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    Abstract 
    Beauveria bassiana  is the most widely used biocontrol agent against many major 
arthropod pests. This ascomycetal fungus is able to produce infection structures 
and synthesize a cocktail of proteins, enzymes, organic acids, and bioactive sec-
ondary metabolites, which are responsible for the entomopathogenic activity and 
virulence. For commercial purposes,  B. bassiana  is usually formulated using 
conidia with different stabilizing agents. Various types of formulation include 
bait/solid, encapsulation, and emulsion. Commercialization and marketing strat-
egies, including alternative marketing channels, such as earthworm compost and 
compost, along with the legal framework are addressed in this chapter.  
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5.1        Beauveria bassiana : A Fungal Biocontrol Agent 

 There is an increasing interest in the development of alternatives to replace or com-
plement conventional pesticide usage for crop protection. The use of biological con-
trol agents, particularly fungal species, represents a benign, sustainable, and 
eco-friendly strategy and has been proven to be effective against different pests. 
One of these fungal biocontrol agents is  B. bassiana , which is the most widely used 
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entomopathogenic fungal species available commercially in different formulations 
against many major arthropod pests in agricultural, urban, forest, livestock, and 
aquatic environments (Faria and Wraight  2007 ; Goettel et al.  2010 ; Keswani et al. 
 2013 ; Singh et al.  2014 ). 

  B. bassiana  (Balsamo) Vuillemin is a ubiquitous soilborne anamorphic fungus of 
the Clavicipitaceae family, which completes the asexual life cycle (based on the 
formation of conidia and germination) as saprophyte in soil and on other organic 
materials, although it has also been reported as an endophyte in several plants (Vega 
et al.  2008 ). This facultative necrotrophic entomopathogenic ascomycete behaves as 
a parasite of insects and arachnids (Rehner  2005 ; Rehner et al.  2011 ), which seems 
to be crucial for the sexual life cycle, since the teleomorph stage ( Cordyceps bassi-
ana ) has been only sparsely reported on cadavers of arthropods in eastern Asia 
(Li et al.  2001 ; Huang et al.  2002 ; Sung et al.  2006 ). 

 The entomopathogenic activity requires the production of infection structures 
(appressoria), metabolites, proteins, and enzymes, which will allow  B. bassiana  
conidia to adhere to the host arthropod, penetrate the cuticle, proliferate in the 
hemocoel as blastospores (hyphal bodies capable of evading the host immune sys-
tem (Lewis et al.  2009 )), and ultimately kill the host. Then  B. bassiana  hyphae 
reemerge, cover the cadaver, and form new conidia, thus completing the parasitic 
life cycle (Toledo et al.  2010 ; Ortiz-Urquiza et al.  2010 ,  2015 ; Ortiz-Urquiza and 
Keyhani  2013 ).  

5.2     Bioactive Metabolites, Proteins, and Enzymes Produced 
by  B. bassiana  

 Entomopathogenic fungi are capable of implementing different mechanisms aimed 
to parasitize arthropods. These mechanisms include the production of proteins, 
enzymes, organic acids, and bioactive secondary metabolites. 

5.2.1     Hydrolytic Enzymes, Proteins, and Organic Acids 

 Although it has been suggested that hydrolytic enzymes represent the primary 
infection mechanism that allows for penetration of fungal hyphae through the 
arthropod cuticle (Ortiz-Urquiza and Keyhani  2013 ), adhesion to and interaction 
with the epicuticular layer of the host must occur fi rst. In  B. bassiana , at least two 
hydrophobins (Hyd1 and Hyd2) are in charge of fungal spore coat rodlet layer 
assembly, thus contributing to cell surface hydrophobicity, adhesion to hydrophobic 
surfaces, and virulence (Cho et al.  2007 ; Zhang et al.  2011 ). Assimilation of the 
lipids, hydrocarbons, proteins, and other compounds included in the cuticular layer 
requires the synthesis of different fungal enzymes, such as cytochrome P450, cata-
lases, esterases, long-chain alcohols, and aldehyde dehydrogenases (Pedrini et al. 
 2006 ,  2010 ,  2013 ; Ortiz-Urquiza and Keyhani,  2013 ). Other hydrolytic enzymes 
related to virulence are known to be secreted by  B. bassiana  and include proteases, 
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glycosidases, lipases, and chitinases, which promote germination, fungal growth, 
and subsequent penetration inside the host (St Leger et al.  1986 ,  1997 ; Fan et al. 
 2007 ; Zhang et al.  2008 ; Fang et al.  2009 ).  B. bassiana  also produces a bioactive 
protein named bassiacridin. This insecticidal 60-kD protein has β-glucosidase, 
β-galactosidase, and N-acetylglucosaminidase activities (Quesada-Moraga and 
Vey  2004 ). 

 In addition to this hydrolytic and detoxifying enzyme cocktail, the production of 
organic acids (mainly oxalic acid) also contributes to  B. bassiana  virulence 
(Kirkland et al.  2005 ), since oxalic acid is able to weaken the integrity of insect 
cuticle (Bidochka and Khachatourians  1991 ).  

5.2.2     Bioactive Secondary Metabolites 

 Not only compounds from primary metabolism participate in the parasitization pro-
cess. Low molecular weight bioactive secondary metabolites produced in vitro and 
in vivo by  B. bassiana  play an important role as (a) toxins that cause arthropod’s 
death, (b) immunomodulators that aid the fungus to evade the host defense system, 
(c) antimicrobials against competing microorganisms, and (d) defense molecules 
against mycophagous organisms (Charnley  2003 ).  B. bassiana  has an enormous 
potential to produce secondary metabolites, since 13 non-ribosomal peptide synthe-
tases (NRPS), 12 polyketide synthases (PKS), 7 NRPS-like, 1 PKS-like, 3 hybrid 
NRPS–PKS, and 12 genes related to FAS/terpene/steroid biosynthesis are encoded 
within its genome (Xiao et al.  2012 ). The known secondary metabolites produced 
by this entomopathogenic fungus include cyclic peptides, such as beauvericin, 
bassianolide, and beauverolides, and polyketide-derived pigments, such as 
oosporein, tenellin, and bassianin, but only those genes involved in the biosynthesis 
of beauvericin, bassianolide, tenellin, and oosporein have been functionally verifi ed 
(Roberts  1981 ; Strasser et al.  2000a ,  b ; Vey et al.  2001 ; Molnar et al.  2010 ; Xu et al. 
 2008 ,  2009 ; Eley et al.  2007 ; Halo et al.  2008 ; Feng et al.  2015 ). 

5.2.2.1     Cyclic Peptides 
 Beauvericin is probably the most studied cyclic peptide compound produced by 
 Beauveria  spp. This cyclooligomer hexadepsipeptide is an acyclic trimer of the 
dipeptidol monomer  d -hydroxyisovaleric acid– N-methyl- l -phenylalanine and is 
also synthesized by  Paecilomyces  and a number of  Fusarium  spp. (Wang and Xu 
 2012 ; Covarelli et al.  2015 ). Beauvericin possesses antiviral and broad-spectrum 
antibacterial activities and is able to potentiate the antifungal properties of other 
fungicides (Shin et al.  2009 ; Wang and Xu  2012 ; Fukuda et al.  2004a , b ; Zhang et al. 
 2007 ). Beauvericin is a strong insecticidal molecule (Hamill et al.,  1969 ), but the 
exact mechanism of action remains to be elucidated (Wang and Xu  2012 ). In addi-
tion, this hexadepsipeptide has cytotoxic and proapoptotic activities in several 
human cell lines, including leukemia cells (Jow et al.  2004 , Calo et al.  2004 ; 
Lin et al.  2005 ; Wang and Xu  2012 ). Beauvericin seems to act as an ionophore, 
forming cation-selective channels and increasing intracellular Ca 2+  concentrations 
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(Wu et al.  2002 ; Kouti et al.  2003 ) which have been suggested to trigger calcium-
sensitive cell apoptotic pathways (Jow et al.  2004 ; Wang and Xu  2012 ). Other 
authors have reported that the apoptotic effect of beauvericin is mediated by Bc1-2 
proteins, cytochrome c, and caspase 3 (Lin et al.  2005 ) and by the activation of the 
JNK signaling pathway, inhibition of both TNFα-induced NF-kB activation, and 
phosphorylation of ERK (p44/p42) (Wätjen et al.  2014 ). 

 Bassianolide is another cyclooligomer that might also be important during insect 
pathogenesis (Xu et al.  2008 ,  2009 ), since this molecule, together with beauvericin, 
has been isolated from extracts of  Bombycis corpus  inoculated by  B. bassiana  
(Kwon et al.  2000 ). This cyclic octodepsipeptide tetrameric ester of the dipeptidol 
monomer  d -hydroxyisovaleric acid–N-methyl-L-leucine is produced by  B. bassi-
ana  and  Lecanicillium  sp. ( Verticillium lecanii ) (Suzuki et al.  1977 ). This com-
pound exhibits antibacterial (against some  M. tuberculosis ), antimalarial, and 
cytotoxic (against several tumor cell lines) activities (Kwon et al.  2000 ; Jirakkakul 
et al.  2008 ). Bassianolide insecticidal properties are due to its ability to inhibit 
acetylcholine- induced smooth muscle contraction (Nakajyo et al.  1983 ), thus induc-
ing atony and toxicity to different insect larvae (Suzuki et al.  1977 ; Champlin and 
Grula  1979 ). 

 Other cyclic peptides include the beauverolides (beauveriolide or beauverilide) 
and lipophilic and neutral cyclotetradepsipeptides that vary in amino acid composi-
tion and contain linear and branched β-hydroxy acid residues of variable length 
(e.g., beauverolide M is made up of Val–Ala–Leu and contains 3-hydroxy-4- 
methyloctanoic acid, whereas beauveriolide L is made up of Phe–Ala–Ile and con-
tains 3-hydroxy-4-methyldecanoic acid). These metabolites are produced by 
entomopathogenic species of the genera  Beauveria  (including  B. bassiana ) and 
 Paecilomyces  (Elsworth and Grove  1977 ; Jegorov et al.  1994 ). They seem not to 
have bactericidal, fungicidal, or direct insecticidal effects, although they apparently 
have an immunomodulatory role in insects (Jegorov et al.  1990 ; Mochizuki et al. 
 1993 ; Vilcinskas et al.  1999 ).  

5.2.2.2     Polyketide-Derived Pigments 
 Oosporein is a di-symmetric cyclohexadienedione (dibenzoquinone) whose biosyn-
thesis involves a PKS (Feng et al.  2015 ). This red pigment is synthesized by  B. 
bassiana  and other fungi (el-Basyouni and Vining  1966 ; Strasser et al.  2000a ,  b ; 
Mao et al.  2010 ; He et al.  2012 ; Ramesha et al.  2015 ). It can naturally occur in food 
and feed and contaminate many important crops, this mycotoxin being capable of 
producing adverse acute and chronic effects in animal health (Manning and Wyatt 
 1984 ; Cole et al.  1974 ; Pegram and Wyatt  1981 ; Brown et al.  1987 ). Oosporein 
exhibits broad-spectrum antimicrobial and antifungal activities (Brewer et al.  1984 ; 
Strasser and Abendstein  2000 ; Alurappa et al.  2014 ; Toshinori et al.  2004 ; Mao 
et al.  2010 ). Antitumor, antioxidant, and cytotoxic properties have also been reported 
for oosporein (Mao et al.  2010 ; Alurappa et al.  2014 ; Ramesha et al.  2015 ). The 
induction of elevated levels of reactive oxygen species (ROS) has been recently 
proposed as the mechanism of toxicity of this pigment (Ramesha et al.  2015 ). 
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 Tenellin and bassianin are yellow pigments with a 2-pyridone ring that have been 
isolated from  Beauveria  species (Eley et al.  2007 ; McInnes et al.  1974 ). Bassianin 
differs from tenellin by one chain extension in the ketide moiety. These two com-
pounds, in addition to oosporein, are able to inhibit erythrocyte membrane APTase 
activity, which is likely a consequence of the ability of these pigments to promote 
varying degrees of cell lysis by means of membrane disruption (Jeffs and 
Khachatourians  1997 ). Although tenellin is not involved in the pathogenesis of  B. 
bassiana  against honeycomb moth ( Galleria mellonella ), it can prevent iron- 
generated reactive oxygen species toxicity in  B. bassiana  (Eley et al.  2007 ; 
Jirakkakul et al.  2015 ).    

5.3     Formulations of  B. bassiana  for Pest Biocontrol 

 Some desirable characteristics, such as ease of preparation and application, stabil-
ity, low cost, and abundant viable propagule, are pursued in order to obtain an 
appropriate pest biocontrol formulation. Entomopathogenic fungi are usually 
included in the form of conidia to facilitate the application in formulations, which, 
in addition, need stabilizing agents for proper storage and enhancement of activity. 

 The three main formulations that include  B. bassiana  are bait/solid (usually tea 
waste based), encapsulation, and emulsion. 

5.3.1     Bait/Solid Formulation 

 Bait formulation consists of  B. bassiana  conidia as active ingredient, mixed with 
food or another attractive substance. In the case of  Beauveria  formulations, the 
abundantly available tea waste is one of the most common ingredients used for the 
production of these baits. It provides an economically viable option with a simple 
preparation methodology, and the technology can be easily replicated at the end 
user level (Mishra et al.  2013 ). 

 In spite of all the advantages regarding low cost, simple methodology, and ease 
of transport (facilitating mass applicability), the application and shelf life of bait 
formulations present several disadvantages. 

 In addition to the diffi culties to get an even distribution during application of bait 
formulations, the major problem is the storage ability and the short shelf life, which 
is limited to 2–3 months (Mishra et al.  2013 ). Probably, this handicap makes the 
commercialization of bait formulations more diffi cult, since the short shelf life lim-
its the functional area of use and confi nes bait formulations to local production and 
utilization. 

 Also, under controlled laboratory conditions, some of the wettable powder bait 
formulations of  B. bassiana  have fi nally resulted in slightly greater mortality of 
conidia than the same composition formulated as an emulsifi able suspension (Parker 
et al.  2015 ). 
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 Bait formulations of  B. bassiana  are at the risk of killing potential benefi cial 
nontarget organisms. In addition, they can also serve as food supply for other 
pests after removal of fungal conidia, thus generating an unwanted effect (Bukhari 
et al.  2011 ). 

 Some more complex solid formulations, such us carrier-based powder formula-
tion (CBPF), incorporating powder, glycerine, and gum, have been also tested for 
effi cacy and viability, showing intermediate values in comparison with naturally 
more stable-based liquid formulations (Ritu et al.  2012 ).  

5.3.2     Encapsulation 

 Encapsulated formulations of  B. bassiana  protect fungal conidia from adverse envi-
ronmental conditions and usually increase shelf life and bioeffi cacy. The use of 
additives (skimmed milk powder, polyvinyl pyrrolidone K-90, and glucose) 
improves handling of formulation and allows a better distribution of  B. bassiana  
conidia, although the encapsulation technique exerts a negative effect on conidial 
viability (Mishra et al.  2013 ). 

 The main effects of using additives in encapsulated formulations have been 
described on:

    (a)    Conidial viability: Encapsulated conidia-containing additives (mainly glucose 
and sucrose) showed comparatively higher conidial viability, suppressing the 
abovementioned detrimental effect of encapsulation process. This has been 
attributed to the protective effect of these sugars during freeze drying. Addition 
of sugar in the encapsulation process becomes highly relevant at fi eld applica-
tion stage, since sugars seem to improve the viability of encapsulated conidia 
by creating a niche osmotic protective environment (Mishra et al.  2013 ).   

   (b)    Germination kinetics: Addition of glucose and sucrose to encapsulation formu-
lations increases growing trend (probably due to a nutritive effect), while ger-
mination kinetics are negatively affected when mannitol is used as added sugar 
(Liu et al.  2015 ).      

5.3.3     Emulsion 

 The emulsion formulation of entomopathogenic fungi with vegetable oil seems to 
be a very suitable option. Emulsions are easy to apply and protect fungal conidia 
from UV radiation, thus increasing their effi cacy and pathogenicity against insect 
pests by promoting conidial adhesion on the insect’s cuticle. 

 Emulsion formulations are usually prepared with vegetable oils, most commonly 
soybean, rapeseed, sunfl ower, olive, tile, and linseed, but also almond, gingelly, 
coconut, castor oil, mustard, and eucalyptus oil (Sankar-Ummidi and Vadlamani 
 2014 ). 
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 Some synthetic oils have been also evaluated as ingredients for emulsion 
formulations, since they seemed to be more easily mixed and later applied to a water 
surface, thereby improving the persistence of fungal spores after their application in 
fi elds (Bukhari et al.  2011 ). 

 Usually, these emulsions are prepared in an oil-in-water formulation by adding a 
surfactant (mainly Tween 20), mixing the oil phase with the aqueous phase contain-
ing the spore suspension. The aqueous phase with the conidial suspension is mixed 
with sterilized oil at the effective concentration, and other optional ingredients such 
as Triton X-100 (as nonionic surfactant), Na 2 CO 3  (as stabilizer), and silicon (as 
antifoaming agent) can be added. Finally, mixtures of these two phases are homog-
enized to get a stable formulation (Yacoub and Batta  2016 ). 

 The compatibility of most of these vegetable oils (and synthetic oils) has been 
successfully evaluated on conidia from  B. bassiana  in terms of effectiveness, taking 
into consideration parameters such as germination rate, vegetative growth, and 
conidiogenesis (Sankar-Ummidi and Vadlamani  2014 ; Gomes et al.  2015 ). 

 Different oil emulsion formulations of  B. bassiana  have shown a variable reduc-
tion in spore germination, vegetative growth, and conidia production. Variation in 
conidial germination due to different oils has been attributed to some qualitative 
(and quantitative) composition of fatty acids, since different proportions of unsatu-
rated fatty acids contained in the oils, such as linoleic acid and oleic acids, have 
antifungal properties. In this regard, the linseed oil emulsion formulation has shown 
a maximum conidial germination rate, unlike other emulsion formulations contain-
ing even very low concentrations (1 %) of other oils (e.g., mustard and eucalyptus), 
which have been reported as toxic for  B. bassiana . In the case of eucalyptus oil, the 
toxic effect has been attributed to its active ingredient citronellal (Sankar-Ummidi 
and Vadlamani  2014 ). 

 Conidial germination in some oil emulsions (e.g., linseed) has been evaluated 
under storage conditions (standard temperature of 30 ± 2 °C) for 12 months, show-
ing a signifi cant decrease in conidial viability (deterioration in mycelium and unde-
tectable fungal conidia). Lower storage temperature is being evaluated to assure 
further longevity of formulated conidia (Mishra et al.  2013 ). 

 In the case of insect pests, entomopathogenic fungi formulated in oil emulsions 
show a clear increase in virulence, likely due to better ability of the oiled conidia to 
adhere the lipid layer of insect cuticle through hydrophobic interactions, later facili-
tating germination and progression of the infection process (Ment et al.  2010 ). 
Addition of some carriers, such as the clay bentonite, to oil-based liquid formula-
tions has been reported to improve the effi cacy of infection of  B. bassiana  (Ritu 
et al.  2012 ). The effectiveness of  Beauveria  emulsion formulations increases when 
more complex pheromone trapping systems–oil emulsions are combined, since part 
of the individuals are infected with a heavy load of spores directly by contact before 
they leave the trap, thus providing an excellent and highly effective indirect infec-
tion way for other non-trapped individuals, mainly through their mating behavior 
(Hajjar et al.  2015 ). 
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 Emulsions are excellent spray carriers that increase the probability of direct con-
tact between fungal conidia and pests. Oils in the emulsion are reported to prevent 
evaporation in fi eld and increase in situ conidial retention. These properties repre-
sent further advantages of oiled emulsions of  Beauveria , making this formulation an 
excellent choice for the biocontrol of habitats diffi cult to penetrate (Mishra et al. 
 2013 ).   

5.4     Commercialization and Administration of  B. bassiana  

 In an increasingly globalized world, the core facilities for fermentation and produc-
tion of  B. bassiana  are thousands of kilometers away from the market place. That is, 
the fi rst step in the distribution chain is the export–import process. 

5.4.1     Import–Export Process 

 The Harmonized System 6-digit number (HS code) is given to each product capable 
of passing through customs. It is an international system respected by the vast 
majority of countries. The fundamental problem concerning international trade of 
 B. bassiana  is the lack of a specifi c item in the HS for these products. This creates 
diffi culties in custom processes, as each country has a specifi c interpretation of the 
code, thus requiring arbitrary documentation and inspections. 

 In general, the 3808 91code is recommended for this product (although it should 
be contrasted with the local custom institution) because this tariff item includes 
those products with insecticidal effect improperly described elsewhere. Also, the 
3808 91code itself expressly refers to biopesticide products based on  Bacillus 
thuringiensis , a similar product in terms of effects and nature. The usual documen-
tation required in this process includes certifi cate of origin, supplier’s manufactur-
ing license, health certifi cate, letters of use, and destination, among others.  

5.4.2     Product Application 

 Regardless of the specifi c formulation of  B. bassiana , application of these products 
is recommended to proceed through foliar sprays, ensuring that leaves are properly 
inoculated. General recommendations include:

    (a)    Powder formulations: Four kilograms shall be mixed with 20 L of water. Stir 
and wait until the carrier (usually talc) settles at the bottom of the container. 
Then, take the liquid and mix with 500 L of water to apply it through the drip 
irrigation system or through the foliar spray system.   

   (b)    Liquid formulations: Directly mix the selected dosage (see below) with 500 L 
of unchlorinated water.    
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5.4.3       Dosage 

 Commercial dosages greatly vary depending on the type of formulation, but in gen-
eral, assuming a CFU of 10 9  in liquid formulations and 10 8  in powder formulations, 
3 L/Ha and 4 kg/Ha, respectively, should be applied to control pests. In the case of 
severe infestation, apply every 2 weeks.   

5.5     Distribution Channels and Marketing of  B. bassiana  

 Like for every agricultural product, introduction of the biocontrol product in the 
market is as important as the development of an innovative and effective formula-
tion which should follow effective strategies. 

5.5.1     Marketing Strategies 

 The isolation of a certain strain of  B. bassiana  and confi rmation of its effectiveness 
against some pest with relevant economic impact in the area represent the fi rst step 
in the marketing process. This is typically carried out by researchers, who after 
applying for a patent can fi nd a spin-off company to monetize their know-how. 
However, the most diffi cult part of the process is to make farmers understand how 
to use biocontrol products, compete with other companies, and fi ght against the 
already existing culture which certainly promotes chemical fertilizers and pesti-
cides. A microorganism-based product for agriculture cannot be marketed as any 
other pesticide, and therefore, in order to increase sales successfully, it is critical to 
shift the mentality of farmers. 

 These are some suitable marketing strategies for this purpose:

    (a)    Free trials: This is a well known but effective strategy, which must be conducted 
by trained personnel and preferably in nonorganic crops. If the product works 
well for this kind of crops, organic farmers will immediately assume that the 
product will work also for their crops. However, when the tests are performed 
in organic crops, conventional farmers believe that the product will not neces-
sarily work on their crop, because of the large amount of chemicals they apply.   

   (b)    Creating a range of products (a system or a methodology): Farmers are much 
more likely to buy a full range of products or a system than an isolated product 
that is very different from the chemical products they are used to buy. In this 
way, they will understand that we have to change how we understand agricul-
ture. It makes more sense for big and established chemical corporations to sim-
ply launch a new product (e.g., for the control of the tomato leaf miner), since 
they already have an existing range of products. Organic companies must create 
a new understanding of agriculture in order to be able to compete in the market 
and survive in a sector that is mainly controlled by few chemical corporations. 
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In the “product-by-product” fi ght, big corporations are unbeatable because of 
their huge marketing resources and distribution channels created for years. It is 
in the struggle between the old agriculture (chemistry) and the new agriculture 
(organic or integrated), where biocontrol companies are more likely to 
succeed.   

   (c)    Starting with organic farmers and then expanding the business into nonorganic 
farmers: Obviously, organic farmers will be an easier target, but the organic 
farming market is not yet big enough to sustain the growth of new biocontrol 
companies. The real challenge for  B. bassiana -based products is to compete 
with traditional pesticides. This is not a utopia, especially considering that these 
products are more sustainable and protect the immune system of the crops in the 
long term. The key for making this happen is the concept of integrated agricul-
ture, which should convey the idea that it is not necessary for the farmer to 
choose between organic and nonorganic products, but they should rather inte-
grate these two types of products in a single system. On the whole, this will be 
more sustainable and will ensure greater production in the long term.      

5.5.2     Alternative Marketing Channels:  B. bassiana  in Earthworm 
Compost and Compost 

  B. bassiana  is a fungus found in healthy soil, forming part of the immune system of 
the plant. Along with this fungus, many other microorganisms conform microbial 
communities that, together, create a biological balance capable of controlling many 
pests and diseases. 

 Many studies describe the presence of  B. bassiana  in vermicompost and compost 
(Anastasi et al.  2004 ). That is, there are other ways to ensure that  B. bassiana  is 
present in crops and thus benefi t from their effects. Applying vermicompost in the 
planting substrate can achieve amazing results in controlling pests of great eco-
nomic impact, such as the red spider mite ( Tetranychus urticae ) and root-knot nem-
atodes ( Meloidogyne  spp.) (Arancon et al.  2002 ,  2007 ). This is particularly relevant 
from the marketing point of view. Given the strict regulations required to bring  B. 
bassiana  formulations to market, it is interesting for the business and consumer to 
know that the use of a natural and ecological fertilizer as vermicompost also ensures 
the presence of this fungus in the culture, which entails similar pest control 
benefi ts.  

5.5.3     Marketing and Legal Framework 

 The legal framework for the marketing of  B. bassiana  formulations greatly varies 
depending on the country or region. However, in general, the greatest challenge is 
that there is no specifi c regulation for entomopathogenic biopesticides. On the 
contrary, these products are embedded in the existing regulations for plant 
protection products. This fact is criticized by many companies, since powerful and 
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toxic chemical pesticides are considered in the same category as organic and 
sustainable products. 

 Regarding the European Union, Regulation (EC) No. 1107/2009 of the European 
Parliament and the Council (October 21, 2009) establishes the basis for regulating 
the market of plant protection products. In short, this directive requires companies 
to conduct a series of experiments including fi eld trials, trials with animals, plants, 
and insects. In practice, this process involves an average of 4–5-year evaluation 
period by the authorities, which does not guarantee approval. During this evaluation 
time, the sale of that product is not permitted. This is one of the major barriers for 
the marketing of  B. bassiana  in Europe and is not very different from the existing 
regulations in other regions of the world. This clearly benefi ts large corporations 
with big economic capacities and is detrimental for small producers of organic 
products.   

5.6     Conclusion 

 The use of biopesticides represents part of the solution proposed by sustainable 
agriculture to the current chemical dependency. In this regard,  Beauveria bassiana  
has proven its effi cacy as biocontrol agent under different formulations. There is an 
increasing interest in developing safe and effective biopesticide products, which 
requires a multi-disciplinary holistic approach during the management of pest bio-
control solutions. On the other hand, specifi c regulations must evolve to evaluate 
systemic broader impacts of biopesticide products to assure their safety from both 
the human and ecosystem health point of view.     
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