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1 Introduction

Living biological systems require a constantly supply of energy to generate and
maintain certain biological orders that keep the systems alive. This warrants the
biophysical models that quantify the management and balance of energy in bio-
logical systems, i.e., the energy budget of metabolism. Taking cells—the building
blocks of life—as an example, energy is derived from the chemical bond energy in
food molecules, passed through a sequence of biochemical reactions, and is used in
cells to produce activated energy carrier molecules (i.e., ATPs) for powering almost
every activity of the cells, including muscle contraction, generation of electricity in
nerves, and DNA replication [2]. For solvated biomolecular systems1 discussed in
this chapter, including solvated proteins, bilayer membranes, or their complexes, one
can make similar energy budgets too. Various types of energies can be identified for
biomolecular systems, such as

1. kinetic energies of atoms or molecules in motion;
2. potential energies for bonded atoms: potential energies characterizing the stretch-

ing, bending, torsion of the covalent bonds between atoms;

1Water constitutes a large percentage of cellular mass and therefore biomolecules are mostly
living in an aqueous environment where various types of ions such as sodium (Na+), potassium
(K+), calcium (Ca2+), and chloride (Cl−) present at different concentrations.

G.-W. Wei (B)
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
e-mail: wei@math.msu.edu

Y. Zhou
Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
e-mail: yzhou@math.colostate.edu

© Springer Science+Business Media Singapore 2017
J. Wu (ed.), Variational Methods in Molecular Modeling,
Molecular Modeling and Simulation, DOI 10.1007/978-981-10-2502-0_7

181



182 G.-W. Wei and Y. Zhou

3. potential energies for unbounded atoms: electrostatic energy and van der Waals
energy; and

4. kinetic andpotential energy interconversions in enzymatic processes and chemical
reactions.

The first three energy terms constitute the basis for the molecular dynamics (MD)
simulations of non-reactive solvated biomolecular systems. Using the spatial coor-
dinates of individual atoms as parameters, MD simulations trace the motion of each
atom by using the Newton second law, where the force applied to each atom is com-
puted as the variational of the total energy with respect to the atom’s spatial coor-
dinates [15, 20, 104, 133]. Additional forces that models temperature-dependent
thermal fluctuations can be added as well, giving rise to Langevin dynamics simu-
lations [114]. In this regard, MD simulation is indeed a classical application of the
variational principle.

The large amount of solvent molecules in a molecular dynamics simulation of
solvated biomolecular system can make the simulation daunting and expensive. This
deficiency motivates the development of various continuum or multiscale models for
part of or the entire solvated biomolecular system [16, 23, 28, 32, 46, 52, 120, 129,
147, 162]. Notably among these simplifications are implicit solvent models, which
manage to replace the atomic degrees of freedom of solvent molecules with a contin-
uum description of averaged behavior of solvent molecules while retain an atomistic
description of the solute molecule [52, 120]. Accordingly, the solvent-solute inter-
face must be identified as the boundary between the continuum solvent region and
the discrete biomolecular domain. This interface is of particular importance because
it is related to a range of solvent-solution interactions such as hydrogen bonding, ion-
ion, ion-dipole, dipole-dipole and multipole interactions, and Debye attractions [41].
Thus the parametrization of the total energy of the systemmust include the geometry
of this interface. Mean and Gaussian curvatures are generally involved in such para-
metrization because they measure the variability or non-flatness of a biomolecular
surface and characterize respectively the extrinsic and intrinsic measures of the sur-
face [76]. In these multiscale models of solvated biomolecules systems the motion
of the atoms still follows the Newton’s law where the force is given as the variational
of the total energy with respect to the atoms’ spatial coordinates, the electrostatic
potential, and the interface [58, 59, 137, 147, 160]. The change in the solvent-solute
interface induces variation in curvatures, whose energies might be treated as a part
of the total energy functional. These curvature based or differential geometry based
biomolecular models offer a manifest of mathematical analysis and computational
methodologies for the dynamics of the solvent-solute interface and the equilibrium
energy landscape of solvated biomolecules. In other words, one can derive dynamic
partial differential equations to evolve the interface morphology, and this evolution
can bemapped to the path toward the global or local minimumon the landscape of the
total energy. Here in this chapter we shall present three representative applications
of interface geometry based variational principles to the modeling of biomolecular
interactions: (i) biomolecular electrostatics and solvation, (ii) surface microdomain
formation in bilayer membranes, and (iii) curvature driven protein localization in
bilayer membranes.
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In the first applicationwe consider the long-range electrostatic interactions among
partially charged static atoms in the solute and the aqueous solvent with mobile
ions. These interactions strongly depend on the position of solvent-solute boundary,
also referred to as the molecular surface in this context, where a rapid transition of
dielectric permittivity is observed. Inclusion of this interface, albeit implicitly, in
the formulation of the total energy of the system facilitates the coupling of polar
and nonpolar solvent-solute interactions, as well as the nonlinear solvent response,
in the form of interface energy functional of surface curvature energy, electrostatic
energy and van der Waals potential. Such a coupling finally gives rise to a novel
variational multiscale solvation model [26, 27, 46, 47, 147]. In a more elaborated
model, the solute molecule can be described in further detail by using the quantum
density functional theory (DFT) in an iterative manner, which allows amore accurate
account of solvent-solute interaction and response [25]. Differential geometry based
solvation models have been shown to deliver superb predictions of solvation free
energies for hundreds of molecules [28, 138]. This variational principle based sol-
vation model can be further extended to describe essential biological transportation
such as transmembrane ion or proton flows that depend critically on the geometry
of the associated protein channels. By including the chemical potential and entropy
of the diffusive ion species into the total energy functional one can obtain simul-
taneously the optimized channel protein surfaces as well as the corresponding I–V
(current-voltage) curve [28, 149, 158].

Curvature is believed to play an important role in many biological processes, such
as protein-DNA and protein-membrane interactions, including membrane curvature
sensing. Classical phase field modeling of surface pattern formation in bilayer mem-
branes contains a curvature term in its definition of the total energy [18, 24, 42,
44, 56, 102]. However, when modeling the surface pattern formation in our second
application here, we show that it is the geodesic curvature rather than the curvature
of pattern interfaces that plays an essential role in modulating the interface energy.
Noting that this geodesic curvature is defined on a general differentiable manifold,
and thus the classical phase field modeling of phase separation with specified intrin-
sic curvature can be regarded as a special case of this geodesic curvature model
in the Euclidean spaces. By providing various intrinsic geodesic curvatures that
model the geometry of the contact of different species of lipids, we are able to simu-
late the generation of lipid rafts as the formation and equalization of localized surface
domains.

In contrast to most amphiphilic lipids whose relatively long and geometrically
regular hydrophobic tails allow they to pack together, membrane proteins usually do
not present in large distinct domains in membrane surfaces, although small amount
of membrane proteins can compound together forming functional complexes such as
ion channels or membrane transporters. Most membrane proteins have amphipathic
transmembrane helices, which contain both hydrophobic and hydrophilic groups,
complementing to amphiphilic lipids. Therefore, the localization of these membrane
proteins in general can not be modeled using the geodesic curvature based phase
separation model as described in our second application. Many membrane proteins,
however, do prefer bilayer membranes with particular curvature, in the sense that
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they can induce particular curvature in the bilayer membrane and they tend to be
localized in regions with specific curvature. Therefore, one can imagine that mem-
brane curvature can provide a driving force for the distribution of membrane proteins
in the bilayer, and thus an appropriate energy functional that represents the mem-
brane curvature must be added to the classical electrochemical potential and entropy
to describe the localization of membrane proteins.

These three applications of variational principles in biomolecular modeling are
by no means exhaustive, even in the context of solvation analysis and membrane-
protein interactions. There are inspiring studies of ion and water transport in
membrane channels using energetic variational approaches, where the effects of
surface charge density and non-uniform particle sizes can be readily included in
investigations thanks to the flexibility of variational approaches [67, 69–71, 83,
89, 147, 149, 153]. Similar flexibility also enables the extension of the application
of variational principles from the standard phase field modeling of bilayer mem-
brane deformation and morphology [42, 44, 45] to multi-components membranes
[86, 157], pore formation [35, 113], and double layer [38, 57]. Some of these mod-
els, particular those for bilayer membranes, share various degree of similarity to the
models used for self-assembly or phase separation of polymers or co-polymers. It
is this wide diversity of lipid structures and the complicated interactions between
proteins and lipid bilayers in solution that makes the energetic variational modeling
of bilayer membranes unique and challenging. As we shall present below, most of
our efforts are concentrated on the formulation of potential energy functional of these
interactions so that the variational principle can be applied and numerical solutions
can be found by solving the corresponding systems of nonlinear partial differential
equations (PDEs).

2 Variational Multiscale Methods for Biomolecular
Electrostatics and Solvation

By definition, the solvation energy of biomolecules is the cost of free energy required
to transfer the biomolecules from the vacuum to the solvent environment. It is
therefore an essential quantitative characterization of the solute-solvent interactions.
Electrostatic free energy, also called polar solvation free energy, is an important com-
ponent of the solvation free energy since most biomolecules are charged and there
are always mobile ions in the solvent under physiological conditions. Various critical
applications of the electrostatic and solvation free energies can be found in chemistry,
biophysics, and medicine. We refer the reader to [31, 40, 48, 52, 73, 79, 91, 92,
109, 117, 137, 142–144] for theoretical underpinning of these applications and the
determination of the electrostatics and solvation free energies. Apart from electro-
static effects, the solvation free energy also involves the nonpolar energy, namely,
the energy cost for creating a suitable cavity in the continuum solvent to allow the
transferring of the biomolecules and for the dispersive interactions between the
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solvent and the biomolecule on the surface of this cavity. Implicit solvent models are
particularly appearing for computing the solvation free energy since the number of
solvent degrees of freedom can be dramatically reduced by a well fitted bulk dielec-
tric permittivity while the atomistic representations of solute biomolecules can be
retained to maintain a detailed modeling of the solute. The framework of implicit
solvent models allows the solvation free energy to be decomposed into two com-
ponents, polar solvation and nonpolar solvation [79, 81, 137]. In this approach, the
electrostatic contribution can be readily computed from the solution of the Poisson-
Boltzmann equation, or the Poisson equation if there is no explicit ion in the solvent
[6, 7, 61, 63, 88, 101, 136]. The solution of these equation depends on the contrast
of dielectric permittivity in vacuum and the solvent environments, and this contrast
is concentrated at the boundary between the biomolecule and the solvent. Likewise,
the calculation of nonpolar solvation free energy depends on the geometry of the bio-
molecular surface. The fact that both polar and nonpolar components are determined
by the solvent-solute interface warrants the importance of a biophysically justifiable,
mathematically well-posed, and computational feasible definition of the molecular
surface or dielectric interface. In fact, the decoupling of polar and nonpolar compo-
nents makes implicit solvent models conceptually convenient and computationally
simple.

However, there are many structural imperfections associated with implicit solvent
models. First, intrinsic thermodynamical and kinetic coupling makes it impossible to
completely separate the electrostatic component from the non-electrostatic compo-
nents in the solvation modeling. Additionally, a pre-prescribed solvent-solute inter-
face, such as solvent excluded surface and van derWaals surface, decouples polar and
nonpolar components. As a result, the solvation induced solute polarization and sol-
vent response are not appropriately accounted in implicit solvent models. Moreover,
implicit solvent models neglect potential solvation induced surface reconstruction
and possible conformational changes. Finally, thermodynamically, the change in the
Gibbs free energy of solvation can be formally decomposed into the change in internal
energy, work, and entropy effect. There is no guarantee that all of these components
are fully accounted in implicit solvent models. In addition to the aforementioned
structural or organizational imperfections, the performance of implicit solvent mod-
els is subject to a wide range of implementation deficiencies, such as the modeling
of nonpolar component, the treatment of the electrostatic component, the exclusion
of high-order polarization, the exclusion of curvature, the geometric singularity of
solvent-solute interface, the stability of numerical schemes and algorithms, the grid
convergence of the solvation free energy, to mention only a few.

Some of the aforementioned problems have been the subjects of intensive study
in the past few decades. One approach starts from improving the surface definitions,
so that earlier van der Waals surface, solvent accessible surface [77], and molec-
ular surface (MS) [111] are replaced by smooth surface expressions [22, 60–62,
159]. Geometric analysis, which combines differential geometry (DG) and differ-
ential equations, is a powerful mathematical tool for signal and image processing,
data analysis, and surface construction [100, 139–141, 145]. Geometric PDEs and
DG theories of surfaces provide a natural and simple description for a solvent-solute
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interface. The first curvature-controlled PDEs for molecular surface construction
and solvation analysis was introduced in 2005 [146]. A variational solvent-solute
interface, namely a minimal molecular surface (MMS), was proposed for molec-
ular surface generation in 2006 [9, 10]. In this work, the minimization of surface
free energy is equivalent to the minimization of surface area, which can be imple-
mented via the mean curvature flow, or the Laplace-Beltrami flow, and gives rise to
the MMS. The MMS approach has been used in implicit solvent models [10, 28].
Potential-driven geometric flows, which admit potential driven terms, have also been
proposed for biomolecular surface construction [8]. This approach was adopted by
many researchers [21, 29, 30, 154–156] for biomolecular surface identification and
electrostatics/solvation modeling.

It is natural to extend DG based variational theory of the solvent-solute interface
into a full solvation model by incorporating a variational formulation of the PB
theory [28, 59, 116, 147] following the spirit of a similar approach by McCammon
and coworkers [46, 47]. However, the formalism ofMcCammon and coworkers does
not involve geometric flowand has aGaussian curvature term thatmight lead to jumps
in the energy when there are topological changes. Our DG based variational model
addresses many of the aforementioned imperfections of implicit solvent models. For
example, by parametrizing both polar and nonpolar components of the solvation
energy using the geometry of the interface, these two components can be coupled
naturally in a single free energy functional. Application of the variational principle
and the equilibrium solution of the associated Laplace-Beltrami flow gives rise to an
optimal biomolecular surface along with an optimized solvation energy.

2.1 Polar Solvation Free Energy

We start with the definition of polar solvation energy, which is associated with the
energy difference for charging biomolecules in the vacuum and the solvent environ-
ment. Variational formulation of Poisson-Boltzmann equation was discussed in the
literature [59, 116]. Here we recast this formulation in our DG based formalism.
Considering a solvated biomolecular system occupying a three-dimensional (3D)
domain Ω ∈ R

3, one can relate the polar solvation energy of the biomolecule to the
electrostatic potential Φ(r) : R3 → R by the formulation [27, 147]

Gp =
∫
Ω

⎧⎨
⎩S

[
ρmΦ − 1

2
εm |∇Φ|2

]
− (1 − S)

⎡
⎣ 1

2
εs |∇Φ|2 + kBT

Nc∑
i=1

ci (e
−qiΦ/KBT − 1)

⎤
⎦
⎫⎬
⎭ dr,

(1)

where S(r) and 1 − S(r) are respectively the domain indicators for the solute and the
solvent domains.We set 0 ≤ S(r) ≤ 1,which is related to thewidely used phase-field
function |φ̄(r)| ≤ 1 by



Variational Methods for Biomolecular Modeling 187

-5 0 5
x

0

0.5

1

S
-5 0 5

x

0

40

80

(S
)

Fig. 1 Left A typical phase field function S changes smoothly from its value of −1 in the solvent
domain to the value of 1 in the solute domain. Right The dielectric constant ε(S) depends on the
phase field function and changes smoothly from a value of 78 (or 80) in the solvent domain to a
value of 2 (or 1) in the solute domain

S = 1 + φ̄

2
, 1 − S = 1 − φ̄

2
. (2)

Here S and 1 − S are introduced to distinguish the contributions to the total free
energy from the solute region Ωm and solvent region Ωs . The dielectric permittivity
in these two complementary subdomains of Ω are given by εm and εs , respectively.
Thefixed charge densityρm of biomolecule consists of a summation of partial charges
(Q j ) from atoms

ρm(r) =
∑
j

Q jδ(r − r j ), (3)

where r j ∈ R
3 is the position of j th charged atom. InEq. (1),qi and ci are respectively

the charge and bulk concentration of the i th ion species, Nc is the number of ions
species in the solvent, kB is the Boltzmann constant, and T is the temperature.

The surface function S(r) can be chosen initially as a smooth function to simplify
the numerical implementation, as seen in the left chart of Fig. 1. We show below
the classical Poisson-Boltzmann equation can be reproduced by using this energy
functional when a sharp solvent-solute interface is adopted, i.e., when S becomes a
Heaviside function. In the sequel we shall work on a generalized Poisson-Boltzmann
equation in the sense that the transition from the solvent region to the solute region
is smooth rather than discontinuous.

2.2 Nonpolar Solvation Free Energy

The nonpolar solvation energy involves a number of terms. The scaled-particle the-
ory (SPT) for nonpolar solutes in aqueous solutions [105, 124] utilize a solvent-
accessible surface area term [95, 127]. Solvent-accessible volume was shown to be
relevant in large length scale regimes [68, 90]. It was pointed out that van der Waals
(vdW) interactions near solvent-solute interface are important as well [33, 54, 55,
137]. Dzubiella et al. convert these terms into a nonpolar energy functional, which,
however involves a Gaussian curvature term [46]. We modify this functional in spirit
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of our MMS [9, 10] to give the following nonpolar term [27, 147]

Gnp = γ Am + pVm + ρ0

∫
Ωs

U attdr. (4)

Here the first term on the right is the surface energy given by the surface tension γ and
the biomolecule’s surface area Am . This term measures the disruption of inter- and
intra-molecular noncovalent bonds of solvent molecules when an internal surface
is created. In our approach, the surface tension γ does not depend on Gaussian
curvature so that the first term in Eq. (4) avoids possible energy jumps suggested by
the Gauss-Bonnet theorem. Additionally, such a term follows our minimum surface
energy functional formulation [9, 10]. The second term represents the mechanical
work for expanding a volume of Vm in solvent against a hydrostatic pressure p. The
last term quantifies the attractive dispersion effects near the solvent-solute interface,
determined by the solvent bulk density ρ0 and the attractive portion of the van der
Waals potential U att at position r. Since the biomolecular surface is not explicitly
known in the present modeling, we relate the surface area and its enclosed volume
to the surface function S through

Vm =
∫

Ωm

dr =
∫

Ω

Sdr (5)

and the coarea formula [147, 150]

Am =
∫

Ω

|∇S|dr. (6)

With these relations we can assemble the polar and nonpolar contributions to give
the formulation of the total solvation free energy functional for biomolecules at
equilibrium [27, 147]

G tot =
∫

Ω

{
γ |∇S| + pS + (1 − S)ρ0U

att + S

[
(ρmΦ) − 1

2
εm |∇Φ|2

]
+

(1 − S)

[
−1

2
εs |∇Φ|2 − kBT

Nc∑
i=1

ci (e
−qiΦ/KBT − 1)

]}
dr. (7)

There are a variety of definitions of nonpolar free energies alternative to that in
Eq. (4), but most of them are determined by the surface area, its enclosed volume
and ver der Waals term in a similar way [79, 81, 137]. The present formulation and
the variational principle introduced here are applicable to these alternative nonpolar
solvation models as well.
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2.3 Governing Equations

We search for the critical point of the free energy functional to obtain the optimal free
energy of the biomolecular systems. By construction, the free energy functional is
determined by the surface function S and the potential Φ. The latter indeed depends
on the position of dielectric interface hence on the surface function S as well. Since
the electrostatic potential follows the Poisson equation, it is theoretically possible to
replace the electrostatic potential using the convolution of the Green’s function with
the change density. However, the dependence of this Green’s function on the surface
function S does not have an explicit representation. Consequently, it is practically
impossible to represent the total energy as the functional of the surface function only
and compute its variation. In our investigations we shall compute the critical point
by evolving the gradient flow of the free energy functional to a steady state; while the

electrostatic potential defined by the vanishing variation
δG tot

δΦ
is used as a constraint

during the evolution. These two variations are

δG tot

δΦ
= Sρm + ∇ · ((1 − S)εs + Sεm)∇Φ) + (1 − S)

Nc∑
i=1

ciqi e
−qiΦ/KBT , (8)

δG tot

δS
= −∇ ·

(
γ

∇S

|∇S|
)

+ p − ρ0U
att + ρmΦ + 1

2
(εs − εm)|∇Φ|2

+ kBT
Nc∑
i=1

ci (e
−qiΦ/KBT − 1). (9)

The vanishing variation in Eq. (8) gives rise to a generalized Poisson-Boltzmann
equation (GPBE) [27, 147]

− ∇ · (ε(S)∇Φ) = Sρm + (1 − S)

Nc∑
i=1

ciqi e
−qiΦ/KBT . (10)

where the dielectric function

ε(S) = (1 − S)εs + Sεm, (11)

is also plotted in the right chart in Fig. 1. The gradient flow for the surface function
S follows a generalized Laplace-Beltrami equation [27, 147]

∂S

∂t
= −|∇S|δG tot

δS
= |∇S|

[
∇ ·

(
γ

∇S

|∇S|
)

+ V

]
, (12)
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where a generalized potential function V collects the relevant terms in Eq. (9) as

V = −p + ρ0U
att − ρmΦ + 1

2
(εm − εs)|∇Φ|2 − kBT

Nc∑
i=1

ci (e
−qiΦ/KBT − 1),

(13)
and |∇S| is added to the front of the variation to introduce the local curvature of the
molecular surface to adjust the rate at which the surface function evolves toward its
steady configuration. In this sense Eq. (12) is a generalized geometric flow equation.
Note that the time in Eq. (12) is artificial.

We expect that theGPBEwith smooth S converges to its sharp interface limitwhen
S becomes aHeaviside functionwith a discontinuity located at the dielectric interface
Γ , in that case the GPBE can be written as the following two elliptic equations

−εm∇2Φm = ρm, r ∈ Ωm, (14)

−εs∇2Φs =
Nc∑
i=1

ciqi e
−qiΦs/KBT , r ∈ Ωs . (15)

These two equations are coupled through the interface conditions on Γ . In this case,
to make the above two equations well posed, one has to introduce two interface jump
conditions,

Φs = Φm, εm∇Φm · n̄ = εs∇Φs · n̄, r ∈ Γ (16)

whereΦm, Φs are the limit values of the electrostatic potential from solution domains
Ωm and Ωs , respectively, and n̄(r) is the unit normal vector on Γ .

2.4 Computational Simulations and Summary

A second-order finite difference scheme was designed to solve the coupled general-
ized Poisson-Boltzmann equation (10) and the Laplace-Beltrami equation (12).Most
of physical parameters involved in Eq. (12) are taken from the references [81, 99]
and the CHARMM force field. A constant surface tension γ is chosen in our investi-
gation whose value shall vary for different molecular surfaces [81, 99]. In particular,
γ is implemented as a fitting parameter so that the optimized solvation free energy
ΔG from our computational studies can match the experimental measurements. By
definition,

ΔG = G tot − G0, (17)

where G tot is defined in Eq. (7) and G0 is the total energy of the solvent molecules
in vacuum with εs = εm = 1 and without nonpolar energy. To facilitate the fitting of
γ we rewrite Eq. (12) as
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Fig. 2 The phase field function evolves from its initial configuration to the final state where the
surface S = 0.0 fits the molecular surface for a diatomic system. Here we show only the profiles of
S at the cross section (x, y, 0.05) sampled at six moments during the evolution

∂S

∂t
= γ |∇S|

[
∇ ·

( ∇S

|∇S|
)

+ V

γ

]
. (18)

More details of the numerical methods for solving the coupled partial differential
equations can be found in [27]. In Fig. 2 we show a simulation where the initial
surface function is set such that the target diatomic system is well contained in the
region S = 1. The surface function evolves from the initial profile toward the final
configuration that fits the molecular surface of a diatomic system, reaching a state
where the total solvation energy is optimized. A more realistic simulation on the
protein (PDB ID: 1frd) is shown in Fig. 3, where isosurfaces defined by different
S are plotted along with the electrostatic potential Φ on the surface. While S = 1

2
is usually chosen as the molecular surface, the three surfaces are very close due to
the high resolution of the numerical method. The availability of the surface position
and surface potential could significantly facilitate the analysis of binding affinity of
protein-protein or protein-ligand systems, of which the electrostatic potential is an
important component [5, 34, 63, 87, 108, 119].

Numerically, this model can be computed by using both the Eulerian formulation,
in which the solute boundary is embedded in the 3D Euclidean space so evaluation
of the electrostatic potential can be carried out directly [27], and the Lagrangian
formulation, wherein the solvent-solute interface is extracted as a sharp surface and
subsequently used in solving the GPB equation for the electrostatic potential [26].
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Fig. 3 Electrostatic potential on molecular surfaces with different values of S. Left S = 0.25;
Middle S = 0.5; Right S = 0.75

Lagrangian formulation requires direct tracking of the sampling points on the mole-
cular surface, which is convenient for the surface visualization, the mapping of the
surface electrostatic potential field, and the enforcement of the van der Waals radii in
constraint. However, it suffers from the development of singularities while evolving
molecular surface and the difficulty of handling the change of topology. In contrast,
the Eulerian representation gets around of the explicit tracking of sampling points by
modeling the solvent-solute interface either a smooth 3D density profile or as a spe-
cific level set of the smooth profile. The dynamics of the solvent-solute interface can
be obtained by evolving this 3D density profile following the Laplace-Beltrami flow
of the energy functional. The Eulerian representation is therefore capable of repro-
ducing complicated dynamics of surface topology. As we shall introduce below, it
also greatly facilitates the computation of a number of geometric quantities that are
otherwise difficult to compute in the Lagrangian representation, such as the area of
entire surface and surface enclosed volume.

The parametrization of solvation energy using the surface function S allows one to
track the molecular surface by following the isosurface S = 0.5 during the evolution
of S. This formulation is referred to the Eulerian formulation. Alternatively, one can
explicitly define a molecular surface Γ to separate the solvent and solute domains,
and to use this surface to parametrize the solvation energy. Denote such an energy
functional as G tot(Γ ). Similar to the optimization procedure presented above, the
total energy is optimized by evolving Γ following the gradient flow of the energy,
and in this case, the energy variation is with respect to the spatial coordinates of this
explicitly defined surfaceΓ . Numerically, this can be achieved by discretizingΓ into
a collection of surface elements or surface vectors {Ŝ j }, each element parametrized by
a local coordinate system (x1, x2), and thus G tot(Γ ) becomes G tot(Ŝ j ). Furthermore,
we can constrain the motion of Γ to the normal direction n(x1, x2) only, for that
a tangential displacement of Γ does not change the surface configuration and the
solvation energy. A scalar displacement field ψ(x1, x2) in the normal direction can
be defined through

Ŝσ
j (x1, x2) = Ŝ(x1, x2) + σψ(x1, x2)n(x1, x2), (19)
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which states that the surface element Ŝ j is updated from its original position by
σψ(x1, x2) along the normal direction to the new position Ŝσ

j , where σ is a number
to scale the normal displacement fieldψ(x1, x2). The optimization of the total energy
at a particular molecular surface Γ means that any normal displacement will violate
the nature of optimum at this point, indicating

∂ Ŝσ
j

∂σ

∣∣∣∣∣
σ=0

= 0. (20)

Now we can observe the transition of the independent variables in calculating the
energy variation:

δ

δΓ
→ ∂

∂ Ŝσ
j

→ ∂

∂σ
, (21)

as a result of replacing the motion of the explicit surface Γ using the scaled normal
motion of a collection of surface elements. The readers are referred to [26] for the
detailed calculation of the energy variation, the derivation of the equation governing
the gradient flow, and the numerical techniques for solving the equation. This inves-
tigation also shows that the optimized solvation energy and molecular surface are
well matching those generated by the Eulerian formulation if there is no topological
change in Γ during its evolution. Notice that a single point on Ŝ j may evolves to two
distinct points, or two distinct points in two different surface elements may converge
to a single point when there is a topological change during the evolution of Γ . This
intrinsic singularity in handling the topological change limits the applications of the
Lagrangian formulation to complex biomolecular systems, for which it is impossible
to set an initial surface Γ that is topologically equivalent to the final optimized mole-
cular surface. The Eulerian formulation is hence suggested for the investigations of
the solvation energy and molecular surfaces of general biomolecular systems.

Recently, differential geometry based implicit solvent model has been tested
extensively via solvation analysis [26–28, 39, 132, 138]. The differential geome-
try based nonpolar model was found to deliver some of the best nonpolar solvation
predictions [28]. However, for general molecules with a significant polar compo-
nent, our initial predictions were not up to the state of the art [26, 27]. It turns out
that both the generalized Laplace-Beltrami equation and the generalized Poisson-
Boltzmann equation can be easily solved individually. However, when these equa-
tions are coupled, there is a stability problem [155, 156]. Essentially, when S admits
unphysical values beyond its physical definition 0 ≤ S ≤ 1, the dielectric function
(11) will adopt unphysical (negative) values as well, which gives rise to an instability
in updating the Laplace-Beltrami equation (12). This issue hinders the performance
of DG based solvation models for molecules with significant polar component. To
address this problem, a convex optimization algorithm [138] has been developed to
ensure the stability in solving coupled PDEs (10) and (12). As a result, the differen-
tial geometry based solvation model is found to deliver some of the most accurate
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prediction of experimental solvation free energies for more than 100 molecules of
both polar and nonpolar types [138].

Most recently, Wei and coworkers have taken a different treatment of non-
electrostatic interactions between the solvent and solute in the DG based solvation
models so that the resulting total energy functional and PB equations are consistent
with more detailed descriptions of solvent densities at equilibrium [148, 149]. To
account for solute response to solvent polarization, a quantum mechanical (QM)
treatment of solute charges was introduced to the DG-based solvation models using
the Kohn-Sham density functional theory (DFT) [25]. This multiscale approach self-
consistently computes the solute charge density distribution which simultaneously
minimizes both the DFT energy as well as the solvation energy contributions.

Currently, efforts are invested to improve the accuracy and robustness of DG
based solvation models by combining physical models with knowledge based mod-
els, namely, machine learning approaches. Additionally, DG based solvation models
and machine learning approaches are utilized for accurate predictions of the protein
binding energies and ligand binding affinities over a wide range of conformational
states. Furthermore, it is worth noting that the method depends only on the rep-
resentation of the solvent-solute interfaces, and this representation is independent
of the atomic or coarse-grained description of the biomolecules. It is therefore
possible to adopt this method to compute the potential of mean force of coarse-
grained biomolecular structures along selected coordinate, and the results can be
utilized for parametrization the force field for coarse-grained molecular systems as
well. Finally, we would like to point out that many critical applications to biophysics,
chemistry, and medicine mostly remain unexplored.

3 Variational Methods for Pattern Formation in Bilayer
Membranes

As one of the most important biomolecular systems, the lipid bilayer membranes
sustain the regular functions of cell and subcelluar compartments by regulating the
transmembrane ion or molecular flows and by providing platforms for various essen-
tial biochemical processes [2, 123]. These critical functions of bilayer membranes
are determined by their lipid compositions, the specific membrane proteins, and
their dynamical arrangement in the bilayers during the course of membrane mor-
phology change as a result of various membrane-solvent, membrane-membrane, or
membrane-protein interactions. Applications of the variational principle for bilayer
membrane modeling have been mostly focused on four types of problems: (i) mean-
curvature dependent membrane morphology [37, 42, 45, 96], (ii) ionic or proton
flows in protein channels [153, 158], (iii) lateral diffusion on membrane surfaces
[161], and (iv) pattern formation in bilayer membranes [17, 43, 151]. Here in this
section we focus on the local pattern formation in bilayer membranes, for that there
are many controversial investigations concerning the biophysical underpinning of
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these patterns, their spatial and temporal distributions, and their roles in modulat-
ing relevant biochemical processes [3, 106, 128, 134]. These patterns are called
lipid rafts, which are small (10–200nm), heterogeneous, highly dynamic, sterol-
and sphingolipid-enriched domains that compartmentalize cellular processes [118].
Lipids move laterally within the domains mostly rather than over the entire mem-
brane surface [4]. Classical phase separation models manage to minimize the total
area of the domain boundaries and large domains appear at the end of the minimiza-
tion; this process is usually referred to as coarsening. When these classical models
are directly extended to model surface phase separation, the total arc length of the
domain boundaries on the surface is minimized to generate large domains, which do
not match the measured sizes of lipid rafts [17, 43, 151].

3.1 Classical Phase Field Models

We first examine the classical phase separation model for binary systems. Consider
two species of particles in R

3 with respective mass or volume fractions m1,m2 ∈
[0, 1]. The interactions between particles of the same species are favorable while
the interactions between different species are unfavorable. This preference can be
modeled by defining a phase field function

φ̄ = m1 − m2

m1 + m2
, (22)

where φ̄(r) ∈ [−1, 1], r ∈ R
3 and minimizing the Ginzburg-Landau free energy

functional in Ω ∈ R
3

G(φ̄) =
∫

Ω

(
f (φ̄) + σ

2
|∇φ̄|2

)
dr, (23)

where f (φ̄) is a double well potential that has two minimums at φ̄ = ±1. A typical
choice is

f (φ̄) = φ̄4

4
− φ̄2

2
(24)

which has two symmetric potential wells of the same depth at φ̄ = ±1. It is apparent
that a complete phase separation with φ̄ changing discontinuously between 1 and
−1 is favorable by f (φ̄) when G(φ̄) is minimized. Such an unphysical distribution

of φ̄ is to be penalized by the term
σ

2
|∇φ̄|2 that regulates the transitional gradient of

φ̄ between 1 and −1.
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Fig. 4 Left Schematic illustration of themismatch of the lipid structures at the interface that induces
a transitional hybrid region between two lipid domains [14].MiddleWithin the transitional hybrid
layer the otherwise regular lattices of the lipids in either domain relax to match each other, causing
a bending interface [14]. Right Circles on a sphere have constant geodesic curvatures. The great
circle, i.e., the lowest circle, has a vanishing geodesic curvature in particular

3.2 Geodesic Curvature Based Membrane Models

3.2.1 Lagrangian Formulation

Our variational model is motivated by the recent theoretical studies of the hybrid
lipids saturation at the interface between saturated and unsaturated of lipids with
geometrical and molecular mechanical mismatch [14]. As illustrated in Fig. 4, two
species of lipids at their interface have different intermolecular interactions that are
determined by their structures. Otherwise, the regular lattice of either species of lipids
has to be relaxed in a way such that the intermolecular interactions in the transitional
region near the interface will fit the different lattice structure of other species. This
relaxation generates curved interface between two species of lipids in a manner
similar to the generation of surface tension. Since the domain boundary is a curve
on a two-dimensional (2D) surface embedded in R

3, it is the geodesic curvature of
the interface rather than the interface curvature that determines the intermolecular
interactions between two species of lipids near the interface.2 The geodesic curvature
of the interface measures how far the interface curve is from being a geodesic. We
define the curvature energy of the microdomain boundary by a one-dimensional (1D)
on-curve integration

G =
∫
C
k(H − H0)

2ds, (25)

where C is the domain boundary contour embedded in R3, H is the geodesic curva-
ture, H0 is the spontaneous geodesic curvature of the lipid mixture to be separated,

2In Sect. 2, we use S to denote the surface function, which is a domain indicator, and use Φ to
denote the electrostatic potential following the traditional usage in the studies of biomolecular
electrostatics. Here in Sects. 3 and 4 the models do not involve electrostatics, and we denote φ the
phase field function, while use S to denote the 2D surface embedded in R

3 when applicable. An
interface in Sect. 2 refers to solvent-solute boundary region, whereas in Sects. 3 and 4, it refers a
boundary curve on a given surface.
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and k is the geodesic curvature energy coefficient. The spontaneous geodesic curva-
ture H0 is an intrinsic property of the combination of any two species of lipids in the
bilayer membrane that will be separated to form local microdomains as a result of
geometric and molecular mechanical mismatch. In the transitional region near the
interface two species of lipids are arranged in a hybrid state rather than the regu-
lar lattice structure. Indeed a recent theoretical study adopted a free energy for the
hybrid packing of two species of lipids (denoted by the subscript 1 and 2 below) at
the interface [13, 14]:

F = ks(L1 − L0
1)

2 + ku(L2 − L0
2)

2 + γ (L1 − L2)
2, (26)

where Li is the length of the lipid chains in the transitional region and L0
i is the length

of the equilibrium chain in the bulk. Parameters ks and ku are the free energetic costs
of mismatch between two species and their hybrids at the interface, respectively
and similarly, γ is the energy cost of mismatch between two chains of the hybrid.
Furthermore, the following relations are identified to related the domain curvature
and lipid geometrical properties:

Vi = Lia0wi

(
1 ± wi H

2

)
, i = 1, 2, (27)

where Vi is the molecular volume of the lipid chains, wi is the length that charac-
terizes the molecular spacing of the lipid head groups, and a0 = (w1 + w2)/2 is the
headgroup spacing of the hybrids along the interface. Here the subtraction sign is
chosen if the species is included in the microdomain, otherwise the addition sign is
used. The chain length in the equilibrium bulk state, L0

i , can be computed from the
molecular volume divided by the head group area in the bulk state

L0
i = Vi

w2
i

. (28)

Equations (26–27) represent the interface bending energyF as a function of it geo-
desic curvature H . The minimizer H0 can be analytically calculated to the linear
order:

H0 = 1

wT

[
(1 − 2B)wd

(1 + 2B)wT
+ 2BVd

(1 + 2B)VT

]
, (29)

where B is a constant characterizing the free energetic cost of lipid mismatch at the
interface, wT = (w1 + w2)/2, wd = w1 − w2, VT = (V1 + V2)/2, and Vd = V1 −
V2. By truncating the Taylor series approximation of F (H) with respect to H0 to
the second order we get an energy functional in the form of Eq. (25).
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3.2.2 Eulerian Formulation

It has been seen in Sect. 2 that the parametrization of solvation energy using the
surface function allows one to implicitly track the molecular surface by following
the iso-surface extraction during the evolution of the surface function, which is
referred as to the Eulerian formulation. We could also evolve a phase field function
to minimize the energy in Eq. (25) and to obtain the configuration of microdomains.
This is achieved by using the following 2D Eulerian formulation of the microdomain
geodesic curvature energy defined on the entire membrane surface S:

G(φ) =
∫
S

kε

2

(
Δxφ + 1

ε2
(φ + Hcε)(1 − φ2)

)2

dx (30)

where Hc = √
2H0 and ε is a small positive parameter that characterizes the

width of the transitional layer from φ(x) = −1 to φ(x) = 1. Here S is a surface
embedded in R3, x = (x1, x2) and dx is an infinitesimal surface element. The equiv-
alence of this Eulerian formulation (30) to the Lagrangian formulation (25) is anal-
ogous to the equivalence between the Canham-Helfrich-Evans curvature energy and
the membrane elastic energy [1, 42]. In particular, if the phase field function is
defined by

φ(x) = tanh

(
d(x)√
2ε

)
(31)

with d(x) being the signed geodesic distance at the surface point x to the interface
contour C where φ = 0, then

∇xφ = 1

ε
q ′(d(x))∇xd, Δxφ = 1

ε
q ′′(d(x))|∇xd|2 + 1

ε
q ′(d(x))Δxd,

where

q(x) = tanh

(
x√
2ε

)
, q ′(x) = 1√

2

[
1 − tanh2

(
x√
2ε

)]
,

q ′′(x) = −1

ε
tanh

(
x√
2ε

)
sech2

(
x√
2ε

)
,

and ∇x,∇x· are surface gradient and surface divergence operators, respectively. The
geodesic curvature of a contour is given by

H = ∇x · n, (32)

where n is the normal vector to the contour C . Since n = ∇xd we have H = ∇x ·
∇xd = Δxd and
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Δxd = ε

q ′ Δxφ − q ′′

q ′ |∇xd|2, ∇xd = ε

q ′ ∇xφ.

Therefore, one has

Δxd = ε

q ′ Δxφ − q ′′

q ′

∣∣∣∣ ε

q ′ ∇xφ

∣∣∣∣
2

.

Writing q ′(x) and q ′′(x) in terms of q(x) we can convert the above representation to

Δxd =
√
2ε

1 − q2

(
Δxφ + 2q

1 − q2
|∇xφ|2

)
,

which is the geodesic curvature H = Δxd. Replacing q(x) with φ one obtains the
final form of H as

H =
√
2ε

1 − φ2

(
Δxφ + 2φ

1 − φ2
|∇xφ|2

)

=
√
2ε

1 − φ2

(
Δxφ + 1

ε2
(1 − φ2)φ

)
, (33)

where we assume ‖n‖ = 1 in the last step of derivation. When minimizing the cur-
vature energy in Eq. (30) the following constraint

A(φ) =
∫
S
φ(x)dx = constant (34)

must be enforced such that quantities of both species of lipids are conserved.
To derive the equation of the geometric flow for the energy G(φ) we compute its

first variation with respect to φ:

δG

δφ
= k

[
ΔxW − 1

ε2
(3φ2 + 2Hcεφ − 1)W

]
(35)

where

W = εΔxφ − 1

ε
(φ + Hcε)(φ

2 − 1).

We then split the linear and nonlinear components (WL and WN ) of W to facilitate
the numerical treatments. They are given respectively by

WL = εΔxφ + 1

ε
φ + Hc, WN = −1

ε
φ3 − Hcφ

2.
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We then have the full expansion of the variation

δG

δφ
= kΔxWL + k

ε2
WL + kΔxWN − k

ε2
(3φ2 + 2Hcεφ)(WN + WL) + k

ε2
WN

= kεΔ2
xφ + k

ε

(
2 − 6φ2 − 4kHcε

)
Δxφ −

(
6k

ε
φ + 2kHc

)
|∇xφ|2

+ k

(
−2H 2

c

ε
+ 1

ε3

)
φ − 3kHc

ε2
φ2 − k

(
4

ε3
− 2H 2

c

ε

)
φ3 + 5kHc

ε2
φ4 + 3k

ε3
φ5

+ kHc

ε2
. (36)

Also note that the variation of the mass conservation constraint is

δA

δφ
= 1. (37)

The appearance of fourth order derivative in the variation δG/δφ motivates us to
adopt the following equation of the geometric flow with an artificial time for φ:

∂φ

∂t
= −δG

δφ
+ λ

δA

δφ
, (38)

where λ is a Lagrangian multiplier used to ensure the conservation of φ. We can

derive a representation of λ by integrating Eq. (38) and noting that
∫
S

∂φ

∂t
dx = 0,

hence

0 = −
∫
S

δG

δφ
dx +

∫
S
λdx,

and consequently

λ = 1

|S|
∫
S

δG

δφ
dx,

which yields
∂φ

∂t
= −δG

δφ
+ 1

|S|
∫
S

δG

δφ
dx. (39)

Equation (39) is a fourth-order nonlinear surface diffusion equation. Alternatively,
one could derive a Cahn-Hilliard equation for the surface phase field function φ as

∂φ

∂t
= Δx

(
δG

δφ

)
, (40)

which guarantees the conservation of φ and thus does not need a Lagrangian multi-
plier. However, it involves a sixth order surface derivative and thus is more compli-
cated when the equation is to be solved numerically on a discretized surface S.
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To simplify the exposition of numerical treatments we adopt λ = 1
|S|

∫
S

δA
δφ
dx and

define g = δG
δφ
. Then we write Eq. (39) as

φt = −g + λ. (41)

To implement the time discretization we average the nonlinear function g(φ) over the
current and next time steps φn, φn+1 to implement a Crank-Nicolson approximation

φn+1 − φn

Δt
+ g(φn+1, φn) − λ(φn) = 0, (42)

where the averaged function is defined by

g(φn+1, φn) = k

2
Δx( fc(φn+1) + fc(φn))

− k

2ε2
(φ2

n+1 + φn+1φn + φ2
n + εHc(φn+1 + φn) − 1)( fc(φn+1) + fc(φn)),

and

fc(φ) = k

(
εΔxφ − (

1

ε
+ εHc)(φ

2 − 1)

)
.

To numerically solve Eq. (42) which is an implicit scheme for φn+1, we define an
interior iteration for computing ψm such that ψm → φn+1 as m → ∞. The equation
for ψm reads as

ψm+1 − φn

Δt
+ g(ψm+1, ψm, φn) − λ(ψm) = 0, (43)

where new averaged functions are defined by

g(ψm+1, ψm , φn) = k

2
Δx f̃c(ψm+1, ψm , φn)

− k

2ε2
(ψ2

m + ψmφn + φ2
n + εHc(ψm + φn) − 1)( fc(ψm) + fc(φn)),

f̃c(ψm+1, ψm , φn) = ε

2
Δx(ψm+1 + φn) − 1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn + 2εHc).

Convergent ψm is obtained by iterating over the interior index m, usually up to a tol-
erance ‖ψm+1 − ψm‖ ≤ εψ for some small εψ > 0. This convergent ψm is assigned
to φn+1, and computation is advanced to the next time step. The linear and nonlinear
components of ψm+1 in Eq. (43) are further split. The nonlinear components are
updated slower than the linear components, allowing an efficient numerical solution.
The spatial approximation of the equation is obtained by a newly developed a C0

interior penalty surface finite element method [1, 12].
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3.3 Computational Simulations and Summary

We apply the geodesic curvature driven phase separation model to simulate the
microdomain formation on surfaces. We present four simulations on different sur-
faces or with different spontaneous geodesic curvatures. The energetic histogram and
the dynamics of the domain formation in each simulation are compared to those gen-
erated by the Allen-Cahn equation obtained by the direct extension of the Ginzburg-
Landau energy based a classical phase separation model on surfaces [43]. We also
compute the radii of the microdomains which are expected to approximate the recip-
rocal of the given spontaneous geodesic curvature.

In the first simulation (#1) on unit sphere with 3963 approximately uniformly dis-
tributed nodes, we choose ε = 0.1, Hc = 1

0.3 , k = 0.01 and Δt = 0.001. A random
field is initialized on the surface such that

∫
S φds = 0. The results are compared side

by side with those of the classical Allen-Cahn equation in Fig. 6. Using a K-means
clustering method we are able to identify a number of microdomains whose radii are
then calculated. The radius associatedwith eachmicrodomain is approximately 0.23.
This means the curvature is approximately 1

0.23 , close to the specified spontaneous
geodesic curvature.

The total energies for the geodesic curvature model and the classical Allen-Cahn
model are plotted in Fig. 5. Both converge as time evolves. The number of iterations
is large because of the smallΔt , which is constrained by the stability of our numerical
method for the fourth-order nonlinear partial differential equation.

In the second simulation (#2) on the unit sphere as shown in Fig. 7, we choose
ε = 0.1, Hc = 1

0.40 , k = 0.01 and Δt = 0.002. This spontaneous curvature matches
the reported spontaneous curvature for DOPE/DOPS mixture [53]. A coarser while
quasi-uniform mesh with 984 nodes is deployed on the unit sphere. The radius asso-
ciated with the each microdomain is approximately 0.37, indicating a curvature
approximately 1

0.37 . The convergence of the energies of the geodesic curvature model
and the classical Allen-Cahn mode are plotted in Fig. 5 as well. The lower resolution
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Fig. 5 Minimization of the geodesic curvature total energy and the Ginzburg-Landau Energy. Left
Simulation #1 on unit sphere with 3963 nodes and Hc = 1

0.3 . Right Simulation #2 on unite sphere
with 984 nodes and Hc = 1/0.4
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Fig. 6 Simulation #1. Formation of localmicrodomains simulated by the geodesic curvature energy
(top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom row)
from the same initial random field (left column) on the unite sphere with 3963 nodes. Sampling
time from left to right is: t = 0, 3, and 7

Fig. 7 Simulation #2. Formation of localmicrodomains simulated by the geodesic curvature energy
(top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom row)
from the same initial random field (left column) on unit sphere with 984 nodes. Sampling time from
left to right is: t = 0, 3, and 7
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resulting from the coarser mesh in the second simulation can be seen in the larger
spots in the initial field and the wider transitional layers between different domains.

The third simulation (#3) is conducted on a more complicated surface as shown
in Fig. 8. We choose the molecular surface of three particles of unit radius respec-
tively centered at (0, 1, 0), (−0.864,−0.5, 0) and (0.864,−0.5, 0). The surface is
quasi-uniformly meshed with 2974 nodes and we set ε = 0.1, Hc = 1

0.4 , k = 0.01
and Δt = 0.001. Starting with a random initial field we finally identified six
microdomains using the K-mean clustering method at the equilibrium state, whose
radii are estimated. As seen in Fig. 9, the radii of the microdomains approximate the
given spontaneous geodesic curvatures.

Fig. 8 Simulation #3. Formation of localmicrodomains simulated by the geodesic curvature energy
(top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom row)
from the same initial random field (left column) on the molecular surface of three-atom with 2974
nodes. Sampling time from left to right is: t = 0, 3, and 7

Fig. 9 The radii of the
prominent 6 microdomains
produced in Simulation #3
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In the last simulation (#4) we choose the molecular surface of six particles of unit
radius respectively centered at (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and
(0, 0,−1). The quai-uniform surface mesh has 3903 nodes and we set ε = 0.1,
Hc = 1

0.4 , k = 0.01 and Δt = 0.001 for the simulation. One can see from Fig. 10
that the largest raft radius obtained by the simulation is about 0.35 which means
the curvature of that raft is about 1

0.35 , a value close to given spontaneous geodesic
curvature (Fig. 11)
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Fig. 10 The radii of the prominent 9 rafts produced by Simulation #4

Fig. 11 Simulation #4. Formation of local microdomains simulated by the geodesic curvature
energy (top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom
row) from the same initial random field (left column) on the molecular surface of six-atom with
3903 nodes. Sampling time from left to right is: t = 0, 3, and 7
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The radii of the microdomains generated in our simulations are not exactly the
given spontaneous geodesic curvature. Rather they are distributed around the given
curvature. Apart from the numerical error in simulation and in K-means clustering
and radii estimate, this non-uniform distribution of domain radii is mostly related to
the total quantity of the lipid phases in the initial randomfield.The initial quantitymay
not exactly cover an integer number ofmicrodomainswith the given radius. However,
the overall distribution of radii around the given radius of curvature demonstrated that
our geodesic curvaturemodel is capable of predicting the formation ofmicrodomains
that are caused by the geometrical and molecular mechanical mismatch of lipid
mixtures. The predicted microdomains can be compared to the observed lipid rafts,
and the boundaries of these microdomains can be identified to provide locations
where specific proteins can aggregate. Coupling of our model of geodesic curvature
driven microdomains formation to the localization of proteins will provide a very
useful quantitative technique for studying the crucial roles of these proteins in high-
fidelity signal transduction in cells [66, 85].

4 Variational Methods for Curvature Induced Protein
Localization in Bilayer Membranes

Rather than forming distinct domains in a way similar to lipids as modeled in Sect. 3,
many membrane proteins do not form distinct domains in membranes.3 Given the
fact that their distribution on bilayer membranes is not uniform, molecular mech-
anisms need to be identified to quantitatively investigate this distribution and its
biological consequences. On the one hand, approximately 30–90% of all membrane
proteins can freely diffuse along the membrane [50, 74, 94, 107]. On the other hand,
insertion or tethering of the membrane proteins to bilayer membrane will cause
membrane curvature [64, 110, 163]. For instances, the rigid proteins such as those
in the BAR (Bin/Amphiphysin/Rvs) domain family can act as a scaffold to the mem-
brane. These proteins have an intrinsic curvature and, upon attaching, the membrane
bends to match the protein curvature [98]. In a similar fashion, several proteins can
oligomerize to create a rigid shape and bend the membrane. Protein coats such as
clathrin, COPI (COat Protein I) andCOPII (COat Protein II) are examples of this type
[51, 75]. Other proteins may insert themselves into the membrane. Membrane curva-
ture is also induced when there is a difference between the length of the hydrophobic
region of a membrane protein and the thickness of the hydrophobic core of the lipid
bilayer in which it is embedded [103]. Epsin proteins do this by forming an alpha-
helix known as H0 upon binding to the membrane, and this helix inserts itself into

3A protein unit consisting of several segments such as most ion channel proteins or G-protein-
coupled receptors (GPCRs) is not taken as a distinct domain in this study. The whole unit is
considered as a single protein instead.
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the membrane [11]. Moreover, local crowding of peripheral proteins can cause mem-
brane bending by creating an asymmetry of the monolayer areas and thereby curling
the membrane away from the side on which the crowding occurred. This effect is
experimentally demonstrated in [122]. Further illustrating the importance of proteins
in membranes, Schmidt et al. showed that the M2 protein plays an essential role in
generating regions of high curvature in the influenza A virus membrane [115]. This
specific protein accumulates in regions of negative Gaussian curvature and can gen-
erate curvature in the membrane itself, allowing the replicated virus to be wrapped
and released from the infected cells. While these examples should provide sufficient
motivation to include proteins to the model, we note that all endocytosis and exocy-
tosis processes are promoted in one way or another by proteins. Therefore, any viral
replication process requires proteins. Antagonizing the curvature effects of proteins
is a viable antiviral strategy [115]. This motivates the necessity for a model coupling
membrane curvature and lateral diffusion of proteins. We shall observe below that
the final governing equation for this curvature-driven lateral transportation appears
a drift-diffusion equation in its essential form. This mechanism is different from the
transportation of surfactants on interfaces moving with the fluid flow as investigated
in the literature [130, 131, 152].

4.1 Lagrangian Formulation

Modeling generation of membrane curvature using energetic variational principle
has been well established in the past few decades [19, 45, 49, 65]. These research
have been inspirational to our work. However, the focus of our discussion in this
section is on the curvature driven protein localization. We sketch the framework of
the integration of these two components. The numerical implementation is computa-
tionally intensive because of the coupling of dynamical membrane morphology and
the varying surface concentration of proteins. Consider a membrane with (m + 1)
distinct lipid species with concentrations ρ

lip
l , l = 0, . . . ,m and a single type of dif-

fusive membrane proteins with a concentration ρpro. A closed membrane is modeled
as a structureless surface S contained in a 3D domain Ω ∈ R

3 and separated Ω into
two subdomains, one inside the membrane and the other outside. The total energy of
the system is composed of the membrane curvature energy and the entropic energy
from the lipids and proteins

G tot = Gmem + Gent, (44)

where the membrane curvature energy is given in the classical Canham-Helfrich-
Evans form

Gmem =
∫
C
k(H − H0(ρ

lip
l , ρpro))2ds, (45)
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and the entropic energy for the membrane with membrane protein attachments is

Gent = 1

β

∫
C

(
m∑
l=0

ρ
lip
l

[
ln(ρ lip

l (alipl )2) − 1
]

+ ρpro [ln(ρpro(apro)2) − 1
])

ds,

(46)
Here H is the membrane mean curvature and H0 is the spontaneous membrane cur-
vature, k is a curvature energy coefficient, and β = 1/(kBT ) is the inverse of thermal
energy. The effective sizes of lipids and proteins are respectively given by alipl and
apro. By modeling lipids and proteins as hard disks, the occupied surface areas in
the membranes are taken as (alipl )2 and (apro)2, respectively. The essential feature of
our model is seen in the dependence of the membrane spontaneous curvature on the
local lipid composition ρ

lip
l and the protein concentration ρpro. This dependence is

justifiable considering that (i) each lipid species l has its own spontaneous curvature
[93] therefore the membrane spontaneous curvature must be a function of the local
lipid composition, and (ii) membrane proteins will induce membrane curvature so
that the observed spontaneous curvature must be a function of the local protein con-
centration [72, 103, 115, 126, 135]. We define the membrane curvature induced by
a single membrane protein as the spontaneous (membrane) curvature of the protein.
Here we define H0 as the average spontaneous curvature of lipids and proteins weight
by their respective surface coverage fraction:

H0 = √
2

m∑
l=0

Cl
0(a

lip
l )2ρ

lip
l + Cpro

0 (apro)2ρpro

m∑
l=0

(alipl )2ρ
lip
l + (apro)2ρpro

, (47)

where Cl
0 and Cpro

0 are the spontaneous curvature of the lth species of lipids and
proteins, respectively. Considering that the membrane surface is completely covered
by the lipids and proteins, the following saturation constraint holds true:

m∑
l=0

(alipl )2ρ
lip
l + (apro)2ρpro = 1. (48)

With this constraint we can write the spontaneous curvature in Eq. (47) as

H0 = √
2

(
m∑
l=0

Cl
0(a

lip
l )2ρ

lip
l + Cpro

0 (apro)2ρpro

)
(49)

and the membrane entropic energy as



Variational Methods for Biomolecular Modeling 209

Gent = 1

β

∫
C

{
1

(alip0 )2

(
1 − ρpro(apro)2 −

m∑
l=1

ρ
lip
l (alipl )2

)

×
[
ln

(
1 − ρpro(apro)2 −

m∑
l=1

ρ
lip
l (alipl )2

)
− 1

]
+

m∑
l=1

ρ
lip
l

[
ln(ρ lip

l (alipl )2) − 1
]

+ ρpro
(
ln(ρpro(apro)2) − 1

)}
ds. (50)

To obtain the dynamics of the membrane morphology, one can calculate the variation
of the total energy G tot in Eq. (44) and solve the resulting equation for the gradient
flow of φ. This process is routine and can be found in the studies of spontaneous
curvature effects of pure or multi-component membranes without proteins [42, 45].
Since our interest here is to investigate the protein localization onmembrane surfaces,
we choose to fix the membrane morphology, i.e., H0 is a time-independent function.
We then only need to calculate the variation of the total energy with respect to the
membrane protein concentration, which turns out to be

δGtot

δρpro
= δGmem

δρpro
+ δGent

δρpro

= kBT

⎡
⎣−

(
apro

a
lip
0

)2

ln

⎛
⎝1 − ρpro(apro)2 −

m∑
l=1

ρ
lip
l (a

lip
l )2

⎞
⎠ + ln(ρpro(apro)2)

⎤
⎦

+ 2Cpro
0 (apro)2(H − H0). (51)

4.2 Eulerian Formulation

While we are working on the membrane with fixed morphology, the formulation
of the curvature driven protein localization is expected to interface with dynamical
morphology where the membrane surface is not a prior known. For that purpose one
could trace the position of membrane implicitly by evolving a phase field function
φ(x) on surface S embedded inΩ ∈ R

3, where φ takes the value of−1 in the exterior
of the membrane enclosure and 1 inside [42, 45]. The membrane mean curvature at
φ = 0 can be computed as a function of φ following

H =
√
2ε

2(1 − φ2)

(
Δxφ + 1

ε2
(1 − φ2)φ

)
, (52)

where ε > 0 is a small parameter that adjust the transition of φ from −1 to 1 near
the membrane as in Eq. (30). We then identify three components of the chemical
potential defined by the variation in Eq. (51)
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Lpro = ln(ρpro(apro)2), (53)

Rpro = −
(
apro

alip0

)2

ln

⎛
⎝1 − ρpro(apro)2 −

m∑
j=1

ρ
lip
j (alipj )2

⎞
⎠ , (54)

Ppro = ε√
2(1 − φ2)

(
Δxφ + 1

ε2
φ(1 − φ2)

)
− H0 (55)

to write this chemical potential as

μpro = δG tot

δρpro
= kBT (Lpro + Rpro) + 2Cpro

0 (apro)2∇xP
pro. (56)

This chemical potential allows us to define the diffusion flux vector and the trans-
portation equation. Two options are available for the definition of the transportation
equation. One could extract the membrane surface S from the phase field function φ

and solve a surface transportation on S. This involves the dynamic meshing or mesh
deformation if φ is evolving in time, and singularity will arise if there is topological
change in S as φ evolves.

Alternatively, one could formally define a 3D transportation equation in the entire
domain Ω but practically restrict the transportation of membrane proteins to a very
small neighborhood near the membrane surface S. This is accomplished by intro-
ducing to the flux vector

Jpro(r) = −DproδSβρpro(r)∇μpro (57)

a function δS which is concentrated at the membrane S where φ = 0. Various choices
of such functions are available and their numerical properties differ subtly [78]. We
choose

δS =
{
tanh(10(φ + 1)), −1 ≤ φ ≤ 0,

− tanh(10(φ − 1)), 0 ≤ φ ≤ 1,
(58)

so that effective domain near φ = 0 can be automatically identified as φ evolves.
The general transportation equation for membrane proteins reads

∂ρpro(r)
∂t

+ ∇ · (v∇ρpro(r)) = −∇ · Jpro(r), (59)

where v is the velocity of the membrane in which the membrane proteins move.
Although this velocity is taken to be zero in our computations simulations to be
presented here, it can be computed if the membrane moves with the evolving phase
field function. The nature of the equation can be seen if the size effects of lipids and
membrane proteins are not considered, i.e., alipl = apro = 0. In this case Rpro = 0
and

∂ρpro

∂t
= ∇ · (DproδS∇ρpro + 2kBT DproCpro

0 (apro)2δSρ
pro∇Ppro), (60)
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which is a drift-diffusion equation with a potential Ppro. The mean curvature of the
membrane therefore appears a potential that drives the transportation of membrane
proteins to membrane surfaces where its mean curvature well fits the spontaneous
membrane curvature of proteins. To numerically solve the equation, we separate the
linear and nonlinear components of the equation, which are then treated using an
implicit-explicit splitting interaction methods similar to the treatment of Eq. (40)
presented in Sect. 3. The spatial approximation of the equation is obtained by using
the Fourier spectral method, and a change of variable is necessary to convert the
equation with variable diffusion coefficient DδS to a constant diffusion coefficient
so that the Fourier spectral method is applicable [36, 125].

4.3 Computational Simulations and Summary

To demonstrate the curvature preference of protein localization we consider in the
domainΩ = (−4, 4)3 a torus because it has regions with positive and negative mean
curvatures where the proteins may populate or not depending on their spontaneous
curvature. The torus surface is given by

(R −
√
x2 + y2)2 + z2 = r2, (61)

where R and r are the major and minor radii, respectively. Its alternative parame-
trization

(x, y, z) = ((R + r cos θ) cosϕ, (R + r cos θ) sin ϕ, r sin ϕ) (62)

can be handy when computing the curvature. Here 0 ≤ θ ≤ 2π is the angle made
from the surface around the center of the tube, known as the poloidal angle, and
0 ≤ ϕ ≤ 2π is the anglemade from the surface to the positive x-axis (projected on the
xy-plane), knownas the toroidal angle.When R > r , one gets the so-called ring torus.
Here we choose R = 2 and r = 1.1. The phase field function φ is set as the signed
distance function with this torus surface. We consider only one species of diffusion
proteins and one species of lipids. The saturation condition (48) then indicates that
we only need to model the distribution of proteins only. The membrane proteins
are initially concentrated near the highest point of the positive y-axis, smoothly
distributed along the surface, and because of the adoption of phase field function
which expands the transportation domain from the surface to a small neighborhood
in the vicinity of the surface, smoothly distributed from the surface to the bulk:

ρ = ρ0e
−
√

x2+(y−R)2+z2e
−2

(
r−

√
(x−cx )2+(y−cy)2+z2

)
, (63)
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where r = √
x2 + y2 + z2 and (cx , cy, 0) is the center of the torus tube on the same

plane of which locates the point (x, y, z). The scaling constant ρ0 is chosen such that
the maximum of the concentration is 1 on the torus surface.

We first set the spontaneous curvature of membrane proteins and lipids to be
Cpro
0 = 0.5,C lip

0 = −0.1, respectively. Notice that the mean curvature of a torus is
given by

Htorus = R + 2r cos θ

2r(R + r cos θ)
, (64)

which gives a mean curvature Htorus ≈ 0.6158 for the chosen values of R, r at the
outer ring of the torus where θ = 0 and Htorus ≈ −0.1 at the inner ring of the torus
where θ = π .With this first choice ofCpro

0 ,C lip
0 we expect that themembrane proteins

will populate near the outer ring where the mean curvature is close to the specified
spontaneous curvature of membrane proteins. Our expectation is verified by Fig. 12,
where the plots of the concentrations of the membrane proteins on the membrane

Fig. 12 Simulated localization of the membrane proteins from its initial position to the outer ring
of the torus on a 1283 uniform mesh. ε = 0.1. Time incrementΔt = 10−3. Spontaneous curvatures
Cpro
0 = 0.5,C lip

0 = −0.1, and sampling moments are t = 0, 0.1, 0.25, 0.5, 1.0, 5.0. Color is scaled
by the maximum concentration in each plot
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φ = 0 and the cross section y = 0 at six sampling moments show the transportation
of membrane proteins from its initial position to the outer ring of the torus.

In the second simulation we start with same initial condition as in the first sim-
ulation but switch the spontaneous curvatures to Cpro

0 = −0.1 and C lip
0 = 0.5. It is

expected that the membrane proteins will finally populate at the inner ring of the
torus, and this is verified by the snapshots of concentrations in Fig. 13.

These two computational simulations demonstrate the successful modeling of the
curvature driven membrane protein localization using the drift-diffusion equation
(60). Full version of Eq. (59) can also be considered to include the effects of finite
sizes of effects of lipids and proteins, and multiple species of lipids. Our choice
of small time increment (Δ = 10−3) is restricted by the stability of the implicit-
explicit splitting method used for integrating the nonlinear equation. We expect the
development of more efficient numerical methods for the integration of the equation,
in particular when it is to be coupled with the dynamic phase field function φ, in
that case a membrane velocity shall be added to Eq. (60) to make it an advection-
drift-diffusion equation. Such coupling reveals the positive feedback of membrane

Fig. 13 Simulated localization of themembrane proteins from its initial position to the outer ring of
the torus on a 1283 uniform mesh. ε = 0.1. Time increment is Δt = 10−3. Spontaneous curvatures
are Cpro

0 = −0.1 and C lip
0 = 0.5, and sampling moments are t = 0, 0.1, 0.25, 0.5, 1.0, 5.0. Color

is scaled by the maximum concentration in each plot
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curvature accumulation to membrane protein localization. On the other hand, the
number of major membrane proteins involved in the membrane fusion, budding,
endocytosis, or exocytosis is not a constant over the entire time course because
there is continuous intracellular protein transport. Proteins may be recruited from
the solution to membrane at specific regions of the membrane and meanwhile they
are released from the membrane to the solution [112, 121]. The model presented
here can be extended by adding a reaction term that models the dynamic exchange of
membrane proteins between the membrane and the solution. Indeed, it is shown that
some membrane budding proteins such as influenza virus hemagglutinin (HA) and
neuraminidase (NA) are associated with raft-like microdomains, while some are not
[80]. An integration of the curvature driven localization and local clustering within
the microdomains will help elucidate the competing or collaborative effects of these
membrane proteins in the same biophysical process.

5 Conclusions

Energetic variational principle constitutes a tangible link between multiscale theory
and the experimental observation of biomolecular structure, function, and dynam-
ics, aided by computational simulations. Although the applications of variational
principle have been well established for research in various areas of mechanics, clas-
sical and modern physics, and material sciences, novel insights are offered by this
principle when it is applied to the biomolecular systems. Among the progresses
achieved in recent years, a significant step forward has been made using the geome-
try of the molecular interface to parametrize the total energy [1, 26, 27, 71, 82, 84,
97, 149]. This unified representation allows the investigators to focus on the identifi-
cation of energies that characterize various molecular interactions at multiple spatial
and temporal scales. The flexibility of the analytical and computational framework of
the variational principle ensures that the critical states and dynamics of the biomolec-
ular system can be trackedwith confidence by evolving the total energy. Furthermore,
by introducing a phase field function we can implicitly define and track themolecular
interface which may subject to large deformation and topological change. The three
topics presented here demonstrated the desirable flexibilities of formulating the total
energy, of parametrizing the energy using phase field function, and of simulating
the equilibrium state and dynamics of the system though the numerical solutions of
the nonlinear partial differential equations (PDEs) for the geometric flow of the total
energy.

The geometrically parametrized total energy obtained by the energetic variational
principles entails a rich body of features for mathematical and numerical analysis,
including the stability of its critical points, the coarsening dynamics, the solution
periodicity, and the conservative discretization of the resulting PDEs, while most
of them remain open as long as the applications to biomolecular problems are con-
cerned. More broad usefulness of the methodology outlined in the present three
topics are expected to be established in chemistry, biophysics, and medicine through
interdisciplinary research and collaboration.
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