
Chapter 7

Uncertainty Analysis

7.1 Introduction

Economic consequences of natural, intentional, and accidental hazards include

uncertainties. These uncertainties may arise due to variability in an event’s magni-

tude, timing, duration, and location, as well as differing economic structures in

various regions of interest. Quantification and propagation of these uncertainties

result in probability distributions associated with various economic consequences.

In this study, uncertainties associated with economic consequences are based on

variability in stochastic regressors (predictor variables) within least squares and

quantile regression models. Addressing uncertainties associated with regression

model form (using linear predictor functions) was beyond the scope of this

study.1 Variability in stochastic regressors may arise due to inherent randomness

(aleatory uncertainty) or incomplete knowledge (epistemic uncertainty) about

underlying phenomena. Epistemic uncertainty may be reduced to aleatory uncer-

tainty with more information, whereas aleatory uncertainty is not reducible. These

consequence distributions, presented within a user-friendly and readily deployable

tool, may be valuable for homeland security policy-makers conducting national risk

assessments and for emergency management decision-making.

7.2 Overview

This chapter discusses the quantification, representation, propagation, and visuali-

zation of uncertainties in economic consequences within the E-CAT user interface.

E-CAT displays inputs and outputs associated with hazardous events and their

economic impacts with appropriate characterization of uncertainty. The economic

1Regression parameter uncertainty will result in additional uncertainty associated with economic

consequences.
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consequences for each threat type are presented as probability distributions using

input variables as: (1) point estimates, (2) mathematical intervals, and (3) triangular

probability distributions. The uncertainty analysis is integrated with the CREATE

Economic Consequence Analysis Framework (Rose 2009, 2015; Rose et al. 2014),

which has expanded economic impact analysis to include resilience (actions to

maintain system function and recover more rapidly), behavioral linkages (primarily

fear), and remediation of consequences and spillover effects of countermeasures.

Measures of uncertainty are aligned with various components of the framework and

leverage prior work on quantifying uncertainties in direct hazard consequences

(Chatterjee et al. 2015; Chatterjee et al. 2013a, b).

7.3 Uncertainty Quantification Tasks

The uncertainties in economic consequences may be characterized as statistical

probability distributions using simulation methods. The research team implemented

the following uncertainty quantification tasks:

• Monte Carlo sampling with variance reduction – This task involved Latin

Hypercube sampling (Wyss and Jorgenson 1998), leading to more evenly dis-

tributed sample points across the sample space, to generate synthetic data

associated with the E-CAT user interface input variables.

• Ordinary Least Squares regression (OLS) with stochastic regressors using syn-

thetic data – This task produced estimates that approximate the conditional mean

(given independent variables) of the dependent variable (i.e. economic conse-

quences generated from CGE simulations).

• Quantile regression (QR) with stochastic regressors using synthetic data – This

task produced estimates that approximate the conditional median (given inde-

pendent variables) and other quantiles (i.e. 5, 25, 75, and 95 %) of the dependent

variable. QR generates richer distributional data associated with the dependent

variable and is more robust against outliers in the consequence estimates

(Koenker and Bassett 1978; Koenker and Hallock 2001; Yu et al. 2003).

7.4 Uncertainty Representation

Uncertainties in quantitative models may emerge due to inherent randomness in

samples or incomplete knowledge about fundamental phenomena (Paté-Cornell

1996). Representing these uncertainties appropriately is an important step for

identifying knowns and unknowns among the modeling elements. Randomness

may be addressed through the use of statistical probability distributions, whereas
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incomplete knowledge may be represented using mathematical intervals

(Abrahamsson 2002).

Figure 7.1 presents two uncertainty representations (probability distribution and

mathematical interval) for a hypothetical variable, X with uncertain values. Other

uncertainty representations including probability bounds, probability boxes, and

fuzzy sets are beyond the scope of this study. A probability distribution (see

Fig. 7.1a) contains probabilities of occurrence of outcomes from a random exper-

iment; and may be represented as a cumulative distribution function, F(X)¼P
(X� x) that is a plot of probabilities of non-exceedance at various values

(or estimates) associated with a random variable, X. Random variables with uncer-

tain values may be discrete (with countable number of values; described using

probability mass functions) or continuous (all values in a given interval; described

using probability density functions). A mathematical interval (see Fig. 7.1b) is a set

of real numbers between lower and upper bounds, [a, b]. The choice of uncertainty
representation depends on data and knowledge associated with the variable of

interest, i.e. economic consequences as GDP or employment losses in this study.

Typically, with limited historical data for catastrophic events, probability distribu-

tions associated with reduced form model variables may be defined using a Bayes-

ian approach (i.e. as degree of belief) with expert judgments.

7.5 Uncertainty Propagation

Approaches for propagating uncertainty to the output variables (i.e. GDP or

employment losses) using reduced form regression models depend on the repre-

sentations associated with the uncertain input variables. Let us assume

x representing a vector of m uncertain input variables; a single input variable is

denoted as X; and the regression model output y is a function of x: y ¼ g(x). In this

study, the function g(x) represents the OLS and QRmodels that generate output y as

Fig. 7.1 Uncertainty representations for hypothetical variable, X. (a) Probability distribution. (b)
Mathematical interval
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conditional mean or quantiles (given independent variables x) respectively. A

Monte Carlo sampling approach is adopted in this study and is outlined below

(for detailed discussion on additional approaches refer to: Abrahamsson 2002 and

Cox 2012).

Let us assume an input random variable, X that has a cumulative distribution

function F(X)¼P(X� x) and an inverse cumulative distribution function F�1( p)¼
x. If F(X) is strictly increasing and continuous, then F�1( p), where p2 [0, 1], is a

real number x such that F(x)¼ p. To generate a random sample value for an input

random variable, X, a random number, r, is first generated between 0 and 1 (there

are several random sampling schemes available in the literature (Abrahamsson

2002) including Latin hypercube sampling (a stratified sampling scheme without

replacement–adopted in this study and presented in Fig. 7.2)). In the Latin Hyper-

cube approach, F(X) is segmented into n equally spaced intervals, where

n represents the number of sampling iterations and a sample is drawn from each

of these intervals. This sampled value, r, is then passed through the inverse

cumulative distribution function F�1(r) to generate a random sample value, x.
Similarly, random sample values for all m uncertain input variables may be

generated resulting in a random sample vector, x. The vector xwhen passed through

the function g(x) produces a random output value of y. This Monte Carlo sampling

process may be repeated several times to generate an empirical (simulation data-

driven) probability distribution for the output random variable, Y. In this study, a

Latin Hypercube sampling technique is adopted to sample from triangular proba-

bility distributions (with parameters as the minimum, most likely or mode, and

maximum values) associated with the input random variables. Selecting values at

equal intervals between the minimum and maximum values does not take into

account the probabilistic structure associated with the input random variables.

Also, this may not result in samples that are drawn from the overall distributional

spread.

Often times, an analyst may require summarizing the distribution of the

output variable, Y using mathematical expectation, E[Y]. With the discrete

Fig. 7.2 Pictorial

representation of Latin

Hypercube sampling
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variable assumption:E Y½ � ¼ P1

i¼1

yi ∙ pi; and with the continuous variable assumption,

E Y½ � ¼ R1
�1 yf yð Þdy where f(y) is the probability density function. Also, various

quantile values, Q( p) may be computed as inf y2 : F yð Þ � pf g to identify the

minimum value of y that results in F(y)� p. In this study, expected means and

quantiles are computed using empirical consequence distributions under the dis-

crete assumption.

For the case with interval representation of input variables, lower and upper

bound values are passed through the reduced form regression models (both OLS

and QR) to generate lower and upper bound estimates for the output variables.

7.6 Uncertainty Visualization

Uncertainty analysis outputs may be visualized in various forms, given user-

specified inputs as point estimates, intervals, or triangular probability distributions

(represented using minimum, most likely, and maximum estimate values of a, c,
and b respectively—see Fig. 7.3). Triangular distributions were chosen due to the

relative ease in eliciting expert judgments for distribution parameters a, c, and b.
Figure 7.3a displays a notional probability density function and Fig. 7.3b presents a

notional cumulative distribution function for a random variable, X with triangular

probability distribution.

The following discussion includes numerical examples to demonstrate various

uncertainty visualizations based on notional input estimates. Loss variable in the

charts below refers to an economic loss output type, e.g., GDP or employment loss.

• Input Variables as Point Estimates – Figure 7.4 presents an empirical distribu-

tion function using the QR results. This chart provides probabilities of not

Fig. 7.3 Notional triangular probability density and cumulative distribution functions. (a) Trian-
gular probability density function. (b) Triangular cumulative distribution function
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exceeding certain levels of loss. For example, with probability of 0.5, losses will

not exceed 59.74 units. Figure 7.5 presents a truncated probability mass function

using the QR results and assuming economic loss as a discrete random variable.

The bars in the plot represent probabilities of various levels of losses. For

example, with probability of 0.05, losses will be 33.74 units. The mean loss is

represented as a point value (at y¼ 64) from the OLS results. Figure 7.6 presents

a box and whisker plot representing variability in the loss variable at different

quantiles (5, 25, 50, 75, and 95 %) and the mean. We assume that the minimum

and maximum losses correspond to the 5 and 95 % quantile losses. For example,

with probability of 0.75, losses will not exceed 86.47 units.
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Fig. 7.4 Notional empirical distribution function
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Fig. 7.5 Notional truncated probability mass function
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• Input Variables as Mathematical Intervals – Figure 7.7 presents bounds for

empirical distribution functions using the QR results. This chart provides prob-

abilities of not exceeding certain bounded levels of loss. For example, with

probability of 0.5, losses will not exceed a level between [59.74, 65] units.

Figure 7.8 presents truncated probability mass functions for lower and upper

bounds of economic losses using the QR results. The underlying assumption

here is that the lower and upper bounds of economic losses are discrete random

variables (In Fig. 7.5, lower bounds are in gray and upper bounds are in blue).

The bars in the plot represent probabilities of various levels of losses. For

example, with probability of 0.05, losses will be between [33.74, 40] units.

The bounds on the mean loss (i.e. [64, 75]) are represented as point values

from the OLS results. Figure 7.9 presents box and whisker plots, at the lower and

upper bounds, representing variability in the loss variable at different quantiles

(5, 25, 50, 75, and 95 %) and the mean. For example, with probability of 0.75,

losses will not exceed a level between [86.47, 95] units.
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Fig. 7.6 Notional box and whisker plot
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Fig. 7.7 Notional empirical distribution function with bounds (Note: lower bounds are in gray
and upper bounds are in blue)
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• Input Variables as Triangular Probability Distributions – Figure 7.10 presents

empirical cumulative distribution functions (ECDF) for the mean value, 5, and

95 % quantiles of an economic loss variable, based on empirical measures from

the OLS and QR results. Lower to higher quantile distributions are presented as

we navigate from left to right in the figure. These curves provide cumulative

probabilities of non-exceedance at different levels of loss. The expected mag-

nitudes of mean and quantile losses are estimated by evaluating the area above

these curves. Figure 7.11 presents a relative frequency distribution for the mean

value of an economic loss variable. A relative frequency distribution is a

summary of the frequency proportions in a group of non-overlapping data
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Fig. 7.8 Notional truncated probability mass function with bounds (Note: lower bounds are in

gray and upper bounds are in blue)
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Fig. 7.9 Notional box and whisker plot with bounds
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bins. Similar relative frequency plots were generated at other quantiles using the

QR results.

As an example, based on the triangular probability distribution assumption,

cumulative probability distributions at various quantiles and relative frequency

plots for economic losses due to aviation system disruption are presented in

Fig. 7.12.
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Fig. 7.11 Notional relative frequency distribution for mean of the loss variable
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