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Multi-objective Nurse Rerostering Problem
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Abstract How to schedule a limited number of nurses in hospital wards staffed
24h a day is important issue for the satisfactory patient care and potentially improve
nurse retention. Nurse Scheduling Problem (NSP) is a combinatorial optimization
problem, in which a set of nurses must be assigned into a limited set of working slots,
subject to a given set of hard and soft constraints. Various sophisticated algorithms
have been developed for solving a NSP. It is natural to consider the scheduled nurse’s
unexpected absences, e.g., illness, accident and injury. Nurse Rerostering Problem
(NRP) is a dynamic NSP where the aim is to reschedule the current roster so that
the number of changes of assignments between current and modified schedules is
minimized. In this paper, the focus is laid on NRP with multiple criteria and the
“egalitarianism” among nurses in amodified schedule. A formal framework ofMulti-
Objective Nurse Rerostering Problem (MO-NRP) is defined where the aim is to
find trade-off solutions among “optimality” and “stability”. Also, a novel solution
criterion called an egalitarian solution for a MO-NRP is introduced.
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10.1 Introduction

Nurse Scheduling Problem (NSP) [1, 6, 8, 12] is one of the widely investigated
application problems in operations research (OR) and artificial intelligence (AI). It
is well known that a NSP can be represented as an weighted constraint satisfaction
problem (WCSP) [1, 14] where the aim is to find an assignment that satisfies all
hard constraints and minimizes the sum of all violated costs of soft constraints. In
order to provide the satisfactory patient care and potentially improve nurse retention,
creating a good schedule for nurses is an important issue. However, since there are
many constraints which must be satisfied, making an ideal schedule for both nurses
and the hospital is intractable, and that is why the scheduler (e.g. head nurse in
many cases) spends a lot of time to find a feasible schedule. Various sophisticated
complete and incomplete algorithms have been introduced for solving a NSP in order
to generate better nurse schedules and solve large-scale problems [2, 7, 9, 15].

Nurse Rerostering Problem (NRP) [16, 19, 21] is a dynamic NSP where the aim
is to reschedule the current roster/schedule so that the number of changes of assign-
ments between current and modified rosters/schedules is minimized. It is natural to
consider the scheduled nurse’s unexpected absences, e.g., illness, accident and injury
of a nurse, after the scheduler created a roster with difficulty. When an absence is
announced, the scheduler must find a nurse who can fill the vacancy of the absentee
and the current schedule must be rebuilt as soon as possible. Most previous works
on NRP have been investigated the stability of a modified schedule, i.e., a modified
schedule should be similar to the previous one as much as possible.

The egalitarianism among nurses is an expected property of a NRP. Assume that
the number of changes of all assignments in a modified schedule is small and it is
also optimal (i.e. all hard constraints are satisfied and the sum of the violation costs of
soft constraints is minimized). However, what happen if one nurse needs to change
her assignments a lot in a modified schedule, while other nurses not. Clearly, the
nurse who should change a lot complains about the modified schedule.

In this paper, the focus is laid on NRP with multiple criteria and the egalitarian-
ism among nurses in a modified schedule. A formal framework for Multi-Objective
Nurse Rerostering Problem (MO-NRP) is defined which is the extension of a mono-
objective NRP. In this framework, the both stability and optimality are considered
simultaneously. More specifically,MO-NRP is modeled by using the framework of
a multi-objective WCSP [20] where the aim is to find an assignment that satisfies all
hard constraints and minimizes the sum of violated costs of all objective functions.

Furthermore, a novel solution criterion called egalitarian solution for aMO-NRP
is defined. In an egalitarian solution, the nurses share the changes of their shift works,
i.e., minimize the maximal number of changes of assignments among nurses.

In a MO-NRP, since trade-offs exist among objectives, there does not generally
exist an ideal assignment, which minimizes all objectives simultaneously. Thus,
the optimal solutions of aMO-NRP is characterized by using the concept of Pareto
optimality. An assignment is Pareto optimal if there does not exist another assignment
that weakly improves all of the objectives. Solving aMO-NRP is to find Pareto front
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which is a set of cost vectors obtained by all Pareto optimal solutions (i.e. trade-
off solutions among stability and optimality). MO-NRP can be represented using
a graph called a constraint graph [22] in which nodes correspond to variables and
each edge represents a constraint. In a MO-NRP, even if a constraint graph has the
simplest tree structure, the size of Pareto front becomes exponential in the number
of variables, i.e., all assignments are Pareto optimal solutions in the worst case.

The rest of the paper is organized as follows. In the next section, the formalizations
of NRP and MO-WCSP are provided. Afterwards, the framework for MO-NRP is
presented and the formal definition of an egalitarian solution for a MO-NRP is
defined. Finally, we conclude this paper and give some future works.

10.2 Preliminaries

In this section, the models of nurse rerostering problem (NRP) and multi-objective
weighted constraint satisfaction problem (MO-WCSP) are briefly described.

10.2.1 Nurse Rerostering Problem

Nurse Rerostering Problem (NRP) [16, 19, 21] is a dynamic nurse scheduling prob-
lem where the aim is to reschedule the current roster so that the number of changes
of assignments between current and modified schedules is minimized, i.e., solving
a NRP is to find a stable solution. In general, the constraints are dependent on the
requirements of both nurses and hospitals. The following is the hard and soft con-
straints, which are frequently used in previousworks. Note that some hard constraints
are used as soft constraints and vice versa. It depends on the hospitals.

Hard Constraints

H1: Prohibited working patterns must be avoided (e.g. one should not assign a nurse
for 7 consecutive works and 3 consecutive night shifts).

H2: In order to provide the satisfactory patient care, there exists the required number
of nurses for each shift in a day (e.g., at least 3 nurses must be assigned to the
morning and 2 nurses for evening and 1 nurse for night shifts).

H3: For each nurse, the number of day-offs in a current schedule should not be less
than that in a modified schedule.

H4: Each newcomer should be assigned together with a skillful nurse, i.e., she has
to work with a head nurse or a highly experienced nurse.

H5: Nurses must rest at least 16h between two consecutive shift works, e.g., in case
a nurse is assigned to the night shift (0:00–8:00), morning (8:00–16:00) and
evening shifts (16:00–24:00) should not be assigned.
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Soft Constraints

S1: For each shift work (morning/evening/night), the required skill level of assigned
nurses should be satisfied (e.g. for each shift work, at least one head nurse or
one highly experienced nurse must be assigned).

S2: Day-offs of nurses in a current schedule should not be changed, i.e., the scheduled
day-offs after modification must be same as much as possible.

S3: Requests of nurses (e.g. the preferred working patterns and specially the day-off
requests) should be satisfied as much as possible.

Objective: Minimize the number of changes of shift works between current and
modified schedules, i.e., the aim is to find a stable solution.

10.2.2 Multi-objective WCSP

Multi-Objective Weighted Constraint Satisfaction Problem (MO-WCSP) [20] is the
extension of a mono-objective WCSP [1, 14] where the aim is to find an assignment
that satisfies all hard constraints and minimizes the sum of all violated costs of soft
constraints. Let k be the number of objectives. MO-WCSP is defined by a tuple MO-
WCSP = 〈X, D,C, S, Φ〉, where X = {x1, x2, ..., xn} is a set of variables, D = {d1,
d2, ..., dm} is a set of domains, C = {C1,C2, ...,Ck} is a set of hard and soft con-
straints, S = {S1, S2, ..., Sk} is a set of valuation structures, andΦ = {φ1, φ2, ..., φk}
is a set of multi-objective functions. For each objective i (1 ≤ i ≤ k), Ci = Ci

h ∪ Ci
s

is the union of hard and soft constraints, where Ci
h is a set of hard constraints and

Ci
s shows a set of soft constraints, S

i = (Ei ,
∑

,<) is the valuation structure, where
Ei = N ∪ {∞}, ∑ is the standard sum over N and all elements of E are ordered by
the operator <, and φi : Ci → Ei is a cost function. Let A be an assignment to all
variables. For an objective i , the valuation of A for constraint c ∈ Ci is defined as:

φi (A, c) =

⎧
⎪⎨

⎪⎩

0 c ∈ Ci
h is satis f ied by A,

∞ c ∈ Ci
h is violated by A,

φi (A, c) c ∈ Ci
s,

and the overall valuation of A is given by

φi (A) =
∑

c∈Ci

φi (A, c).

Then, the sum of the violation costs of all cost functions for k objectives is defined
by a cost vector, denoted

Φ(A) = (φ1(A), φ2(A), ..., φk(A)).
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Finding an assignment that minimizes all objective functions simultaneously is ideal.
However, in general, since trade-offs exist among objectives, there does not exist such
an ideal assignment. Therefore, the “optimal” solution of a MO-WCSP is charac-
terized by using the concept of Pareto optimality. This problem can be represented
using a graph (called a constraint graph [22]), in which each node corresponds to a
variable and each edge represents a constraint. In a MO-WCSP, even if a constraint
graph has the simplest tree structure, the number of Pareto optimal solutions is often
exponential in the number of variables in the worst case.

Definition 1 (Dominance) For a MO-WCSP, two cost vectors Φ(A) = (φ1(A),
φ2(A),..., φk(A)) andΦ(A′) = (φ1(A′), φ2(A′),..., φk(A′)), we call thatΦ(A) dom-
inates Φ(A′), denoted by Φ(A) ≺ Φ(A′), iff Φ(A) is partially less than Φ(A′), i.e.,
it holds

• φi (A) ≤ φi (A′) for all objectives i , and
• there exists at least one objective i ′, such that φi ′(A) < φi ′(A′).

Definition 2 (Pareto optimal solution) For a MO-WCSP, an assignment A is said
to be Pareto optimal solution, iff there does not exist another assignment A′, such
that Φ(A′) ≺ Φ(A).

Definition 3 (Pareto Front) For a MO-WCSP, a set of cost vectors obtained by
Pareto optimal solutions is said to be Pareto front. Solving a MO-WCSP is to find
Pareto front.

Example 1 (MO-WCSP) Consider the complete graph (i.e. each node has constraints
with all other nodes) of a bi-objective WCSP with three variables x1, x2 and x3 (see
Fig. 10.1). Each node represents a variable and each edge corresponds to a constraint
between two variables. Each variable takes its value from finite, discrete domain
{0, 1}. The table shows the cost vectors for each constraint. For example, for the
constraint between x1 and x3 (middle in the table), in case x1 takes the value 0
and x3 takes 1, the obtained cost vector is (0, 3), i.e., the violation cost is 0 for
objective 1 and 3 for objective 2. The cost∞ in the table means that it violates a hard
constraint. Pareto optimal solutions of this problem are {{(x1, 0), (x2, 1), (x3, 0)},
{(x1, 0), (x2, 1), (x3, 1)}} and the obtained Pareto front is {(3, 6), (4, 5)}.

x1 x2 cost x1 x3 cost x2 x3 cost
0 0 (∞,0) 0 0 (3,1) 0 0 (1,3)
0 1 (0,1) 0 1 (0,3) 0 1 (2,∞)
1 0 (∞,1) 1 0 (3,2) 1 0 (0,4)
1 1 (∞,0) 1 1 (2,1) 1 1 (4,1)

Fig. 10.1 Example of a bi-objectiveWCSPwith three variables x1, x2 and x3. Each node represents
a variable and each edge corresponds to a constraint between two variables. Each variable takes its
value from discrete domain {0, 1}. Table shows the cost vectors for each constraint. Pareto optimal
solutions are {{(x1, 0), (x2, 1), (x3, 0)}, {(x1, 0), (x2, 1), (x3, 1)}} and Pareto front is {(3, 6), (4, 5)}
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10.3 Multi-objective Nurse Rerostering Problem

In order to consider minimizing the number of constraint violations (optimality) and
the number of changes of assignments (stability) simultaneously in a NRP, i.e., NRP
with multiple criteria, a Multi-Objective Nurse Rerostering Problem (MO-NRP) is
formalized. Moreover, a novel solution criterion called an egalitarian solution for a
MO-NRP is defined. First, let us describe the following basic terms for aMO-NRP.

• N = {1, ..., n} is a set of ID-numbers for nurses.
• M = {1, ...,m} is a set of days in a scheduling period.
• X = {x11, ..., xnm} is a set of variables.
• W = {o,m, e, n} is a set of shift works, where o = {day-off}, m = {morning}
(8:00–16:00), e = {evening} (16:00–24:00) and n = {night} (0:00–8:00).

• L = {l1, ..., l5} is a set of skill levels of nurses where l1 = {head nurse}, l2 =
{highly experienced}, l3 = {experienced (i.e. more than 3 years)}, l4 = {few years
experience (i.e. 1-2 years)} and l5 = {newcomer}.

• αl : N → L is a mapping which provides the skill level of a nurse, e.g., for a head
nurse i ∈ N , her skill level can be obtained by αl(i) = l1.

A (n × m)-table is said to be a master schedule and is denoted as MScurrent for a
current schedule and MSmod for a modified schedule after unexpected absences of a
nurse. One can see that MScurrent is a solution of NSP and MSmod is that of NRP.

Definition 4 (Stability) For twomaster schedules MScurrent and MSmod , eachwi j ∈
W in MScurrent and each w′

i j ∈ W ′ in MSmod , and a non-negative integer r , MSmod

is said to be r-stable, iff the sum of the changes of assignments is bounded by r , i.e.,

∑

i, j

g(wi j , w
′
i j ) ≤ r, where g(wi j , w

′
i j ) =

{
0 wi j = w′

i j ,

1 otherwise.

Example 2 Consider a master schedule for a week of 7 nurses. Table10.1 (left)
represents the current master schedule MScurrent which satisfies all hard constraints
provided in Sect. 10.2, i.e. hard constraints from H1 to H5. Assume that nurse n5
has an unexpected absence on Monday and cannot work her morning shift work m.
Table10.1 (right) shows a modified master schedule MSmod . The morning shift of n5
on Monday has been changed from m to absence in MSmod (denoted by �). From
the hard constraint H2, i.e., at least 3 nurses must be assigned to the morning shift
and 2 for evening and 1 for night shifts, nurse n1 works the morning shift work m
instead of n5 in MSmod . In order to satisfy all hard constraints, nurse n1 changes
her shift works (i.e. evening shifts e) on Friday, Saturday and Sunday in MScurrent
to night shift n on Friday, day-off o on Saturday and morning shift m on Sunday in
MSmod . Also, nurse n5 changes her night shift n on Friday, day-off o on Saturday
andmorning shiftm on Sunday in MScurrent to evening shifts e on these three days in
MSmod . Since the number of changes of shift works between MScurrent and MSmod

is 8 (including the absence of nurse n5 on Monday), MSmod is r = 8-stable.
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Table 10.1 Example of MScurrent for a week of 7 nurses (left) and a modified schedule MSmod
(right). Nurse n5 had an unexpected absence on Monday (denoted by ). Red fonts show the
modified shift works. Nurse n1 changes her shift works (i.e. evening shifts e) on Friday, Saturday
and Sunday in MScurrent to night shift n on Friday, day-off o on Saturday and morning shift m on
Sunday in MSmod . Nurse n5 changes her night shift n on Friday, day-off o on Saturday and morning
shift m on Sunday in MScurrent to evening shifts e on these three days in MSmod . The MSmod is
r = 8-stable

MScurrent
Nurse Level M T W T F S S

n1 (l1) o m m m e e e
n2 (l2) e e n o m m m
n3 (l3) m m m e e n o
n4 (l3) m e e n o m n
n5 (l4) m m e e n o m
n6 (l4) n n o m m e e
n7 (l5) e o m m m m m

MSmod
Nurse Level M T W T F S S

n1 (l1) m m m m n o m
n2 (l2) e e n o m m m
n3 (l3) m m m e e n o
n4 (l3) m e e n o m n
n5 (l4) m e e e e e
n6 (l4) n n o m m e e
n7 (l5) e o m m m m m

The framework for MO-NRP is defined as follows.

Definition 5 (MO-NRP) A multi-objective nurse rerostering problem is a tuple

MO-NRP = 〈X,W, L ,C, S, MScurrent , Φ〉,

where X is a set of variables, W is a set of domains, L is a set of skill levels, C and
S are same as a MO-WCSP, MScurrent is the current schedule, Φ = {φopt , φstable}
is a set of cost functions where φopt is a cost function for optimality and φstable is
that for stability. For a value assignment A to all variables, the sum of the violation
costs and the number of the changes of assignments are given by a vector Φ(A) =
(φopt (A), φstable(A)). Solving aMO-NRP is to find Pareto optimal solutions so that

1. all hard constraints are satisfied,
2. the sum of the violation costs of soft constraints is minimized (i.e. optimality),
3. the number of the changes of assignments is minimized (i.e. stability).

In previous works on NRP, the aim is to find an assignment so that the number of
the changes of assignments between current and modified schedules is minimized,
i.e., solving a NRP is to find a stable solution. On the other hand, in a MO-NRP,
bi-objectives are considered simultaneously, namely optimality and stability. In this
framework, one can easily define several objective functions (i.e.φopt1 ,φopt2 ,...,φoptp )
instead of only one objective function φopt by considering each soft constraint as an
objective function. For the simplicity, this paper definesφopt for optimality like classic
NSP. Such simplification can be done by aggregating all objective functions which
is called an AOF technique [17] (or in other words, linear sum and scalarization
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methods). Note that this technique can be utilized among objective functions for
optimality and not for objective functions for optimality and stability, i.e., it makes
no sense to aggregate the costs and the number of changes.

Definition 6 (s-vector) Let MSmod be a modified master schedule. For a nurse i
(1 ≤ i ≤ n), let si be the number of changes of assignments from a current master
schedule to MSmod . The number of changes of assignments for all nurses is said to
be a s-vector w.r.t. MSmod and denoted by vs = (s1, ..., sn).

Definition 7 (Equivalence) For two s-vectors vs = (s1, ..., sn) and vs ′ = (s ′
1, ..., s

′
n)

w.r.t. MSmod , vs and vs ′ are said to be equivalent, iff it holds

n∑

i=1

si =
n∑

i=1

s ′
i

Let Vs be a set of equivalent s-vectors w.r.t. MSmod and �lex be the total preorder
over Vs defined ∀vs, vs ′ ∈ Vs as vs �lex vs ′ if and only if lexically reordered vs pre-
cedes lexically reordered vs ′ . For example, let vs = (4, 1, 3, 2, 2) and
vs ′ = (4, 0, 3, 2, 3) be two equivalent s-vectors (i.e.

∑5
i=1 si = 4 + 1 + 3 + 2 +

2 = 12 = 4 + 0 + 3 + 2 + 3 = ∑5
i=1 s

′
i ). The corresponding reordered vectors are

vs = (4, 3, 2, 2, 1) and vs ′ = (4, 3, 3, 2, 0). Compare the 1st components of vs and
vs ′ . In case they are same, the 2nd components are compared. Continue to compare
until one of two components is smaller than the another one. In this example, for
the 3rd components, since 2 of vs is smaller than 3 of v′

s , the vector vs is lexically
smaller than v′

s (i.e. vs �lex vs ′ ).

Definition 8 (Egalitarianism) For amodifiedmaster scheduleMSmod and a s-vector
vs w.r.t. MSmod , vs is said to be an egalitarian solution of MSmod , iff there does not
exist another equivalent s-vector vs ′ w.r.t. MSmod , such that

vs ′ �lex vs,

i.e., minimizing the maximal number of changes among nurses.

Example 3 Consider the master schedules in Table10.2. The MSmod is the master
schedule presented inTable10.1 and theMS′

mod shows an alternativemaster schedule.
The s-vectors vs w.r.t. MSmod and vs ′ w.r.t. MS′

mod are

vs = (4, 0, 0, 0, 4, 0, 0), vs ′ = (2, 0, 1, 1, 4, 0, 0).

Since the number of changes of assignments is 8, the MS′
mod is also r = 8-stable,

i.e., vs and vs ′ are equivalent. The lexically reordered vectors of vs and vs ′ are

vs = (4, 4, 0, 0, 0, 0, 0), vs ′ = (4, 2, 1, 1, 0, 0, 0).
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Table 10.2 MSmod (left) is themodified schedule used inExample 2.MS′
mod (right) is an alternative

modified schedule which is also 8-stable like MSmod . The MS′
mod is more egalitarian than MSmod

MSmod
Nurse Level M T W T F S S

n1 (l1) m m m m n o m
n2 (l2) e e n o m m m
n3 (l3) m m m e e n o
n4 (l3) m e e n o m n
n5 (l4) m e e e e e
n6 (l4) n n o m m e e
n7 (l5) e o m m m m m

MSmod
Nurse Level M T W T F S S

n1 (l1) m m m m e o e
n2 (l2) e e n o m m m
n3 (l3) m m m e n n o
n4 (l3) m e e n o m m
n5 (l4) m e e e e n
n6 (l4) n n o m m e e
n7 (l5) e o m m m m m

The s-vector vs ′ w.r.t. MS′
mod is more egalitarian than vs , i.e., vs ′ � vs . Compared to

MSmod , four nurses (i.e. n1, n3, n4 and n5) share the changes of their shift works in
MS′

mod , while only two nurses (i.e. n1 and n5) changes their assignments in MSmod .

10.4 Experiments

In this section, an egalitarian solution for a MO-NRP is computed by using the Lp
solver (Lp solve IDE 5.5.2.0). In the experiments, a master schedule is created. Then,
the modified schedules are generated by absenting any nurse in the master schedule.
The experimental setting is as follows.

• Period: one week (from Monday M to Sunday S).
• The number of nurses: 7 (n1, n2,..., n7).
• Hard constraints

– One should not assign a nurse for 7 consecutive works and 3 consecutive night
shifts (H1).

– At least 2 nurses must be assigned to the morning and 2 nurses for evening and
1 nurse for night shifts (H2).

– For each nurse, the number of day-offs in a current schedule should be same in
a modified schedule (H3).

– Nurses must rest at least 16 hours between two consecutive shift works (H5).

• Soft constraint: In each day, at least one head nurse or one highly experienced
nurse must be assigned (S1).

• Objective 1: Minimize the number of violations of the soft constraint.
• Objective 2: Minimize the number of changes between the master and modified
schedules.
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The following shows the Lp program we used in the experiments in order to com-
pute the number of changes of assignments (i.e. objective 2). Let N = {i | 1, ..., n}
be a set of nurses, M = { j | 1 ≤ j ≤ m} be a set of days in a schedule period, and
W = {k | 1 ≤ k ≤ 4} be a set of shift works, where 1=day-off, 2=morning, 3=evening
and 4=night.

Minimize 1 −
∑

xi jk (10.1)

subject to

∑

k∈W
xi jk = 1 (10.2)

xi jk + xi( j+1)k + xi( j+2)k + xi( j+3)k + xi( j+4)k + xi( j+5)k + xi( j+6)k ≤ 6 (10.3)

xi j4 + xi( j+1)4 + xi( j+2)4 ≤ 2 (10.4)

∑

i∈N
xi j2 ≥ 2,

∑

i∈N
xi j3 ≥ 2,

∑

i∈N
xi j4 ≥ 1 (10.5)

xi ′ j ′1 = 1 (10.6)

(1) represents the objective function 2, i.e., minimize the number of changes between
the master and modified schedules. (2) is the constraint that no one can work several
shifts in a day, e.g., morning and evening in the same day. (3) and (4) represent
the forbidden shift patters for H1, i.e., 7 consecutive works and 3 consecutive night
shifts. (5) is the constraint for H2 and (6) shows that a nurse i ′ has unexpected absent
on a day j ′.

In the experiments, we aggregate the objective function 1 and 2 and find the
optimal solution which minimizes the sum of the costs. Table10.3 shows a master
schedule which satisfies all hard constraints, and the number of violations of the soft
constraint is zero. Table10.4 represents two modified schedules we computed. The
both schedules satisfy all hard constraints and the number of violations of the soft
constraint is zero.

The s-vectors vs w.r.t. MSmod and vs ′ w.r.t. MS′
mod are

vs = (0, 0, 0, 2, 0, 2, 2), vs ′ = (1, 2, 0, 1, 0, 2, 0).
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Table 10.3 Master schedule for one week with 7 nurses. This schedule satisfies all hard constraints
and the number of violations of the soft constraint is zero

MScurrent : Master schedule

Nurse
Level

M T W T F S S

n1 (l1) m o n e o m m

n2 (l2) o m m o m m m

n3 (l3) e e o m m o e

n4 (l3) n o m m e o e

n5 (l4) m m e o e e o

n6 (l4) e e o n n e o

n7 (l5) o n e e o n n

Table 10.4 Modified schedules where the nurse n6 has unexpected absent

MSmod
Nurse Level M T W T F S S

n1 (l1) m o n e o m m
n2 (l2) o m m o m m m
n3 (l3) e e o m m o e
n4 (l3) e o m m e o n
n5 (l4) m m e o e e o
n6 (l4) e o n n e e
n7 (l5) n n e e o n o

MSmod
Nurse Level M T W T F S S

n1 (l1) e o n e o m m
n2 (l2) m m m o m m o
n3 (l3) e e o m m o e
n4 (l3) n o m m e o m
n5 (l4) m m e o e e o
n6 (l4) e o n n e e
n7 (l5) o n e e o n n

Since the number of changes of assignments is 6 in both schedules (i.e. they are
r = 6-stable), vs and vs ′ are equivalent. Their lexically reordered vectors are

vs = (2, 2, 2, 0, 0, 0, 0), vs ′ = (2, 2, 1, 1, 0, 0, 0).

The s-vector vs ′ w.r.t. MS′
mod is an egalitarian solution for this problem instance.

10.5 Related Work

Compared to NSP, there exists few works on NRP. Moz et al. [19] proposed two
integer multicommodity flowmodels for a NRP. The first one is a directed multilevel
acyclic network basedmodelwhere the aim is to optimize an integermulticommodity
flow in a multi-level network by adding some constraints. The other one is the exten-
sion of the first one which is an aggregation based model (i.e. aggregate the nodes
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of this network). They empirically showed that the second model outperforms the
first, both the solution quality and runtime. Hattori et al. [11] formalized a dynamic
NSP by using the framework of dynamic weighted MaxCSP which can effectively
deal with dynamic changes to a problem. They introduced provisional constraints
which allow variables to keep the same values so that one can obtain stable solutions
that are close to previous ones. Pato et al. [21] worked on a utopic Pareto genetic
heuristic which considers the trade-offs between two objectives, i.e., (i) minimize
the gap between the number of scheduled duties and the number of duties each nurse
should perform during the period, and (ii) minimize dissimilarity regarding the pre-
viously announced roster for the same period. Maenhout et al. [16] developed an
evolutionary meta-heuristic which revises and re-optimizes a schedule for a set of
heterogeneous nurses. Compared to these existing works, this paper focuses on NRP
with multiple criteria and also the egalitarianism among nurses.

There exists very limited work on NSP with multiple criteria [5, 8]. The goal
programming is the most widely used method where the aim is to find a solution
which is as close as possible to each of the objectives in the order of the given
priorities [3]. Others are the well-known tabu search based approach [5], Pareto
simulated annealing approach based on the scalarization [13], modified harmony
search [2] and adaptive neighborhood search [15]. Compare to these existing works,
this paper focuses on a dynamic multi-objective NSP (i.e. MO-NRP).

NRP can be an application problem of Minimal Perturbation Problem (MPP)
[10, 24] which is a dynamic CSP where the aim is to find a solution that minimizes
a given distance function. The distance function measures the number of changing
variables. Minimizing perturbations results in minimizing the number of changes in
the assignment. Solving a MPP is finding a stable solution like NRP. Compared to
MPP, this paper focuses onMO-NRP and also the egalitarianism among nurses.

10.6 Conclusion

In order to provide satisfactory patient care and potentially improve nurse retention,
creating a good schedule for nurses and hospitals is important issue. NSP is a com-
binatorial optimization problem, in which a set of nurses must be assigned into a
limited set of working slots, subject to a given set of hard and soft constraints. It
is natural to consider the scheduled nurse’s unexpected absence. NRP is a dynamic
NSPwhere the aim is to reschedule the current roster after the unexpected absence of
a nurse so that (i) all hard constraints are satisfied and (ii) the number of the changes
of assignments between current andmodified schedules is minimized.Most previous
works on NRP focused on the stability, i.e., the new schedule should be similar to
the current one as much as possible. The contribution of this paper is twofold:

• A formal framework of Multi-Objective Nurse Rerostering Problem (MO-NRP)
is first defined by using the framework of a multi-objective weighted constraint
satisfaction problem. The aim of a MO-NRP is to find trade-off solutions among
“optimality” and “stability” of a modified schedule.
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• A novel solution criterion in a MO-NRP is introduced, namely an egalitarian
solution. By considering the egalitarianism among nurses, the following situation
can be avoided; some nurses change their assignments a lot, while others not, i.e.,
in an egalitarian solution, the changes of assignments are shared among nurses.

As a perspective for further research, we intend to apply our approach to some
real problems and analyze the trade-off solutions for aMO-NRP. More specifically,
for existing NSP benchmarks in INRC-II (the second international nurse rostering
competition), we model them asMO-NRP by assuming all soft constraints as objec-
tive functions and find an egalitarian solution. In order to solve the problems, we
will use existing SAT/ASP solvers [4, 23]. We are also interested in multi-objective
setting and egalitarian solutions in sport and transport timetables [18].
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