when in a previous interaction the same decision (i.e. the
same situation with the exact same options) had do be done, this user-selected option
was remembered for future interactions, and selected accordingly by the system.
Of course, in a more complex scenario this decision would depend not only on the
interaction history, but also on additional information (e.g. affective user states like
overextension, interest, or engagement) stored in the user state. The system-made
selection was presented in various ways, which were the following:

Explicit confirmation (EC) based on previous selections the choice was already
made by the system and presented to the user, who had to explicitly confirm the
choice by clicking “okay”.

Implicit confirmation (IC) the system-made decision (i.e. the selection) was pre-
sented to the user, but the user could intervene, in a certain time frame, by clicking
“Let me decide”. Therefore, this is a form of implicit confirmation.

Information (INF) the system-made decision was presented to the user without
the need of confirmation. Hence, the user was only informed of the system’s
decision-making, without the option to intervene.

Unsorted (US) the baseline was the usual unsorted selection task. No proactive
behavior by the system was present, meaning that users had to select from a list.

In all conditions the system-made selection was explained by the system using a
phrase similar to “For training this muscle group, you previously selected this exer-
cise. Therefore, it was already selected for you.” The participants were distributed by
a random-function to the variants, resulting in 23 participants receiving the known
unsorted selection, 25 asked for explicit confirmation, 30with implicit confirmations,
and 26 receiving only an information by the system.

4.1 Used Questionnaires

For the assessment of the study we chose two questionnaires. The AttrakDiff 2
questionnaire [22], which extends the assessment of technical systems or software
in general from the limited view of usability, which represents mostly pragmatic
qualities, to the integration of scales measuring hedonic qualities. It consists of four
basic scales: perceived pragmatic quality, which measures the product’s ability to
achieve the user’s goals efficiently and effectively without inducing a high mental
load; hedonic quality-stimulation, which measures whether novel, interesting and
inspiring qualities are present to increase the user’s attention and foster the user’s
abilities and skills; hedonic quality-identity, which assesses the user’s perceived
identity of the subject at evaluation; and perceived attractiveness, which is a global
rating based on the perceived qualities (Fig. 2).
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Fig. 2 The different degrees of user involvement: on the top left the proactive decision by the
system has to be confirmed explicitly by the user (EC). On the top right, the decision is presented
and the user may intervene in a given time frame, else it is confirmed (IC). On the bottom left the
user is only informed of the system’s decision-making (INF), and on the bottom right the usual
selection is presented as baseline condition (US)

The other used questionnaire measured the cognitive load. Cognitive load, which
consists of the three different types, should not exceed the working memory capac-
ity [23]. One of the basic ideas of cognitive load theory is that a low extraneous
load, resulting from a good instructional design, enhances the potential that users
engage in cognitive processes (i.e. germane load) related to learning [24]. Hence, the
better the instructional design, the greater potential for germane cognitive load and
learning. We used an experimental questionnaire developed by [25] which measures
all three types of cognitive load separately. The questionnaire consisted of 12 items,
with four items each for every type of cognitive load: intrinsic cognitive load, which
can be described as the inherent load induced by the content itself. This type of load
can not be changed by the design of the learning material and is caused mainly by
the difficulty of the task. In other words it results e.g. from the number of elements
that must be simultaneously processed in the working memory; extraneous cognitive
load, which is caused by the presentation form of the learning material and is con-
sidered to be manipulable by the design of the learning material; germane cognitive
load, which is considered the load inflicted by the learning process. Germane cog-
nitive load is “good” cognitive load, which helps in fostering the processes inherent
in the construction and automation of schemas.
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4.2 Hypotheses

Our hypotheses were that in general the various conditions will perform differently,
especially regarding perceived cognitive load, pragmatic qualities and attractive-
ness of the system. We expected no significantly different influences on the human-
computer trust relationship between human and machine for the conditions. The
exclusion of the user from the decision making (i.e. only informing the user) was
expected to reduce the hedonic quality compared to the use of explicit and implicit
confirmations. The baseline was expected to perform worst for the perceived prag-
matic system quality, and the explicit confirmation best. In terms of cognitive load
we expected that when the system takes over the decision making (i.e. implicit con-
firmation or user information), the cognitive load for the user is reduced compared
to the other conditions.

4.3 Results

The results were collected using the AttrakDiff, cognitive load, and human-computer
trust questionnaire. In addition, we used an open questions form for user feedback.As
the conditions would not affect objective measures like task completion or efficiency
rate, they were neglected in this paper.
AttrakDiff Assessing the results of the AttrakDiff questionnaire, using a one-way
ANOVA, we found marginal differences between the conditions for the dimensions
(see Table1) of perceived hedonic quality-identity (F(3, 96) = 2.172, p = 0.096)
and the perceived overall attractiveness (F(3, 96) = 2.420, p = 0.071) of the sys-
tem. Post-hoc comparisons using the Fisher Least significant difference (LSD)
test indicated that the mean score of hedonic quality-identity for the US condi-
tion (M = 3.71, SD = 0.705) was significantly different, at the p = 0.015 level,
than the INF condition (M = 4.37, SD = 0.86). For attractiveness the US condi-
tion (M = 3.88, SD = 0.77) was also significantly different (p = 0.009) than the
INF condition (M = 4.62, SD = 0.93).

Table 1 This table shows the mean values of the AttrakDiff questionnaire dimensions

PQ HQ-I HQ-S ATT

US M 4.27 3.71 3.77 3.88

SD 0.91 0.71 1.02 0.77

EC M 4.47 4.13 3.95 4.17

SD 1.12 1.29 1.17 1.24

IC M 4.31 3.97 3.97 4.19

SD 1.12 0.68 0.77 0.84

INF M 4.81 4.37 4.10 4.62

SD 0.99 0.87 0.96 0.93
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Fig. 3 This shows the average means of the AttrakDiff comparing the confirmation conditions on a
7-point Likert scale. US is a unsorted list of options, EC and IC explicit and implicit confirmations,
and INF only informs the user of the system decision. The ’ indicates inverted, for the sake of
readability, scales. The * indicates significance

Looking further into the data and analyzing the single word pairs of the AttrakDiff
questionnaire (see Fig. 3), to find the origin of the differences, we could find more
detailed results. Using one-way ANOVA tests we found significant differences in the
word pair impractical-practical and marginal significance for unruly-manageable,
which both belong to the dimension of pragmatic quality. Post hoc comparisons
using Fishers LSD showed that for impractical-practical the INF condition per-
formed significantly better (p = 0.002) than the US condition and also significantly
better (p = 0.024) than the IC condition. For unruly-manageable the INF condition
performed significantly better (p = 0.14) than the IC condition.

For the dimension of hedonic quality-identity we found a marginal signifi-
cant differences for the word pairs unprofessional-professional and unpresentable-
presentable. Fishers LSD post hoc test revealed that INF performed significantly
better (p = 0.018) than US for unprofessional-professional. For unpresentable-
presentable the IC condition was significantly better (p = 0.020) than US, which
was also significantly worse (p = 0.040) than the INF condition.

Forattractiveness amarginal significant difference, using also aone-wayANOVA,
was found in unpleasant-pleasant (F(3, 96) = 2.211, p = 0.092), bad-good
(F(3, 96) = 2.397, p = 0.073), and discouraging-motivating (F(3, 96) = 2.314,
P = 0.081). Post hoc tests revealed that the significant differences for unpleasant-
pleasant were between INF and US at (p = 0.012). For bad-good the average mean
of the INF condition was significantly better at (p = 0.014) than US, and also bet-
ter at (p = 0.043) than the EC condition The third word pair showing significant
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Fig. 4 This shows the average means of the cognitive load comparing the confirmation conditions
on a 7-point Likert scale. Intrinsic, extraneous and germane load originate from the experimental
questionnaire

results (p = 0.037) was discouraging-motivating with INF performing better than
US. In addition, we found also that the user information condition was significantly
performing better for ugly-attractive with US and INF at (p = 0.037), for rejecting-
inviting with US and INF at (p = 0.039), and also for repelling-appealing with US
(M = 3.91, SD = 1.08) and INF at (p = 0.046).
Cognitive LoadAnalyzing the cognitive load items (see Fig. 4) we found significant
differences, using a one-way ANOVA, for fun with (F(3, 96) = 3.488, p = 0.019).
Fishers LSD showed that the user information condition (M = 4.00, SD = 0.91)
was significantly better than the rest. Compared to US (M = 3.00, SD = 1.53)
at (p = 0.009), to EC (M = 3.00, SD = 1.25) at (p = 0.008), and to IC (M =
3.07, SD = 1.43) it was significant at (p = 0.012).
OpenQuestionsThe following commentswere entered by the participants: ‘carrying
over previous made decisions should be confirmed by the user’, and ‘If the system
selects an exercise, the system should notify why this exercise was thought to be the
most fitting one’.

4.4 Discussion

Surprisingly it showed that only informing the user of the system-made selection,
without any possibility to intervene, was performing best in almost any category.
The pragmatic quality, the identification with the system (hedonic quality) and the
overall attractiveness were best for the INF condition. The automatic selection of
the system was perceived as very practical and increased the perception that the
system is predictable and manageable. This goes along with the fact that the system
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behavior was explained to the user, considering earlier results on explanations and
system acceptance. Additionally, the INF condition was experienced as the most
enjoyable of all, along with reducing the extraneous load (cf. Fig. 4) of the task
at hand. Even though the baseline condition of selecting from an unsorted list as
before, was experienced before, and thus would require no additional cognitive load,
the automatic selection and informing the user of this decision tends to be less
demanding on the extraneous load. Also the technical competence of the system was
perceived better than for the baseline condition.

The integration of the user into the decision making using explicit confirmations
seem to perform second best for most dimensions and items. Though it seems to
increase the extraneous load of the task, by requiring additional user input, the iden-
tification of the user with the system, measured by the hedonic quality-identity seems
to be greater. The fact that the implicit confirmation condition performed that much
worse than the user information actually seems odd to us. It appears to us that the
combination of informing the user and presenting, for a defined time frame, the
explicit interaction possibility to deny the automated selection, was confusing for
the user. Maybe the button labeled ‘Let me decide’, or the definition of a restricted
time frame was not clearly understandable, thus leading to a worse user-experience.
These results show that the decision on how to frame the interaction dialog between
user and system will affect the user experience and potentially the cognitive load of
the user. As future DS will become more complex and evolve to collaborative intel-
ligent assistants rather than simple problem solvers, the way of interaction between
those two parties will be crucial.

5 Conclusion

Overall, it seems, that for decisionswhich are understandable and reasonable, inform-
ing the user of system-made decisions may contribute to a more practical, attractive,
fun and less demanding dialog system. However, one must be careful to transfer
these findings to other domains or more complex tasks. The positive experience of
the user information condition might be due to the task at hand. Usually, workouts
are planned, at least for inexperienced users, by experts (e.g. coaches). Addressing
competences to a workout planner system, and therefore trusting its decisions, seems
like a logical conclusion. For future evaluations it will be interesting to compare these
results to automated system behavior for tasks, where usually the user is in charge and
dictates the decision-making process. This might lead to a decrease of acceptance
for user information conditions and to an increase for conditions, where the user
has more control. Nevertheless, this work shows that it is important to investigate in
the collaboration dialog (e.g. user involvement strategies) between user and system,
which will be important for future more intelligent and assistive dialog systems.
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