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Exploiting Vagueness for Multi-agent
Consensus

Michael Crosscombe and Jonathan Lawry

Abstract A framework for consensus modelling is introduced using Kleene’s three
valued logic as a means to express vagueness in agents’ beliefs. Explicitly borderline
cases are inherent to propositions involving vague concepts where sentences of a
propositional language may be absolutely true, absolutely false or borderline. By
exploiting these intermediate truth values, we can allow agents to adopt a more vague
interpretation of underlying concepts in order to weaken their beliefs and reduce
the levels of inconsistency, so as to achieve consensus. We consider a consensus
combination operation which results in agents adopting the borderline truth value as
a shared viewpoint if they are in direct conflict. Simulation experiments are presented
which show that applying this operator to agents chosen at random (subject to a
consistency threshold) from a population, with initially diverse opinions, results in
convergence to a smaller set of more precise shared beliefs. Furthermore, if the choice
of agents for combination is dependent on the payoff of their beliefs, this acting as
a proxy for performance or usefulness, then the system converges to beliefs which,
on average, have higher payoff.

Keywords Agent-based modelling · Many-valued logics · Belief aggregation ·
Consensus

5.1 Introduction

Reaching a consensus by agreeing a shared viewpoint or position is a fundamental
part of many multi-agent decision making and negotiation scenarios. In this paper
we argue that by exploiting vagueness in the form of explicitly borderline cases we
can define an operator for belief combination which not only allows a population
of agents to reach consensus but also results in them adopting, on average, a more
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useful set of beliefs. The basic intuition underlying this operator is that conflicting
agents can agree to allocate borderline truth values to propositions about which they
hold inconsistent beliefs. For example, two individuals, one of which believes that
‘Cameron is an effective prime minister’ whilst the other believes that ‘Cameron
is ineffective’, may agree, in some circumstances, to adopt the shared view that
‘Cameron is borderline effective/ineffective’.

Of course, beliefs about the world do not exist in isolation but inform and influ-
ence our decisions and actions. From this perspective, some sets of beliefs are more
positive or useful than others, resulting in better long term performance, perhaps by
making the individuals concerned richer, happier or just better able to survive. More
generally, in a multi-agent context, different beliefs result in different actions, col-
lecting different payoffs. In this paper we present simulation studies which show that
implementing our proposed operator across a population of agents, initially hold-
ing diverse beliefs, results in convergence to a smaller subset of more precise shared
opinions. Furthermore, under the assumption that better performing agents, i.e. those
with higher payoff, are more likely to interact to reach consensus, we show that the
range of beliefs obtained at steady state are on average better, i.e. have higher payoff,
than the agents’ initial beliefs. The formalism adopted here is that of Kleene’s three
valued logic and the operator investigated has been proposed for single propositions
in [2] and extended to multi-propositional languages in [5].

An outline of the paper is as follows: Sect. 5.2 gives a brief overview of consensus
modelling. Section 5.3 introduces Kleene logic and the three valued consensus com-
bination operator. Section 5.4 describes simulation experiments in which agents are
selected at random to form a consensus provided that they are sufficiently consistent
with one another. In Sect. 5.5 we introduce a payoff function for beliefs, so that the
payoff of a particular set of beliefs acts as a proxy for the performance of an agent
holding those beliefs. We then adapt the experiments described in Sect. 5.4 so that the
probability of an agent being selected for consensus is proportional to their payoff.
Finally, in Sect. 5.6 we give some discussions and conclusions.

5.2 Background and Related Work

A number of models for consensus have been proposed in the literature which have
influenced the development of the framework described in this paper. De Groot [3]
introduced a model for reaching a consensus involving a weighted, global updating
of beliefs, iterating until an agreement is reached. In DeGroot’s model, agents assign
a weight distribution to the population before forming a new opinion. By applying
their assigned weights to the other agents’ beliefs, an agent can control the influence
that others have on their own beliefs.

As an alternative to DeGroot’s model, the Bounded Confidence (BC) model intro-
duced in [4] provides agents with a confidence measure. An agent quantifies their
level of confidence in their own opinions and are then able to limit their interactions to
those agents who possess similar beliefs if they are highly confident (small bounds),
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or extend the range of possible interactions if the agents possess low confidence
(large bounds). In this model agents do not a priori assign weights to the beliefs of
others, but instead determine such weightings based on similarity and on their own
confidence levels. This is similar in essence to the inconsistency threshold that we
introduce in Sect. 5.3, but applied on an individual basis.

The Relative Agreement (RA) model [7] then extends the Bounded Confidence
model to allow agents to assign weights to the beliefs of others by quantifying the
extent of the overlap of their respective confidence bounds. By having agents declare
a confidence interval for their beliefs, the model then restricts interactions to those
pairs of agents with overlapping intervals. Consequently, agents are only required to
assess their own beliefs and are not required to make explicit judgements about those
of other agents. Deffuant et al. [7] also moved to a model of pair-wise interactions
to better capture social interactions of individuals, the latter being a setting in which
group-wide updates to beliefs are unintuitive in that they do not reflect typical social
behaviour.

A fundamental difference between our approach and the above models is that we
use Kleene’s three valued logic to represent beliefs in a propositional logic setting,
rather than identify opinions with real values or intervals. Perron et al. [2] have shown
that through use of a three-state model for networked consensus of complete graphs,
nodes converge to a consensus much faster and with greater accuracy when compared
to a restrictive binary model. In the sequel we extend this approach to a more general
setting involving larger languages and incorporating a measure of payoff for beliefs.

5.3 A Three Valued Consensus Model

In this section we introduce Kleene’s three valued logic [10] as a model of explicitly
borderline cases resulting from the inherent vagueness of propositions. We adopt a
propositional logic setting as follows: Let L be a finite language of propositional
logic with connectives ∧, ∨ and ¬, and propositional variables P = {p1, . . . , pn}.
Also, let SL denote the sentences of L generated by recursively applying the
connectives to the propositional variables in the usual manner. A Kleene valuation
then allocates truth values 0 (false), 1

2 (borderline) and 1 (true) to the sentences of
L as follows:

Definition 1 Kleene Valuations
A Kleene valuation v on L is a function v : SL → {0, 1

2 , 1} such that ∀θ, ϕ ∈
SL the following hold:

• v(¬θ) = 1 − v(θ)

• v(θ ∧ ϕ) = min(v(θ), v(ϕ))

• v(θ ∨ ϕ) = max(v(θ), v(ϕ))

The truth table for Kleene valuations are shown in Table 5.1.
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Table 5.1 Kleene truth tables

¬ 1 0
1
2

1
2

0 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

It is sometimes convenient to represent a Kleene valuation v by its associ-
ated orthopair (P, N ) [5], where P = {pi ∈ P : v(pi ) = 1} and N = {pi ∈ P :
v(pi ) = 0}. Notice that P ∩ N = ∅ and that (P ∪ N )c corresponds to the set of
borderline propositional variables.

Kleene valuations have been proposed as a suitable formalism in which to capture
explicitly borderline cases as resulting from inherent flexibility in the definition of
vague concepts in natural language [11, 12]. For example, consider the proposition
‘Ethel is short’. For the concept short, we might identify a lower height threshold h
below which any height is classed as being absolutely short, and similarly there may
be an upper threshold h above which any height is absolutely not short. If Ethel’s
height lay between h and h then this would result in a borderline truth value for the
statement ‘Ethel is short’.

It is important to note that the middle truth value 1
2 is not intended to represent

epistemic uncertainty, but rather explicitly borderline cases resulting from the inher-
ent vagueness of natural language propositions. Hence, if we say that the statement
‘Ethel is short’ is borderline true/false we are not saying that the truth or falsity of this
proposition is unknown. Instead we are indicating that Ethel’s height is a borderline
case of the predicate short. In order to emphasise the difference between the epistemic
and the borderline interpretation of three valued logic it is helpful to think in terms
of conditioning. For instance, if we learn that it is unknown whether or not Ethel is
short, then this provides us with no new information about her height. In contrast,
learning that Ethel is borderline short does provide us with new information about
Ethel’s height, namely that it lies on the borderline between short and not short. A
more comprehensive discussion of these issues can be found in [1]. A consequence
of using this interpretation of the middle truth value is that in the current paper we
only model consensus for sets of propositions which admit borderline cases. In other
words, our approach can be used for propositions such as ‘Ethel is short’ but not, for
example, for the proposition ‘Ethel is strictly less that 1.4 m tall’.

The following three valued consensus operator was described in detail in [5]:

Definition 2 Consensus Operator
Let v1 and v2 be Kleene valuations on L with associated orthopairs (P1, N1) and

(P2, N2). Then the consensus v1 
 v2 is the Kleene valuation with the orthopair

((P1 − N2) ∪ (P2 − N1), (N1 − P2) ∪ (N2 − P1))
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Table 5.2 Truth table for the
consensus operator


 1 1
2 0

1 1 1 1
2

1
2 1 1

2 0

0 1
2 0 0

The corresponding truth table for this operator is shown in Table 5.2. From this we
can see that the operator preserves the non-borderline truth values 0 or 1 except in the
case of a direct conflict i.e. when one agent has truth value 1 and the other 0. In this
case both agents adopt the middle truth value 1

2 . Alternatively, from Definition 2 we
can think of 
 as an operator which initially weakens both opinions so as to remove
direct inconsistencies, before then combining them.

We now introduce two measures that will be used throughout the subsequent
simulation experiments.

Definition 3 A Measure of Vagueness
Let v be a Kleene valuation on L with orthopair (P, N ) and n propositional

variables. Then we measure the vagueness of v by the proportion of propositional
variables which it classifies as being borderline. That is:

V (v) = |(P ∪ N )c|
n

Definition 4 Inconsistency Measure
Let v1 and v2 be Kleene valuations on L with corresponding orthopairs (P1, N1)

and (P2, N2). Then we define the inconsistency measure of v1 and v2 to be the
proportion of propositional variables which are in direct conflict between the two
valuations i.e. v1(pi ) �= 1

2 , v2(pi ) �= 1
2 and v1(pi ) = 1 − v2(pi ). That is:

I (v1, v2) = |(P1 ∩ N2)| + |(P2 ∩ N1)|
n

Table 5.3 shows the inconsistency truth table of two valuations for a propositional
variable, highlighting the cases where two valuations are inconsistent, and consistent
otherwise. We can see that there is a probability of 2

9 that two valuations will be
inconsistent for each propositional variable in the language. In the sequel we will
propose a threshold γ ∈ [0, 1] on inconsistency so that valuations v1 and v2 can be
combined only if I (v1, v2) ≤ γ .

Table 5.3 Inconsistency
truth table

I 1 1
2 0

1 0 0 1
1
2 0 0 0

0 1 0 0



72 M. Crosscombe and J. Lawry

5.4 Simulation Experiments Based on Random Selection
of Agents

We introduce simulation experiments in order to investigate the convergence proper-
ties of the three valued logic operator when implemented across a multi-agent system.
The experimental set up is loosely based on those proposed in [7, 9], although our
representation of opinions is quite different with beliefs taking the form of Kleene
valuations on L , rather than vectors of bounded real numbers.

We will consider two distinct initialisations of the beliefs of a population of
agents. The random three valued initialisation allocates the truth values 0, 1

2 and 1
to each agent and each propositional variable at random i.e. with probability 1

3 for
each truth value. In contrast, the random Boolean initialisation only allocates the
binary truth values 0 and 1, each with a probability of 1

2 . This latter initialisation
will be required in Sect. 5.5 in order to directly compare the proposed three valued
combination operator with a similar two valued operator. In this section we will use
the random three valued initialisation in order to investigate the extent to which the
three valued operator results in convergence to a shared set of opinions across the
population of agents.

We set a fixed maximum number of 50, 000 iterations.1 At each time step a pair of
agents are selected at random from the population. An inconsistency threshold value
γ ∈ [0, 1] is set, so that for any pair of agents with respective valuations v1 and v2,
if I (v1, v2) ≤ γ then both agents replace their beliefs with the consensus valuation
v1 
 v2, while if I (v1, v2) > γ then no combination is performed and both agents
retain their original beliefs. For γ = 1 we obtain what is equivalent to the totally
connected graph model described in [2], in which any pair of agents can combine
their beliefs, whilst taking γ = 0 corresponds to the most conservative scenario in
which only absolutely consistent beliefs can be combined. The parameters for the
simulation experiments are then as follows:

• Population size: 100
• Language size i.e. |P| = n: 5, 10, 50, 100
• Initial beliefs: Random three valued.
• Inconsistency threshold: γ ∈ [0, 1].

Figures 5.1 and 5.2 show the results for the experiments after 50, 000 iterations.
In each case the plots show mean values with error bars representing standard devi-
ation across 100 independent runs of the simulation. Figure 5.1 shows the average
vagueness determined by taking the mean value of V (v) (Definition 3) across the
population. Note that for a random three valued initialisation of beliefs we expect a
mean vagueness value of 1

3 at the start of the simulation. As the threshold γ increases
then the average vagueness decreases to zero, so that for γ ≥ 0.3 we are left with
almost entirely crisp (i.e. Boolean) opinions. In general the more conservative the

1In preliminary experiments we found that 50, 000 was an upper bound on the number of iterations
required for the system to reach steady state across a range of parameter settings.
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Fig. 5.1 Average vagueness after 50, 000 for varying inconsistency thresholds γ and language
sizes

Fig. 5.2 Number of distinct valuations after 50, 000 iterations for varying inconsistency thresholds
γ and language sizes

combination rules (i.e. requiring higher levels of consistency) then the more it is
that vague beliefs are maintained in the population. Figure 5.2 shows the number of
distinct valuations (i.e. different opinions) remaining in the population after 50, 000
iterations. Again this decreases with γ and for γ > 0.4 agents have on average con-
verged to a single shared belief. This is consistent with the analytical results presented
in [2] for the single propositional, γ = 1 case.

5.5 Simulation Experiments Incorporating a Payoff Model

In this section we extend the simulation framework described in Sect. 5.4 to allow for
different payoffs for different beliefs. As outlined in Sect. 5.1, payoff is introduced as
a proxy for performance, and is motivated by the intuition that different beliefs result



74 M. Crosscombe and J. Lawry

in different actions which then, over time, lead to different levels of performance. Here
we adopt an abstract simplification of this process in which each Kleene valuation
is allocated a real valued payoff. Then, instead of being selected at random for
combination, an agent is picked from the population according to a probability which
is proportionate to the payoff value of their beliefs. The idea, then, is that agents with
better or more useful opinions will be more successful and furthermore, it will be
these successful agents who will be most likely to need to reach a consensus between
them.

Here the underlying intuition is that, in real systems it is the most successful
agents, with the highest payoff values, who are most likely to find themselves in
conflict with one another, and who will most benefit from reaching an agreement.
We adopt a simple summative payoff model in which each propositional variable pi
is allocated a value in the range [−1, 1], denoted f (pi ), and the payoff for a valuation
with orthopair (P, N ) is then calculated as follows:

f (P, N ) =
∑

pi∈P

f (pi ) −
∑

pi∈N
f (pi )

Another perspective on this type of payoff function is as follows: For each proposi-
tional variable pi , a truth value of 1 results in a payoff f (pi ) (which can be either
positive or negative), a truth value of 0 results in the opposite signed payoff − f (pi ),
and a borderline truth value 1

2 results in a neutral payoff of 0. The payoff value for
a Kleene valuation v is then simply taken to be the sum of the payoffs for each
propositional variable under the truth values allocated by v.

Based on payoff values we define a probability distribution over the agents in the
population according to which the probability that an agent with beliefs (P, N ) is
selected for possible consensus combination is proportional to f (P, N ) + n. At each
iteration a pair of agents are selected at random according to this distribution. For
each such pair the inconsistency measure (Definition 4) is evaluated and either both
the valuations are replaced with the consensus valuation, or both are left unchanged,
depending on the threshold γ as in Sect. 5.4. The parameters for the simulation
experiments are as follows:

• Population size: 100
• Language size: 5
• Initial beliefs: Random Boolean.
• Inconsistency threshold: γ ∈ [0, 1]

Notice that here we are initialising the beliefs as random Boolean valuations (see
Sect. 5.4).2 This allows us to make a direct comparison between the performance
of the three valued combination operator and a similar two valued operator. For the
latter we assume that only binary truth values are available to represent an agent’s
beliefs. In this context, in order for two agents with conflicting truth values for pi

2As a result of this Boolean initialisation, a language size of 5 now produces a total of 25 (32)
possible valuations, as opposed to 35 (243) possible valuations.
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Table 5.4 The truth table for
the stochastic Boolean
consensus operator

Binary operator 0 1

0 0 0 : 1
2 , 1 : 1

2

1 0 : 1
2 , 1 : 1

2 1

(i.e. one 0 and the other 1) to reach consensus, we propose that they simply agree
to pick one of the truth values at random e.g. by tossing a fair coin. Table 5.4 gives
the truth table for the operator in which directly conflicting truth values leads to a
stochastic outcome.

The focus on simulations with 5 propositional variables is intended to increase the
number of opinions relative to the size of the population, in order to achieve a good
distribution of valuations. For example, a language size of 5 allows for 32 possible
Boolean valuations. With a population of 100 agents, it is therefore very likely that
each opinion will occur at least once. In comparison, a language size of 10 produces
1, 024 possible Boolean valuations which severely decreases the probability of an
opinion being present in a population of the same size.

Figures 5.3, 5.4 and 5.5 show the results for simulation experiments with agent
selection based on payoff. The results shown are mean values with error bars taken
over 100 independent runs of the simulation. Figure 5.3 shows the average popula-
tion payoff after 50, 000 iterations given as a percentage of the maximal possible
payoff value i.e. the payoff for the valuation (P, N ) where P = {pi : f (pi ) > 0} and
N = {pi : f (pi ) < 0}. For both the binary and the three valued operators we show
results for simulations in which agents are selected according to payoff (three-valued,
Boolean) and at random as in Sect. 5.4 (three-valued random, Boolean random). We
see that for all values of γ , the three valued operator with payoff based selection
outperforms all of the other approaches. For the former we can also see that average
payoff increases with γ . In contrast, for the other approaches, including the payoff
operator with payoff based selection, the mean of the average population payoff
remains close to 0 after 50, 000 iterations. Figure 5.4 shows the mean number of

Fig. 5.3 Average payoff after 50, 000 iterations for varying inconsistency thresholds γ , shown as
a percentage of the maximal payoff
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Fig. 5.4 Number of distinct valuations after 50, 000 iterations for varying inconsistency thresh-
olds γ

Fig. 5.5 Trajectory showing the number of distinct valuations plotted against iterations for γ = 0.7

distinct valuations across the population of agents after 50, 000 iterations. All four
versions of the operators converge on a small set of shared beliefs for sufficiently
large γ . For γ ≥ 0.4 the mean number of distinct valuations is less than 5 while for
γ ≥ 0.8 it is 1. Figure 5.5 shows a trajectory of how the number of distinct valua-
tions varies with each iteration when γ = 0.7. We can see that both the three-valued
models converge quickly (in just over 2000) iterations while the Boolean models
require considerably longer to converge (over 20, 000 iterations).

5.6 Conclusions

In this paper we have explored the use of Kleene’s three valued logic as a framework
in which to model multi-agent consensus formation. We have proposed a three val-
ued combination operator, the intuition behind which is that conflicting binary truth
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values are replaced with a borderline (middle) truth value. A number of simulation
experiments have been presented employing this operator. These can be divided into
two main categories. For the first type of experiments, agents are selected at ran-
dom from the population and form a consensus valuation providing that the level
of inconsistency of their respective opinions is below a threshold parameter γ . Oth-
erwise they do not form a consensus and instead retain their current opinions. For
these experiments we found that there is convergence to a smaller subset of shared
opinions across the population. For higher γ values there is convergence on aver-
age to a single shared opinion and furthermore this opinion is crisp i.e. it admits no
borderlines. For intermediate values of γ the system convergences to a small set of
opinions which to some extent remain vague.

In the second type of experiments a payoff function over beliefs is introduced,
and agents are selected for possible combination with probability proportional to
the payoff value of their current beliefs. Here we compare the three value operator
with a similar stochastic Boolean operator. We find that the three valued operator
with payoff based agent selection results in convergence to a smaller shared set of
beliefs with significantly higher average payoff than that of the initial population.
The Boolean operator does not perform well in this context and does not result in a
significant increase in average payoff, which instead remains close to 0 after 50, 000
iterations.

The results of the payoff based experiments show how a three valued model for
consensus provides a number of improvements over a traditional Boolean model.
Firstly, we have shown that the introduction of Kleene valuations to capture the
inherent vagueness of propositions does not, in the long run, lead to the mass adoption
of borderline truth values as a result of conflict occurring in the population. Instead,
we have seen how vagueness is reduced at lower γ values, and at higher γ values
the population converges towards completely crisp opinions on average, admitting
no borderline cases. In addition to this, we can see that the introduction of a payoff
based model drives consensus towards those valuations which result in higher payoff
on average. By selecting pairs of agents based on their perceived success, we can
achieve an increase to overall payoff in a small number of iterations, compared to
no significant increase in payoff for the Boolean model. Therefore, we have shown
that the three valued approach incorporating a payoff model can drive convergence
across the population towards more successful opinions.

We suggest that the experiments presented in this paper show the potential of
using three valued logic in consensus modelling. There is also significant scope to
extend the research presented in several new directions. For example, the above stud-
ies concern consensus defined at the level of propositional variables. However, in
many cases agents will be most concerned to reach agreement about a relevant set of
compound statements. For example, they may need to reach agreement about a par-
ticular set of conditional statements, or equivalences. Hence, an important question
is that of how best to extend our proposed consensus model so as to be applicable
to compound logical expressions. Another significant question concerns uncertainty.
Suppose that in addition to vagueness agents also quantify their uncertainty about
beliefs. Lawry and Dubois [5] propose an extension of the three valued framework
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in which agents’ beliefs are represented by a probability distribution over Kleene
valuations. Ongoing research concerns the design of simulation studies in which
to evaluate the convergence and payoff based performance of this extended model.
Finally, it would be interesting to consider extensions to the operator which allows
for consensus between groups rather than just pairs of agents.
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