
Chapter 6
Selecting Robust Strategies Based
on Abstracted Game Models

Oscar Veliz and Christopher Kiekintveld

Abstract Game theory is a tool for modeling multi-agent decision problems and
has been used to great success in modeling and simulating problems such as poker,
security, and trading agents. However, many real games are extremely large and
complex with multiple agent interactions. One approach for solving these games is
to use abstraction techniques to shrink the game to a form that can be solved by
removing detail and translating a solution back to the original. However, abstraction
introduces error into the model. We study ways to analyze games that are robust to
errors in the model of the game, including abstracted games.We empirically evaluate
several solution methods to examine how robust they are for abstracted games.

Keywords Game theory · Agent based simulation · Agent based modeling ·
Abstraction

6.1 Introduction

Game theory is widely used for analyzing multi-agent decision problems includ-
ing auctions [12], security [1, 17], Poker [14], and many others. A game-theoretic
analysis begins by specifying a formal model of the decision problem, including the
actions players can choose, the information available to the players, and the utilities
they receive for different outcomes. Once the model is specified it can be analyzed
using Nash Equilibrium or any of the other numerous solution concepts proposed in
the literature [16].

There has been extensive research on solution concepts, but less attention has been
given to the problem of specifying game models. The model is typically assumed to
be given as a starting point, and commonknowledge to all players. This is problematic
for several reasons. Games that model real world interactions are often complex, with
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huge numbers of possible strategies and information states. Formal specifications
of these games may be intractable to solve, even for modern supercomputers (or
humans). A second problem is that the game itself may be ambiguous and difficult
to formalize. Players may not have the same understanding of the possible actions,
the payoffs, and the knowledge and beliefs of the other players about the game.

We argue that most game models should be considered abstractions that approx-
imate more complex situations. An abstracted game model captures some–but not
all–of the relevant detail about the strategic decision. In some cases, abstraction
may also be used intentionally as part of the process of analyzing a complex game.
For example, work on artificial agents for Texas Hold ’em poker has made exten-
sive use of a methodology that uses abstraction to shrink the size of the game tree
before applying an (approximate) equilibrium solver to compute a strategy for the
game [14].

We are interested in better understanding the effect of abstraction in game-
theoretic analysis. In particular, we focus on the strategy selection problem: how
should an agent choose a strategy to play in a game, based on an abstracted model
of the game? This problem has three interacting components: (1) the method for
abstracting the game, (2) the method for selecting a strategy based on the abstrac-
tion, and (3) the method for mapping this strategy back to the original game. This
approach has been studied fairly extensively for poker, which is a 2-player, zero-sum
game. However, much less is known about how abstraction interacts with strategy
selection in more general games.

Themain contributions of our work are as follows. First, we specify amodel of the
strategy selection problemwhenplayers use asymmetric abstractions as ameta-game.
In this model players can use different methods for abstracting the game, solving
the game, and reverse-mapping the solution. We introduce a collection of specific
methods for abstracting and solving games; these are intended to be representative
of the most popular methods used in the literature. Finally, we present the results of
extensive simulation that evaluate the candidate abstraction and solution methods on
different classes of games. Our results lead to several unique observations as well as
identifying solution methods that are more robust than others to error introduced by
abstraction.

6.2 Abstraction Meta-Games

Wefirst introduce a formalmodel that can be used to study the situationwhere players
select strategies based on abstracted game models. Our model is based on the meta-
game framework introduced by Kiekintveld et al. [11], which focused on situations
where players received noisy observations of the same underlying game and had
to select strategies based on these observations. The situation where players use
abstractions is similar in that the players make strategy choices based on imperfect
abstractions of the game. Opposing players may also use different abstractions which
may cause problems for solution concepts that rely on coordination (such as Nash
equilibrium).
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Fig. 6.1 2-players asymmetric abstractions

An example of an abstraction meta-game is shown in Fig. 6.1. In this example,
we have two players who are playing the one-shot normal form game shown at the
top of the figure; this is the base game. Each player has four possible actions in the
original game, and the payoffs are listed in the thematrix. Each player uses a different
(unspecified) abstraction method to reduce the size of the game to only two actions
for each player, as shown. Now the players analyze these smaller games to select
a strategy to play. Here, both of the small games can be solved using dominance
to find a unique Nash equilibrium. The players select these strategies (A and H) to
play. However, when these strategies are played in the base game they result in the
outcome −10,−10, which is the worst possible payoff for both players!

In addition to illustrating the structure of the abstraction meta-game, this example
shows one of the possible problems with using abstraction in game analysis. Note
that we could replace the payoffs−10,−10 with arbitrarily small values. By playing
according to a (dominant strategy) Nash equilibrium of the smaller abstracted game,
the payoffs the players actually receive are less than the payoffs they expect to
received by an unbounded amount. They can also be lower than the equilibrium
payoffs in the original game, or even the maxmin payoffs by an arbitrary amount.

This emphasizes the problem of selecting strategies based on abstracted games.
Many existing applications of automated abstraction (e.g., in Poker [8, 10, 14, 15])
still analyze the abstracted games to find an (approximate) Nash equilibrium, and
play the original game using the equilibrium strategy for the abstracted game. Much
of this work focuses on zero-sum games where Nash equilibrium is equivalent to
the pessimistic maxmin solution concept, and has a unique value. However, for
general-sum games it is clear from our example that the simple approach of analyzing
abstracted games using solution concepts that assume perfect knowledge of the game
model is highly problematic. Even in the case of poker, there have been pathologies
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shown in using abstraction [18], which has led to the exploration of alternative
methods for playing games using abstraction that are not based on playing according
to an approximate Nash equilibrium [7, 9].

We refer to the fullmodel as ameta-game, and strategies in themeta-game asmeta-
strategies. The general strategy selection algorithmswe are interested inmap directly
to meta-strategies in this model. We can view players as selecting meta-strategies
(solution algorithms) that act on their behalf once game observations are made.
Modeling solution algorithms as strategies in a larger game motivates evaluation of
the algorithms with game-theoretic concepts, such as regret and equilibrium.

We now present a more formal description of abstraction meta-games. Both the
base game and abstracted games are instances of normal-form games, which can be
defined by a tuple {I, {Si }, {ui (s)}}. The set I represents the players, and the sets Si
are the pure strategies available for each player. The utility function ui maps each
outcome to a real number representing the payoff for the player if this outcome is
played. We extend the model to allow mixed strategies in the standard way, using
the notation σi to refer to a mixed strategy that is a probability distribution over the
pure strategies. Payoffs for mixed strategies are defined using the expected utilities
based on the pure-strategy outcomes.

A Nash equilibrium is a strategy profile in which every player is playing a best-
response to the opponent’s strategies. That is, for all players i and all strategies
si ∈ Si , ui (�i , �−i ) ≥ ui (si , �−i ). We also define the regret for a strategy profile to
the maximum benefit to be the maximum gain that any player can gain by deviating
to a different pure strategy. Any strategy profile with zero regret is Nash equilibrium.

An abstractionmeta-game has a base gameG in the normal form. This is the game
that the players will actually play, and their strategy choices in this game define the
payoffs they receive. The meta-game extends the description of the base game to
include a description of how players select their strategies in the base game. This
description has three components. The abstraction function (ωi ) for a player maps
the base game G into a smaller abstracted game G ′

i that the player will analyze. The
selection function for a player maps from the abstracted game G ′

i into a strategy for
the player to play in the abstracted game, σ ′

i . The reverse mapping function for a
player maps from the strategy in the abstracted game σ ′

i back to a strategy in the
original game σi . Collectively, we refer to these three functions as a players meta-
strategy. Themeta-strategy represents a detailed description of how a player analyzes
the base game to select a strategy to play.

6.3 Abstraction Methods

We define an abstraction method as a function that maps one normal-form game into
a second (smaller) normal-form game. A good abstraction should be simpler than
the original, but also retain as much information about the strategic interaction as
possible. We identify two broad categories of abstractions that are common in the
literature: strategy elimination and strategy combination.
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Strategy elimination abstractions remove some strategies completely to reduce
the size of the game. The well-known method of iterated elimination of dominated
strategies [16] is one example of this approach.Weakening the criteria for dominance
so that weakly or approximately dominated strategies are also removed leads to even
smaller games at the cost of potentially removing some equilibria of the original
game [3].

Abstractions methods based on strategy combination simplify games by merging
multiple strategies into a single representative strategy. In the extreme case where
two strategies have exactly identical payoffs for a player in every outcome merging
these strategies results in a lossless abstraction. The idea can be extended to merge
strategies that are only similar rather than identical, but the result is a lossy abstraction.
A common approach in the literature is to use clustering algorithms to merge similar
strategies into clusters. In extensive form games, clustering can also be applied to
information states [8]. A different type of similarity between strategies can be used
to solve a game by reducing it to sub games [4].

Our goal in this paper is not to develop novel abstraction methods, or to exhaus-
tively evaluate the many existing techniques. We are interested in the interaction
between abstractions and the solution methods applied to abstracted games. There-
fore, we selected two simple abstraction methods for our initial study that are repre-
sentative of the broad categories described above.We also do not try to guarantee any
bounds on these general abstractions as shown in Fig. 6.1 with potentially unbounded
error. It is also the case that the simulated agents may not be using an equilibrium or
convergent strategy.

6.3.1 TopN Abstraction

The first abstraction method we consider is TopN. This method creates a smaller
game by selecting a subset of size N of the strategies for each player to form the
abstracted game. For each strategy in the game, we first calculate the expected payoff
of the strategy against a uniform random opponent strategy. We then select the N
strategies with the highest expected payoffs, breaking ties randomly. The abstracted
game is simply the game where players are restricted to playing only the N selected
strategies; the payoffs are unchanged. Since each strategy in the abstracted games is
also a strategy in the original game the reverse mapping of the strategies back to the
original game is trivial.

6.3.2 K-Means Clustering Abstraction

The second abstraction method we use is KMeans, which is representative of strat-
egy combination methods. This method uses the k-means clustering algorithm to
group strategies into clusters based on similarity of their payoffs. Each strategy is
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represented in the clustering algorithm by a vector of the payoffs for the strategy in
every outcome that can result when the strategy is played. We cluster the strategies
for each player separately, following the standard k-means algorithm. Each strategy
is initially assigned randomly to one of the k clusters. The centroid is calculated for
each cluster, and then the Euclidian distance between every strategy and every cluster
centroid is calculated. Strategies are re-assigned to the closest cluster, ensuring that
no cluster becomes empty. This process iterates until there are no further changes in
the clusters. We run the clustering 100 times with different initial clusterings, and
select the one with the smallest maximum distance between any strategy in a cluster
and the centroid.

Once the strategies are clustered we create the abstracted game as follows. Each
cluster maps to a pure strategy in the abstracted game (so the number of strategies is
controlled by the k parameter used in k-means). The payoffs for each outcome in the
abstracted game are computed by averaging the payoffs for all of the outcomes in
the cluster. In other words, we assume that players will play each strategy in a given
cluster with equal probability. The reverse mapping also assumes that players play
strategies in the same with uniform random probability. For example, if a strategy in
the abstracted game places a probability of 0.5 on playing a given pure strategy, this
probability would be distributed uniformly over all of the strategies that comprise
that cluster in the strategy used to play the original game.

6.4 Candidate Solution Methods

The task of our solution methods is to select a strategy to play in a game.We consider
several candidate solution methods for selecting strategies in abstracted games. All
of these are based on known solution concepts or simple heuristics for playing games,
and they are intended to provide a diverse pool of plausible strategies to evaluate.
Little is known of the interactions among these commonly used solution techniques
in the presence of abstraction or even in different classes of games. Of particular
interest are several solution concepts that originate in behavioral game theory and
have been shown to predict human behavior better than Nash equilibrium and related
concepts. We hypothesize that humans may be adopting these types of strategies in
part because they are more robust to ambiguity and uncertainty.
Uniform Random (UR): Play each pure strategy with equal probability.
Best Response to Uniform Random (BRU): Play the pure-strategy best-response
to UR. It is equivalent to a level-1 strategy in the cognitive hierarchies model [2].
Nash Equilibrium (MSNE): We use Gambit [5] logit solver to calculate a sample
Nash equilibrium in mixed strategies and play according to this strategy.
Epsilon-NashEquilibrium (ENE): For every pure-strategy profile,wefirst calculate
the maximum that value (ε) that any player can gain by deviating to a different pure
strategy.We select the profile with the smallest value of ε (the best approximate Nash
equilibrium in pure strategies) and play the associated pure strategy.
MaxMin: Play the strategy that maximizes the worst-case payoff for the player.
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Fair: This heuristic strategy focuses on outcomes that are “fair” in that there is a
small difference between the payoffs for the players. For every strategy profile we
calculate the difference between the payoffs and select an outcome that minimizes
this difference. Ties are broken in favor of outcomes with a higher sum of payoffs,
and then randomly.
Social: This strategy plays according to the outcome that maximizes the sums of the
payoffs for all players. If there are ties the strategy plays a uniform random strategy
over the strategies in the tied outcomes.
Quantal Response Equilibria (QRE): Quantal Response Equilibrium [13] origi-
nated in behavioral game theory. It incorporates amodel of noisy best-responsewhere
players use a softmax decision rule instead of strict best-response. A logistic function
is normally used to specify this response, and it has a parameter λ that interpolates
between a uniform random strategy when λ = 0 and a best response as λ → ∞. A
QRE is defined similarly to a Nash equilibrium, except that both players play noisy
best-responses to each other for some value of λ. QRE has been shown to provide
a better fit for experimental data on human behavior in some games [13]. QRE has
also been shown to have more robust strategy choices that NE in situations where
players make choices based on noisy observations of an underlying game [11]. We
compute a QRE using Gambit [5] and play a best-response to the predicted QRE
strategy of the opponent.
CognitiveHierarchies (CH): Cognitive Hierarchies [2] also originates in behavioral
game theory. It models a recursive style of reasoning where level-0 agents play a
uniform random strategy, level-1 agents play a best response to the level-0 agents,
level-2 agents play a best response to a mixture over level 0 and 1 agents, etc.
Agents at each level use a Poisson distribution, based on a parameter τ , to predict
the probabilities of playing agents at lower levels, and play a best response to this
mixture.
Quantal Level-k (QLK): Thismethod combines the features of QRE andCH. It uses
a recursive reasoning model identical to CH, except that in place of the best-response
at each level agents play a noisy best-response using the same logit function used in
QRE. It has parameters for both λ and τ . We play a best-response to the predicted
strategy of the opponent, based on the specified level of reasoning.

6.5 Experimental Methodology

We run simulations using the meta-game framework from Sect. 6.2. Our testbed
allows us to run tournamentswith different combinations of (1) classes of base games,
(2) abstraction methods, and (3) solution methods. The simulation first generates a
randomgame from the class as the base game. Eachmeta-strategy is a combination of
an abstraction method and a solution algorithm. We calculate the strategies selected
by eachmeta-strategy and thenplay a round-robin tournament among these strategies.
The payoffs are based on the strategy profile that is played in the original game.
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The result of the tournament is a payoff matrix for the meta-game where each
meta-strategy can be played by either player. To estimate this matrix for a class of
base games we average the payoffs over a large number of sampled games. We can
analyze this payoff matrix to generate several performance metrics for the meta-
strategies. Average payoffs are quite biased, in that they can reward strategies that
only do well against other weak strategies. Instead, we present our results using
stability and average regret measures. Stability is a measure of how close the pure
strategy profile where all players use the same meta-strategy is to being a pure Nash
equilibrium. It is calculated by finding the maximum gain for deviating to another
meta-strategy from this profile. Any value less than or equal to zero indicates that the
profile is a pure equilibriumof the estimatedmeta-game.Average regret is the average
of the regret for playing a given meta-strategy against each other meta-strategy in
the estimated game.

We use three classes of randomly-generated games: general sum, zero sum, and
logical games. General sum and zero sum are generated using GAMUT [6]. Players
have 20 pure strategies, and payoffs are real numbers in the range [–100, 100]. Log-
ical games have more structure and should be more amenable to abstraction. Pure
strategies are based on choosing either 0 or 1 for a set of boolean variables. Pay-
offs are based on randomly generated oppositions with varying numbers of clauses,
literals, and values. If a proposition is true for a given outcome in the game, the
payoff associated with the proposition is added to the payoff for that player. The
payoffs are additive over all true propositions for a given outcome. Finally, payoffs
are normalized to the range [0,100]. We also could not possibly evaluate every level
of abstraction sowe picked several interesting abstraction levels. An abstraction level
of 10 means that there are now 10 actions in the game, Top10 or 10 clusters, and 20
indicates these are the original 20 pure strategies with no abstraction.

6.6 Results

Our experiments are designed to test the relationships between abstraction methods
and solution concepts across different classes of games, and with varying levels of
abstraction. In total, we experiment with three different classes of games, two types
of abstraction, four levels of abstraction, andmore than 30 different solutionmethods
(including multiple parameter settings for QRE, CH, and QLK). The main results
span 24 different tournaments with 500 sample games played in each one.

The full data set is difficult to visualize, so we will present results focusing on
selected subsets of agents to illustrate key points. We focus on measures of stability
and regret here as we believe they are the most informative, but we have also looked
at measures of average payoffs and exploitability. Average payoffs can be mislead-
ing for agents that exploit weak players but perform poorly against strong players.
Exploitability does not differentiate well among the meta-strategies, since almost all
of them are highly exploitable in the worst case.
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We first present a set of results that demonstrates how we compare the different
parameter settings for QRE, CH, andQLK. The purpose of this analysis is to discover
which parameter settings are strongest. In later results we will include only best
parameter settings for each solution method to aid in visualization.

Figures6.2 and 6.3 show results for QRE with different values of the λ parameter.
Each plot shows results for all three classes of games. There are separate plots for
each type of abstraction. The x-axis shows the level of abstraction where the values
are the number of actions in the abstracted game. The point on the far left corresponds
to no abstraction, and more information is lost for data points further to the right.
The y-axis represents the stability (ε) value for each solution method.

Lower stability values are better. In particular, any value less than or equal to 0
indicates that a solutionmethod is a pure-strategyNash equilibrium, and if all players
were using this method none of themwould benefit by deviating to any other solution
method. These stabilities are calculated with respect to the full data set, meaning that
players are allowed to deviate to any solution method, not just the ones in the figure.

In general sum and logical games, the best QRE parameter settings are closer to
playing a best-response to a more random opponent than playing a best-response
to an opponent closer to a Nash equilibrium. For example, the very low parameter
setting of λ = 0.05 performs very well, and this setting is the closest to uniform

Fig. 6.2 TopN stability fixed lamda QRE
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Fig. 6.3 K-means stability for fixed lambda QRE

random. Zero-sum games appear to behave quite differently where playing closer to
an equilibrium strategy performs better.

We perform a similar set of experiment to determine the parameterizations of
CH and QLK agents for the values of k, τ , and λ. We omit them due to space
considerations, but use a similar procedure to identify the most effective parameter
settings to visualize in the later plots. The values of τ considered are 1.5, 2.5, 5, 7.5,
and 9, the values of k are 0, 1, 2, 3, 5, 10, and 20, and the values of λ are 0.8, 1.5,
2.0, 5.0, and 20. For QLK agents we also consider both version that play the raw
QLK strategy and ones that play a best response to the strategy of the opponent for
a particular level. One results to note from this analysis is that for CH agents with
the same τ but different levels of reasoning there is not much difference between
agents withmid-level k versus high level k. Themain variations between these agents
occur at lower levels. However, higher levels of k typically have better, more robust
performance.

We now turn to analysis of the complete set of agents. The following results are
from a fully symmetric tournament of 500 games for each class of games and 30
agents which include the best parameter settings for QRE, CH, QLK, and the other
main solution concepts. We selected the best parameter settings for each of the QRE,
CH, and QLK variants based on the results of the previous analysis to visualize in
these results along with the other agents.
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Figures6.4, 6.5 and 6.6 show the average stability and regret for the different
solutionmethods (excluding the lines for all but the best QRE, CH, andQRE settings)
when using the KMeans and TopN abstractions in different classes of games. We
begin by noting some general trends in the results. The results for logical games in
Fig. 6.6 shows how all of the stability and regret values are very low compared to
both general-sum and zero-sum games. There is also very little variation among each
of the strategies. This indicates that these games are much easier to play well in, even
when they are abstracted. In most cases, agents are more stable for cases without any
abstraction, and less stable but converging to the same range as abstraction increases.
However, regrets are very high for cases without abstraction and lower for cases with
abstraction. Zero-sum games behave somewhat differently; the overall stability is
worse, and the stability of many of the agents actually improves (surprisingly) as
abstraction increases.

There is no solution concept that is clearly the best across all of the settings tested.
Instead, the best strategy depends heavily on both the class of games and the type
of abstraction being used. The UR and Fair agents do poorly in almost all cases.
The ENE and Social agents perform surprisingly well, particularly when using the
TopN abstraction and in the general-sum and logical games. These agents focus on
coordinating on high payoffs, so it is interesting that even these simple strategies are
able to do so well even in cases with abstraction error. For the cases with KMeans
abstraction and for zero-sum games, approaches close to equilibrium solvers perform
better particularly MSNE and the QRE and QLK.

Fig. 6.4 Average stability and regrets for general sum games



90 O. Veliz and C. Kiekintveld

Fig. 6.5 Average stability and regrets for zero-sum games

Fig. 6.6 Average stability and regrets for logical games
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Fig. 6.7 TopN versus
Kmeans in general
sum—abstraction level 5.
The third CH is QLK

While this pattern of results fails to identify a clear winner among the common
solution methods for how to select strategies in abstracted games, the results are still
quite interesting. They clearly show that both the game class and abstraction method
interact strongly with the applied solution concept, and simply finding a NE is not
the best approach. There is also an opportunity to develop significantly improved
solution concepts that account for these factors unlike current practices.

The final experiment we present directly compare the performance of the two
different types of abstractions. In this experiment, players can use either abstraction,
which leads to even more asymmetry in the abstractions players are using.

In Fig. 6.7 we show the average payoffs for the different solution methods in
a tournament that combines agents using both abstractions. We only use the best
parameter settings for the QRE, CH, and QLK agents. This tournament was run on
general-sum games, using the highest level of abstraction (from a game size of 20
down to a game size of 5). For each solution method we show the average payoffs
achieved when using the two abstraction methods side by side. Interestingly, the
TopN abstraction method outperforms KMeans in combination with every one of
the solution methods, often quite substantially. The TopN abstraction plays a role in
coordinating agents on high-payoff outcomes independent the solution algorithm.

6.7 Conclusion

Our results demonstrate that using abstraction to solve games is a complex endeavor,
and the type of abstraction, the solution methods used to analyze the abstracted
games, and the class of games all have a strong influence on the results. Many of the
strongest results using abstraction to analyze large games (e.g., Poker) have focused
on zero-sum games. One of the most interesting observations from our results is that
abstraction often works very differently in zero-sum games than it does general-sum
games or the more structured logical games. In particular, solution methods based
on finding Nash equilibrium seem to work much better in zero-sum games than they
do in the other classes of games in our experiments. Another important observation
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from our experiments is that Nash equilibrium often does not perform well in cases
where abstraction is used as part of the solution process. It is still effective when the
games are zero-sum, but in the other cases it was not robust to the introduction of
error based on game abstraction. The two solution methods that were the most robust
to abstraction error across the many different settings were BRU and QRE. Of the
two, QRE was more consistent and had stronger performance in most cases, but it
was not dominant in all situations.

We also found that the specific method used for generating abstractions has a
strong impact on the results. One very interesting result was that TopN was some-
times able to increase the payoffs for the agents in comparison to the case without
any abstraction. However, TopN is a symmetric abstraction when both players use it,
while KMeans is asymmetric. Some methods like the social agent performed much
better when using the symmetric TopN abstraction than when using the asymmet-
ric KMeans abstraction. This kind of interaction is very important to understand in
greater depth if we are to make effective use of abstraction as part of game-theoretic
analysis. Our model of abstraction meta-games provides a formal model for study-
ing this type of interaction, and our simulations have resulted in several interesting
observations that provoke many additional questions about the use of abstraction in
solving games.

Future work will include other types of abstraction and tests on even larger games.
We plan to also develop new robust solution techniques that can perform well in the
presence of abstraction. It is also important to test on games with more realism like
a simplified version of poker or a security game to examine how general abstraction
and robust strategy selection will perform in these kinds of games.
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