
Chapter 7
Adaptive Forwarder Selection
for Distributed Wireless Sensor Networks
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Abstract Wireless Sensor Network has emerged as a promising networking
technique for various applications. Due to its specific characteristics, such as non-
rechargeable, low-power multi-functional sensor nodes, limited sensing, computa-
tion and communication capabilities, it is challenging to build networking protocols
for Wireless Sensor Networks. In this chapter, the focus is on addressing the rout-
ing issue with regards to energy efficiency and network lifetime. An adaptive and
self-organized routing protocol for distributed and decentralized network, called
Distributed Adaptive Forwarder Selection, is proposed. Multiple factors, involving
cross layers were used for selecting the adequate forwarders for packets. The pro-
posed approach is suitable for dynamic environments as there is no fixed topology
or static role assignment for nodes in the WSN. In addition, the approach can allow
sensor nodes to make flexible decisions based on their current capabilities and states.
We have performed simulations of the proposed protocol and compared with two
existing routing protocols in terms of node lifetime, average energy consumption
and average residual energy. The results show that the proposed protocol performed
better than some well known routing protocols such as LEACH and MOECS.

Keywords Distributed wireless sensor networks · Forwarder selection ·
Reinforcement learning

7.1 Introduction

In general, a Wireless Sensor Network (WSN) is a wireless network which con-
sists of large numbers (hundreds to thousands) of irreplaceable and low-power
multi-functional sensor nodes, operating in an unattended environment with limited
sensing, computation and communication capabilities [1] used in a wide range of
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applications. Physical resources, such as memory, communication bandwidth and
energy, can greatly limit the capability of sensor nodes and the performance of the
whole WSN system [2]. A number of previous works have focused on these con-
straints for designing the communication and information processing elements for
wireless sensor networks.

Communication process has been identified as highly resource consuming espe-
cially when the process is not well managed [3, 4]. There are two elements of com-
munication for wireless sensor networks application: routing mechanism and media
access control (MAC) protocol. In previous studies, several works for energy per-
spective issues have been briefly described on both elements. This involves reducing
number of transmissions and distance of transmission via clustering or scheduling
mechanisms at specific network layers.

For large scale networks, decentralized architectures are more appropriate as high
transmission cost and delay might involve, especially if the central controller is
located far away. Furthermore, in a centralized architecture, if the central node fails,
then the entire network will collapse. On the other hand, decentralized control archi-
tecture are more reliable for large networks and can provide better collection of data
and backup, in case of failure of the central node. However, decentralized approach is
very challenging in terms of topology establishment and re-establishment especially
in inaccessible applications such as battlefield and disaster management. These non
replenish nodes need to self-organize themselves to sustain longer. This requires
nodes in decentralized scheme to adapt accordingly with dynamic changes of envi-
ronment (i.e., the network topology) and self-configure themselves without human
intervention.

Shortest path algorithms based on either hop count or energy consumption are
typically employed in routing protocols of ad hoc networks to achieve high energy
efficiency [5]. However, relying on these parameters might cause hot spot scenario,
i.e., sensor nodes that are frequently used might get depleted. In such case, a more
reliable nodes should be selected. This leads to the need of having a more adaptive
parameters to be considered during path selection. Furthermore, node preferences
might be different, i.e., one node will choose a path which is nearer to it, which could
be far to other nodes.

In this chapter, we focus on node selections for packet relaying (i.e., forwarder
selection), and propose an adaptive forwarder selection approach for distributed
WSNs. The proposed approach is called Distributed Adaptive Forwarder Selection
(DAFS). In DAFS, suitable forwarders are selected in three phases, i.e., Eligibility
Determination, Forwarder Selection and Receiver Acceptance. Multi-criterion para-
meters including energy, distance and buffer size, are considered in the approach.
We claim that DAFS is an adaptive approach and suitable for dynamic environments,
where nodes actions are determined based on their current capabilities and state of
environment. In addition, it is suitable for largely distributed networks, where only
decentralized approach is feasible.

The rest of the chapter is organized as follows. Some related work is introduced
in Sect. 7.2. In Sect. 7.3, we describe the targeted problems and give some formal
definitions. Section7.4 introduces the interaction protocol applied in the proposed
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approach. Section7.5 explains the forwarder selection processes inDAFS.The exper-
imental results have been presented in Sect. 7.6. The chapter is finally concluded in
Sect. 7.7.

7.2 Related Work

In this section, we briefly review related work on energy-efficient routing protocols
and learning-based protocols.Most of the previous studies have shown that clustering
approach can reduce the energy expenditure when merging all the information from
the nodes into one cluster head which is responsible to process it and deliver it to the
sink or base station. The limitation of sensor nodes usage for processing information
has given a better energy consumptionmanagement which results to the sensor nodes
lifetime to increase.

One of thewell-known cluster-based protocols is LowEnergyAdaptiveClustering
Hierarchy (LEACH) [6]. In LEACH, data collection is perform periodically, which
involves two phases, i.e., Cluster Head (CH) selection and cluster formation. The
selection of CH in LEACH is based on closest distance. Each CH creates Time
Division Multiple Access (TDMA) schedule for member nodes. CH also select code
division multiple access (CDMA) to reduce inter-cluster interference. Members will
collect information and use their allocated TDMA slots to transmit their collected
data to CH. In [7], an energy efficient cluster formation algorithm (MOECS), was
proposed based on a multi-criterion optimization technique. The selection of cluster
heads is restricted to certain optimal value (i.e., optimal radius and distance from
normal nodes).

Learning-based approach is commonly used in distributed systems [8].Distributed
Independent Reinforcement Learning (DIRL), is based on independent learning, i.e.,
each agent can autonomously and dynamically self-configure in order tomaximize its
own reward [9]. A reward-based dynamic approach based on two tier reinforcement
learning scheme (micro learning and macro learning) were proposed in [10]. In
their approach, an individual node was able to self-schedule its task using its local
information and through learning [11].

Q-learning is a model-free RL technique, based on agents taking actions and
receiving rewards from the environment in response to those actions [12]. In [13],
Dimarogonas and Johansson proposed a combinatorial reverse auction that operates
in two phases using RL and some economic models for energy optimization in sen-
sor networks. The Q value was represented as an estimate cost of the route through
neighbor comprised of hop count (account for energy efficiency) and minimum bat-
tery level among nodes. In [14], the potential of using energy aware metrics in RL
based routing algorithms for WSN was studied, combining energy aware metrics
with load balancing metrics. In [5], a machine-learning-based routing protocol for
energy-efficient and lifetime-extended for UWSN, i.e., QELAR, was proposed. In
QELAR, residual energy of each node and energy distribution among a group of
nodes were used in it’s lifetime-aware reward function, for calculating the Q-value
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(in selecting forwarder for packets). In [15], role-free clustering assignment was
combined with learning dynamic network properties such as battery reserves. Less
energy was consumed by using machine learning to enable nodes to independently
decide whether or not to act as a cluster head on a per-packet basis in comparison to
a traditional approach.

7.3 Problem Description and Definitions

In this chapter, we propose an adaptive, energy efficient and lifetime-aware forwarder
selection approach, based on Q-learning technique. Using an action-value function
(Q-value), which gives the expected reward of taking an action in a given state, the
distributed learning agent is able to make a decision automatically. The proposed
approach has the following features:

• Dynamic Network: In largely distributed network, link quality is not guaranteed.
Link failure due to node’s energy depletion, causes topology changes. Using Q-
learning algorithm, selection of alternative link is possible as node selects next
best forwarder based on current situations.

• Adaptive: We define our node role as forwarder, receiver and normal nodes. Node
will decide on its role based on its present capabilities. It is adaptive to available
resources i.e., a receiver can accept packets that they are capable to process, i.e.,
accept more when less busy. A node can be forwarder at a time but not at the other
time if there is other more capable node to forward the packet etc.).

• General Framework: Q-learning behavior is determines by its reward function.
We proposed a flexible and dynamic approach for the nodes to react based on its
present capabilities.

• Load Balancing: Less energy is consumes when choosing a path based on shortest
path.However, thismay cause the link failure as choosing the same node to forward
packets could drain its energy faster. We consider multiple parameters to allow
alternative path selection.

7.3.1 Definitions

The network in our model is consider as a complex system comprising a number of
adaptive sensor nodes, called agents.

Definition 1 A WSN is defines as connected undirected weighted graph G =
(V, E), where V is group in the network comprises of agents, i.e., V = a0, a1, a2,
. . . an . E = e1, e2, . . . em is a set of edge in group. The edge, ek = (ai , a j ) denotes
the communication links between sensor ai and sensor a j (they are in each other’s
radio transmission range).
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Definition 2 An agent ai is defined as ai ∈ (Ri , Acti ,Ci , RWDi ). Ri is ai ’s Role;
Acti is the action that ai takes; RWDi is the Reward that ai gains (see Definitions
4); and Ci = (E Initi , EResi , ENeighi , Dist, BFi , BFNeighi ) is the capability
of ai , where E Initi is ai ’s initial energy, EResi is ai ’s residual energy, ENeighi
is ai ’s immediate neighbors’ energy, Dist is distance between agents. BFi is current
buffer size of ai , BFNeighi is current buffer size of ai ’s neighbors.

There are three types of Role, i.e., R in the proposed model, which are forwarder,
receiver and normal node. In dynamic environment such as WSN, it is not practical
to select a node as forwarder permanently, as it will cause the node to die faster.
We propose a more distributed approach which allow flexibility in being forwarder,
based on current capabilities. A forwarder can be a normal node at other time when
its energy has degraded or it is currently processing many tasks.

Definition 3 An action set Acti is defined as: Acti = (act1, . . . acti . . . actn), where
acti is a possible action that ai can perform. As a forwarder, an agent can take the
following two actions:

• Forward packets received from one agent to another agent.
• Discard packets if no Forwarder is identified.

As a Receiver, there are three possible actions:

• Accept packets based on current capabilities.
• Reject packets if buffer is full (currently busy).

Definition 4 Reward function RWD, represents expected reward received by agents
when transiting from one agent to another agent. The goal of our algorithm is to get
the packet delivered from one agent to another agent, with maximum reward, i.e.,
minimum cost. The reward function is described in Eqs. 7.2–7.5.

7.4 System Framework and Interaction Protocol

There are three modules in the proposed approach, which are Eligibility Determi-
nation Module, Dynamic Forwarder Selection Module and Receiver Acceptance
Module. Algorithm 1 shows the steps involved. When an agent has packet to trans-
fer, they will compare among eligible neighbors, which one is the most capable (i.e.,
the one having the highest Q value). If no agent can accept the packet, after time-
out, it will drop the packet. Among Eligible agents, once they receive packets, they
will decides whether to accept or reject the packets. The amount of packets it will
accept is depending on its current capabilities i.e., accept packets that they are able
to process.
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Algorithm 1: Forwarder Selection.
begin

for each step of episode do
Prior to any decision, individual agent will share its information EResi , Dist , BFi
and Ri with its neighbors;
if current BF < maximum BF AND ERes > Minimum Energy
then

Decrease TIMEOUT ——(as it causes delay)
Set Status as Eligible Forwarder
Accept packet according to available BF

ELSE
if BF > maximum BF OR FULL OR ERes < Minimum Energy
then

Set Status as Not Eligible
Choose Forwarder that give Qmax

7.4.1 Eligibility Determination

In the Eligibility Determination module, an agent decides whether to be a forwarder
or not, based on its current capabilities (see Definition 2). The congestion or queue
between receives or transmits will determine agent eligibility at the local level. A
fully occupied buffer indicates agent is not capable to process any information at
that particular time. The residual energy indicates eligibility at higher level, towards
wider context i.e., network layer. Agent that decided to be Forwarder will inform it’s
neighbors about it’s decision. In Dynamic Forwarder Selection, agent having more
than one potential forwarder will select the best forwarder to forward packets based
on Q value. Forwarder having the highest Qmax will be chosen. Q value is explained
in Sect. 7.4.2. When forwarder receives packets from neighbors, it will process the
received packets, according to its current capabilities.

7.4.2 Forwarder Selection

To assist agents to select suitable forwarders, we use Q-learning approach where
using this approach, agent tends to select forwarder that gives maximum Q-value.
In the proposed approach, both successful and failure transmissions contribute to
the calculation of the Q-values. Furthermore, the approach not only concerns on
selecting the best forwarders but also allows forwarders to negotiate as they wish,
namely, a two directional selection. The expected reward that can be received by
taking an action at time t and the state at time t is denotes in Eq.7.1:

Q(st , Actt ) = RWDtotal + γ�PActt
st ,st+1

maxQ(st+1, a) (7.1)
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In Eq.7.1, Q(st , Actt ) is the expected reward that an agent can receive by taking
an action at at the state st . RWDtotal is the total reward gained by the agent, which can
be calculated by using Eq.7.5. γ (γ ∈ [0, 1]) is the discount factor, which determines
how important the future rewards are. When γ is set to 0, the system only considers
the current reward and it acts similarly to a greedy algorithm. When γ is set to 1,
the system will strive for a long-term high reward. The typical value of γ is within
[0.5, 0.99]. Each forwarding action may succeed or fail. PActt

st ,st+1
is the success rate of

taking action Actt when st choosing st+1 as the next forwarder. On the other hand,
the failure rate is, 1 − PActt

st ,st+1
. maxQ(st+1, a) in Eq.7.1 denotes the optimal value

when taking an action, a. In this paper, we only consider the current reward and for
such case, the second part of Eq.7.1 is omitted.

As explained in Sect. 7.4.1, agent’s capabilities are evaluated when determining
Eligibility as forwarder. It is also used as input in reward functions, which is then
applied in Q value calculation. We defined two reward functions, as in [5], comprises
RWDsuccess as in Eq.7.2 and RWD f ail as in Eq.7.4. If the packet forwarding attempt
from ai to a j is successful, the reward function is shown in Eq.7.2.

RWDsuccess = −g − α(c(ai ) + c(a j )) (7.2)

In Eq.7.2, g is the constant cost when ai tries to forward a packet. As forward-
ing packet consumes energy and bandwidth, the farther an immediate node is from
destination node, the more negative reward it would receive. Thus, agent will use a
shorter path to reduce this cost. The weight of g is set to be 1. c(ai ) and c(a j ) are
cost functions of residual energy of ai and a j respectively, which can be calculated
by using Eq.7.3 and α is the weight and is set to be 0.5. By definition, c(ai ) is in the
range of [0, 1], to balance the parameters in Eq.7.2.

c(ai ) = 1 − EResi/E Initi , (7.3)

where EResi is the residual energy of ai and E Initi is ai ’s initial energy (refer to
Definition 2).

On the other hand, if the forwarding attempt from ai to a j fails, the reward function
is defined as the equation below.

RWD f ail = −g − βc(ai ), (7.4)

where β is weight for the cost function that can be tuned. The value of β can be set
to 0.5.

Based on Eqs. 7.2 and 7.4, the total reward gained by ai (i.e., RWDtotal) can be
calculated by using Eq.7.5.

RWDtotal = RWDsuccess + RWD f ail (7.5)
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RWDtotal is used in Q value calculation (Eq.7.1) above. The far an agent from
other agent is, the more energy is consumes for transmission. Thus, it will choose
forwarder that is nearer to it.

7.4.3 Receiver Acceptance

In the Receiver Acceptance module, upon receiving a packet, agent will check its
current processing task. It will accept packet according to its current capabilities, i.e.,
if it is currently processing certain task but still have available buffer, it will accept
an amount of packets based on its remaining buffer.

7.5 The Distributed Adaptive Forwarder Selection (DAFS)

Many energy efficient and lifetime-aware approaches proposed solutions either at
Physical layer, MAC layer, Network layer, Transport or Application layer. Even
though such solutions can improve network performances in terms of network life-
time, energy efficiency, power consumptions etc., both analytical studies and exper-
imental works in WSN highlight the important interactions between different layers
of the network stack [3]. In this research, we consider multi-variables parameters
involving Network layer, MAC layer and as well distance between nodes. In this
section, we will elaborate on those parameters, which are used in our reward func-
tions.

7.5.1 Multi-variables Parameters

In this research, agent capabilities are determined by energy, buffer size and distance.
For most applications, a wireless sensor node is not replenish. Therefore, there is
strong dependence on battery lifetime. Similar to traditional network layer, data
transmission is linked to data communication area, which relates to certain layer;
the link layer or MAC layer, Network layer (routing protocols) and transport layer
(transport protocol).

7.5.1.1 Communication Energy

Themain task of sensor node is to detect events, perform local processing and transmit
the data. Power consumption can be divided into sensing, communication and data
processing. In decentralized network, nodes may need to know its neighbors’ latest
state. However, in such network, continuous updates will require a lot of energy. We
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minimize such energy consumption by allowing only effected nodes to update and
updates will only be sent if there is changes (i.e., if its energy is depleted an reaching
a threshold value or if there is topology change, such as a new node joining the
network). Hence, our concern is on communication energy as sensor node expends
the maximum during this phase (transmitting and receiving data). The energy model
in [7] is adopted where the amount of energy consumed for transmission, i.e., ET X ,
of an �-bit message over a distance d is given by:

ET X = � × EElect + � × ε f s × d2, (7.6)

where � is the length of message (4000 bits), EElect is the base energy required to
run the transmitter or receiver circuitry (50nJ/bits) and ε f s is the energy consumed
in an amplifier (10pJ/bit/m2). The energy expended in receiving an �-bit message,
i.e., ERX is given by:

ERX = � × EElect (7.7)

7.5.1.2 Local Congestion Control—MAC Layer Solutions

The second issue considered is concerning local congestion, by limiting the traffic
that an agent can relay. An agent may participate in the communication if it can relay
the packet which is based on its communication activity. For this reason, buffer size
is considered as another important factor in the proposed model, i.e., when packets
arrive, they have to be processed and transmitted. If packets arrive faster than the
agent can process them, the agent puts them into the buffer until it can get around
to transmit them. The maximum queuing delay is proportional to buffer size. The
longer the line of packets waiting to be transmitted, the longer the average waiting
time is. The queue of packets waiting to be sent also introduces a potential cause of
packet loss. Since the agent has a finite amount of buffer memory to hold the queue,
an agent which receives packets at too high rate may experience a full queue where
the agent has to simply discard excess packets.

7.5.1.3 Distance

In some cases, agents may be located far away from each other or from the Sink.
Direct communication or peer-to-peer communication between nodes, especially in
large distributed area is impossible, as it causes higher transmission cost and deplete
faster. Thus, we consider distance as another important parameter. For example, if
there are two Forwarders that is within agent’s proximity, where forwarder A having
more energy and less buffer, the agent might choose forwarder B, which has less
energy and buffer compared to forwarder A but is nearer to it, taking into account,
the significant energy consumption for longer distance communication.
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7.6 Simulation Results

In this section,we evaluateDAFSby comparing itwith two cluster-based approaches,
i.e., LEACH and MOECS. The simulations were conducted using C++ platform.
Two metrics were used to measure the performance of different protocols: first node
death time and average residual energy. The first metric needs to be maximized,
while second metric needs to be minimized. First node death time is the time when
the battery of the first sensor node is depleted. Each sensor node has the goal of
maximizing its own packet delivery to destination (that is to avoid packet loss by
sending only to forwarder that is the most capable). Table7.1 provides the common
simulation parameters, which is also used in our experiments. Network lifetime is the
most important performance metric for WSNs. Using this metric, DAFS, LEACH
and MOECS protocols were evaluated.

The nodes in each simulation are distributed in a 100 × 100 m2 region, where
the location of nodes are selected randomly and that no two points have the same
location. The Sink is given a fixed location. All the nodes are homogeneous and have
the same capability.

Figure7.1a shows the results of the first node death (round number) for two
different network sizes. The first node death for network size 200 nodes, occurs at
710 rounds in LEACH, at 920 rounds in MOECS and at 3940 rounds in DAFS.
While for network size 500 nodes, the first death round occurs at 730 rounds in
LEACH, at 980 rounds in MOECS and at 3472 rounds in DAFS. This might be
due to communication involves during clustering phase in LEACH and MOECS. In
addition, as more criteria are considered in DAFS, i.e., including nodes buffer size
allows nodes to choose other alternative forwarder.

In DAFS, multiple parameters that influence energy consumption were included.
These parameters include communication cost from sensor node to the forwarder,
communication cost from forwarder to the Sink, and the forwarder’s residual energy,
which help sensor nodes achieve balanced energy dissipation in the system.

Table 7.1 Simulation
parameters

Number of nodes 100–500

Deployment area 100×100 m

Data packet size 500 bytes

Control packet size 25 bytes

EElect 50nJ/bit

ε f s 10pJ/bit/m2

εmp 0.0013J/bit/m4

Initial energy for sensor node 0.5 J

Network topology Random
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Fig. 7.1 a First node death in DAFS, LEACH andMOECS. bAverage energy consumed per round
in DAFS, LEACH and MOECS

Fig. 7.2 a Number of alive nodes for 5000 rounds. b Average residual energy in DAFS, LEACH
and MOECS

Figure7.1b depicts the results for average energy consumed per round for two
different network sizes using random topologywhich shows that our DAFS approach
performs better than the other two. In addition to the balanced energy dissipation
behaviors, such as distance, helps DAFS achieves minimum energy consumption
compared to LEACH due to MOECS.

Figure7.2a shows number of alive nodes in the network after 5000 rounds where
nodes in DAFS survives much longer compared to the other two. Figure7.2b illus-
trates results for the random topology where y-axis indicates the average residual
energy and x-axis denotes the number of rounds. The residual energy of the system
can also provides estimation of the network life. It can be observed that the mean
residual energy of the system in the case of DAFS is higher than that of the other
protocols. Hence, the network life under DAFS is enhanced compared to LEACH
and MOECS. Unlike these cluster-based approaches (LEACH and MOECS), our
approach did not involve cluster formation phases and is a distributed approach, as
selection of forwarder is based on learning i.e., the Qmax value.
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7.7 Conclusion and Future Work

As a resource constraint node, the use of sensor node in large scale network has
some challenges in terms of energy efficiency and decentralized approach. These
challenges can be overcome by ensuring energy is not use unnecessarily in transmis-
sion (multiple redundant packet, frequent use of same nodes etc.) Thus, the selection
of relay node, i.e., forwarder, is crucial.

Decentralized architectures are more appropriate in many WSN applications.
However, without the present of central controller, node needs to make its own deci-
sion based on limited information. In this paper,we considermulti-criteria parameters
in forwarder selection and assists nodes decision byusing a distributed learning-based
approach. Our solution is adaptive as it is based on agent’s current capabilities, that
are changing dynamically when it gets depleted etc.With this technique, it is possible
to consider multiple individual metrics for forwarder selection which is critical for
well balanced energy dissipation of the system.

Simulation results demonstrate that DAFS achieves significant energy savings
and enhances network lifetime when compared to LEACH and MOECS protocols.
Multiple parameters involved in forwarder selection process for DAFS help to dissi-
pate energy at a much more balanced rate as compared to other protocols and also it
shows that the ability of DAFS to scale both from the network deployment area and
node density which makes it a viable energy efficient schemes for WSNs.
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