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1 Introduction

Statistical mechanics is concerned with the properties of many-body systems, i.e.,
systems containing a large number of either quantum or classical particles [1, 2].
Common examples of such particles include electrons and photons for quantum
systems, or diverse microscopic objects for classical systems (e.g., atoms, inert-
gas molecules, the repeating units of a polymer or macromolecule, colloidal par-
ticles, and globular proteins). To describe the inter-particle interactions, we may
divide the elementary quantum particles into bosons and fermions, depending on the
symmetric/antisymmetric nature of their wave functions. Such distinction is unnec-
essary for classical particles because the Newton’s equation, often in the context of
a semi-empirical potential, is used to describe the particle dynamics.

Regardless of the physical nature of particles, a number of common mathematical
procedures may be taken to utilize statistical-mechanical principles to describe a wide
variety of phenomena arising from many-body interactions. One of the best-known
procedure is Monte Carlo (MC) simulation [3], applicable to calculating the con-
figurational properties of virtually any thermodynamic system. The square-gradient
approximation (SGA) discussed in this chapter represents another common but com-
putationally much more efficient procedure. The basic ideas of SGA were introduced
by van der Waals to describe the interfacial properties of coexisting vapor and liq-
uid phases over a hundred years ago [4]. Because of its simplicity, SGA remains a
popular choice for predicting the microscopic structure and thermodynamic proper-
ties of diverse inhomogeneous systems. Similar procedures have been extensively
used, for example, to describe phase transitions in condensed-matter systems such
as macroscopic phase separations, fluid wetting at solid surfaces, and formation of
microemulsions or polymeric mesoscopic phases. In a slightly different context, the
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gradient expansion method is also commonly used in theoretical descriptions of
electronic properties for both chemical systems and materials.

In contrast to simulation methods, the universal applicability of SGA to various
simple and complex fluids and electronic systems is rarely discussed as a common
theme. Because the gradient expansion method was often introduced from the per-
spectives of seemingly unrelated physical phenomena with utterly different practical
applications, SGA was “rediscovered” for a number of times and often named after re-
inventors from different subfields of condensed matter physics. This chapter intends
to establish a generic linkage among several incarnations of SGA. For pedagogy, our
discussion begins with some basic concepts from statistical mechanics applicable to
both quantum and classical systems. While for simplicity our discussion is mostly
focused on systems containing only one type of particles, it should straightforward
to extend similar ideas (and equations) to multicomponent systems. In addition to
pedagogical purposes, this chapter intends to forge a common ground for better com-
munication among different subfields of statistical mechanics and to facilitate future
cross-field developments.

2 Statistical Mechanics

For a many-body system of practical concern, the dynamic and energetic proper-
ties are inevitably related to the particle positions or the spatial distributions of the
microscopic constituents. A quantity of fundamental importance is thus the one-body
particle density profile, viz. the average local number density of individual particles.
For a system containingN indistinguishable particles of spherical shape, the instanta-
neous particle distribution may be specified by a summation of the Dirac-δ functions:

ρ̂(r) =
N∑

i=1

δ(r − ri) (1)

where ri represents the position to locate the center of mass for particle i. The one-
body density profile is defined as an ensemble average of the instantaneous density

ρ(r) =< ρ̂(r) >=
N∑

i=1

< δ(r − ri) > (2)

where the angle brackets < · · · > denote an ensemble average, which is determined
by the probability of the many-body system in different microstates {ν}

< · · · >=
∑

ν

pν(· · · ). (3)
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The Dirac-δ function specifies the probability density distribution for a particle
located at a specific position. Accordingly, the density profile ρ(r) reflects the micro-
scopic structure of the many-body system.

The grand canonical ensemble provides a convenient starting point to describe
the properties of a many-particle system in terms of the one-body density profiles.
For a one-component system at absolute temperature T , chemical potential μ, and
volume V , the microstate probability is given by

pν = exp [β (μNν − Eν)] /� (4)

where � represents the grand partition function

� ≡
∑

ν

exp [β (μNν − Eν)]. (5)

In Eqs. (4) and (5), β = 1/(kBT), kB is the Boltzmann constant, Nν and Eν stand
for the number of particles and the total energy at microstate ν, respectively. For
an electronic system at 0 K, the microstate probability is defined in terms of the
multi-body wave function �(rN , sN ). In that case, the one-body density profile can
be written as

ρ(r) =
∫ ∑

sN

N∑

i=1

δ(r − ri)�∗(rN , sN )�(rN , sN )dxN (6)

where rN = (r1, r2, . . . , rN ), sN = (s1, ss, . . . , sN ) stands for the spin coordinates,
and �∗ represents the complex conjugate of the multi-body wave fn function.

In principle, all equilibrium properties of the system can be derived from the grand
potential

� ≡ −kBT ln �. (7)

Taking two important thermodynamic variables as an example, we can calculate
entropy from a partial derivative of the grand potential with respect to temperature

S ≡ −kB
∑

ν

pν ln pν = −
[
∂�

∂T

]

μ,V

, (8)

and the internal energy is related to the grand potential by

U ≡< Kν + 
ν +
∫

drρ̂ν(r)ϕext(r) >=
[
∂β�

∂β

]

μ,V

+ μN (9)

where Kν and 
ν stand for the kinetic and potential energies of the particles at
microstate ν, respectively, ϕext(r) is the external potential for each particle, and
N =< Nν > denotes the average number of particles in the system.
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From the grand potential, we can also derive a hierarchy of correlation functions.
For example, the first derivative of the grand potential with respect to the one-body
potential yields the one-body density profile

δ�

δu(r)
= ρ(r) (10)

where u(r) ≡ ϕext(r) − μ, and a second derivative leads to the density-density cor-
relation function χ(r, r′),

− δ2�

δ2u(r)
= − δρ(r)

δu(r′)
= β

〈[ρ̂(r) − ρ(r)][ρ̂(r′) − ρ(r′)]〉 ≡ βχ(r, r′). (11)

Although the basic ideas of statistical mechanics are rather intuitive, the complex-
ity in the dynamics of many particles makes direct evaluation of the grand partition
function virtually impossible except for a few highly idealized systems. In MC sim-
ulation, the ensemble average is instead evaluated using some stochastic processes
to sample the microstates with an electronic computer. Thanks to rapid advances in
computing technology and algorithm developments, modern applications of statisti-
cal mechanics often hinge on simulation methods. Alternatively, the microstates can
be generated following the dynamics of individual particles as in molecular dynamics
(MD) simulations. While the numerical procedures for both MC and MD are formally
exact and rather straightforward to implement, enumeration of the microscopic states
of a many-body system is not only computationally demanding but also unhelpful
for capturing the essential features of physical phenomena. Molecular simulation
generates a large volume of often unrevealingly information. By contrast, theoreti-
cal methods are able to capture the universal principles underlying diverse physical
phenomena and permit fast calculation of structural and thermodynamic properties
without explicit consideration of the microscopic details.

3 Density Functional Theory (DFT)

Density functional theory (DFT) provides a generic mathematic framework to estab-
lish quantitative connections between thermodynamic properties of a many-body
system and the underlying one-body density profiles. The central idea can be best
introduced in terms of the Hohenberg-Kohn-Mermin (HKM) theorem [5, 6], which
was established first in the context of inhomogeneous electrons at 0 K. The HKM the-
orem was later generalized to thermodynamic systems of both quantum and classical
particles [7].

For a one-component system of identical particles, the HKM theorem asserts that
the grand potential can be determined by minimization of the density functional
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�[ρ(r)] ≡ F[ρ(r)] +
∫

ρ(r)u(r)dr (12)

where F[ρ(r)] stands for the intrinsic Helmholtz energy. Here by intrinsic we mean
that the quantity is independent of the system external potential. Formally, F[ρ(r)]
is defined by the microstate probability and the intrinsic energy of the particles

F[ρ(r)] =
∑

ν

pν(kBT ln pν + Kν + 
ν). (13)

According to the HKM theorem, the one-body external potential is a unique func-
tional of the one-body density profile. As a result, both the microstate probability
pν and, subsequently, the intrinsic Helmholtz energy are unique functionals of the
one-body density profile ρ(r).

For a specific system, the one-body potential u(r)is fixed. Minimization of the
grand potential functional with respect to the one-body potential leads to

δ�

δρ(r)
= δF

δρ(r)
+ u(r) = 0. (14)

Equation (14) is known as the Euler-Lagrange equation. With an explicit expression
for the intrinsic Helmholtz energy, Eq. (14) allows us to solve the one-body den-
sity profile, which serves as the starting point to predict other thermodynamic and
structural properties of the system.

It is worth noting that DFT is formally exact and applicable to both quantum and
classical systems. In other words, DFT represents a generic mathematical framework
in statistical mechanics. The same procedure is similarly applicable to quantum and
classical systems including electronic systems at zero temperature. At T = 0 K, the
expression for the grand potential and the Euler-Lagrange equation remain the same
but the thermodynamic entropy vanishes. In that case, the intrinsic Helmholtz energy
becomes an internal energy, depending only on the kinetic and potential energy of
the particles

F[ρ(r)] =
∑

ν

pν(Kν + 
ν) =< Kν + 
ν > . (15)

For electronic systems, the excitation energy, typically on the order of a few electron
volts, is much higher than the thermal energy at room temperature (1 eV ∼ 40 kBT).
As a result, the entropy effects are relatively unimportant for the electronic properties.

While DFT is emerging as one of the most predominant approaches for the theo-
retical description of inhomogeneous quantum and classical systems, one noticeable
caveat is that the HKM theorem does not provide any specific knowledge on the
intrinsic Helmholtz energy. Nevertheless, analytical expressions are readily avail-
able for the density functional in the absence of inter-particle interactions. The ideal-
gas systems provide a useful reference to formulate the excess intrinsic Helmholtz
energy due to inter-particle interactions. Although exact results are no more attainable
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for most practical systems, excellent approximations can be established using
analytical tools from both quantum and statistical mechanics [8, 9].

From a mathematical perspective, approximate methods in statistical mechanics
are mostly based on perturbation expansions with respect to either the inter-particle
energy or the local density inhomogeneity. For systems with a pairwise additive
potential 
(r1, r2), the total potential energy at each microstate may be written as


ν = 1

2

∫
dr1

∫
dr2

∑

i �=j

δ(r1 − ri)
(r1, r2)δ(r2 − rj) (16)

where a factor of 2 accounts for the fact that each pair potential involves two inter-
acting particles. Using Eqs. (7) and (16), we may show that a functional derivative
of the grand potential with respect to the pair potential leads to the two-body density
distribution function, ρ(2)(r1, r2),

δ�

δ
(r1, r2)/2
=<

∑

i �=j

δ(r1 − ri)δ(r2 − rj) >≡ ρ(2)(r1, r2). (17)

Equation (17) can be used to evaluate the difference between the intrinsic Helmholtz
energy of a real system and that of an ideal system (ID).

At fixed temperature T and one-body potential u(r), a functional integration of
Eq. (17) with respective to the pair potential gives [10]

F[ρ(r)] = FID[ρ(r)] + 1

2

∫ 1

0
dλ

∫
dr1

∫
dr2ρ

(2)(r1, r2, λ)
(|r1 − r2|) (18)

where FID[ρ(r)] represents the intrinsic Helmholtz energy of the non-interacting
system, and ρ(2)(r1, r2, λ) stands for the two-body density correlation function of
the system under consideration but with a reduced pair potential, 
λ(r) = λ
(r),
where 0 ≤ λ ≤ 1. In writing Eq. (18), we assume that the inter-particle potential
between spherical particles depends on the center-to-center distance, i.e., 
(r1, r2) =

(|r1 − r2|). The functional integration corresponds to the reversible work to add the
inter-particle potential to non-interacting ideal particles [11]. For electronic systems,
Eq. (18) is commonly known as the adiabatic connection [8].

For most systems of practical interest, the two-body correlation functions are
extremely complicated, depending not only on two positions but also on the local
density profile as well as all variables defining the thermodynamic state. For easy
understanding, it is convenient to express the two-body density correlation function
in terms of the radial distribution function (RDF)

g(r1, r2) ≡ ρ(2)(r1, r2)/[ρ(r1)ρ(r2)] (19)

or the total correlation function (TCF)
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r

1

g(r)

0

Fig. 1 A schematic representation of the radial distribution function (RDF). For a uniform system
of spherical particles, g(r1, r2) is a function of the distance r = |r1 − r2|. For an inhomogeneous
system, however, RDF depends on the position and relative orientation. For both uniform and
inhomogeneous systems, RDF vanishes at small separation and approaches unity at large distance
owing to the short-range repulsion and the rapid decay of long-range inter-particle interactions

h(r1, r2) ≡ g(r1, r2) − 1. (20)

Intuitively, RDF represents the probability of finding a particle given that the
position of another particle is fixed at the origin. As shown schematically in Fig. 1,
RDF vanishes at small separation due to the inter-particle repulsion and approaches
unity at large distance when the particle densities become uncorrelated. In the mean-
field approximation, it is commonly assumed g(r1, r2) = 1 or h(r1, r2) = 0, i.e., the
total correlation function is completely neglected.

4 Square-Gradient Approximation (SGA)

For systems with a nearly uniform one-body density profile, the intrinsic Helmholtz
energy may be approximated by a functional Taylor expansion with respect to that
of a uniform system with an average density ρ0:

F[ρ(r)] = F(ρ0) + μ

∫
�ρ(r)dr + 1

2

∫
dr1

∫
dr2�ρ(r1)�ρ(r2)K(r1, r2) + · · ·

(21)
where �ρ(r) ≡ ρ(r) − ρ0. In the density expansion above, the reference system has
the temperature and the particle chemical potential the same as those corresponding
to the real system.

In Eq. (21), K(r1, r2) has the units of energy and is referred to as the vertex func-
tion. Because the first-order functional derivative of the intrinsic Helmholtz energy
with respect to ρ(r) results in the one-body potential, the vertex function corresponds
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to the second-order functional derivative. For a uniform system, it depends only on
the distance between r1 and r2, i.e.,

K(r1, r2) = − δu(r1)

δρ(r2)

∣∣∣∣
ρ(r)=ρ0

= K(|r1 − r2|). (22)

In writing Eq. (22), we have utilized the Euler-Lagrange equation (i.e., Eq. (14)).
Equation (22) suggests that the vertex function specifies the variational of the local
one-body potential in response to the change in the particle density at another position.

In comparison to the exact expression given in Eqs. (18) and (21) has a major
advantage because the vertex function depends on the distance between positions r1

and r2. For systems with a slow varying one-particle density ρ(r), �ρ(r) is small and
the functional Taylor expansion for the intrinsic Helmholtz energy may be truncated
after the quadratic term. Similarly, the local density may be expressed as a truncated
Taylor series

ρ(r2) = ρ(r1) + (r1 − r2) · ∇ρ(r1) + 1

2
(r1 − r2)(r1 − r2) : ∇∇ρ(r1) + O(∇3ρ)

(23)
where ∇ρ(r) denotes the density gradient, and symbol “ :′′ is the scalar product
of two tensors. As detailed in Appendix, the gradient expansions lead to a simple
expression for the intrinsic Helmholtz energy of inhomogeneous systems:

F =
∫

dr
{
f0[ρ(r)] + κ

2
|∇ρ(r)|2

}
(24)

where f0(ρ) represents the Helmholtz energy density of the uniform system at system
temperature T and local density ρ(r), and κ is called the influence parameter. The
first term on the right side of Eq. (24) corresponds to the local density approxima-
tion (LDA) for the intrinsic Helmholtz energy, and the gradient term accounts for a
correction to the intrinsic Helmholtz energy due to the local density inhomogeneity.

For a uniform system,∇ρ(r) = 0, and Eq. (24) reduces the bulk Helmholtz energy.
Because the correction to the local density approximation is a quadratic function of
the density gradient, Eq. (24) is referred to as the square-gradient approximation
(SGA). Alternatively, the mathematical form is also known as the Ginzburg–Landau
theory or the Landau expansion. Similar methods are used extensively to describe
structure formation in inhomogeneous systems and phase transitions [12].

As shown in Appendix, the influence parameter is related to the vertex function
of the uniform system K0(r)

κ = −2π

3

∫ ∞

0
r4K0(r)dr = lim

q→0
[K̃0(q) − K̃0(0)]/q2 (25)
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where K̃0(q) represents the 3-dimensional (3D) Fourier transform of K0(r)

K̃0(q) = K̃0(q) ≡
∫

K0(r)e
−iq·rdr =

∫
sin(qr)

qr
K0(r)dr. (26)

Alternatively, it may be expressed in terms of the density-density correlation function

βκ = lim
q→0

[1/χ̃0(q) − 1/χ̃0(0)]/q2 (27)

where χ̃0(q) corresponds to the 3D Fourier transform of the density–density corre-
lation

χ(r, r′) ≡ 〈[ρ̂(r) − 〈
ρ̂(r)

〉][ρ̂(r′) − 〈
ρ̂(r′)

〉]〉 . (28)

In deriving the influence parameter, we assume that the vertex function is independent
of the local density. Accordingly, κ is determined from the correlation functions of
the uniform reference system. For better numerical performance, however, κ is often
evaluated from K0(r) of a uniform system at the local density.

SGA requires as an input the local Helmholtz energy density and the vertex func-
tion (or the density–density correlation function) of the corresponding uniform sys-
tem. On the one hand, the Helmholtz energy density is typically provided by an
equation of state or an excess free-energy model for corresponding bulk systems.
Alternatively, the local Helmholtz energy density may be obtained from an empirical
correlation based on simulation results. For classical systems, the correlation func-
tions can be solved from the integral-equation theories (e.g., the Ornstein-Zernike
equation) or from mean-field approximations and analytical functions derived for
ideal systems (e.g., correlation functions for Gaussian chains). Because gradient
expansions are applied to both the intrinsic Helmholtz energy and the one-body den-
sity profile, we expect SGA to perform well for inhomogeneous systems with near
uniform density profiles. With the influence parameter evaluated from the local den-
sities (or locally averaged densities [13], however, SGA may also be used for highly
inhomogeneous systems.

5 Simple Fluids

A simple fluid consists of argon-like molecules. In addition to noble gases, other
examples of simple fluids include a large number of nonpolar gases of low mole-
cular weight such as methane and, from a thermodynamics perspective, colloidal
dispersions and aqueous solutions of globular proteins.

For a simple fluid, the bulk Helmholtz energy can be readily derived from an equa-
tion of state. Taking the van der Waals theory as an example, the reduced Helmholtz
energy density per volume is given by
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βf0(ρ) = ρ

[
ln(

ρ�3

1 − bρ
) − 1 − βρa

]
(29)

where a and b are van der Waals’ parameters, � represents the thermal wavelength.
More accurate expressions for the Helmholtz energy density are available [14].

The vertex function of a simple fluid may be expressed in terms of the direct
correlation function (DCF), c(r, r′),

βK(r, r′) = δ(r − r′)
ρ(r)

− c(r, r′). (30)

Mathematically, c(r, r′) corresponds to the second-order functional derivatives of
the excess Helmholtz energy, Fex ≡ F − FID

c(r, r′) ≡ − δ2βFex

δρ(r)δρ(r′)
. (31)

Without inter-particle interactions, the Helmholtz energy of the ideal system is
exactly known

FID = kBT
∫

ρ(r){ln[ρ(r)�3] − 1}dr. (32)

As shown in Appendix, DCF and RDF are related through the Ornstein-Zernike
equation, which provides a basis for numerical solutions of the correlation functions.
Analytical expressions of c0(r) are also available for a number of simple fluids over
a broad range of thermodynamic conditions [15].

Figure 2 shows schematically the direct correlation function for a uniform fluid.
While there is an apparent connection between the direct correlation function and
the reduced pair potential at large distance, it is important to recognize that c0(r)
depends not only on the distance but also on thermodynamic parameters defining the
equilibrium state. At large distance, the direct correlation function approaches to the
reduced pair potential as

Fig. 2 A schematic
representation of the direct
correlation function of a
simple fluid c0(r). At large
distance, the direct
correlation function is
virtually identical to the
reduced pair potential
−β
(r). At short distance,
the pair potential diverges
while the direct correlation
function remains finite

-c0(r) 

r = |r1-r2| 

(r)
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c0(r) ≈ −β
(r) as r → ∞. (33)

For uniform systems, Eq. (30) reduces to

βK0(r) = δ(r)/ρ0 − c0(r). (34)

Substituting Eq. (34) into (25), we can calculate the influence parameter from the
DCF of a uniform system

κ = 2πkBT

3

∫ ∞

0
dr r4c0(r). (35)

Because of the asymptotic behavior of c0(r), Eq. (35) suggests that SGA is not valid
if the inter-particle potential behaves as 1/rn, n < 6 at large r.

Case study I: Interfacial tension
The interfacial tension between two coexisting phases, say α and β, is defined as the
change in free energy in response to variation of the interfacial area. For two bulk
phases at equilibrium, the interfacial area refers to that of an imaginary surface divid-
ing the total mass of a particular component in the system into those corresponding
to two bulk phases. The imaginary surface is called the Gibbs dividing surface.

Schematically, Fig. 3 presents a Gibbs dividing surface between two bulk phases
(e.g., vapor and liquid) and the local density profile across the interface for a one-
component system. Here the density profile varies only in the direction perpendicular
to the interface, i.e., ρ(r) = ρ(z), where z represents the coordinate in perpendicular
to the surface. Because the dividing surface possesses no volume, its position, here
set at z = 0, can be determined from the one-body density profile

∫ 0

−∞
dz[ρ(z) − ρα] +

∫ ∞

0
dz[ρ(z) − ρβ] = 0. (36)

Equation (36) is also applicable to multi-component systems. In that case, the location
of the dividing surface depends on a specific component selected such that its density
profile satisfies Eq. (36).

Fig. 3 The Gibbs dividing
surface between two bulk
phases (α and β) and a
schematic of the density
profile in the interfacial
region

z 

(z) 

Dividing Surface 

α

β
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For an inhomogeneous system containing two coexisting bulk phases, SGA pre-
dicts that the grand potential per unit area is given by

�/A =
∫ ∞

−∞
dz

{
f0[ρ(z)] + κ

2
|ρ ′(z)|2 − μρ(z)

}
(37)

where ρ ′(z) ≡ dρ(z)/dz. For the bulk systems, the grand potential reduces to � =
−PV where pressure P is the same for the coexisting phases. The surface tension
is defined as the grand potential per unit area relative to those corresponding to the
bulk phases

γ ≡ � − �α − �β

A
=

∫ ∞

−∞
dz

{
f0[ρ(z)] + κ

2
|ρ ′(z)|2 − μρ(z) − P

}
. (38)

To use Eq. (38), we need an equation of state for the bulk phase and the density
profile. As discussed, above, the latter can be calculated by minimization the grand
potential Eq. (37):

μ0[ρ(z)] − κρ ′′(z) − μ = 0 (39)

where μ0 ≡ (∂f0/∂ρ)T , ρ ′′(z) ≡ d2ρ(z)/dz2. Because of the inhomogeneity in local
density, μ0 �= μ; μ0 reduces to the bulk chemical potential only when the density
is constant. Using the boundary conditions far from the interface, i.e., ρ(−∞) = ρβ

and ρ(∞) = ρα , one may solve the density profile from a numerical integration of
Eq. (39).

To obtain an explicit expression for the surface tension, we may rewrite Eq. (39)
in terms of the local grand potential density, ω(ρ) = f 0(ρ) − ρμ,

κρ ′′(z) = ∂ω(ρ)

∂ρ
. (40)

Multiplying both sides of Eq. (40) by ρ ′(z) leads to

d

dz

[κ

2
ρ ′(z)2 − ω(ρ)

]
= 0. (41)

Using boundary conditions ρ ′(z) = 0 and ω = −P for the bulk phases, we can inte-
grate Eq. (41) with respect to z and find

κ

2
ρ ′(z)2 − ω(ρ) = −P. (42)
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Substituting Eq. (42) into (38) leads to a simplified expression for the surface tension

γ = κ

∫ ∞

−∞
ρ ′(z)2dz. (43)

According to Eq. (43), the surface tension and the influence parameter have the
same sign. Because the direct correlation function is negative at small separation
and positive at larger distance, Eq. (35) suggests that the influence parameter may
be negative under certain conditions. In that case, the surface tension is negative,
favoring spontaneous formation of the interfacial area (e.g., in microemulsions as
discussed below).

A nice feature of SGA for predicting surface tension is that Eq. (43) can be
evaluated without knowing the density profile explicitly. According to Eq. (42), we
have

dz = −dρ/
√

2[ω(ρ) − P]/κ. (44)

Here a negative sign is taken with the assumption that the density declines in the z
direction. We now substitute Eq. (44) into (43) and integrate by parts,

γ =
∫ ρβ

ρα

√
2κ[ω(ρ) − P]dρ. (45)

Equation (45) indicates that SGA can be used to predict the surface tension directly
from the correlation functions and the equation of state for the uniform systems
without computing the density profile.

SGA is able to capture the essential features of interfacial inhomogeneity and
surface tension. In comparison to exact results from experiments or molecular simu-
lations, however, its performance is mostly qualitative [16]. As shown in Fig. 4, SGA
often gives a too broad one-body density profile at the interfacial region. Besides, it
misses density fluctuations near the liquid side of a vapor-liquid interface.

z 

(z) L

V

T/Tc

(a) (b)

γ

1

Fig. 4 A schematic comparison of the density profile at the vapor-liquid interface and the surface
tension versus temperature predicted from SGA (dashed lines) with those from experiments (solid
lines). Here Tc stands for the critical temperature for the vapor-liquid coexistence
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Fig. 5 The vapor-liquid
interfacial tension of normal
alkanes. Here the symbols
are experimental data and the
solid lines are SGA
predictions. Adopted from
Garrido et al. AIChE Journal
(2016)
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Because SGA predicts a too-broad interfacial region, it overestimates the surface
tension over the entire range of the coexisting temperature. A quantitative represen-
tation of the surface tension can be accomplished by using an accurate equation of
state for the bulk phases and an optimized influence parameter. For example, Fig. 5
shows that, even with the assumption that the influence parameter is independent
of the local density, the SGA is able to describe vapor-liquid interfacial tensions of
several normal alkanes in excellent agreement with experimental data [17].

6 Microemulsions

Microemulsions are thermodynamically stable heterogeneous mixtures of oil, water
and surfactants forming microscopic structures of various sizes and shapes. In
microemulsions, oil and water droplets are dispersed in “water in oil (w/o)”, “oil
in water (o/w)”, or bicontinuous structures stabilized by pure or mixed surfactants
adsorbed at the oil-water interfaces. Microemulsions have industrial applications
such as polymer synthesis, drug delivery, and enhanced oil recovery in the petro-
chemical industry [18].

To capture the gross features of microemulsions, Teubner and Strey proposed the
following phenomenological equation for the deviation of the intrinsic Helmholtz
energy from that of a uniform system

�F =
∫

dr
{
a2φ

2 + c1|∇φ(r)|2 + c2|∇ · ∇φ(r)|2} (46)

where φ(r) stands for an order parameter to account for the deviation of the local
water or oil concentration from the corresponding mean value, a2 > 0, c1 < 0 and
c2 > 0 are phenomenological parameters with their signs fixed to ensure thermody-
namic stability of the inhomogeneous system. It is worth noting that c1 < 0 implies
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a negative surface tension in microemulsions, favoring spontaneous formation of
surface area. In Eq. (46), the 4th-order gradient term is introduced to ensure that the
system will be stabilized without unlimited growth of the interface area.

The polynomial form given by Eq. (46) is commonly known as the Landau expan-
sion for the free energy of an inhomogeneous system. Intuitively, it may be under-
stood as an empirical gradient expansion relative to an unstructured uniform phase
without invoking any specific knowledge on the local Helmholtz energy density and
correlation functions. As a result, the Landau expansion is applicable as a simple
mathematical procedure to structure formation in any thermodynamic systems. The
Taylor expansion is expected to be adequate when the order parameter is small as in
the early stage of phase transitions or structure formation in heterogeneous systems.

A conventional experimental approach to monitor the structure of microemulsions
is by small angle neutron or X-ray scattering. The scattering experiments provide
information on the structures of microemulsions at nanometer or even smaller length
scales. The intensity of neutron or X-ray scattering is proportional to the Fourier
transform of the density-density correlation function

I(q) ∼ χ̃ (q). (47)

As shown in Appendix, χ̃(q) is inversely proportional to the vertex function in the
Fourier space, K̃(q)

βK̃(q)χ̃(q) = 1. (48)

As the order parameter is defined linearly proportional to the local density of water or
oil molecules, Eq. (46) can be used to derive the density-density correlation function.
Taking a second-order functional derivative of the empirical Helmholtz energy with
respect to φ(r) and making the Fourier transform, we find the vertex function in the
Fourier space

βK̃(q) ∼ (a2 + c1q
2 + c2q

4). (49)

Accordingly, the density-density correlation function is

χ̃(q) ∼ 1

a2 + c1q2 + c2q4
(50)

Equation (50) provides a theoretical basis for interpreting the physical meanings
of the scattering spectra obtained from neutron or X-ray experiments. The spec-
tra obtained from small angle scattering experiments is most relevant to the long-
range limit of the density-density correlation function of the inhomogeneous system.
According to Eq. (50), the asymptotic limit of the density-density correlation function
may be written in the real space as

χ(r) ∼ de−r/ξ

2πr
sin

(
2πr

d

)
, r/ξ >> 1 (51)
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Fig. 6 Small angle neutron scatting (SNAS) spectra for nonionic microemulsions containing water,
Brij 96 surfactant, ethyl oleate and hexanol [19]. The solid lines represent correlations with the
Teubner-Strey (TS) model with two fit parameters ξ and d changing with the water content (right
panel). (Adapted from Kaur et al. Langmuir 2012)

where

ξ =
[

1

2

(
a2

c2

)1/2

+ 1

4

c1

c2

]−1/2

(52)

d = 2π

[
1

2

(
a2

c2

)1/2

− 1

4

c1

c2

]−1/2

. (53)

Equation (51) suggests that d is related to a characteristic domain size of the
microemulsion, and ξ may be understood as the correlation length for the den-
sity fluctuations. For water in oil (W/O) or oil in water (O/W) microemulsions, the
domain size corresponds to the diameter of spherical droplets for the dispersed phase,
and the correlation length reflects density fluctuation within each spherical domain.
For bicontinuous microemulsions, the sinusoidal term accounts for the alternating
domains of oil and water phases with an average periodicity of d, and the exponential
term is related to the short-range correlation within the water or oil domain.

The Teubner-Strey (TS) model has been routinely used to describe the scattering
spectra of a wide variety of microemulsions. The domain size and correlation length
obtained from the fit parameters provide insights into the microscopic structure. For
example, Fig. 6 shows the small angle neutron scatting (SANS) spectra for nonionic
microemulsions containing water, a surfactant (Brij 96), ethyl oleate and hexanol
[19]. The system is relevant for a number of pharmaceutical and cosmetic formu-
lations. We see that the scatting intensity curves are near perfectly reproduced by
the TS model. From the fit parameters, the domain size and correlation length at
different water contents can be determined. Figure 6 shows that the domain size is
linearly increasing with the amount of water contained, implying that the microscopic
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structure swells proportionally upon the addition of water. This example illustrates
how the scattering experiments shed lights for systematic formulation of microemul-
sions with desired microscopic structures. As the structure is not directly detected, the
statistical-mechanical model becomes indispensible for interpretation of the experi-
mental spectra.

7 Polymer Blends

Pierre-Gilles de Gennes was often credited as the first to use the square-gradient
approximation (SGA) for inhomogeneous polymer blends [20]. The so-called Flory-
Huggins-de Gennes (FHdG) model remains a popular choice for describing the ther-
modynamic properties of inhomogeneous polymeric systems and phase transactions.
The FHdG theory may also be relevant to biological systems because recent studies
suggest that the physics of polymer phase transitions are applicable to the formation
of intracellular membrane apartments [21].

To illustrate the basic concepts behind the FHdG theory, we consider an inhomo-
geneous blend of two polymers A and B. According to SGA, the intrinsic Helmholtz
energy is given by

F =
∫

dr
{
f0[ρA, ρB] + κAA

2
[∇ρA(r)]2 + κAB∇ρA(r) · ∇ρB(r) + κBB

2
[∇ρB(r)]2

}

(54)
where ρA(r) and ρB(r) stand for the segment densities, κij are influence parameters to
account for the effect of local density inhomogeneity, andf0 represents the Helmholtz
energy density of a homogeneous polymer at the local segment densities.

For uniform polymer systems, the Flory-Huggins theory is commonly used to
describe the Helmholtz energy of mixing. The reduced Helmholtz energy per polymer
segment, relative to those of pure species, is given by

βv0�f0 = φA

NA
ln φA + φB

NB
ln φB + χFφAφB, (55)

where v0 represents the volume per lattice site, Ni denotes the degree of polymer-
ization for polymer i = A or B, φi = ρiv0 stands for the polymer volume fraction,
and χF is the Flory parameter.

As discussed above, the influence parameters can be determined from the vertex
functions

κij = lim
q→0

[K0,ij(q) − K0,ij(0)]/q2. (56)

In terms of the polymer volume fractions, the vertex function is related to the density
fluctuations in the binary polymer mixture
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K−1
ij (r1, r2) = β < δρ̂i(r1)δρ̂j(r2) >= β

v2
0

< δφ̂i(r1)δφ̂j(r2) > (57)

where φ̂i(r) = ρ̂i(r1)v0, and δφ̂i(r) ≡ φ̂i(r) − φi,0 stands for the deviation of the
instantaneous local volume fraction from the mean value φi,0.

The Flory-Huggins lattice model assumes that the polymer mixture is incom-
pressible. In other words, each lattice site is occupied by one and only one polymer
segment of either type A or B such that the local volume fraction is normalized

φ̂A(r) + φ̂B(r) = 1. (58)

Using the identity
∇φA(r) = −∇φB(r), (59)

we may simplify Eq. (54) and derive the Helmholtz energy of mixing for the inho-
mogeneous system

�F =
∫

dr
{
�f0(φ) + κ

2
[∇φ]2

}
(60)

where φ = φA, and κ is an effective influence parameter given by

κ ≡ (κAA + κBB − 2κAB)/v
2
0. (61)

Because of the incompressibility hypothesis, the densities of polymer segments are
inter-related and the Helmholtz energy for the binary mixture resembles that for a
one-component system (viz. Eq. (24)).

To derive the influence parameter, the FHdG theory assumes further that, in a
polymer melt, the local fluctuation of the polymer volume fractions behaviors as that
corresponding to non-interacting polymers (viz. Gaussian chains). In other words,
the density-density correlation functions are determined by the intra-chain connec-
tivity of polymer segments. Because segments from different polymer chains are
uncorrelated, we have χ0,AB(r) = χ0,BA(r) = 0.

As shown in the Appendix, the intra-chain density-density correlation for polymer
A can be approximated by

χ̃0,AA(q) ≈ NAφ0,A

v2
0

(
1 − q2R2

A

3

)
(62)

where RA ≡ NAl2A/6 is the radius of gyration for an ideal polymer chain, and lA
represents the bond length for polymer A. Substituting Eq. (62) into (56) yields the
influence parameter for polymer A

κAA = 1

β
lim
q→0

[χ−1
0,AA(q) − χ−1

0,AA(0)]/q2 = v2
0R

2
A

3βNAφ0,A
= v2

0l
2
A

18βφ0,A
. (63)
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Similarly, the influence parameter for polymer B is

κBB = v2
0l

2
B

18βφ0,B
(64)

where lB represents the bond length for polymer B. Because there is no correlation
between segments from different ideal polymer chains, the cross inference parameters
are

κAB = κBA = 0. (65)

Substituting Eqs. (64)–(65) into (61), we derive the effective influence parameter for
the polymer blend

κ = 1

18β

(
l2A

φ0,A
+ l2B

φ0,B

)
. (66)

Case study II. Kinetics of polymer phase separation
A binary polymer mixture may exist either as a single uniform phase or as two
coexisting phases, depending on its composition and temperature. As shown in Fig. 7,
the binodal curve separates regions of the phase diagram into single and two phases.
In the two-phase region, spontaneous phase separation occurs when the system exists
inside the spinodal line. The demixing process is called spinodal decomposition.

When a polymer blend undergoes spinodal decomposition, its morphology, i.e.,
the inhomogeneous distribution of polymer segments, is controlled by the dynamics
of the phase-separation. The change of the polymer composition can be described
by the phenomenological diffusion equation

∂φ(r, t)

∂t
= −∇ · J, (67)

ΦA

Φ(1)

(N
χ)

-1

spinodal

binodal

Φ(2)

Fig. 7 A schematic phase diagram for a binary polymer blend. Here �(1) and �(2) represent the
volume fraction of polymer A in two coexisting curves. The system exists as one single phase outside
the binodal curve and two phases otherwise. Inside the spinodal curve, the mixture is spontaneously
separated into two phases
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where φ(r, t) is the volume fraction of polymer A at position r and time t, J is
the local flux of polymer A. The polymer flux may be related to the local chemical
potential μA through the generalized Fick’s law

J = −�∇βμA (68)

where �represents the Onsager coefficient [9]. In general, �is nonlocal, depending
on the polymer size and the self-diffusion coefficient.

If polymers A and B are symmetric, i.e., NA = NB = N and lA = lB = l, the
Helmholtz energy functional for the inhomogeneous polymer blend becomes

β�F = 1

v0

∫
dr

{
1

N
ln φ + 1 − φ

N
ln φ + χFφ(1 − φ) + l2[∇φ]2

36φ(1 − φ)

}
(69)

Accordingly, the local chemical potential for polymer A is

βμA(r) = 1

N
ln

φ

1 − φ
+ χF(1 − 2φ) − l2

18

∇2φ

φ(1 − φ)
+ l2(∇φ)2

36

[
1

φ2 − 1

(1 − φ)2

]

(70)
Substituting Eq. (70) into Eqs. (67) and (68), we can calculate the evolution of the
segment density profile during phase transitions. In general, spinodal decomposi-
tion in a polymer blend results in a highly interconnected bicontinuous structure at
the early stage of phase separation. Spherical structures are possible at relatively
late stages. The fully developed morphology is mainly determined by the polymer
composition, and less by other parameters such as polymer chain lengths and binary
interaction parameters.

Nauman and coworkers applied the FHdG theory to investigate the morphologies
of ternary polymer blends after spinodal decomposition [22]. They found that, as
shown in Fig. 8, the morphologies of the polymer blends predicted by Eq. (68) closely
resemble those obtained from experiments. The theoretical results may help design
polymer blends with minimal experimentation.

8 Electronic Systems

The square-gradient approximation (SGA) is independent of the physical significance
of the density functional or inter-particle potentials, making it universally applicable
to both quantum as well as classical systems. For its application to electronic systems,
a quantity of central importance is the exchange-correlation functional, EXC[ρ(r)],
which is introduced in the Kohn-Sham (KS) ansatz for calculating the energy and
the electronic structure at the ground state [23]. In essence, the KS theory asserts the
existence of a non-interacting reference system with an effective external potential

vs(
⇀
r ) such that both its ground-state energy and the density profile are the same as

those corresponding to the real system.
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Fig. 8 Morphologies of polymer blends from theoretical predictions (a, c) and from electron
microscopy (c, d). Here (a) and (b) are for a 40/40/20 blend of poly (methyl methacrylate)
(PMMA), polystyrene (PS) and polybutadiene (PB); (c) and (d) are for a 34/33/33 blend of PS-PB-
polyisoprene (PI). The morphologies shown here are fully developed (long time). (Adapted from
Brunswick et al. Journal of Applied Polymer Science (1998))

For a non-interacting electronic system in the presence of a one-body potential

vs(
⇀
r ), the wave function of electrons can be solved from the KS equation (viz. the

single-particle Schrödinger equation)

[
−�

2∇2

2m
+ vs(r)

]
ψi = εiψi (71)
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where � denotes the Dirac constant, m is the electron mass, εi, i = 1, 2, . . .N , stands
for the ith lowest energy of the non-interacting system, and N is the number of
electrons. The one-body electron density is related to the wave function

ρ(r) =
N∑

i=1

|ψi(r)|2. (72)

The exchange-correlation functional is introduced to reproduce the ground-state
energy of the real system

E[ρ(r)] = T0[ρ(r)] +
∫

drρ(r)V ext(r) + 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)

|r − r′| + EXC[ρ(r)]
(73)

where T0 stands for the kinetic energy of non-interacting electrons, and V ext(r)
represents the one-body external potential. In Eq. (73) and thereafter, all physical
quantities are given in atomic units.

From the KS wave functions, we can calculate the kinetic energy of the non-
interacting system

T0 = −1

2

N∑

i=1

∫
dr ψ∗

i (r)∇2ψi(r). (74)

The external energy and the classical electron-electron repulsion energy on the right
side of Eq. (73) are directly related to the one-body density profile.

While there is no a priori knowledge on the exchange-correlation energy, EXC

[ρ(r)] is clearly a functional of the one-body density as all other terms in Eq. (73)
are. Intuitively, we may divide EXC in terms of contributions from the difference
between the kinetic energy of the real system and that of the non-interacting electrons,
the exchange (Pauli exclusion) effects, and multi-body correlations. Because ρ(r)
minimizes the ground-state energy of both the reference and the real systems, the
effective one-body potential for the non-interacting reference system, up to a constant
of little relevance, can be written as

vs(r) = Vext(r) +
∫

dr′ ρ(r′)
|r − r′| + vXC(r) (75)

where

vs(r) = δEXC

δρ(r)
. (76)

As discussed above (see Eq. (18)), we can derive an exact equation for the grand-
state energy of the real system using the non-interacting system as a reference

E[ρ(r)] = T0[ρ(r)] +
∫

drρ(r)V ext(r) + 1

2

∫ 1

0
dλ

∫
dr

∫
dr′ ρ(r)ρ(r′)g(r, r′, λ)

|r − r′|
(77)
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where g(r, r′, λ) represents the pair-correlation function between electrons with the
Coulomb interaction between the electrons reduced by a factor of λ. In the electronic
DFT literature, Eq. (77) is commonly known as the adiabatic connection.

A comparison of Eqs. (73) and (77) indicates that the exchange-correlation energy
corresponds to the indirect energy for “charging up” the non-interacting electrons:

EXC[ρ(r)] = 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)h̄(r, r′)

|r − r′| (78)

where

h̄(r, r′) ≡
∫ 1

0
dλ[g(r, r′, λ) − 1] (79)

stands for the average hole-correlation function (viz., the average total correlation
function). Because the electrostatic energy diverges at zero separation, the hole cor-
relation function is precisely known, h(r, r, λ) = −1. In addition, it must satisfy the
normalization conditions because the hole correlation function is defined relative to
one electron at position r, ∫

dr′h(r, r′, λ) = −1. (80)

With an analytical expression for EXC or h̄(r, r′), we can determine the electron
density profile and the ground-state energy from Eqs. (72) and (73), respectively.
From these quantities, other ground-state properties of the electronic system can be
readily calculated.

As for classical systems discussed above, the KS-DFT does not provide any sys-
tematic procedure to determine the exchange-correlation energy of the two-body
correlation functions. Since the publication of the KS equation in 1965, tremen-
dous efforts have been devoted to the development of accurate exchange-correlation
functionals for inhomogeneous electrons and such efforts are still well ongoing [8].
Existing applications of the KS equation are mostly based on various forms of the gen-
eralized gradient approximations (GGA). As in SGA, the GGA functional includes
an exchange-correlation energy corresponding to that of a uniform system at the
local density and a gradient correction to account for the local density inhomogene-
ity. For a uniform electron gas, the local exchange-correlation energy as a function
of the density is known from quantum Monte Carlo simulations [24]. However,
the development of gradient corrections for the exchange and correlation energy is
mathematically very complex. Among numerous versions of GGA, PBE [25] and
B3LYP [26, 27] are two main functionals broadly used in the KS-DFT calculations
for molecular and materials systems, respectively.

We may illustrate the basic procedure to use SGA for electronic systems by
considering the kinetic energy of non-interacting electrons at 0 K. According to the
Thomas-Fermi theory, the kinetic energy as a functional of the local density is given
by
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TTF[ρ(r)] = 3
(
3π2

)2/3

10

∫
drρ(r)5/3. (81)

The gradient correction to the kinetic energy can be derived again from Eq. (24)
using the density-density correlation function of the corresponding uniform system
as the input. For non-interacting electrons in the bulk, the density-density correlation
function in the Fourier space is known as the Lindhard function [28]

χ0(q) = − kF
2π2

{
1 − s

4

(
1 − 4

s2

)
ln

(∣∣∣∣
s + 2

s − 2

∣∣∣∣

)}
(82)

where kF = (6π2ρ0/g)1/3 is the Fermi momentum, g = 2 is the spin degeneracy for
an unpolarized electronic system, and s ≡ q/kF . At small q, we have

K0(q) = 1/χ0(q) = 2π2

kF

(
1

2
+ s2

24
+ · · ·

)
. (83)

Therefore, the influence parameter for the non-interacting electrons is

κ = 1

3
lim
q→0

[K0(q) − K0(0)]/q2 = π2

12k3
F

= g

72ρ0
. (84)

Together with the local kinetic energy for ideal Fermions, we have the kinetic energy
functional

TTFW [ρ(r)] =
∫

dr

{
3
(
3π2

)2/3

10
ρ(r)5/3 + |∇ρ(r)|2

72ρ(r)

}
(85)

where we have replaced ρ0 with local density ρ(r). Equation (85) corresponds to
Weiszacker’s correction to the Thomas-Fermi equation for inhomogeneous electrons
[29].

A similar but mathematically much more complicated procedure may be applied
to derive the gradient correction for the exchange and correlation energies [30].
The mathematical complexity mainly arises from evaluation of the density-density
correlation function for real electronic systems. Nevertheless, it is clear that the
functional expression from the gradient expansion can be written in terms of a local
density contribution and a correction for the density gradient. For example, the PBE
exchange energy is given by [25]

EX [ρ(r)] =
∫

drρ(r)εXFX(s) (86)

where εX is the local exchange energy per electron for the uniform system
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εX = −3

4

(
3

π

)1/3

ρ(r)1/3 (87)

and
s = |∇ρ(r)|2/2kFρ(r) (88)

is a dimensionless density gradient arising from the gradient expansion. FX(s) is a
semi-empirical function that was formulated to satisfy various asymptotic results for
uniform electron gas

FX(s) = 1.804 − 0.804

1 + 0.2730s2
. (89)

In derivation of Eq. (86), the local term accounts for the exchange energy with
the hole correlation function calculated from that of the non-interacting reference
system (λ = 0). The gradient correction is no more quadratic in the density gradient
because it represents a resummation of high-order terms in the gradient expansion
of the exchange-correlation energy.

9 Summary

This chapter introduces the gradient expansion method, specifically the square-
gradient approximation (SGA), as a general scheme to formulate the intrinsic
Helmholtz energy of inhomogeneous systems including electrons at 0 K and illus-
trate its applications for predicting surface tensions, microemulsion structures, and
the kinetics of polymer phase transitions. Similar procedures, broadly known as the
Landau expansion method, are used to describe a wide range of phase transitions
including weak segregation of block copolymers, wetting and drying transitions,
and phase diagrams of liquid crystals. Whereas the theoretical procedure has been
well established in each individual subfield of physical sciences, little explored is
the inter-connection among similarly formulated theoretical methods from different
perspectives, not only in terms of mathematical concepts but also the underlying
physics principles. Such a connection may be best illustrated in the context of sta-
tistical mechanics. In addition to apparent pedagogical values, this work may help
to forge a common ground to comprehend fragmented developments in different
subfields of statistical mechanics and promote cross-field collaborations.
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Appendices

Density-Gradient Expansion

Consider an inhomogeneous system with one-particle number density ρ(r). The
intrinsic Helmholtz energy can be formally expressed relative to that of a uniform
system with density ρ0 by a functional Taylor expansion with respect to the local
density deviation �ρ(r) = ρ(r) − ρ0:

F[ρ(r)] = F0 +
∫

δF

δρ(r)

∣∣∣∣
0

�ρ(r)dr

+ 1

2

∫ ∫
δ2F

δρ(r)δρ(r′)

∣∣∣∣
0

�ρ(r)�ρ(r′)drdr′ + · · ·
(90)

where F0 is the intrinsic Helmholtz energy of the uniform system at the same tem-
perature, and subscript 0 denotes the uniform reference system. According to Eq.
(90), the intrinsic free energy F[ρ(r)] is fully specified by a set of functions

K(r1, r2, · · · rn) = δnF/

n∏

i=1

δρ(ri) (91)

where n = 1, 2, . . . .

The one-body density profile satisfies the variational condition, i.e., it minimizes
the grand potential �

δ�

δρ(r)
= 0 (92)

The grand potential relates to the intrinsic Helmholtz energy by the Legendre trans-
formation:

�[ρ(r)] = F[ρ(r)] +
∫

ρ(r)u(r)dr (93)

where u(r) ≡ ϕext(r) − μ corresponds to a one-body potential define by the chemical
potential and the external potential ϕext(r) of the particles, μ is the chemical potential.
Combing Eqs. (92) and (93) leads to

δF

δρ(r)
= −u(r) (94)

For a uniform system, ϕext(r) = 0, Eq. (94) reduces to

δF

δρ(r)

∣∣∣∣
0

= μ. (95)
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The second-order term in the density functional expansion of the intrinsic
Helmholtz energy plays a particularly important role in theoretical developments.
The vertex function is defined as

K(r, r′) ≡ δ2F

δρ(r)δρ(r′)
= − δu(r)

δρ(r′)
(96)

It can be shown that the density-density correlation function is related to the func-
tional derivative of the one-body density with respect to the reduced one-body poten-
tial

χ(r, r′) ≡ 〈[ρ̂(r) − ρ(r)][ρ̂(r′) − ρ(r′)]〉 = − δρ(r)
δβu(r′)

(97)

where the instantaneous density of the system

ρ̂(r) ≡
∑

i

δ(r − ri) (98)

is expressed as a summation of Dirac delta functions, and 〈· · · 〉 represents the ensem-
ble average.

From Eqs. (96) and (97), we see that the density-density correlation function
corresponds to the inverse functional derivative of the 2nd order coefficient in the
functional Taylor expansion of the intrinsic Helmholtz energy

∫
βK(r, r′′)χ(r′, r′′)dr′′ = δ(r − r′′). (99)

For a uniform system, both K0(r, r′) and χ0(r, r′) depend only on the distance |r −
r′|. In that case, we may apply the translational and rotational symmetry for the
correlation functions:

{
K(r, r′) = K(0, r − r′) ≡ K0(|r − r′|)
χ(r, r′) = χ(0, r − r′) ≡ χ0(|r − r′|) (100)

Substituting Eq. (100) into (99) gives

∫
βK0(|r − r′′|)χ0(|r′ − r′′|)dr′′ = δ(r − r′′) (101)

A 3D Fourier transform of Eq. (101), reveals a simple relationship between K̃0(q)
and χ̃0(q)

βK̃0(q)χ̃0(q) = 1 (102)
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where

K̃0(q) = K̃0(q) ≡
∫

K0(r)e
−iq·rdr = 4π

q

∫ ∞

0
r sin(qr)K0(r)dr (103)

χ̃0(q) = χ̃0(q) ≡
∫

χ0(r)e
−iq·rdr = 4π

q

∫ ∞

0
r sin(qr)χ0(r)dr (104)

Applying Eq. (97) to a uniform system of average density ρ0, we have

χ0(|r − r′|) = χ(r, r′) = 〈
ρ̂(r)ρ̂(r′)

〉 − ρ2
0

= 〈
ρ̂(r)ρ̂(r′)

〉
r �=r′ + 〈

ρ̂(r)ρ̂(r′)
〉
r=r′ − ρ2

0

= ρ(2)(r, r′) + ρ0
〈
ρ̂(r′)

〉
r=r′ − ρ2

0
= ρ2

0h0(|r − r′|) + ρ0δ(r − r′)

(105)

where ρ(2)(r, r′) is the two-body density function, and

h0(|r − r′|) ≡ ρ(2)(r, r′)
ρ(r)ρ(r′)

∣∣∣∣
0

− 1 (106)

denotes the total correlation function. In the Fourier space, Eq. (105) becomes

χ̃0(q) = ρ2
0 h̃0(q) + ρ0 (107)

With the help of Eqs. (95), (102) and (107), we can evaluate the intrinsic free
energy functional F[ρ(r)] up to the quadratic term. Apparently, the density expan-
sion is applicable not only to the intrinsic Helmholtz energy but also to other quan-
tities with a similar mathematic form, for example, the excess free energy and the
exchange-correlation energy.

The Ornstein-Zernike (OZ) Equation

Recalling that the vertex function is inversely related to the density–density correla-
tion function χ(r1, r2), which is also related to the total correlation function h(r1, r2)

χ(r1, r2) = ρ(r1)ρ(r2)h(r1, r2) + ρ(r1)δ(r1 − r2). (108)

For classical systems, the Helmholtz energy of a non-interacting system is exactly
known.

FID = kBT
∫

ρ(r){ln[ρ(r)�3] − 1}dr. (109)
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Subsequently, we may express the vertex function in terms of the direct correlation
function (DCF)

βK(r, r′) = δ2βF

δρ(r)δρ(r′)
= δ(r − r′)

ρ(r)
− c(r, r′) (110)

where c(r, r′) corresponds to the second-order functional derivatives of the excess
Helmholtz energy Fex ≡ F − FID

c(r, r′) ≡ − δ2βFex

δρ(r)δρ(r′)
. (111)

Because ∫
dr2χ(r1, r2)βK(r3, r2) = δ(r1 − r3), (112)

substituting Eqs. (110) and (108) into (111) leads to the Ornstein-Zernike (OZ)
equation

h(r1, r2) = c(r1, r2) +
∫

ρ(r3)h(r1, r3)c(r2, r3)dr3 (113)

For uniform systems, the OZ equation can be simplified as

h(r) = c(r) + ρ0

∫
h(|r1 − r3|)c(|r2 − r3|)dr3 (114)

or in the Fourier space

[1 + ρ0h0(q)][1 − ρ0c0(q)] = 1. (115)

Corrections to the Local Density Approximation (LDA)

Local density approximation (LDA) assumes that the free energy density of an inho-
mogeneous system is the same as that of a uniform system at the local density.
According to LDA, the intrinsic Helmholtz energy functional is given by

FLDA[ρ(r)] =
∫

f0[ρ(r)]dr (116)

where f0 = F0/V corresponds to the intrinsic free energy density (per volume) of a
uniform system. LDA ignores the spatial correlation effect.

Because LDA assumes f0 as a function of ρ(r), we may express it as a regular
Taylor expansion with respect to that of a uniform system
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f0[ρ(r)] = f0(ρ0) + ∂f0
∂ρ0

�ρ(r) + 1

2

∂2f0
∂ρ2

0

[�ρ(r)]2 + · · · (117)

Substituting Eq. (117) into (116), we have:

FLDA[ρ(r)] = F0 +
∫

∂f0
∂ρ0

�ρ(r)dr + 1

2

∫
∂2f0
∂ρ2

0

[�ρ(r)]2dr + · · · (118)

Comparing Eq. (118) with the functional expansion form, i.e., Eq. (90), we have:

F[ρ(r)] = FLDA[ρ(r)]
+ 1

2

∫ ∫
[K0(|r − r′|) −

(
∂μ

∂ρ0

)

T

δ(r − r′)]�ρ(r)�ρ(r′)drdr′ + · · ·
(119)

In writing the above equation, we have used the thermodynamic relation

μ = (∂f0/∂ρ0)T (120)

and the mathematic identity

∫
∂2f0
∂ρ2

0

[�ρ(r)]2dr =
∫ (

∂μ

∂ρ0

)

T

�ρ(r)�ρ(r′)δ(r − r′)drdr′ (121)

In Eq. (119), the terms after FLDA can be regarded as spatial correlation effects
neglected by LDA.

Now let F2 represent the second term on right side of Eq. (119). Using the Fourier
transform, we can express F2 as

F2 = 1

2(2π)3

∫
[K̃0(q) −

(
∂μ

∂ρ0

)

T

][�ρ̃(q)]2dq (122)

According to Eqs. (102) and (107), we have

βK̃0(q) = 1

ρ2
0 h̃0(q) + ρ0

(123)

In addition, the compressibility equation gives
(

∂ρ0

∂βμ

)

T

= ρ0 + ρ2
0

∫
h0(r)dr = ρ0 + ρ2

0 h̃0(q = 0) = 1

βK̃0(0)
. (124)

Accordingly, Eq. (122) can be rewritten in a more compact form:

F2 = 1

16π3

∫
[K̃0(q) − K̃0(0)][�ρ̃(q)]2dq (125)



Square-Gradient Model for Inhomogeneous Systems … 61

With Eq. (125), we formulate the additional correlation term beyond LDA. Similar
to the functional expansion, such procedure can be extended to other quantities.

To connect Eq. (125) with the square-gradient expansion, we recall that

K̃0(q) = K̃0(q) ≡
∫

K0(r)e
−iq·rdr =

∫
sin(qr)

qr
K0(r)dr (126)

Using the Taylor series
sin(qr)

qr
= 1 − (qr)2

3! + · · · (127)

we have
K̃0(q) = ∫ [

1 − (qr)2

3!
]
K0(r)dr

= K̃0(0) − q2

3!
∫
r2K0(r)dr

(128)

Substituting Eq. (128) into (127) gives

F2 = − κ

16π3

∫
q2[�ρ̃(q)]2dq (129)

where κ is the influence parameter defined as

κ ≡ − 1

3!
∫

r2K0(r)dr = 1

3
lim
q→0

[K0(q) − K0(0)]/q2 (130)

Note ∫
∇ρ(r)eiq·rdr = −iq�ρ̃(q) (131)

and

1

(2π)3

∫
q2[�ρ̃(q)]2dq =

∫
dr1

∫
dr2∇ρ(r1)∇ρ(r2)δ(r1 − r2) (132)

we arrive the square-gradient correction to the LDA

F2 = κ

2

∫
dr[∇ρ(r)]2. (133)

In some applications, we use the static structure factor S̃0(q) = χ̃0(q)/ρ0 instead of
the vertex function. In that case,

K̃0(q) = [βρ0S̃0(q)]−1. (134)
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thus the influence parameter is given by

κ = − 1

3!
∫

r2K0(r)dr = 1

3βρ0
lim
q→0

[S̃−1
0 (q) − S̃−1

0 (0)]/q2. (135)

Intra-Chain Correlation Function of a Gaussian Chain

In a polymer blend A and B, the intra-chain correlation for polymer A as an ideal
chain is given by

χ0,AA(|r − r′|) = 1

v2
0

< δφ̂A(r)δφ̂A(r′) >= φ0,A

v2
0

PA(|r − r′|) (136)

where PA represents the probability to find a segment at position r given that another
segment from the same polymer chain is located at r′. A similar expression can be
written for polymer B.

For a non-interacting polymer, PA corresponds to a Gaussian average of all seg-
ment pairs separated by distance r

PA(r) = 1

NAV

NA∑

i �=j

∫
dri

∫
drjpij(r)δ[r − (ri − rj)] (137)

where ri and rj represent the position of segment i and j from the same polymer
chain, respectively. In Eq. (137), the Gaussian distribution function is given by the
random walk model [20]

pij(r) =
(

3

2π |i − j|l2A

)3/2

exp

(
− 3r2

2|i − j|l2A

)
(138)

where lA stands for step length or the polymer bond length. Applying the 3-D Fourier
transform to both side of Eq. (136) yields

P̃A(q) = 1

NA

NA∑

i �=j

exp

(
−q2|i − j|l2A

6

)
(139)

For a long polymer chain, NA � 1, the double summations in Eq. (139) can be
replaced by integrations

P̃A(q) = 1
NA

∫ NA

0 dx
∫ NA

0 dy exp
(
− q2|x−y|l2A

6

)

= NAD(qRA)
(140)
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where RA ≡ NAl2A/6 is the radius of gyration for an ideal polymer chain (Gaussian
chain), and

D(x) = 2

x4

(
e−x2 + x2 − 1

)
(141)

is known as the Debye function. For small x, D(x) ≈ 1 − x2/3, we can derive from
Eq. (136) the intra-chain correlation in the Fourier space

χ̃0,AA(q) = φ0,A

v2
0

P̃A(q) ≈ NAφ0,A

v2
0

(
1 − q2R2

A

3

)
. (142)
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