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Series Editor’s Preface

The series Molecular Modeling and Simulation—Application and Perspectives
seeks to publish a comprehensive collection of volumes highlighting the most
important and groundbreaking developments in molecular modeling and simula-
tion. The goal is to publish volumes where leading researchers can describe the
latest advances in their field in a comprehensive and nuanced manner that makes the
material both accessible to those outside the field while at the same time being
useful to other experts. The series encourages authors to expand their treatment
of their topic in ways that are impossible to achieve in normal journal articles. With
this second volume in the series “Variational Methods in Molecular Modeling,”
Editor Jianzhong Wu has assembled an outstanding collection of contributions from
the top people in the field of variational methods. The volume starts with a peda-
gogical introduction to the topic that should be of great interest to students desiring
to learn about these methods. In the subsequent nine chapters, the authors provide
an overview of variational methods for the particular topic of their chapter and
follow this with examples that illustrate the application of these methods. The
volume closes with an appendix treating the calculus of variations.

I am deeply grateful to Prof. Jianzhong Wu of the University of California,
Riverside, for his willingness to take on this project and for his wisdom and effort in
putting together such an outstanding volume. I am confident this volume will play
an important role in the future application of these methods to the field of molecular
modeling.

Edward Maginn
University of Notre Dame
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Preface

Calculus of variations is a branch of mathematical analysis that deals with
functionals, i.e., algebraic relations mapping functions into real numbers. The
original ideas were established by Leonhard Euler in 1733, and since then, varia-
tional methods have found widespread applications in science and engineering.
A key objective in the calculus of variations is to identify a specific function that
minimizes (or maximizes) a given functional. The mathematical procedure is
naturally applicable to statistical thermodynamics as demonstrated in the ground-
breaking works of J. Willard Gibbs. Today, the maximum entropy principle
(MaxEnt), a cornerstone of the so-called Bayesian statistics, is broadly used not
only in equilibrium as well as non-equilibrium statistical mechanics but also in
pattern recognition and image processing, risk analysis, urban and regional plan-
ning, and business financing, just to name a few from a large class of probabilistic
problems. Calculus of variations is also useful in both classical and quantum
mechanics as shown in the pioneering works of Joseph-Louis Lagrange and in the
variational principle for determining the ground states of quantum systems.

This monograph is an exposition of recent applications of variational methods in
molecular modeling for thermodynamic systems. While variational principles have
been routinely used in both Lagrangian mechanics and the Kohn–Sham density
functional theory, their applications to complex molecular systems are rarely dis-
cussed in the conventional texts of molecular modeling and statistical mechanics.
Instead of describing molecular motions and electronic structures, this book is
mostly concerned with the formulation and application of free-energy functionals
that connect thermodynamic variables with potential fields or the ensemble aver-
aged atomic, molecular, or particle distributions. Prime examples include classical
density functional theory for simple as well as complex fluids, self-consistent-field
theories for ionic mixtures and polymer blends, phase-field methods for phase
separations and interfacial phenomena, and the Ginzburg-Landau-type theories for
molecular self-assembly and order-disorder transitions. In addition, this book
covers the applications of variational methods to describing time-dependent phe-
nomena and to solving quantum many-body problems.
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To introduce these fascinating topics to a broad audience, each chapter in this
book provides a pedagogical overview of variational methods for specific subjects,
with the key theoretical results illustrated with tutorial examples. With emphasis
placed on physical understanding rather than on rigorous mathematical derivations,
this monograph should be accessible to graduate students and researchers in the
broad areas of applied mathematics, condensed matter physics, materials science
and engineering, chemistry, and chemical and biomolecular engineering without
specific training in the calculus of variations.

I am tremendously grateful to all contributors of this monograph for their ded-
icated work and cooperation in finishing their writings in a timely manner.
Preparation of pedagogical materials is not most rewarding in today’s academic
environment, yet it is very time-consuming to summarize the previous research in
particular publications from others. Therefore, I feel especially lucky to have
contributions to this book from a cohort of very distinguished authors. I also want
to thank all reviewers of this monograph for their careful examination of individual
chapters and professional services: Jaydeep P. Bardhan, Northeastern University;
Daniel Borgis, École Normale Supérieure; Joachim Dzubiella, Humboldt
University; Jian Jiang, California Institute of Technology; Isamu Kusaka, Ohio
State University; Yu Liu, East China University of Science and Technology;
Umberto M.B. Marconi, University of Camerino; Friederike Schmid, University of
Mainz; Cyrus Umrigar, Cornell University; Qiang (David) Wang, Colorado State
University; Rik Wensink, University of Paris-Sud XI; Zhenli Xu, Shanghai Jiao
Tong University; and Pingwen Zhang, Peking University. Last, but not least, I
would like to thank Prof. Edward Maginn, the Chief Editor of this book series, for
inviting me to prepare this monograph and Mr. Praveen Kumar, the Springer
Project Coordinator, for his considerable help and patience to put things together.

Riverside, CA, USA Jianzhong Wu
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Variational Methods in Statistical
Thermodynamics—A Pedagogical
Introduction

Zhen-Gang Wang

1 Introduction

In this chapter, we provide a pedagogical introduction to variational methods in
statistical thermodynamics. This chapter is written primarily for graduate students
who have had a first course in statistical mechanics. It is hoped that this chapter
provides a useful and insightful introduction to both the conceptual and practical
aspects of the variational methods that can be helpful in their research in statistical
mechanics.

Variational principle is at the very heart of thermodynamics. Its root is the second
law, usually stated in terms of the entropy, which is an inequality—the only funda-
mental physical law that takes the form of an inequality rather than equality [1]. The
statistical mechanical correspondence of the variational method is the maximum-
term method in the evaluation of the partition function, which forms the basis for
minimization of the free energy. We thus start with a brief review of the variational
nature of thermodynamics and its corresponding statistical mechanical origin.

Except for a limited number of special cases, the partition function cannot be eval-
uated exactly. Thus in constructing the free energy of a system of interest, we usually
have to make approximations. One of the simplest and most useful approximations
is the mean-field approximation, which in essence reduces an intractable many-body
problem to a single-body problem in an effective external field, which is then deter-
mined self-consistently.While for simple systems, the mean-field approximation can
often be constructed intuitively, more systematic derivations are based on variational
methods. We present two common variational methods for approximating the par-
tition function (or equivalently the free energy)—the Gibbs-Bogoliubov-Feynman
(GBF) variational bound, and the steepest-descent method. By way of a toy example
in the evaluation of an integral, we illustrate the use of these two methods. We then

Z.-G. Wang (B)
Division of Chemistry and Chemical Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
e-mail: zgw@caltech.edu

© Springer Science+Business Media Singapore 2017
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2 Z.-G. Wang

use the variational methods to derive the mean-field solution for the Ising model
and the Poisson-Boltzmann theory for electrolyte solutions. Finally, we show that
the GBF method provides a natural way to include fluctuation effects in weakly
correlated systems.

2 The Variational Nature of Thermodynamics

The second law of thermodynamics is commonly expressed by the Clausius inequal-
ity:

dS ≥ δQ

T
(2.1)

where S is the entropy of the system, Q the heat into the system and T the absolute
temperature. In the most general case the temperature refers to that of the heat bath.
For an adiabatic process, the right hand side of the expression is zero, and Eq.2.1
reduces to the well-known expression

dS ≥ 0 (2.2)

This is often termed the principle of increasing entropy. If we consider the system and
surrounding as a closed, isolated system, then this principle states that the entropy
cannot decrease—it increases for an irreversible (nonequilbrium) process and reaches
a maximum at equilibrium.

The principle of increasing entropy implies a variational principle. Imagine we
start an isolated system in some nonequilibrium state, then the second law tells us
that the state of the system will evolve in such a way as to increase its entropy. How-
ever, if the system is to finally attain a well defined final equilibrium, as postulated
in thermodynamics, then the entropy will asymptotically reach a final value—the
maximum value—and cease to increase. Since the entropy is at its maximum in this
final state, its first differential with respect to any real or virtual change in the macro
states of the system (for example, the density distribution in a gas in the absence
of external fields) must vanish, while its second differential will be negative. Thus
mathematically, the condition of equilibrium for an isolated system is expressed as:

δS

δX
= 0 (2.3)

and
δ2S

δX2
< 0 (2.4)

where we use the generic notation X to denote some unconstrained macrostate vari-
able [2]. The second derivative is usually unnecessary (it rarely is explicitly evalu-
ated), as the problem statement usually makes it obvious whether the extreme is a
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maximum or minimum. Henceforth we will focus on the first derivative. For sim-
plicity, we consider here only one variable, but generalization to multivariables is
straightforward.

Isolated systems are not the most convenient systems to work with. In most cases,
the system of interest is in thermal contact with a heat bath. Heat bath or reservoir
is an idealized conceptual construct in thermodynamics. Its size is considered suf-
ficiently large (in fact infinite) and is always in its own internal equilibrium. These
two attributes imply that any finite change in its extensive variables, such as energy,
volume, particle number, are infinitesimal processes for the bath, so that it is always
maintained at internal equilibrium and its intensive properties, such as temperature,
pressure, or chemical potential, remain unchanged.

For an isothermal process where the system is kept in thermal equilibrium with a
thermal bath (thus having the same temperature as the thermal bath), making use of
the first law dE = δQ + δW , the Clausius inequality becomes

d (TS) ≥ dE − δW (2.5)

or
d (E − TS) ≤ δW (2.6)

(We use E rather than U as the notation for the energy of the system because E is
the more common notation in statistical mechanics.) Equation2.6 naturally leads to
the definition of the Helmholtz free energy:

F = E − TS (2.7)

In terms of the Helmholtz free energy, the second law now becomes

dF ≤ δW (2.8)

In the special case of no work, we thus have

dF ≤ 0 (2.9)

Therefore, for an isothermal system, the Helmholtz free energy will decrease for a
spontaneous process and will reach a minimum at equilibrium. Following similar
arguments as for entropy, the equilibrium condition in terms of the Helmholtz free
energy is

δF

δX
= 0 (2.10)

We can obtain Eq.2.10 using an alternative approach, which serves to illustrate
the use of the variational condition on the entropy, Eq. 2.3. Recall that the maximum
entropy condition is for an isolated system. Therefore, to make use of Eq.2.3, we
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E t E (X )

X,E(X )

system 

bath 

Fig. 1 Isothermal system (enclosed within the oval) in contact with the thermal bath. The system
and the bath can be considered an isolated “super” system whose boundary is indicated by the
rectangle. The bath is assumed to be much larger in extent and so Et � E(X)

consider a “super system” consisting of the system of interest and the bath; see Fig. 1
for illustration. Let the total energy of the super system be Et , the energy of the
system of interest be E. We use X to denote the unconstrained internal macrostate
variable for the system. In general, the system energy depends on X, and we write
E(X) to account for this dependence. The total entropy of the super system is then

St [E(X),X;Et] = S [E(X),X] + Sb [Et − E(X)] (2.11)

Because the bath is much larger than the system, we may Taylor expand the last term
around Et . Doing so yields,

St [E(X),X;Et] = S [E(X),X] + Sb (Et) −
(

∂Sb
∂Eb

)
Eb=Et

E(X) (2.12)

We recognize that the derivative (∂Sb/∂Eb) is nothing but the inverse of the
temperature of the bath, so

St [E(X),X;Et] = S [E(X),X] − E(X)

Tb
+ Sb (Et) = −F(X)

Tb
+ Sb (Et) (2.13)

where F(X) = E(X) − TbS [E(X),X] is just the Helmholtz free energy of the sys-
tem at the isothermal condition when the system temperature is kept at the bath
temperature. Since the last term is an immaterial constant independent of the system
variables, the condition of maximum in St for the super system is equivalent to the
condition of minimum in F for the system.

Variational conditions using other thermodynamic potentials can be derived fol-
lowing similar arguments. Of particular interest is the variational condition using the
grand potential, which for a single-component system, is defined as

W [N(X),X] = F [N(X),X] − μbN(X) (2.14)
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where μb is the chemical potential of the particle reservoir (bath). X, for example,
can be the density distribution of the particles. The grand potential is convenient
for treating systems with spatial inhomogeneity as well as for describing phase
transitions, because the temperature and chemical potential of the system are set
by the reservoir (i.e., do not need to be solved for), so equality of chemical potential
is automatically satisfied.

3 The Variational Origin of Statistical Thermodynamics

The central task of statistical thermodynamics is the computation of the partition
function in a given ensemble, from which we obtain the appropriate thermodynamic
potential (free energy) and all other equilibrium thermodynamic properties. Themost
common ensemble is the canonical ensemble at fixed volume, particle number and
temperature (set by the thermal bath). Symbolically, we write the canonical partition
function as:

Q =
∫

d� exp [−βH(�)] (3.1)

where � is a collective symbol to denote the microstates of the system, H is the
Hamiltonian, and β = (kT)−1 with T being the temperature of the bath.

∫
d� is a

short-hand notation for summing over the microstates. For example, in the case of
classical fluids, it denotes summing over all the particle momenta and positions. For
the Ising model, it corresponds to summing over all spin states.

From the partition function, we obtain the free energy as

F = −kT lnQ = −kT ln

{∫
d� exp [−βH(�)]

}
(3.2)

To see the connection to variational principle, we perform the summation over
the microstates in two steps. First, we group all the microstates that correspond
to a particular value of the macrostate X, and then we sum over the value of the
macrostate X. Mathematically, this is accomplished by inserting the following iden-

tity
∫
dXδ

[
X − X̂(�)

]
= 1 into the partition function

Q =
∫

d�

∫
dXδ

[
X − X̂(�)

]
exp [−βH(�)] =

∫
dX

∫
d�δ

[
X − X̂(�)

]
exp [−βH(�)]

(3.3)
Where X̂(�) is the microscopic denition of X in terms of the microstate �. The inner
integral over � yields a constrained partition function

Q(X) =
∫

d�δ
[
X − X̂(�)

]
exp [−βH(�)] (3.4)
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from which we can define a constrained free energy

F(X) = −kT lnQ(X) (3.5)

Thus, the partition function now becomes

Q =
∫

dX exp [−βF(X)] (3.6)

F(X) defines a free energy surface in the macrostate variable X; it is a constrained
free energy for a fixed value of the internal variableX. In generalF(X) is some highly
nonlinear function of X and as such the integral cannot be evaluated exactly. Here we
use Laplace’s method [3], by noting that the integral will be dominated by values of
X around the maximum of the integrand, or the minimum of the free energy F(X).
Denoting by X∗ the value of X at the minimum, it is obtained from

∂F(X)

∂X
= 0 (3.7)

Expanding F(X) around F(X∗) to quadratic order, we get

F(X) = F(X∗) + 1

2
F(2)(X − X∗)2 (3.8)

where F(2) is the second derivative evaluated at X = X∗. Performing the straightfor-
ward Gaussian integral, we obtain

Q =
√

2π

F(2)
exp

[−βF(X∗)
]

(3.9)

The equilibrium free energy is then

F = −kT lnQ = F(X∗) + 1

2
kT ln

F(2)

2π
(3.10)

Because the free energy is extensive, i.e., O(N), but the second term is at most
O(lnN), for large N , the second term can be safely ignored and we have simply

F = −kT lnQ = F(X∗) (3.11)

This is just the maximum-term method for evaluating the partition function [4]
and is practically exact for thermodynamically large systems. We thus see that the
maximum-term method, or equivalently, the minimization of the constrained free
energy F(X) with respect to the variable X, is the origin of variational principle in
statistical thermodynamics [2]. We will thus use the term variational free energy
synonymously with the constrained free energy.



Variational Methods in Statistical Thermodynamics—A Pedagogical Introduction 7

As an illustration of the use of the maximum-term method, we take the energy E
as the macrovariable. Thus we have,

Q(X) =
∫

d�δ [E − H(�)] exp [−βH(�)] = �(E)e−βE (3.12)

where �(E) is the degeneracy, i.e., the microcanonical partition function. The vari-
ational free energy is then

F(E) = −kT lnQ(E) = E − kT ln�(E) (3.13)

The variational condition Eq.3.7 becomes

1 − kT
∂ ln�(E)

∂E
= 0 (3.14)

i.e.,
∂ ln�(E)

∂E
= β (3.15)

Note that the left hand side of this equation is the microcanonical definition of β
for the system. Thus this variational condition has the simple interpretation that the
value of the energy that minimizes the free energy of an isothermal system is such
that it results in a temperature of the system that equals the temperature of the thermal
bath. This is just the condition for thermal equilibrium!

4 The Method of Steepest Descent

While the free energy minimization principle and the maximum-term method are
exact, analytical expressions for the exact variational free energy are seldom avail-
able. Therefore, in practice variational methods are most often used to construct
approximate theories for interacting many-body systems. Two variational methods
are widely used in the literature: the method of steepest descent (also called the
saddle-point, or stationary-phase method) and the Gibbs-Bogoliubov-Feynman vari-
ational bound. We start with the method of steepest descent in this section.

The method of steepest descent is a generalization of Laplace’s method [3] intro-
duced in the last section in our discussion of themaximum-termmethod.We consider
the following integral

I =
∫

dxq(x) exp [−αh(x)] (4.1)

where x is a real variable and h(x) and q(x) are analytic functions of x which may
in general be complex, and α is a large positive parameter. We put a negative sign in
the exponential to make apparent the analogy with the Boltzmann weight. Since α
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is large, the dominant contribution to the integral comes from the neighborhood of
the stationary point of h(x). The integration is often extended to the complex plane,
in which case the stationary point becomes a saddle point [3]; hence the method is
also called the saddle-point method. We will use these two terms interchangeably.
For many examples in statistical mechanics, the saddle point occurs for imaginary
values of x. Extending the function h(x) to h(z), and expanding h(z) about z = z∗ to
quadratic order, and performing the resulting Gaussian integral along the steepest-
descent direction, we obtain

I =
√

2π

αh(2)(z∗)
exp

[−αh(z∗)
] [
q(z∗) + O

(
α−1

)]
(4.2)

where h(2)(z∗) is the second derivative in the steepest-descent direction [3].
Since we usually work more with the free energy than with the partition function,

we define f = − ln I . f is then given by

f = αh(z∗) + 1

2
ln

αh(2)(z∗)
2π

− ln q(z∗) + O
(
α−1

)
(4.3)

If we keep only the leading O(α) term, f can be further approximated as

f ≈ αh(z∗) (4.4)

To explain the saddle-pointmethod and illustrate its use,we consider the following
integral:

I =
∫ ∞

−∞
dx exp

[
−α

(
1

2
x2 − ikx

)]
(4.5)

This integral can, of course, be evaluated exactly by simply completing the square in
the exponential, but we use it here to show the key ideas in the saddle-point method.
Although the variable x is real, the integrand is complex, and it is convenient to
extend the integration on the real axis to the complex domain z by using the Cauchy
theorem.We note that there is a stationary point at z∗ = ik, which is purely imaginary.
This suggests that we make a closed contour as shown in Fig. 2, with the direction
of the segments indicated by the red dash arrow. Since there are no residues in the
region enclosed by the contour, by the Cauchy theorem we have

IC1 + IC2 + IC3 + IC4 = 0 (4.6)

where IC1 is just the original integral I . It can be easily shown that the stationary
point z∗ = ik is a saddle point: it is a maximum (for the integrand) with respect to
variations in x but a minimum with respect to variations in y. Thus IC3 runs through
the saddle point in the direction of the steepest descent. By taking the limit b → ∞,
the integration along C2 and C4 vanish (because of the vanishing of the integrand).
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y

x

(0,ik)

( b,0) (b, 0)

( b,ik) (b,ik)

C1

C2

C3

C4

Fig. 2 Integration contour in the complex plane used to evaluate integral Eq. 4.5. The saddle point
is indicated by the black dot located at (0, ik), and b → ∞

We thus have

I = −IC3 =
∫ ∞+ik

−∞+ik
dz exp

[
−α

(
1

2
z2 − ikz

)]
(4.7)

Completing the square in the exponential, we get

I = e− 1
2 αk2

∫ ∞+ik

−∞+ik
dz exp

[
−1

2
α (z − ik)2

]
(4.8)

Along theC3 contour, z = x + ik. Thus integrating along x, i.e., the steepest-descent
direction, we obtain

I = e− 1
2 αk2

∫ ∞

−∞
dx exp

[
−1

2
αx2

]
=

√
2π

α
e− 1

2 αk2 (4.9)

As expected, this result is just Eq.4.2 without the higher-order corrections.
The real power of the saddle-point method, of course, is to evaluate integrals that

cannot be performed exactly. As an example, consider the following integral,

I =
∫ ∞

−∞
dx exp [−h(x)] (4.10)

withh(x) = 1
2x

2 − ikx − λ(e−ix + eix)whereλ > 0.Wechoose this example, because
it shares similar mathematical form as the functional integral we introduce in our
derivation of the Poisson-Boltzmann equation for the electrolyte solution. Clearly,
for nonvanishing values of λ, the integral cannot be evaluated in closed form. We
thus obtain an approximate solution using the saddle-point method. Extending the
variable to the complex domain, we find the saddle-point condition to be given by

z∗ = ik + iλ(eiz
∗ − e−iz∗) (4.11)



10 Z.-G. Wang

Inspection of this equation suggests that the saddle point is located on the imaginary
axis. We thus denote the saddle-point value as z∗ = iy∗, so that the above equation
becomes

y∗ = k − λ(ey
∗ − e−y∗

) = k − 2λ sinh y∗ (4.12)

which yields a real solution for y∗. (It can be checked that the real solution is unique;
this can be done, for example, by graphing the functions on the two sides of the
equation.) The value of the function at the saddle point, upon using Eq.4.12, is

h(y∗) = 1

2
y∗2 + 2λ

(
y∗ sinh y∗ − cosh y∗) (4.13)

It can be easily seen that the steepest-descent direction around the saddle point is in
the direction of x, with a second derivative given by

h(2)(y∗) = 1 + 2λ cosh y∗ (4.14)

The approximate value of the integral is then

I ≈
(

2π

1 + 2λ cosh y∗

)1/2

exp

[
2λ

(
cosh y∗ − y∗ sinh y∗) − 1

2
y∗2

]
(4.15)

5 The Gibbs-Bogoliubov-Feynman Variational Principle

We start with the mathematical inequality

ex ≥ 1 + x (5.1)

for any real number x. If x is a stochastic variable, we may write

ex = e〈x〉+x−〈x〉 ≥ e〈x〉 (1 + x − 〈x〉) (5.2)

where the angular brackets denotes the average over the distribution of x. Taking the
average of both sides in the above expression, we get

〈ex〉 ≥ e〈x〉 (5.3)

Now consider the partition function Eq.3.1. In general, the partition function
cannot be evaluated exactly. The idea of the Gibbs-Bogoliubov-Feynman variational
method is to evaluate it approximately using a reference Hamiltonian HR(�) for
which the partition function can be obtained exactly. Let the partition function for
this reference Hamiltonian be QR, so
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QR =
∫

d� exp [−βHR(�)] (5.4)

Next, we write

Q =
∫

d� exp [−βHR(�) − βH(�) + βHR(�)] (5.5)

Multiplying and dividing by QR, and noting

〈A〉R = Q−1
R

∫
d�A(�) exp [−βHR(�)] (5.6)

where A is any variable that depends on the microstate �, we obtain

Q = QR〈exp [−βH + βHR]〉R ≥ QR exp [−β〈H〉R + β〈HR〉R] (5.7)

Taking the logarithm and multiplying by −kT , we obtain

F ≤ FR + 〈H〉R − 〈HR〉R (5.8)

where FR is the free energy for the reference system. This is the Gibbs-Bogoliubov-
Feynman inequality [5–7], which allows to estimate the closest upper bound that can
be achieved for a given choice of the reference system. Noting further that,

FR = 〈HR〉R − TSR (5.9)

Equation5.8 can alternatively be written as

F ≤ 〈H〉R − TSR ≡ Fvar (5.10)

Therefore, to best approximate the true free energy F, we choose a reference Hamil-
tonian that makes Fvar a minimum.

6 A Toy Example

In order to illustrate the use of the steepest-descent and GBF methods and compare
between the two, we consider the following integral,

I =
∫ ∞

−∞
dx exp [−h(x)] (6.1)



12 Z.-G. Wang

in which h(x) = 1
2 εx

2 + 1
4!ux

4 − kx is a purely real function with u > 0. (Note the
parameter α is unnecessary as it can be absorbed by a rescaling of the variable x.)
This function has a similar mathematical form to the φ4 field theory widely used in
the study of critical phenomena [8], with k playing the role of the external field. We
will be interested in the value of the integral as a function of k as well as the mean
and variance for the variable x. Without loss of generality we can set u = 1 (this
can always be achieved by a redefinition of ε and k.) For large and positive ε, the
quartic term is unimportant. As ε decreases towards zero; the effect of the quartic
term becomes more pronounced. Since the integral has the mathematical structure
of a partition function, we refer to h as the “Hamiltonian”.

As the function is real with a real minimum, the steepest-descent approximation
reduces to the Laplace approximation. The minimum condition is given by

εx∗ + 1

6
x∗3 = k (6.2)

The value of the “Hamiltonian” at the minimum is

h(x∗) = −1

2
εx∗2 − 1

8
x∗4 (6.3)

The second derivative is given by

h(2)(x∗) = ε + 1

2
x∗2 (6.4)

The approximate value of the “free energy” corresponding to the integral is

f = − ln I ≈ −1

2
εx∗2 − 1

8
x∗4 + 1

2
ln

ε + 1
2x

∗2

2π
(6.5)

As the nonlinear effect is strongest for ε = 0, we investigate this special case. One
easily gets in this case x∗ = 61/3k1/3, and the “free energy” is then

f = −3

4
61/3k4/3 + 1

2
ln

62/3k2/3

4π
(6.6)

Note that the free energy becomes logarithmically divergent as k → 0, while the
original integral is clearly convergent. This is indication of the breaking down of the
approximation.

Within the steepest-descent approximation, the average is taken to be the saddle-
point value,

〈x〉 = x∗ (6.7)

(upon ignoring higher-order corrections in an expansion in α−1; see Eqs. 4.1–4.4),
and the variance of x is given by
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〈(�x)2〉 = 1

h(2)(x∗)
(6.8)

which follows from the use of linear response theory

〈(�x)2〉 = ∂〈x〉
∂k

(6.9)

We now evaluate the integral Eq. 6.1 using the GBF bound. To this end, we intro-
duce a two-parameter reference “Hamiltonian”,

hR = 1

2
a(x − x∗)2 (6.10)

where x∗ and a are the variational parameters. The GBF bound now reads:

f = − ln I ≤ fR + 〈h〉R − 〈hR〉R (6.11)

where the average 〈· · · 〉R here means

〈· · · 〉R =
( a

2π

)1/2
∫ ∞

−∞
dx (· · · ) exp

[
−1

2
a(x − x∗)2

]
(6.12)

For the reference “Hamiltonian” Eq.6.10, one easily finds

〈hR〉R = 1

2
(6.13)

fR = 1

2
ln

( a

2π

)
(6.14)

〈h〉R = 1

2
εx∗2 + 1

2
εa−1 + 1

4!
(
x∗4 + 6a−1x∗2 + 3a−2

)
− kx∗ (6.15)

The parameters x∗ and a are obtained by minimization of the right hand side of
Eq.6.11 using Eqs. 6.13–6.15, yielding, respectively

εx∗ + 1

3!x
∗3 + 1

2
a−1x∗ − k = 0 (6.16)

and
2a2 − 2εa − ax∗2 − 1 = 0 (6.17)

The positive root of Eq.6.17 is given by

a = 1

4

[
2ε + x∗2 +

√
8 + (2ε + x∗2)2

]
(6.18)
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Fig. 3 Results obtained from the steepest-descent method (blue curve) and the GBF variational
method (red curve), compared to the exact numerical results (black circles), for the example given
by Eq.6.1. From left to right the “free energy”, the mean, and the variance

The minimized “free energy” after simplification using Eqs. 6.16 and 6.17 is:

f = 1

2
ln

( a

2π

)
− 1

4
+ 1

4
εa−1 − 1

2
εx∗2 − 1

8
x∗4 − 3

8
a−1x∗2 (6.19)

By the Gaussian ansatz, the mean and variance are given respectively by

〈x〉 = x∗ (6.20)

〈(�x)2〉 = a−1 (6.21)

In Fig. 3, we plot the “free energy”, the mean and the variance as a function of k
for two values of the parameter ε. For comparison, we include the results from the
steepest-descent method (blue curve), from the GBF method (red curve), and from
exact numerical solution (black circles). In all cases, the variational method provides
a far closer agreement with the numerical results than the simple steepest descent.
For the mean, which in essence is an equation of state, the agreement is excellent
even for ε = 0, and very good agreement is also obtained for the “free energy”
under the “worst” condition ε = 0 and k = 0. Note also that the GBF variational
free energy is always higher than the true free energy, though no such restrictions
apply for the steepest-descent method. The result for the fluctuation from the GBF
method is quite good for ε = 1; it is less accurate quantitatively for ε = 0, but still
captures the qualitative behavior. In contrast, the steepest-descent method yields
qualitatively incorrect behavior for ε = 0. Finally we note that both approximations
become increasingly more accurate at large k and/or ε.

Those who are familiar with the statistical field theory will recognize the steepest-
descent and the GBF treatments as the respective analogue of the random-phase
approximation (RPA) [9, 10] and the self-consistent Hartree approximation [11].
(We note, however, that the term RPA has different meanings in the different com-
munities. For example, in liquid-state theory, it usually refers to approximating the
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direct correlation function by the pair interaction potential in the closure for the
Ornstein-Zernike equation [12]. In many-body and condensed matter physics, RPA
is considered synonymous with the self-consistent Hartree approximation [13]. In
this chapter, we will use the term RPA to refer to a simple Gaussian approximation
around the saddle-point, or equivalently, linear response by perturbation around the
saddle-point [9, 10].)

7 Mean-Field Solution for the Interacting Ising Model

The Ising model is the best known model for a wide range of phase transitions,
including ferromagnetism, liquid-vapor transition, and phase separation in binary
mixtures. In its most common form, the model consists of N “spins” on a lattice with
coordination number z in an external field h. Each spin can be either in an up or down
state, which is denoted by the spin variable si = ±1 with + for the up state and −
for the down state. The spins interact with each other through nearest neighbor pairs
in such a way as to favor the same orientation. The Hamiltonian for the system is

H = −1

2
J
∑
i,j

′
sisj −

∑
i

hisi (7.1)

where J > 0 is the coupling constant, hi is the external field, here allowed to be
spatially dependent for generality, and the prime on the first sum restricts i and j to
be nearest neighbors of each other. Henceforth, to economize notation, we set the
energy unit to be kT and the entropy unit to be k.

The partition function of the system is then

Z =
∑
{s}

exp (−H) (7.2)

where {s} is a collective notation for all the spin states. It can be easily shown [4]
that the model can be applied to describe a lattice-gas fluid in a grand canonical
ensemble by introducing the occupation variable σ = (1 + s)/2 and identifying the
nearest-neighbor attraction energy ε = −4J and chemical potential μ = −4Jz + 2h.

The mean-field solution of the Ising model in typical textbooks is usually derived
using a Braggs-William randommixing approximation [4], which amounts to ignor-
ing the correlations due to interaction and treating the distribution of the spins as
completely random. Alternatively, one may invoke a local self-consistent field argu-
ment by replacing the local instantaneous field at location i, hi + J

∑
j
′sj with the

average hi + J
∑

j
′mj where mi is the average of si. The local average of mi is in turn

obtained through the self-consistency condition
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mi =
∑

si
si exp

[
(hi + J

∑
j
′mj)si

]
∑

si
exp

[
(hi + J

∑
j
′mj)si

] = tanh(hi + J
∑
j

′
mj) (7.3)

For spatially uniform system, mi = m, and the above equation simplifies to:

m = tanh(h + Jzm) (7.4)

where z is the lattice coordination number. This is the well-known mean-field equa-
tion of state relating the magnetization per spin to the external field. From Eq.7.4,
we find the familiar mean-field critical point at hc = 0 and Jcz = 1

We now derive the mean-field solution using a variational approach. We make
the reference Hamiltonian an effective non-interacting one, with spins in an effective
one-body field hi,R

HR = −
∑
i

hi,Rsi (7.5)

The partition function for HR can be trivially worked out to be

ZR = 2N
∏
i

cosh
(
hi,R

)
(7.6)

from which we obtain the free energy of the reference system

FR = −
∑
i

ln cosh
(
hi,R

) − N ln 2 (7.7)

〈H〉R and 〈HR〉R can be straightforwardly evaluated to be

〈H〉R = −1

2
J
∑
i,j

′
mimj −

∑
i

himi (7.8)

and
〈HR〉R = −

∑
i

hi,Rmi (7.9)

where mi is given by

mi = 〈si〉R = − ∂FR

∂hi,R
= tanh

(
hi,R

)
(7.10)

The variational free energy F[hi,R] is obtained by combining Eqs. 7.7–7.9, and the
effective field hi,R is obtained from
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∂F

∂hi,R
= 0 (7.11)

which, along with Eq.7.10, gives

hi,R = hi + J
∑
j

′
mj (7.12)

Substituting this back in Eq.7.10, we obtain the self-consistent Eq.7.3.
Althoughmi is defined throughEq.7.10, it can be shown thatwithin the variational

free energy framework, it is just the average of the spin variable at i. To demonstrate
this, we start with

〈si〉 = − ∂F

∂hi
(7.13)

Byconstruction, the only placewherehi enters directly in the variational free energy is
through 〈H〉R. Furthermore, the dependence of hi,R on hi does not contribute because
of the variational condition Eq.7.11. We thus have

〈si〉 = −∂〈H〉R
∂hi

= mi ≡ 〈si〉R (7.14)

This conclusion that the ensemble average is equal to the average in the reference
system is a general one within the variational approximation.

The variational condition Eq.7.11 can alternatively be cast in a different form
by directly using the local magnetization mi. Since Eq.7.10 establishes a one-to-
one monotonic relationship between the variational parameter hi,R and mi, we may
use mi itself as the variational parameter. Because the reference system consists of
uncoupled spins, each having two states, its entropy is simply

SR = −
∑
i

[
p(si = 1) ln p(si = 1) + p(si = −1) ln p(si = −1)

]
(7.15)

Noting thatmi = p(si = 1) − p(si = −1) = 2p(si = 1) − 1, the above equation can
be written as

SR = −
∑
i

[
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

]

= N ln 2 − 1

2

∑
i

[(1 + mi) ln(1 + mi) + (1 − mi) ln(1 − mi)] (7.16)

whereN is the total number of spins.N ln 2 in the second line is simply the entropy of
a completely unbiased system of N independent spins, whereas the remaining terms
account for the decrease in entropy due to ordering.
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With Eq.7.16, the variational free energy is

Fvar = −1

2
J
∑
i,j

′
mimj −

∑
i

himi

+ 1

2

∑
i

[(1 + mi) ln(1 + mi) + (1 − mi) ln(1 − mi)] − N ln 2 (7.17)

The minimized free energy is obtained from the variational condition

∂Fvar

∂mi
= 0 (7.18)

which yields the mean-field equation of state, Eq. 7.10.
The variational free energy can be more systematically obtained using a combina-

tion of the identity transformation and the saddle-point method. To this end, we insert
the identity

∫
dmiδ (mi − si) for each spin, to write the Boltzmann weight exp(−H)

as

exp [−H({si})] =
∫ ∏

i

dmiδ (mi − si) exp [−H({mi})]

= 1

(2π)N

∫ ∏
i

dmidλi exp

[
−H({mi}) + i

∑
i

λi (mi − si)

]
(7.19)

where the second line follows from making use of the Fourier representation of the
delta function:

δ (mi − si) = 1

2π

∫
dλi exp [iλi (mi − si)] (7.20)

The identify transformation has turned the problem of interacting spins into one
of independent spins in fluctuating “external” field iλ. The summation over the spin
variable si can now be performed trivially to yield the partition function

Z = 1

(2π)N

∫ ∏
i

dmidλi exp

[
−H({mi}) + i

∑
i

λimi +
∑
i

ln cosh (iλi)

]
(7.21)

We now make the saddle-point approximation on this multidimensional integral, by
taking the stationary point of the exponent with respect to mi and λi; this yields,

iλi = ∂H

∂mi
= −J

∑
j

′
mj − hi (7.22)

and
imi = −i tanh (iλi) (7.23)
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respectively. Clearly from Eq.7.22, the saddle point lies on the imaginary axis of λ,
so we denote the saddle-point value of λ as λ∗ = iη, and the above equations become

ηi = J
∑
j

mj + hi (7.24)

and
mi = tanh ηi (7.25)

which are the same as Eqs. 7.10 and 7.12, with the identification ηi = hi,R
A closer examination of Eq.7.21 reveals that the three terms in the exponent

correspond respectively to the 〈H〉R, 〈HR〉R and FR terms in the GBF variational
approach.This is no accident, because the identity transformation essentially turns the
problem of interacting spins into one of independent spins in an effective fluctuating
field, and the saddle-point condition is the condition for finding the optimal value
for the effective field.

8 The Poisson-Boltzmann Equation

The Poisson-Boltzmann equation is a mean-field equation for the mean-electrostatic
potential generated by somefixed external charge distribution in the presence of small
mobile ions. The mobile ions are treated as point particles whose spatial distribution
is given by the Boltzmann weight with the energy being the electrostatic energy of
an ion in the mean electrostatic potential. To simplify notation, we scale the energy
by kT , charge by the elementary charge e, and define a dimensionless permittivity
ε = εrε0kT/e2, where ε0 is the vacuum permittivity and εr the dielectric constant
(allowed to be spatially dependent). For simplicity, we consider the electrolyte to be
a monovalent 1:1 salt. The mean electrostatic potential ψ in the presence of a fixed
external charge distribution ρex is then described by

− ∇ · (ε∇ψ) = ρex − 2cb sinhψ (8.1)

where cb is the bulk salt concentration and the electrostatic potential is defined such
that ψ = 0 in the bulk far away from the fixed charge.

While the Poisson-Boltzmann equation can be constructed quite intuitively by
combining the Poisson equation for electrostatics with the Boltzmann distribution
for the small mobile ions, which are treated as ideal gas particles in the electrostatic
potential, here we derive it using variational approaches. The systematic derivation
is necessary for calculating the free energy of the system. We first provide a simple,
thermodynamic derivation and then a more systematic one using field theoretical
techniques.
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First, we note that the electrostatic energy of a system is given by

Ec = 1

2

∫
dr

∫
dr′ρ(r)C

(
r, r′) ρ(r′) (8.2)

where ρ(r) is the charge density and C
(
r, r′) is the Coulomb operator given by the

solution of the Poisson equation

− ∇ · ε∇C
(
r, r′) = δ

(
r − r′) (8.3)

For spatially uniform dielectric permittivity, C
(
r, r′) = 1/

(
4πε|r − r′|).

Equation8.2 is a quadratic formwith the vector ρ(r) andmatrix operatorC
(
r, r′).

Noting the following identity for a quadratic form,

1

2
x · A · x = −min

y
(
1

2
y · A−1 · y − x · y) = max

y
(−1

2
y · A−1 · y + x · y) (8.4)

where x, and y are vectors, A is a matrix operator and A−1 is its inverse, and noting
that the inverse operator of C

(
r, r′) is −∇r · δ

(
r − r′) ε

(
r′)∇r′ , we can introduce

a variational “Hamiltonian”

Hvar =
∫

dr
[
ρψ + 1

2
ψ∇ · ε∇ψ

]

=
∫

dr
[
ρψ − ε

2
(∇ψ)2

]
(8.5)

The second line of the equation follows from integration by parts and applying the
divergence theorem (at the system boundary, taken to be at infinity). Noting the
following result for functional derivative

δ

δψ

∫
drf (ψ,∇ψ) = ∂f

∂ψ
− ∇ · ∂f

∂∇ψ
(8.6)

it can be easily seen that maximizing the Hamiltonian Eq.8.5 leads to the Poisson
equation.

Now the total charge density is the sum of the fixed external charge plus the
charges due to the mobile ions

ρ (r) = ρex (r) + c+ (r) − c− (r) (8.7)

where c+ and c− are respectively the concentration of the cations and anions.We now
construct the variational free energy for an open system with chemical potential μ+
and μ− for the cations and anions, respectively. Adding in the translational entropy
of the ions, we have
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Fvar =
∫

dr
[
(ρex + c+ − c−) ψ − ε

2
(∇ψ)2

]

+
∫

dr
[
c+ ln(c+v+) − c+ + c− ln(c−v−) − c− − μ+c+ − μ−c−

]
(8.8)

v+ and v− are volume scales which can be taken as the cube of the thermal de
Broglie wavelength. However, the exact form is immaterial and will be absorbed
into the definition of the chemical potentials.

Taking the functional derivatives of this variational free energy with respect to
c+, c− and ψ and setting the derivatives to zero, we obtain

c± = 1

v±
exp (μ± ∓ ψ) (8.9)

and
− ∇ · (ε∇ψ) = ρex + c+ − c− (8.10)

Setting the electrostatic potential in the uniform bulk to be zero, Eq.8.9 can bewritten
as

c± = cb±e
∓ψ (8.11)

where cb± = v−1
± eμ± is the bulk concentration of the cations/anions. Because of elec-

troneutrality, cb+ = cb− ≡ cb. Substitution of Eq.8.11 intoEq.8.10 yields the PB equa-
tion, Eq.8.1.

We now provide a statistical mechanical derivation using field theoretical tech-
niques. To begin, we write the particle density operator for the ions

ĉ±(r) =
n±∑
i=1

δ(r − ri) (8.12)

the total charge density operator is then

ρ̂(r) = ρex(r) + ĉ+(r) − ĉ−(r) (8.13)

The total Coulomb energy of the system is

H = 1

2

∫
drdr′ρ̂(r)C(r, r′)ρ̂(r′) (8.14)

where C(r, r′) is the Coulomb operator given by Eq.8.3. Note that the above two
equations are identical in form to the corresponding Eqs. 8.2 and 8.7. However, here
the concentration and charge density refer to the instantaneous particle configuration
whereas in Eqs. 8.2 and 8.7, they are the thermally averaged quantities. Because of
the discrete nature of the ions, the interaction energy Eq.8.3 contains the self energy
of the ions, which is infinite for the point-charge model. At the mean-field (saddle-
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point) level, the self-energy does not show up. It will show up when we consider
fluctuations, in which case a finite charge distribution on the ion is required to render
the self energy finite.

We start with the canonical partition function of the system

Q = 1

n+!n−!vn++ v
n−−

∫ n+∏
i=1

dri

n−∏
j=1

drj exp (−H) (8.15)

Note that the Boltzmannweight with the Hamiltonian given by Eq.8.14 is a Gaussian
form in ρ with r as (the continuous) index. It is straightforward to show that a
multivariable Gaussian function can be written as

e− 1
2

∑
i,j xiAijxj = 1√

det A

∫ ∞

−∞
· · ·

∫ ∞

−∞
e− 1

2

∑
i,j yiA

−1
ij yj+i

∑
j xjyj

dy1√
2π

· · · dyN√
2π

(8.16)

This representationof aGaussian functionby an integral of another (shifted)Gaussian
function is the the Gauss [8] or Hubbard-Stratonovich [13] transformation. It has the
effect of decoupling the variables xi and xj at the expense of a new coupling between
xi and yi. This transformation can be generalized to variableswith continuous indices.
Thus we perform the Gauss-Hubbard-Stratonovich transformation to decouple the
quadratic interaction in Eq.8.14 by introducing a field variable ξ(r). This gives

Q = 1

n+!n−!vn++ v
n−−

1

ZC

∫
Dξ

∫ n+∏
i=1

dri

n−∏
j=1

drj exp
{
−

∫
dr

[
1

2
ε(∇ξ)2 + iρ̂ξ

]}

(8.17)
where ZC is a normalization factor given by

ZC =
∫

Dξ exp

[
−1

2

∫
drε(∇ξ)2

]
= (detC)1/2 (8.18)

Now the partition function has the form of uncoupled n+ cations and n− anions in
an “external” fluctuating field iξ. Writing the partition function for each cation and
anion respectively as q+ and q−, where

q± =
∫

dr exp [∓iξ(r)] (8.19)

The partition function is now transformed to

Q = 1

ZC

∫
Dξ

qn++ qn−−
n+!n−!vn++ v

n−−
exp

{
−

∫
dr

[
1

2
ε(∇ξ)2 + iρexξ

]}
(8.20)

It is convenient to work in the grand canonical ensemble with chemical potentials
μ+ and μ− for the cations and anions, respectively. The grand partition function is
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� =
∞∑

n+=0

∞∑
n−=0

Q(n+, n−)en+μ+en−μ− (8.21)

The summation over the number of the mobile ions can be easily performed and we
obtain

� = 1

ZC

∫
Dξ exp {−L[ξ]} (8.22)

where the “action” L is

L =
∫

dr
[
1

2
ε(∇ξ)2 + iρexξ − λ+e−iξ − λ−eiξ

]
(8.23)

In Eq.8.23, λ± is the fugacity of the ions defined as

λ± = eμ±

v±
(8.24)

We now evaluate the partition function using the saddle-point method. We first
locate the saddle point by setting

δL

δξ
= 0 (8.25)

which results in
∇ · (ε∇ξ) = iρex + iλ+e−iξ − iλ−eiξ (8.26)

It should be clear that the saddle-point value for ξ is purely imaginary. We denote the
value at the saddle point as ξ∗ and define ψ = iξ∗, so the above equation becomes

− ∇ · (ε∇ψ) = ρex + λ+e−ψ − λ−eψ (8.27)

This is the Poisson-Boltzmann equation upon identifying the fugacity λ± with the
bulk concentration cb±.

Using Eq.8.27 in Eq.8.23, we obtain the “action” at the saddle point as

L∗ = −
∫

dr
[
c+(r) + c−(r)

] + 1

2

∫
drψ(r)

[
ρex(r) − c+(r) + c−(r)

]
(8.28)

To obtain the full expression for the partition function at the saddle-point level, we
expand L to second order in the steepest-descent direction χ = ξ − ξ∗ = ξ + iψ, to
get

L = L∗[{ψ(r)}] + 1

2

∫
dr

[
ε(∇χ)2 + (

λ+e−ψ + λ−eψ
)
χ2

]
(8.29)

Performing the Gaussian integral over χ, we obtain the following result for the
partition function
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� =
(
detG

detC

)1/2

exp
{−L∗[{ψ(r)}]} (8.30)

where G is the Green’s function satisfying

− ∇ · [ε∇G(r, r′)
] + (

λ+e−ψ + λ−eψ
)
G(r, r′) = δ(r − r′) (8.31)

In most field theoretical formulations, the saddle-point approximation does not
include factors involving the determinant of C and G; these terms can be shown in a
systematic loop expansion to correspond to the one-loop corrections [8, 14, 15]. Thus,
ignoring these one-loop corrections, the saddle-point approximation gives simply

� ≈ exp
{−L∗[{ψ(r)}]} (8.32)

At this level of the saddle-point approximation, the concentration of the cation/anion
is

c±(r) = δ ln�

δμ±
= λ±e∓ψ (8.33)

and upon noting the charge neutrality in the bulk, the concentration is

c±(r) = cbe∓ψ (8.34)

9 Fluctuations

In the toy example discussed in Sect. 6, we see how fluctuations are included in
the variational treatment. In the steepest-descent approximation, fluctuations are
determined by the local curvature around the saddle-point, whereas in the GBF
method, they are reflected through the width of the variational Gaussian Boltzmann
weight. Once a physical model for a many-body interacting system is transformed
into a field-theoretical representation, themathematical structure is similar to the toy-
model integral, and fluctuations can be studied in a similar manner. The numerical
examples shown in Fig. 3 clearly demonstrate the superiority of the GBF method
in capturing the fluctuation effects. Therefore, in this section we illustrate the use
of the GBF method in studying fluctuation effects for an electrolyte solution in the
presence of a fixed charge distribution ρex discussed in the previous section.
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From Eq.8.30, we see that the partition function contains contributions from
local fluctuations around the saddle-point (approximated at the Gaussian level). The
Green’s function G(r, r′) is the correlation function for the fluctuating part of the
field χ (i.e., deviation from the saddle-point value),

G(r, r′) = 〈χ(r)χ(r′)〉 (9.1)

However, in the saddle-point approximation, the correlation is unidirectionally deter-
mined by the saddle-point value ψ from Eq.8.31, i.e., the correlation does not affect
the solution for ψ, which is obtained by ignoring the fluctuations. Alternatively, the
same correlation function can be obtained from linear response of the saddle-point
free energy to a small, spatially varying perturbation—this is just the random-phase
approximation [9, 10].

To includefluctuations in a self-consistentmanner,we employ theGBFvariational
method in approximating the partition function Eq.8.22 [16]. We use a Gaussian
reference action of the form [17, 18]

LR[ξ] = 1

2

∫
drdr′[ξ(r) + iψ(r)]G−1(r, r′)[ξ(r′) + iψ(r′)] = 1

2

∫
drdr′χ(r)G−1(r, r′)χ(r′)

(9.2)
where the average electrostatic field ψ and the Green’s function G are taken to be
variational parameters. G−1 is the functional inverse of the Green’s function defined
through ∫

dr′′G−1(r, r′′)G(r′′, r′) = δ(r − r′) (9.3)

Following the GBF principle, we construct the following variational grand free
energy

W = WR + 〈L[ξ] − LR[ξ]〉
= −1

2
ln

(
detG

detC

)
− 1

2

∫
drdr′G−1(r, r′)G(r, r′)

− 1

2

∫
drdr′ [δ(r′ − r)ε(∇ψ)2 − ∇r · [

ε(r)∇r′δ(r − r′)
]
G(r, r′)

]

+
∫

dr
[
ρexψ − λ+e−ψ〈e−iχ〉 − λ−eψ〈eiχ〉] (9.4)

Here the reference free energyWR isWR = − ln�R and the reference partition func-
tion is in turn given by

�R = 1

ZC

∫
Dξ exp {−LR[ξ]} = (det G)1/2

(detC)1/2
(9.5)

The average 〈· · · 〉 is to be understood as 〈· · · 〉R, i.e., average taken in the reference
ensemble with action LR (cf. discussions surrounding Eq.7.14 in Sect. 7.) The second
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term in the first line of the above expression is from −〈LR[ξ]〉 upon using Eq.9.1.
The terms in the second and third lines of the expression arise from 〈L[ξ]〉 upon
writing the field ξ = iψ + χ. We have made use of 〈ξ〉 = ξ∗ = iψ and the following
relation:

∫
drdr′δ(r′ − r)ε〈(∇χ)2〉 =

∫
drdr′∇r · [

ε(r)∇r′δ(r − r′)
]
G(r, r′) (9.6)

For more details of the derivation leading to Eq.9.4, readers are kindly asked to
consult Ref. [19]. Because the distribution of χ is Gaussian by ansatz, the average
in Eq.9.4 is

〈e∓iχ〉 = exp

[
−1

2
G(r, r)

]
(9.7)

We recognize (1/2)G(r, r) as the self energy of a point-charge [20], which is
divergent. To eliminate the divergence, we introduce a finite charge distribution
h±(r − r′) [19] for an ion located at r′, to replace the localized point-charge distribu-
tion δ(r − r′). (For spherical ions, we have h±(r − r′) = h±(|r − r′|).) Then instead
of 〈e∓iχ〉, we now have

〈e∓iĥ±χ〉 (9.8)

where we have used the short-hand notation ĥ±χ to represent the local spatial aver-
aging of χ by the charge distribution function on the ion:

ĥ±χ =
∫

dr′h±(r′ − r)χ(r′) (9.9)

The Gaussian averaging then yields,

〈e∓iĥ±χ〉 = e−u±(r) (9.10)

where the self energy of an ion at location r is now given by

u±(r) = 1

2

∫
dr′dr′′h±(r′ − r)G(r′, r′′)h±(r′′ − r) (9.11)

and is finite as long as the distribution h±(r′ − r) has a finite width. The same
spatial averaging of the mean electrostatic potential ψ by the charge distribution is
not necessary, since the width of the distribution is typically much smaller than the
characteristic length scale for the variation of ψ, thus

ĥ±ψ =
∫

dr′h±(r′ − r)ψ(r′) ≈
∫

dr′δ(r′ − r)ψ(r′) = ψ(r) (9.12)
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Setting the variation of W to zero with respect to ψ and G, yields, respectively,

− ∇ · (ε∇ψ) = ρex + λ+e−ψ−u+ − λ−eψ−u− (9.13)

and
− ∇ · [ε∇G(r, r′)

] + 2I(r)G(r, r′) = δ(r − r′) (9.14)

where I(r) is the local ionic strength,

I(r) = 1

2

(
λ+e−ψ−u+ + λ−eψ−u−

)
(9.15)

The density of the ions is obtained from:

c±(r) = − δW

δμ±
= λ± exp

[∓ψ(r) − u±(r)
]

(9.16)

We note that although Eq.9.14 has the same form as Eq.8.31, G(r, r′) here is
not determined unidirectionally by ψ, but rather feeds back on ψ through the self
energy u±. Therefore, in the GBF variational treatment G(r, r′) and ψ are solved
self-consistently.

Making use of Eqs. 9.13 and 9.14, we arrive at the expression for the equilibrium
grand free energy,

W = −
∫

dr
[
c+(r) + c−(r)

] + 1

2

∫
drψ(r)

[
ρex(r) − c+(r) + c−(r)

]

+ 1

2
ln

(
detC

det G

)
−

∫
drI(r)G(r, r) (9.17)

The term involving the logarithmof the ratio of the two determinants can be converted
to a charging integral following Ref. [21] (see Appendix B of that reference). The
final form of the equilibrium free energy is

W = −
∫

dr
[
c+(r) + c−(r)

] + 1

2

∫
drψ(r)

[
ρex(r) − c+(r) + c−(r)

]

+
∫

drI(r) [G(r, r; η) − G(r, r)] (9.18)

where η is a charging variable and G(r, r; η) is the same-point Green’s function
obtained from solving Eq.9.14 with the ionic strength I(r) replaced by
ηI(r). Although the same-point Green’s function is divergent, the divergences from
G(r, r; η) exactly cancels that from G(r, r), rendering the free energy finite even
for point charges.

Comparing the free energy expression Eq.9.18 with the saddle-point free energy
Eq.8.28, we are tempted to regard the charging term in Eq.9.18 as the fluctuation
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correction. However, because the Green’s function feeds back to the mean electro-
static potential and the ion concentration through the self-energy (see Eqs. 9.13 and
9.16), these properties also include fluctuation effects. Therefore, we should consider
Eq.9.18 in its entirety as the fluctuation-corrected free energy.

The appearance of the self-energy in the variational treatment of fluctuation can
have qualitatively different effects than captured by the simple PB theory. For exam-
ple, near a dielectric interface, the presence of image charge interaction—a form of
self energy—can result in charge inversion [21] and attraction between like-charged
plates [22].

10 Summary and Perspective

In this chapter, we have presented a pedagogical introduction to the variational meth-
ods in statistical thermodynamics, from the perspective of the second law and the
maximum-termmethod in the evaluation of the partition function. This point of view
implies that there exists an appropriate free energy that is a function or functional
of a set of macrostate variables, and that the equilibrium state (including metastable
state) corresponds to a particular macrostate that makes the free energy a minimum.
Provided the free energy function or functional is known, by whatever means, appli-
cation of the variational method is straightforward and yields the equilibrium state
and its corresponding free energy.

However, the main utility of the variational methods in statistical thermodynam-
ics is in their use to construct approximate theories for interacting systems. We
have shown, using the examples of the Ising model and electrolyte solutions, that
the variational methods provide a systematic means for constructing the mean-field
theory. Furthermore, we have shown that when the model is transformed into a
field-theoretical description, both the steepest-descent and the GBF methods can be
used to study the leading order fluctuations, with the former corresponding to the
random-phase approximation and the latter corresponding to a self-consistentHartree
approximation. In essence, we have extended the macrostate variables to include the
variational parameters, such as the order parameters and the correlation functions,
which can be considered generalized state variables. In doing so, we sometimes have
to extend the parameter space from real to complex, analogous to the steepest-descent
method in the approximate evaluation of integrals. It is in this sense that we view
the variational methods as being rooted in the second law of thermodynamics or
maximum-term method in statistical thermodynamics.

This particular view point we have taken on variational principle has dictated
the choice of the methods we have included for discussion in this chapter; the two
methods we have presented, the steepest-descent and the GBF, both involve the
minimization (or more generally taking the stationary point) of a free-energy-like
quantity. There are other variational methods that are not based on such a procedure.
One such method is based on a perturbative calculation of the statistical average
of the property of interest using a reference Hamiltonian (or Boltzmann weight)
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and demanding that the first correction term vanish [23]. Finally, even for the same
variational method, there can be different levels of approximations, depending on
the desired structure of the theory. For example, in the example provided in Sect. 9,
the Green’s function is treated as a parameter functional which is determined by
solving Eq.9.14; this will in general require numerical solutions. If instead we desire
a more analytical solution, we may assume some parametrized functional form (e.g.,
screened Coulomb), in which case variation results in algebraic equations for the
determination of the parameters in the assumed functional form.
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Square-Gradient Model for Inhomogeneous
Systems: From Simple Fluids
to Microemulsions, Polymer Blends
and Electronic Structure

Jianzhong Wu

1 Introduction

Statistical mechanics is concerned with the properties of many-body systems, i.e.,
systems containing a large number of either quantum or classical particles [1, 2].
Common examples of such particles include electrons and photons for quantum
systems, or diverse microscopic objects for classical systems (e.g., atoms, inert-
gas molecules, the repeating units of a polymer or macromolecule, colloidal par-
ticles, and globular proteins). To describe the inter-particle interactions, we may
divide the elementary quantum particles into bosons and fermions, depending on the
symmetric/antisymmetric nature of their wave functions. Such distinction is unnec-
essary for classical particles because the Newton’s equation, often in the context of
a semi-empirical potential, is used to describe the particle dynamics.

Regardless of the physical nature of particles, a number of common mathematical
procedures may be taken to utilize statistical-mechanical principles to describe a wide
variety of phenomena arising from many-body interactions. One of the best-known
procedure is Monte Carlo (MC) simulation [3], applicable to calculating the con-
figurational properties of virtually any thermodynamic system. The square-gradient
approximation (SGA) discussed in this chapter represents another common but com-
putationally much more efficient procedure. The basic ideas of SGA were introduced
by van der Waals to describe the interfacial properties of coexisting vapor and liq-
uid phases over a hundred years ago [4]. Because of its simplicity, SGA remains a
popular choice for predicting the microscopic structure and thermodynamic proper-
ties of diverse inhomogeneous systems. Similar procedures have been extensively
used, for example, to describe phase transitions in condensed-matter systems such
as macroscopic phase separations, fluid wetting at solid surfaces, and formation of
microemulsions or polymeric mesoscopic phases. In a slightly different context, the
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gradient expansion method is also commonly used in theoretical descriptions of
electronic properties for both chemical systems and materials.

In contrast to simulation methods, the universal applicability of SGA to various
simple and complex fluids and electronic systems is rarely discussed as a common
theme. Because the gradient expansion method was often introduced from the per-
spectives of seemingly unrelated physical phenomena with utterly different practical
applications, SGA was “rediscovered” for a number of times and often named after re-
inventors from different subfields of condensed matter physics. This chapter intends
to establish a generic linkage among several incarnations of SGA. For pedagogy, our
discussion begins with some basic concepts from statistical mechanics applicable to
both quantum and classical systems. While for simplicity our discussion is mostly
focused on systems containing only one type of particles, it should straightforward
to extend similar ideas (and equations) to multicomponent systems. In addition to
pedagogical purposes, this chapter intends to forge a common ground for better com-
munication among different subfields of statistical mechanics and to facilitate future
cross-field developments.

2 Statistical Mechanics

For a many-body system of practical concern, the dynamic and energetic proper-
ties are inevitably related to the particle positions or the spatial distributions of the
microscopic constituents. A quantity of fundamental importance is thus the one-body
particle density profile, viz. the average local number density of individual particles.
For a system containingN indistinguishable particles of spherical shape, the instanta-
neous particle distribution may be specified by a summation of the Dirac-δ functions:

ρ̂(r) =
N∑
i=1

δ(r − ri) (1)

where ri represents the position to locate the center of mass for particle i. The one-
body density profile is defined as an ensemble average of the instantaneous density

ρ(r) =< ρ̂(r) >=
N∑
i=1

< δ(r − ri) > (2)

where the angle brackets < · · · > denote an ensemble average, which is determined
by the probability of the many-body system in different microstates {ν}

< · · · >=
∑

ν

pν(· · · ). (3)
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The Dirac-δ function specifies the probability density distribution for a particle
located at a specific position. Accordingly, the density profile ρ(r) reflects the micro-
scopic structure of the many-body system.

The grand canonical ensemble provides a convenient starting point to describe
the properties of a many-particle system in terms of the one-body density profiles.
For a one-component system at absolute temperature T , chemical potential μ, and
volume V , the microstate probability is given by

pν = exp [β (μNν − Eν)] /� (4)

where � represents the grand partition function

� ≡
∑

ν

exp [β (μNν − Eν)]. (5)

In Eqs. (4) and (5), β = 1/(kBT), kB is the Boltzmann constant, Nν and Eν stand
for the number of particles and the total energy at microstate ν, respectively. For
an electronic system at 0 K, the microstate probability is defined in terms of the
multi-body wave function �(rN , sN ). In that case, the one-body density profile can
be written as

ρ(r) =
∫ ∑

sN

N∑
i=1

δ(r − ri)�∗(rN , sN )�(rN , sN )dxN (6)

where rN = (r1, r2, . . . , rN ), sN = (s1, ss, . . . , sN ) stands for the spin coordinates,
and �∗ represents the complex conjugate of the multi-body wave fn function.

In principle, all equilibrium properties of the system can be derived from the grand
potential

� ≡ −kBT ln �. (7)

Taking two important thermodynamic variables as an example, we can calculate
entropy from a partial derivative of the grand potential with respect to temperature

S ≡ −kB
∑

ν

pν ln pν = −
[
∂�

∂T

]
μ,V

, (8)

and the internal energy is related to the grand potential by

U ≡< Kν + 
ν +
∫

drρ̂ν(r)ϕext(r) >=
[
∂β�

∂β

]
μ,V

+ μN (9)

where Kν and 
ν stand for the kinetic and potential energies of the particles at
microstate ν, respectively, ϕext(r) is the external potential for each particle, and
N =< Nν > denotes the average number of particles in the system.
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From the grand potential, we can also derive a hierarchy of correlation functions.
For example, the first derivative of the grand potential with respect to the one-body
potential yields the one-body density profile

δ�

δu(r)
= ρ(r) (10)

where u(r) ≡ ϕext(r) − μ, and a second derivative leads to the density-density cor-
relation function χ(r, r′),

− δ2�

δ2u(r)
= − δρ(r)

δu(r′)
= β

〈[ρ̂(r) − ρ(r)][ρ̂(r′) − ρ(r′)]〉 ≡ βχ(r, r′). (11)

Although the basic ideas of statistical mechanics are rather intuitive, the complex-
ity in the dynamics of many particles makes direct evaluation of the grand partition
function virtually impossible except for a few highly idealized systems. In MC sim-
ulation, the ensemble average is instead evaluated using some stochastic processes
to sample the microstates with an electronic computer. Thanks to rapid advances in
computing technology and algorithm developments, modern applications of statisti-
cal mechanics often hinge on simulation methods. Alternatively, the microstates can
be generated following the dynamics of individual particles as in molecular dynamics
(MD) simulations. While the numerical procedures for both MC and MD are formally
exact and rather straightforward to implement, enumeration of the microscopic states
of a many-body system is not only computationally demanding but also unhelpful
for capturing the essential features of physical phenomena. Molecular simulation
generates a large volume of often unrevealingly information. By contrast, theoreti-
cal methods are able to capture the universal principles underlying diverse physical
phenomena and permit fast calculation of structural and thermodynamic properties
without explicit consideration of the microscopic details.

3 Density Functional Theory (DFT)

Density functional theory (DFT) provides a generic mathematic framework to estab-
lish quantitative connections between thermodynamic properties of a many-body
system and the underlying one-body density profiles. The central idea can be best
introduced in terms of the Hohenberg-Kohn-Mermin (HKM) theorem [5, 6], which
was established first in the context of inhomogeneous electrons at 0 K. The HKM the-
orem was later generalized to thermodynamic systems of both quantum and classical
particles [7].

For a one-component system of identical particles, the HKM theorem asserts that
the grand potential can be determined by minimization of the density functional
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�[ρ(r)] ≡ F[ρ(r)] +
∫

ρ(r)u(r)dr (12)

where F[ρ(r)] stands for the intrinsic Helmholtz energy. Here by intrinsic we mean
that the quantity is independent of the system external potential. Formally, F[ρ(r)]
is defined by the microstate probability and the intrinsic energy of the particles

F[ρ(r)] =
∑

ν

pν(kBT ln pν + Kν + 
ν). (13)

According to the HKM theorem, the one-body external potential is a unique func-
tional of the one-body density profile. As a result, both the microstate probability
pν and, subsequently, the intrinsic Helmholtz energy are unique functionals of the
one-body density profile ρ(r).

For a specific system, the one-body potential u(r)is fixed. Minimization of the
grand potential functional with respect to the one-body potential leads to

δ�

δρ(r)
= δF

δρ(r)
+ u(r) = 0. (14)

Equation (14) is known as the Euler-Lagrange equation. With an explicit expression
for the intrinsic Helmholtz energy, Eq. (14) allows us to solve the one-body den-
sity profile, which serves as the starting point to predict other thermodynamic and
structural properties of the system.

It is worth noting that DFT is formally exact and applicable to both quantum and
classical systems. In other words, DFT represents a generic mathematical framework
in statistical mechanics. The same procedure is similarly applicable to quantum and
classical systems including electronic systems at zero temperature. At T = 0 K, the
expression for the grand potential and the Euler-Lagrange equation remain the same
but the thermodynamic entropy vanishes. In that case, the intrinsic Helmholtz energy
becomes an internal energy, depending only on the kinetic and potential energy of
the particles

F[ρ(r)] =
∑

ν

pν(Kν + 
ν) =< Kν + 
ν > . (15)

For electronic systems, the excitation energy, typically on the order of a few electron
volts, is much higher than the thermal energy at room temperature (1 eV ∼ 40 kBT).
As a result, the entropy effects are relatively unimportant for the electronic properties.

While DFT is emerging as one of the most predominant approaches for the theo-
retical description of inhomogeneous quantum and classical systems, one noticeable
caveat is that the HKM theorem does not provide any specific knowledge on the
intrinsic Helmholtz energy. Nevertheless, analytical expressions are readily avail-
able for the density functional in the absence of inter-particle interactions. The ideal-
gas systems provide a useful reference to formulate the excess intrinsic Helmholtz
energy due to inter-particle interactions. Although exact results are no more attainable
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for most practical systems, excellent approximations can be established using
analytical tools from both quantum and statistical mechanics [8, 9].

From a mathematical perspective, approximate methods in statistical mechanics
are mostly based on perturbation expansions with respect to either the inter-particle
energy or the local density inhomogeneity. For systems with a pairwise additive
potential 
(r1, r2), the total potential energy at each microstate may be written as


ν = 1

2

∫
dr1

∫
dr2

∑
i �=j

δ(r1 − ri)
(r1, r2)δ(r2 − rj) (16)

where a factor of 2 accounts for the fact that each pair potential involves two inter-
acting particles. Using Eqs. (7) and (16), we may show that a functional derivative
of the grand potential with respect to the pair potential leads to the two-body density
distribution function, ρ(2)(r1, r2),

δ�

δ
(r1, r2)/2
=<

∑
i �=j

δ(r1 − ri)δ(r2 − rj) >≡ ρ(2)(r1, r2). (17)

Equation (17) can be used to evaluate the difference between the intrinsic Helmholtz
energy of a real system and that of an ideal system (ID).

At fixed temperature T and one-body potential u(r), a functional integration of
Eq. (17) with respective to the pair potential gives [10]

F[ρ(r)] = FID[ρ(r)] + 1

2

∫ 1

0
dλ

∫
dr1

∫
dr2ρ

(2)(r1, r2, λ)
(|r1 − r2|) (18)

where FID[ρ(r)] represents the intrinsic Helmholtz energy of the non-interacting
system, and ρ(2)(r1, r2, λ) stands for the two-body density correlation function of
the system under consideration but with a reduced pair potential, 
λ(r) = λ
(r),
where 0 ≤ λ ≤ 1. In writing Eq. (18), we assume that the inter-particle potential
between spherical particles depends on the center-to-center distance, i.e., 
(r1, r2) =

(|r1 − r2|). The functional integration corresponds to the reversible work to add the
inter-particle potential to non-interacting ideal particles [11]. For electronic systems,
Eq. (18) is commonly known as the adiabatic connection [8].

For most systems of practical interest, the two-body correlation functions are
extremely complicated, depending not only on two positions but also on the local
density profile as well as all variables defining the thermodynamic state. For easy
understanding, it is convenient to express the two-body density correlation function
in terms of the radial distribution function (RDF)

g(r1, r2) ≡ ρ(2)(r1, r2)/[ρ(r1)ρ(r2)] (19)

or the total correlation function (TCF)
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r

1

g(r)

0

Fig. 1 A schematic representation of the radial distribution function (RDF). For a uniform system
of spherical particles, g(r1, r2) is a function of the distance r = |r1 − r2|. For an inhomogeneous
system, however, RDF depends on the position and relative orientation. For both uniform and
inhomogeneous systems, RDF vanishes at small separation and approaches unity at large distance
owing to the short-range repulsion and the rapid decay of long-range inter-particle interactions

h(r1, r2) ≡ g(r1, r2) − 1. (20)

Intuitively, RDF represents the probability of finding a particle given that the
position of another particle is fixed at the origin. As shown schematically in Fig. 1,
RDF vanishes at small separation due to the inter-particle repulsion and approaches
unity at large distance when the particle densities become uncorrelated. In the mean-
field approximation, it is commonly assumed g(r1, r2) = 1 or h(r1, r2) = 0, i.e., the
total correlation function is completely neglected.

4 Square-Gradient Approximation (SGA)

For systems with a nearly uniform one-body density profile, the intrinsic Helmholtz
energy may be approximated by a functional Taylor expansion with respect to that
of a uniform system with an average density ρ0:

F[ρ(r)] = F(ρ0) + μ

∫
�ρ(r)dr + 1

2

∫
dr1

∫
dr2�ρ(r1)�ρ(r2)K(r1, r2) + · · ·

(21)
where �ρ(r) ≡ ρ(r) − ρ0. In the density expansion above, the reference system has
the temperature and the particle chemical potential the same as those corresponding
to the real system.

In Eq. (21), K(r1, r2) has the units of energy and is referred to as the vertex func-
tion. Because the first-order functional derivative of the intrinsic Helmholtz energy
with respect to ρ(r) results in the one-body potential, the vertex function corresponds
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to the second-order functional derivative. For a uniform system, it depends only on
the distance between r1 and r2, i.e.,

K(r1, r2) = − δu(r1)

δρ(r2)

∣∣∣∣
ρ(r)=ρ0

= K(|r1 − r2|). (22)

In writing Eq. (22), we have utilized the Euler-Lagrange equation (i.e., Eq. (14)).
Equation (22) suggests that the vertex function specifies the variational of the local
one-body potential in response to the change in the particle density at another position.

In comparison to the exact expression given in Eqs. (18) and (21) has a major
advantage because the vertex function depends on the distance between positions r1

and r2. For systems with a slow varying one-particle density ρ(r), �ρ(r) is small and
the functional Taylor expansion for the intrinsic Helmholtz energy may be truncated
after the quadratic term. Similarly, the local density may be expressed as a truncated
Taylor series

ρ(r2) = ρ(r1) + (r1 − r2) · ∇ρ(r1) + 1

2
(r1 − r2)(r1 − r2) : ∇∇ρ(r1) + O(∇3ρ)

(23)
where ∇ρ(r) denotes the density gradient, and symbol “ :′′ is the scalar product
of two tensors. As detailed in Appendix, the gradient expansions lead to a simple
expression for the intrinsic Helmholtz energy of inhomogeneous systems:

F =
∫

dr
{
f0[ρ(r)] + κ

2
|∇ρ(r)|2

}
(24)

where f0(ρ) represents the Helmholtz energy density of the uniform system at system
temperature T and local density ρ(r), and κ is called the influence parameter. The
first term on the right side of Eq. (24) corresponds to the local density approxima-
tion (LDA) for the intrinsic Helmholtz energy, and the gradient term accounts for a
correction to the intrinsic Helmholtz energy due to the local density inhomogeneity.

For a uniform system,∇ρ(r) = 0, and Eq. (24) reduces the bulk Helmholtz energy.
Because the correction to the local density approximation is a quadratic function of
the density gradient, Eq. (24) is referred to as the square-gradient approximation
(SGA). Alternatively, the mathematical form is also known as the Ginzburg–Landau
theory or the Landau expansion. Similar methods are used extensively to describe
structure formation in inhomogeneous systems and phase transitions [12].

As shown in Appendix, the influence parameter is related to the vertex function
of the uniform system K0(r)

κ = −2π

3

∫ ∞

0
r4K0(r)dr = lim

q→0
[K̃0(q) − K̃0(0)]/q2 (25)
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where K̃0(q) represents the 3-dimensional (3D) Fourier transform of K0(r)

K̃0(q) = K̃0(q) ≡
∫

K0(r)e
−iq·rdr =

∫
sin(qr)

qr
K0(r)dr. (26)

Alternatively, it may be expressed in terms of the density-density correlation function

βκ = lim
q→0

[1/χ̃0(q) − 1/χ̃0(0)]/q2 (27)

where χ̃0(q) corresponds to the 3D Fourier transform of the density–density corre-
lation

χ(r, r′) ≡ 〈[ρ̂(r) − 〈
ρ̂(r)

〉][ρ̂(r′) − 〈
ρ̂(r′)

〉]〉 . (28)

In deriving the influence parameter, we assume that the vertex function is independent
of the local density. Accordingly, κ is determined from the correlation functions of
the uniform reference system. For better numerical performance, however, κ is often
evaluated from K0(r) of a uniform system at the local density.

SGA requires as an input the local Helmholtz energy density and the vertex func-
tion (or the density–density correlation function) of the corresponding uniform sys-
tem. On the one hand, the Helmholtz energy density is typically provided by an
equation of state or an excess free-energy model for corresponding bulk systems.
Alternatively, the local Helmholtz energy density may be obtained from an empirical
correlation based on simulation results. For classical systems, the correlation func-
tions can be solved from the integral-equation theories (e.g., the Ornstein-Zernike
equation) or from mean-field approximations and analytical functions derived for
ideal systems (e.g., correlation functions for Gaussian chains). Because gradient
expansions are applied to both the intrinsic Helmholtz energy and the one-body den-
sity profile, we expect SGA to perform well for inhomogeneous systems with near
uniform density profiles. With the influence parameter evaluated from the local den-
sities (or locally averaged densities [13], however, SGA may also be used for highly
inhomogeneous systems.

5 Simple Fluids

A simple fluid consists of argon-like molecules. In addition to noble gases, other
examples of simple fluids include a large number of nonpolar gases of low mole-
cular weight such as methane and, from a thermodynamics perspective, colloidal
dispersions and aqueous solutions of globular proteins.

For a simple fluid, the bulk Helmholtz energy can be readily derived from an equa-
tion of state. Taking the van der Waals theory as an example, the reduced Helmholtz
energy density per volume is given by
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βf0(ρ) = ρ

[
ln(

ρ�3

1 − bρ
) − 1 − βρa

]
(29)

where a and b are van der Waals’ parameters, � represents the thermal wavelength.
More accurate expressions for the Helmholtz energy density are available [14].

The vertex function of a simple fluid may be expressed in terms of the direct
correlation function (DCF), c(r, r′),

βK(r, r′) = δ(r − r′)
ρ(r)

− c(r, r′). (30)

Mathematically, c(r, r′) corresponds to the second-order functional derivatives of
the excess Helmholtz energy, Fex ≡ F − FID

c(r, r′) ≡ − δ2βFex

δρ(r)δρ(r′)
. (31)

Without inter-particle interactions, the Helmholtz energy of the ideal system is
exactly known

FID = kBT
∫

ρ(r){ln[ρ(r)�3] − 1}dr. (32)

As shown in Appendix, DCF and RDF are related through the Ornstein-Zernike
equation, which provides a basis for numerical solutions of the correlation functions.
Analytical expressions of c0(r) are also available for a number of simple fluids over
a broad range of thermodynamic conditions [15].

Figure 2 shows schematically the direct correlation function for a uniform fluid.
While there is an apparent connection between the direct correlation function and
the reduced pair potential at large distance, it is important to recognize that c0(r)
depends not only on the distance but also on thermodynamic parameters defining the
equilibrium state. At large distance, the direct correlation function approaches to the
reduced pair potential as

Fig. 2 A schematic
representation of the direct
correlation function of a
simple fluid c0(r). At large
distance, the direct
correlation function is
virtually identical to the
reduced pair potential
−β
(r). At short distance,
the pair potential diverges
while the direct correlation
function remains finite

-c0(r) 

r = |r1-r2| 

(r)
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c0(r) ≈ −β
(r) as r → ∞. (33)

For uniform systems, Eq. (30) reduces to

βK0(r) = δ(r)/ρ0 − c0(r). (34)

Substituting Eq. (34) into (25), we can calculate the influence parameter from the
DCF of a uniform system

κ = 2πkBT

3

∫ ∞

0
dr r4c0(r). (35)

Because of the asymptotic behavior of c0(r), Eq. (35) suggests that SGA is not valid
if the inter-particle potential behaves as 1/rn, n < 6 at large r.

Case study I: Interfacial tension
The interfacial tension between two coexisting phases, say α and β, is defined as the
change in free energy in response to variation of the interfacial area. For two bulk
phases at equilibrium, the interfacial area refers to that of an imaginary surface divid-
ing the total mass of a particular component in the system into those corresponding
to two bulk phases. The imaginary surface is called the Gibbs dividing surface.

Schematically, Fig. 3 presents a Gibbs dividing surface between two bulk phases
(e.g., vapor and liquid) and the local density profile across the interface for a one-
component system. Here the density profile varies only in the direction perpendicular
to the interface, i.e., ρ(r) = ρ(z), where z represents the coordinate in perpendicular
to the surface. Because the dividing surface possesses no volume, its position, here
set at z = 0, can be determined from the one-body density profile

∫ 0

−∞
dz[ρ(z) − ρα] +

∫ ∞

0
dz[ρ(z) − ρβ] = 0. (36)

Equation (36) is also applicable to multi-component systems. In that case, the location
of the dividing surface depends on a specific component selected such that its density
profile satisfies Eq. (36).

Fig. 3 The Gibbs dividing
surface between two bulk
phases (α and β) and a
schematic of the density
profile in the interfacial
region

z 

(z) 

Dividing Surface 

α

β
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For an inhomogeneous system containing two coexisting bulk phases, SGA pre-
dicts that the grand potential per unit area is given by

�/A =
∫ ∞

−∞
dz

{
f0[ρ(z)] + κ

2
|ρ ′(z)|2 − μρ(z)

}
(37)

where ρ ′(z) ≡ dρ(z)/dz. For the bulk systems, the grand potential reduces to � =
−PV where pressure P is the same for the coexisting phases. The surface tension
is defined as the grand potential per unit area relative to those corresponding to the
bulk phases

γ ≡ � − �α − �β

A
=

∫ ∞

−∞
dz

{
f0[ρ(z)] + κ

2
|ρ ′(z)|2 − μρ(z) − P

}
. (38)

To use Eq. (38), we need an equation of state for the bulk phase and the density
profile. As discussed, above, the latter can be calculated by minimization the grand
potential Eq. (37):

μ0[ρ(z)] − κρ ′′(z) − μ = 0 (39)

where μ0 ≡ (∂f0/∂ρ)T , ρ ′′(z) ≡ d2ρ(z)/dz2. Because of the inhomogeneity in local
density, μ0 �= μ; μ0 reduces to the bulk chemical potential only when the density
is constant. Using the boundary conditions far from the interface, i.e., ρ(−∞) = ρβ

and ρ(∞) = ρα , one may solve the density profile from a numerical integration of
Eq. (39).

To obtain an explicit expression for the surface tension, we may rewrite Eq. (39)
in terms of the local grand potential density, ω(ρ) = f 0(ρ) − ρμ,

κρ ′′(z) = ∂ω(ρ)

∂ρ
. (40)

Multiplying both sides of Eq. (40) by ρ ′(z) leads to

d

dz

[κ

2
ρ ′(z)2 − ω(ρ)

]
= 0. (41)

Using boundary conditions ρ ′(z) = 0 and ω = −P for the bulk phases, we can inte-
grate Eq. (41) with respect to z and find

κ

2
ρ ′(z)2 − ω(ρ) = −P. (42)
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Substituting Eq. (42) into (38) leads to a simplified expression for the surface tension

γ = κ

∫ ∞

−∞
ρ ′(z)2dz. (43)

According to Eq. (43), the surface tension and the influence parameter have the
same sign. Because the direct correlation function is negative at small separation
and positive at larger distance, Eq. (35) suggests that the influence parameter may
be negative under certain conditions. In that case, the surface tension is negative,
favoring spontaneous formation of the interfacial area (e.g., in microemulsions as
discussed below).

A nice feature of SGA for predicting surface tension is that Eq. (43) can be
evaluated without knowing the density profile explicitly. According to Eq. (42), we
have

dz = −dρ/
√

2[ω(ρ) − P]/κ. (44)

Here a negative sign is taken with the assumption that the density declines in the z
direction. We now substitute Eq. (44) into (43) and integrate by parts,

γ =
∫ ρβ

ρα

√
2κ[ω(ρ) − P]dρ. (45)

Equation (45) indicates that SGA can be used to predict the surface tension directly
from the correlation functions and the equation of state for the uniform systems
without computing the density profile.

SGA is able to capture the essential features of interfacial inhomogeneity and
surface tension. In comparison to exact results from experiments or molecular simu-
lations, however, its performance is mostly qualitative [16]. As shown in Fig. 4, SGA
often gives a too broad one-body density profile at the interfacial region. Besides, it
misses density fluctuations near the liquid side of a vapor-liquid interface.

z 

(z) L

V

T/Tc

(a) (b)

γ

1

Fig. 4 A schematic comparison of the density profile at the vapor-liquid interface and the surface
tension versus temperature predicted from SGA (dashed lines) with those from experiments (solid
lines). Here Tc stands for the critical temperature for the vapor-liquid coexistence
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Fig. 5 The vapor-liquid
interfacial tension of normal
alkanes. Here the symbols
are experimental data and the
solid lines are SGA
predictions. Adopted from
Garrido et al. AIChE Journal
(2016)
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Because SGA predicts a too-broad interfacial region, it overestimates the surface
tension over the entire range of the coexisting temperature. A quantitative represen-
tation of the surface tension can be accomplished by using an accurate equation of
state for the bulk phases and an optimized influence parameter. For example, Fig. 5
shows that, even with the assumption that the influence parameter is independent
of the local density, the SGA is able to describe vapor-liquid interfacial tensions of
several normal alkanes in excellent agreement with experimental data [17].

6 Microemulsions

Microemulsions are thermodynamically stable heterogeneous mixtures of oil, water
and surfactants forming microscopic structures of various sizes and shapes. In
microemulsions, oil and water droplets are dispersed in “water in oil (w/o)”, “oil
in water (o/w)”, or bicontinuous structures stabilized by pure or mixed surfactants
adsorbed at the oil-water interfaces. Microemulsions have industrial applications
such as polymer synthesis, drug delivery, and enhanced oil recovery in the petro-
chemical industry [18].

To capture the gross features of microemulsions, Teubner and Strey proposed the
following phenomenological equation for the deviation of the intrinsic Helmholtz
energy from that of a uniform system

�F =
∫

dr
{
a2φ

2 + c1|∇φ(r)|2 + c2|∇ · ∇φ(r)|2} (46)

where φ(r) stands for an order parameter to account for the deviation of the local
water or oil concentration from the corresponding mean value, a2 > 0, c1 < 0 and
c2 > 0 are phenomenological parameters with their signs fixed to ensure thermody-
namic stability of the inhomogeneous system. It is worth noting that c1 < 0 implies
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a negative surface tension in microemulsions, favoring spontaneous formation of
surface area. In Eq. (46), the 4th-order gradient term is introduced to ensure that the
system will be stabilized without unlimited growth of the interface area.

The polynomial form given by Eq. (46) is commonly known as the Landau expan-
sion for the free energy of an inhomogeneous system. Intuitively, it may be under-
stood as an empirical gradient expansion relative to an unstructured uniform phase
without invoking any specific knowledge on the local Helmholtz energy density and
correlation functions. As a result, the Landau expansion is applicable as a simple
mathematical procedure to structure formation in any thermodynamic systems. The
Taylor expansion is expected to be adequate when the order parameter is small as in
the early stage of phase transitions or structure formation in heterogeneous systems.

A conventional experimental approach to monitor the structure of microemulsions
is by small angle neutron or X-ray scattering. The scattering experiments provide
information on the structures of microemulsions at nanometer or even smaller length
scales. The intensity of neutron or X-ray scattering is proportional to the Fourier
transform of the density-density correlation function

I(q) ∼ χ̃ (q). (47)

As shown in Appendix, χ̃(q) is inversely proportional to the vertex function in the
Fourier space, K̃(q)

βK̃(q)χ̃(q) = 1. (48)

As the order parameter is defined linearly proportional to the local density of water or
oil molecules, Eq. (46) can be used to derive the density-density correlation function.
Taking a second-order functional derivative of the empirical Helmholtz energy with
respect to φ(r) and making the Fourier transform, we find the vertex function in the
Fourier space

βK̃(q) ∼ (a2 + c1q
2 + c2q

4). (49)

Accordingly, the density-density correlation function is

χ̃(q) ∼ 1

a2 + c1q2 + c2q4
(50)

Equation (50) provides a theoretical basis for interpreting the physical meanings
of the scattering spectra obtained from neutron or X-ray experiments. The spec-
tra obtained from small angle scattering experiments is most relevant to the long-
range limit of the density-density correlation function of the inhomogeneous system.
According to Eq. (50), the asymptotic limit of the density-density correlation function
may be written in the real space as

χ(r) ∼ de−r/ξ

2πr
sin

(
2πr

d

)
, r/ξ >> 1 (51)
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Fig. 6 Small angle neutron scatting (SNAS) spectra for nonionic microemulsions containing water,
Brij 96 surfactant, ethyl oleate and hexanol [19]. The solid lines represent correlations with the
Teubner-Strey (TS) model with two fit parameters ξ and d changing with the water content (right
panel). (Adapted from Kaur et al. Langmuir 2012)

where

ξ =
[

1

2

(
a2

c2

)1/2

+ 1

4

c1

c2

]−1/2

(52)

d = 2π

[
1

2

(
a2

c2

)1/2

− 1

4

c1

c2

]−1/2

. (53)

Equation (51) suggests that d is related to a characteristic domain size of the
microemulsion, and ξ may be understood as the correlation length for the den-
sity fluctuations. For water in oil (W/O) or oil in water (O/W) microemulsions, the
domain size corresponds to the diameter of spherical droplets for the dispersed phase,
and the correlation length reflects density fluctuation within each spherical domain.
For bicontinuous microemulsions, the sinusoidal term accounts for the alternating
domains of oil and water phases with an average periodicity of d, and the exponential
term is related to the short-range correlation within the water or oil domain.

The Teubner-Strey (TS) model has been routinely used to describe the scattering
spectra of a wide variety of microemulsions. The domain size and correlation length
obtained from the fit parameters provide insights into the microscopic structure. For
example, Fig. 6 shows the small angle neutron scatting (SANS) spectra for nonionic
microemulsions containing water, a surfactant (Brij 96), ethyl oleate and hexanol
[19]. The system is relevant for a number of pharmaceutical and cosmetic formu-
lations. We see that the scatting intensity curves are near perfectly reproduced by
the TS model. From the fit parameters, the domain size and correlation length at
different water contents can be determined. Figure 6 shows that the domain size is
linearly increasing with the amount of water contained, implying that the microscopic
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structure swells proportionally upon the addition of water. This example illustrates
how the scattering experiments shed lights for systematic formulation of microemul-
sions with desired microscopic structures. As the structure is not directly detected, the
statistical-mechanical model becomes indispensible for interpretation of the experi-
mental spectra.

7 Polymer Blends

Pierre-Gilles de Gennes was often credited as the first to use the square-gradient
approximation (SGA) for inhomogeneous polymer blends [20]. The so-called Flory-
Huggins-de Gennes (FHdG) model remains a popular choice for describing the ther-
modynamic properties of inhomogeneous polymeric systems and phase transactions.
The FHdG theory may also be relevant to biological systems because recent studies
suggest that the physics of polymer phase transitions are applicable to the formation
of intracellular membrane apartments [21].

To illustrate the basic concepts behind the FHdG theory, we consider an inhomo-
geneous blend of two polymers A and B. According to SGA, the intrinsic Helmholtz
energy is given by

F =
∫

dr
{
f0[ρA, ρB] + κAA

2
[∇ρA(r)]2 + κAB∇ρA(r) · ∇ρB(r) + κBB

2
[∇ρB(r)]2

}
(54)

where ρA(r) and ρB(r) stand for the segment densities, κij are influence parameters to
account for the effect of local density inhomogeneity, andf0 represents the Helmholtz
energy density of a homogeneous polymer at the local segment densities.

For uniform polymer systems, the Flory-Huggins theory is commonly used to
describe the Helmholtz energy of mixing. The reduced Helmholtz energy per polymer
segment, relative to those of pure species, is given by

βv0�f0 = φA

NA
ln φA + φB

NB
ln φB + χFφAφB, (55)

where v0 represents the volume per lattice site, Ni denotes the degree of polymer-
ization for polymer i = A or B, φi = ρiv0 stands for the polymer volume fraction,
and χF is the Flory parameter.

As discussed above, the influence parameters can be determined from the vertex
functions

κij = lim
q→0

[K0,ij(q) − K0,ij(0)]/q2. (56)

In terms of the polymer volume fractions, the vertex function is related to the density
fluctuations in the binary polymer mixture
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K−1
ij (r1, r2) = β < δρ̂i(r1)δρ̂j(r2) >= β

v2
0

< δφ̂i(r1)δφ̂j(r2) > (57)

where φ̂i(r) = ρ̂i(r1)v0, and δφ̂i(r) ≡ φ̂i(r) − φi,0 stands for the deviation of the
instantaneous local volume fraction from the mean value φi,0.

The Flory-Huggins lattice model assumes that the polymer mixture is incom-
pressible. In other words, each lattice site is occupied by one and only one polymer
segment of either type A or B such that the local volume fraction is normalized

φ̂A(r) + φ̂B(r) = 1. (58)

Using the identity
∇φA(r) = −∇φB(r), (59)

we may simplify Eq. (54) and derive the Helmholtz energy of mixing for the inho-
mogeneous system

�F =
∫

dr
{
�f0(φ) + κ

2
[∇φ]2

}
(60)

where φ = φA, and κ is an effective influence parameter given by

κ ≡ (κAA + κBB − 2κAB)/v
2
0. (61)

Because of the incompressibility hypothesis, the densities of polymer segments are
inter-related and the Helmholtz energy for the binary mixture resembles that for a
one-component system (viz. Eq. (24)).

To derive the influence parameter, the FHdG theory assumes further that, in a
polymer melt, the local fluctuation of the polymer volume fractions behaviors as that
corresponding to non-interacting polymers (viz. Gaussian chains). In other words,
the density-density correlation functions are determined by the intra-chain connec-
tivity of polymer segments. Because segments from different polymer chains are
uncorrelated, we have χ0,AB(r) = χ0,BA(r) = 0.

As shown in the Appendix, the intra-chain density-density correlation for polymer
A can be approximated by

χ̃0,AA(q) ≈ NAφ0,A

v2
0

(
1 − q2R2

A

3

)
(62)

where RA ≡ NAl2A/6 is the radius of gyration for an ideal polymer chain, and lA
represents the bond length for polymer A. Substituting Eq. (62) into (56) yields the
influence parameter for polymer A

κAA = 1

β
lim
q→0

[χ−1
0,AA(q) − χ−1

0,AA(0)]/q2 = v2
0R

2
A

3βNAφ0,A
= v2

0l
2
A

18βφ0,A
. (63)
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Similarly, the influence parameter for polymer B is

κBB = v2
0l

2
B

18βφ0,B
(64)

where lB represents the bond length for polymer B. Because there is no correlation
between segments from different ideal polymer chains, the cross inference parameters
are

κAB = κBA = 0. (65)

Substituting Eqs. (64)–(65) into (61), we derive the effective influence parameter for
the polymer blend

κ = 1

18β

(
l2A

φ0,A
+ l2B

φ0,B

)
. (66)

Case study II. Kinetics of polymer phase separation
A binary polymer mixture may exist either as a single uniform phase or as two
coexisting phases, depending on its composition and temperature. As shown in Fig. 7,
the binodal curve separates regions of the phase diagram into single and two phases.
In the two-phase region, spontaneous phase separation occurs when the system exists
inside the spinodal line. The demixing process is called spinodal decomposition.

When a polymer blend undergoes spinodal decomposition, its morphology, i.e.,
the inhomogeneous distribution of polymer segments, is controlled by the dynamics
of the phase-separation. The change of the polymer composition can be described
by the phenomenological diffusion equation

∂φ(r, t)

∂t
= −∇ · J, (67)

ΦA

Φ(1)

(N
χ)

-1

spinodal

binodal

Φ(2)

Fig. 7 A schematic phase diagram for a binary polymer blend. Here �(1) and �(2) represent the
volume fraction of polymer A in two coexisting curves. The system exists as one single phase outside
the binodal curve and two phases otherwise. Inside the spinodal curve, the mixture is spontaneously
separated into two phases



50 J. Wu

where φ(r, t) is the volume fraction of polymer A at position r and time t, J is
the local flux of polymer A. The polymer flux may be related to the local chemical
potential μA through the generalized Fick’s law

J = −�∇βμA (68)

where �represents the Onsager coefficient [9]. In general, �is nonlocal, depending
on the polymer size and the self-diffusion coefficient.

If polymers A and B are symmetric, i.e., NA = NB = N and lA = lB = l, the
Helmholtz energy functional for the inhomogeneous polymer blend becomes

β�F = 1

v0

∫
dr

{
1

N
ln φ + 1 − φ

N
ln φ + χFφ(1 − φ) + l2[∇φ]2

36φ(1 − φ)

}
(69)

Accordingly, the local chemical potential for polymer A is

βμA(r) = 1

N
ln

φ

1 − φ
+ χF(1 − 2φ) − l2

18

∇2φ

φ(1 − φ)
+ l2(∇φ)2

36

[
1

φ2 − 1

(1 − φ)2

]

(70)
Substituting Eq. (70) into Eqs. (67) and (68), we can calculate the evolution of the
segment density profile during phase transitions. In general, spinodal decomposi-
tion in a polymer blend results in a highly interconnected bicontinuous structure at
the early stage of phase separation. Spherical structures are possible at relatively
late stages. The fully developed morphology is mainly determined by the polymer
composition, and less by other parameters such as polymer chain lengths and binary
interaction parameters.

Nauman and coworkers applied the FHdG theory to investigate the morphologies
of ternary polymer blends after spinodal decomposition [22]. They found that, as
shown in Fig. 8, the morphologies of the polymer blends predicted by Eq. (68) closely
resemble those obtained from experiments. The theoretical results may help design
polymer blends with minimal experimentation.

8 Electronic Systems

The square-gradient approximation (SGA) is independent of the physical significance
of the density functional or inter-particle potentials, making it universally applicable
to both quantum as well as classical systems. For its application to electronic systems,
a quantity of central importance is the exchange-correlation functional, EXC[ρ(r)],
which is introduced in the Kohn-Sham (KS) ansatz for calculating the energy and
the electronic structure at the ground state [23]. In essence, the KS theory asserts the
existence of a non-interacting reference system with an effective external potential

vs(
⇀
r ) such that both its ground-state energy and the density profile are the same as

those corresponding to the real system.
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Fig. 8 Morphologies of polymer blends from theoretical predictions (a, c) and from electron
microscopy (c, d). Here (a) and (b) are for a 40/40/20 blend of poly (methyl methacrylate)
(PMMA), polystyrene (PS) and polybutadiene (PB); (c) and (d) are for a 34/33/33 blend of PS-PB-
polyisoprene (PI). The morphologies shown here are fully developed (long time). (Adapted from
Brunswick et al. Journal of Applied Polymer Science (1998))

For a non-interacting electronic system in the presence of a one-body potential

vs(
⇀
r ), the wave function of electrons can be solved from the KS equation (viz. the

single-particle Schrödinger equation)

[
−�

2∇2

2m
+ vs(r)

]
ψi = εiψi (71)
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where � denotes the Dirac constant, m is the electron mass, εi, i = 1, 2, . . .N , stands
for the ith lowest energy of the non-interacting system, and N is the number of
electrons. The one-body electron density is related to the wave function

ρ(r) =
N∑
i=1

|ψi(r)|2. (72)

The exchange-correlation functional is introduced to reproduce the ground-state
energy of the real system

E[ρ(r)] = T0[ρ(r)] +
∫

drρ(r)V ext(r) + 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)

|r − r′| + EXC[ρ(r)]
(73)

where T0 stands for the kinetic energy of non-interacting electrons, and V ext(r)
represents the one-body external potential. In Eq. (73) and thereafter, all physical
quantities are given in atomic units.

From the KS wave functions, we can calculate the kinetic energy of the non-
interacting system

T0 = −1

2

N∑
i=1

∫
dr ψ∗

i (r)∇2ψi(r). (74)

The external energy and the classical electron-electron repulsion energy on the right
side of Eq. (73) are directly related to the one-body density profile.

While there is no a priori knowledge on the exchange-correlation energy, EXC

[ρ(r)] is clearly a functional of the one-body density as all other terms in Eq. (73)
are. Intuitively, we may divide EXC in terms of contributions from the difference
between the kinetic energy of the real system and that of the non-interacting electrons,
the exchange (Pauli exclusion) effects, and multi-body correlations. Because ρ(r)
minimizes the ground-state energy of both the reference and the real systems, the
effective one-body potential for the non-interacting reference system, up to a constant
of little relevance, can be written as

vs(r) = Vext(r) +
∫

dr′ ρ(r′)
|r − r′| + vXC(r) (75)

where

vs(r) = δEXC

δρ(r)
. (76)

As discussed above (see Eq. (18)), we can derive an exact equation for the grand-
state energy of the real system using the non-interacting system as a reference

E[ρ(r)] = T0[ρ(r)] +
∫

drρ(r)V ext(r) + 1

2

∫ 1

0
dλ

∫
dr

∫
dr′ ρ(r)ρ(r′)g(r, r′, λ)

|r − r′|
(77)
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where g(r, r′, λ) represents the pair-correlation function between electrons with the
Coulomb interaction between the electrons reduced by a factor of λ. In the electronic
DFT literature, Eq. (77) is commonly known as the adiabatic connection.

A comparison of Eqs. (73) and (77) indicates that the exchange-correlation energy
corresponds to the indirect energy for “charging up” the non-interacting electrons:

EXC[ρ(r)] = 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)h̄(r, r′)

|r − r′| (78)

where

h̄(r, r′) ≡
∫ 1

0
dλ[g(r, r′, λ) − 1] (79)

stands for the average hole-correlation function (viz., the average total correlation
function). Because the electrostatic energy diverges at zero separation, the hole cor-
relation function is precisely known, h(r, r, λ) = −1. In addition, it must satisfy the
normalization conditions because the hole correlation function is defined relative to
one electron at position r, ∫

dr′h(r, r′, λ) = −1. (80)

With an analytical expression for EXC or h̄(r, r′), we can determine the electron
density profile and the ground-state energy from Eqs. (72) and (73), respectively.
From these quantities, other ground-state properties of the electronic system can be
readily calculated.

As for classical systems discussed above, the KS-DFT does not provide any sys-
tematic procedure to determine the exchange-correlation energy of the two-body
correlation functions. Since the publication of the KS equation in 1965, tremen-
dous efforts have been devoted to the development of accurate exchange-correlation
functionals for inhomogeneous electrons and such efforts are still well ongoing [8].
Existing applications of the KS equation are mostly based on various forms of the gen-
eralized gradient approximations (GGA). As in SGA, the GGA functional includes
an exchange-correlation energy corresponding to that of a uniform system at the
local density and a gradient correction to account for the local density inhomogene-
ity. For a uniform electron gas, the local exchange-correlation energy as a function
of the density is known from quantum Monte Carlo simulations [24]. However,
the development of gradient corrections for the exchange and correlation energy is
mathematically very complex. Among numerous versions of GGA, PBE [25] and
B3LYP [26, 27] are two main functionals broadly used in the KS-DFT calculations
for molecular and materials systems, respectively.

We may illustrate the basic procedure to use SGA for electronic systems by
considering the kinetic energy of non-interacting electrons at 0 K. According to the
Thomas-Fermi theory, the kinetic energy as a functional of the local density is given
by
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TTF[ρ(r)] = 3
(
3π2

)2/3

10

∫
drρ(r)5/3. (81)

The gradient correction to the kinetic energy can be derived again from Eq. (24)
using the density-density correlation function of the corresponding uniform system
as the input. For non-interacting electrons in the bulk, the density-density correlation
function in the Fourier space is known as the Lindhard function [28]

χ0(q) = − kF
2π2

{
1 − s

4

(
1 − 4

s2

)
ln

(∣∣∣∣ s + 2

s − 2

∣∣∣∣
)}

(82)

where kF = (6π2ρ0/g)1/3 is the Fermi momentum, g = 2 is the spin degeneracy for
an unpolarized electronic system, and s ≡ q/kF . At small q, we have

K0(q) = 1/χ0(q) = 2π2

kF

(
1

2
+ s2

24
+ · · ·

)
. (83)

Therefore, the influence parameter for the non-interacting electrons is

κ = 1

3
lim
q→0

[K0(q) − K0(0)]/q2 = π2

12k3
F

= g

72ρ0
. (84)

Together with the local kinetic energy for ideal Fermions, we have the kinetic energy
functional

TTFW [ρ(r)] =
∫

dr

{
3
(
3π2

)2/3

10
ρ(r)5/3 + |∇ρ(r)|2

72ρ(r)

}
(85)

where we have replaced ρ0 with local density ρ(r). Equation (85) corresponds to
Weiszacker’s correction to the Thomas-Fermi equation for inhomogeneous electrons
[29].

A similar but mathematically much more complicated procedure may be applied
to derive the gradient correction for the exchange and correlation energies [30].
The mathematical complexity mainly arises from evaluation of the density-density
correlation function for real electronic systems. Nevertheless, it is clear that the
functional expression from the gradient expansion can be written in terms of a local
density contribution and a correction for the density gradient. For example, the PBE
exchange energy is given by [25]

EX [ρ(r)] =
∫

drρ(r)εXFX(s) (86)

where εX is the local exchange energy per electron for the uniform system
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εX = −3

4

(
3

π

)1/3

ρ(r)1/3 (87)

and
s = |∇ρ(r)|2/2kFρ(r) (88)

is a dimensionless density gradient arising from the gradient expansion. FX(s) is a
semi-empirical function that was formulated to satisfy various asymptotic results for
uniform electron gas

FX(s) = 1.804 − 0.804

1 + 0.2730s2
. (89)

In derivation of Eq. (86), the local term accounts for the exchange energy with
the hole correlation function calculated from that of the non-interacting reference
system (λ = 0). The gradient correction is no more quadratic in the density gradient
because it represents a resummation of high-order terms in the gradient expansion
of the exchange-correlation energy.

9 Summary

This chapter introduces the gradient expansion method, specifically the square-
gradient approximation (SGA), as a general scheme to formulate the intrinsic
Helmholtz energy of inhomogeneous systems including electrons at 0 K and illus-
trate its applications for predicting surface tensions, microemulsion structures, and
the kinetics of polymer phase transitions. Similar procedures, broadly known as the
Landau expansion method, are used to describe a wide range of phase transitions
including weak segregation of block copolymers, wetting and drying transitions,
and phase diagrams of liquid crystals. Whereas the theoretical procedure has been
well established in each individual subfield of physical sciences, little explored is
the inter-connection among similarly formulated theoretical methods from different
perspectives, not only in terms of mathematical concepts but also the underlying
physics principles. Such a connection may be best illustrated in the context of sta-
tistical mechanics. In addition to apparent pedagogical values, this work may help
to forge a common ground to comprehend fragmented developments in different
subfields of statistical mechanics and promote cross-field collaborations.

Acknowledgments The author is indebted to Dr. Liu Yu for comments and suggestions. For the
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Appendices

Density-Gradient Expansion

Consider an inhomogeneous system with one-particle number density ρ(r). The
intrinsic Helmholtz energy can be formally expressed relative to that of a uniform
system with density ρ0 by a functional Taylor expansion with respect to the local
density deviation �ρ(r) = ρ(r) − ρ0:

F[ρ(r)] = F0 +
∫

δF

δρ(r)

∣∣∣∣
0

�ρ(r)dr

+ 1

2

∫ ∫
δ2F

δρ(r)δρ(r′)

∣∣∣∣
0

�ρ(r)�ρ(r′)drdr′ + · · ·
(90)

where F0 is the intrinsic Helmholtz energy of the uniform system at the same tem-
perature, and subscript 0 denotes the uniform reference system. According to Eq.
(90), the intrinsic free energy F[ρ(r)] is fully specified by a set of functions

K(r1, r2, · · · rn) = δnF/

n∏
i=1

δρ(ri) (91)

where n = 1, 2, . . . .

The one-body density profile satisfies the variational condition, i.e., it minimizes
the grand potential �

δ�

δρ(r)
= 0 (92)

The grand potential relates to the intrinsic Helmholtz energy by the Legendre trans-
formation:

�[ρ(r)] = F[ρ(r)] +
∫

ρ(r)u(r)dr (93)

where u(r) ≡ ϕext(r) − μ corresponds to a one-body potential define by the chemical
potential and the external potential ϕext(r) of the particles, μ is the chemical potential.
Combing Eqs. (92) and (93) leads to

δF

δρ(r)
= −u(r) (94)

For a uniform system, ϕext(r) = 0, Eq. (94) reduces to

δF

δρ(r)

∣∣∣∣
0

= μ. (95)
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The second-order term in the density functional expansion of the intrinsic
Helmholtz energy plays a particularly important role in theoretical developments.
The vertex function is defined as

K(r, r′) ≡ δ2F

δρ(r)δρ(r′)
= − δu(r)

δρ(r′)
(96)

It can be shown that the density-density correlation function is related to the func-
tional derivative of the one-body density with respect to the reduced one-body poten-
tial

χ(r, r′) ≡ 〈[ρ̂(r) − ρ(r)][ρ̂(r′) − ρ(r′)]〉 = − δρ(r)
δβu(r′)

(97)

where the instantaneous density of the system

ρ̂(r) ≡
∑
i

δ(r − ri) (98)

is expressed as a summation of Dirac delta functions, and 〈· · · 〉 represents the ensem-
ble average.

From Eqs. (96) and (97), we see that the density-density correlation function
corresponds to the inverse functional derivative of the 2nd order coefficient in the
functional Taylor expansion of the intrinsic Helmholtz energy

∫
βK(r, r′′)χ(r′, r′′)dr′′ = δ(r − r′′). (99)

For a uniform system, both K0(r, r′) and χ0(r, r′) depend only on the distance |r −
r′|. In that case, we may apply the translational and rotational symmetry for the
correlation functions:

{
K(r, r′) = K(0, r − r′) ≡ K0(|r − r′|)
χ(r, r′) = χ(0, r − r′) ≡ χ0(|r − r′|) (100)

Substituting Eq. (100) into (99) gives

∫
βK0(|r − r′′|)χ0(|r′ − r′′|)dr′′ = δ(r − r′′) (101)

A 3D Fourier transform of Eq. (101), reveals a simple relationship between K̃0(q)
and χ̃0(q)

βK̃0(q)χ̃0(q) = 1 (102)
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where

K̃0(q) = K̃0(q) ≡
∫

K0(r)e
−iq·rdr = 4π

q

∫ ∞

0
r sin(qr)K0(r)dr (103)

χ̃0(q) = χ̃0(q) ≡
∫

χ0(r)e
−iq·rdr = 4π

q

∫ ∞

0
r sin(qr)χ0(r)dr (104)

Applying Eq. (97) to a uniform system of average density ρ0, we have

χ0(|r − r′|) = χ(r, r′) = 〈
ρ̂(r)ρ̂(r′)

〉 − ρ2
0

= 〈
ρ̂(r)ρ̂(r′)

〉
r �=r′ + 〈

ρ̂(r)ρ̂(r′)
〉
r=r′ − ρ2

0

= ρ(2)(r, r′) + ρ0
〈
ρ̂(r′)

〉
r=r′ − ρ2

0
= ρ2

0h0(|r − r′|) + ρ0δ(r − r′)

(105)

where ρ(2)(r, r′) is the two-body density function, and

h0(|r − r′|) ≡ ρ(2)(r, r′)
ρ(r)ρ(r′)

∣∣∣∣
0

− 1 (106)

denotes the total correlation function. In the Fourier space, Eq. (105) becomes

χ̃0(q) = ρ2
0 h̃0(q) + ρ0 (107)

With the help of Eqs. (95), (102) and (107), we can evaluate the intrinsic free
energy functional F[ρ(r)] up to the quadratic term. Apparently, the density expan-
sion is applicable not only to the intrinsic Helmholtz energy but also to other quan-
tities with a similar mathematic form, for example, the excess free energy and the
exchange-correlation energy.

The Ornstein-Zernike (OZ) Equation

Recalling that the vertex function is inversely related to the density–density correla-
tion function χ(r1, r2), which is also related to the total correlation function h(r1, r2)

χ(r1, r2) = ρ(r1)ρ(r2)h(r1, r2) + ρ(r1)δ(r1 − r2). (108)

For classical systems, the Helmholtz energy of a non-interacting system is exactly
known.

FID = kBT
∫

ρ(r){ln[ρ(r)�3] − 1}dr. (109)
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Subsequently, we may express the vertex function in terms of the direct correlation
function (DCF)

βK(r, r′) = δ2βF

δρ(r)δρ(r′)
= δ(r − r′)

ρ(r)
− c(r, r′) (110)

where c(r, r′) corresponds to the second-order functional derivatives of the excess
Helmholtz energy Fex ≡ F − FID

c(r, r′) ≡ − δ2βFex

δρ(r)δρ(r′)
. (111)

Because ∫
dr2χ(r1, r2)βK(r3, r2) = δ(r1 − r3), (112)

substituting Eqs. (110) and (108) into (111) leads to the Ornstein-Zernike (OZ)
equation

h(r1, r2) = c(r1, r2) +
∫

ρ(r3)h(r1, r3)c(r2, r3)dr3 (113)

For uniform systems, the OZ equation can be simplified as

h(r) = c(r) + ρ0

∫
h(|r1 − r3|)c(|r2 − r3|)dr3 (114)

or in the Fourier space

[1 + ρ0h0(q)][1 − ρ0c0(q)] = 1. (115)

Corrections to the Local Density Approximation (LDA)

Local density approximation (LDA) assumes that the free energy density of an inho-
mogeneous system is the same as that of a uniform system at the local density.
According to LDA, the intrinsic Helmholtz energy functional is given by

FLDA[ρ(r)] =
∫

f0[ρ(r)]dr (116)

where f0 = F0/V corresponds to the intrinsic free energy density (per volume) of a
uniform system. LDA ignores the spatial correlation effect.

Because LDA assumes f0 as a function of ρ(r), we may express it as a regular
Taylor expansion with respect to that of a uniform system
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f0[ρ(r)] = f0(ρ0) + ∂f0
∂ρ0

�ρ(r) + 1

2

∂2f0
∂ρ2

0

[�ρ(r)]2 + · · · (117)

Substituting Eq. (117) into (116), we have:

FLDA[ρ(r)] = F0 +
∫

∂f0
∂ρ0

�ρ(r)dr + 1

2

∫
∂2f0
∂ρ2

0

[�ρ(r)]2dr + · · · (118)

Comparing Eq. (118) with the functional expansion form, i.e., Eq. (90), we have:

F[ρ(r)] = FLDA[ρ(r)]
+ 1

2

∫ ∫
[K0(|r − r′|) −

(
∂μ

∂ρ0

)
T

δ(r − r′)]�ρ(r)�ρ(r′)drdr′ + · · ·
(119)

In writing the above equation, we have used the thermodynamic relation

μ = (∂f0/∂ρ0)T (120)

and the mathematic identity

∫
∂2f0
∂ρ2

0

[�ρ(r)]2dr =
∫ (

∂μ

∂ρ0

)
T

�ρ(r)�ρ(r′)δ(r − r′)drdr′ (121)

In Eq. (119), the terms after FLDA can be regarded as spatial correlation effects
neglected by LDA.

Now let F2 represent the second term on right side of Eq. (119). Using the Fourier
transform, we can express F2 as

F2 = 1

2(2π)3

∫
[K̃0(q) −

(
∂μ

∂ρ0

)
T

][�ρ̃(q)]2dq (122)

According to Eqs. (102) and (107), we have

βK̃0(q) = 1

ρ2
0 h̃0(q) + ρ0

(123)

In addition, the compressibility equation gives
(

∂ρ0

∂βμ

)
T

= ρ0 + ρ2
0

∫
h0(r)dr = ρ0 + ρ2

0 h̃0(q = 0) = 1

βK̃0(0)
. (124)

Accordingly, Eq. (122) can be rewritten in a more compact form:

F2 = 1

16π3

∫
[K̃0(q) − K̃0(0)][�ρ̃(q)]2dq (125)
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With Eq. (125), we formulate the additional correlation term beyond LDA. Similar
to the functional expansion, such procedure can be extended to other quantities.

To connect Eq. (125) with the square-gradient expansion, we recall that

K̃0(q) = K̃0(q) ≡
∫

K0(r)e
−iq·rdr =

∫
sin(qr)

qr
K0(r)dr (126)

Using the Taylor series
sin(qr)

qr
= 1 − (qr)2

3! + · · · (127)

we have
K̃0(q) = ∫ [

1 − (qr)2

3!
]
K0(r)dr

= K̃0(0) − q2

3!
∫
r2K0(r)dr

(128)

Substituting Eq. (128) into (127) gives

F2 = − κ

16π3

∫
q2[�ρ̃(q)]2dq (129)

where κ is the influence parameter defined as

κ ≡ − 1

3!
∫

r2K0(r)dr = 1

3
lim
q→0

[K0(q) − K0(0)]/q2 (130)

Note ∫
∇ρ(r)eiq·rdr = −iq�ρ̃(q) (131)

and

1

(2π)3

∫
q2[�ρ̃(q)]2dq =

∫
dr1

∫
dr2∇ρ(r1)∇ρ(r2)δ(r1 − r2) (132)

we arrive the square-gradient correction to the LDA

F2 = κ

2

∫
dr[∇ρ(r)]2. (133)

In some applications, we use the static structure factor S̃0(q) = χ̃0(q)/ρ0 instead of
the vertex function. In that case,

K̃0(q) = [βρ0S̃0(q)]−1. (134)
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thus the influence parameter is given by

κ = − 1

3!
∫

r2K0(r)dr = 1

3βρ0
lim
q→0

[S̃−1
0 (q) − S̃−1

0 (0)]/q2. (135)

Intra-Chain Correlation Function of a Gaussian Chain

In a polymer blend A and B, the intra-chain correlation for polymer A as an ideal
chain is given by

χ0,AA(|r − r′|) = 1

v2
0

< δφ̂A(r)δφ̂A(r′) >= φ0,A

v2
0

PA(|r − r′|) (136)

where PA represents the probability to find a segment at position r given that another
segment from the same polymer chain is located at r′. A similar expression can be
written for polymer B.

For a non-interacting polymer, PA corresponds to a Gaussian average of all seg-
ment pairs separated by distance r

PA(r) = 1

NAV

NA∑
i �=j

∫
dri

∫
drjpij(r)δ[r − (ri − rj)] (137)

where ri and rj represent the position of segment i and j from the same polymer
chain, respectively. In Eq. (137), the Gaussian distribution function is given by the
random walk model [20]

pij(r) =
(

3

2π |i − j|l2A

)3/2

exp

(
− 3r2

2|i − j|l2A

)
(138)

where lA stands for step length or the polymer bond length. Applying the 3-D Fourier
transform to both side of Eq. (136) yields

P̃A(q) = 1

NA

NA∑
i �=j

exp

(
−q2|i − j|l2A

6

)
(139)

For a long polymer chain, NA � 1, the double summations in Eq. (139) can be
replaced by integrations

P̃A(q) = 1
NA

∫ NA

0 dx
∫ NA

0 dy exp
(
− q2|x−y|l2A

6

)
= NAD(qRA)

(140)
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where RA ≡ NAl2A/6 is the radius of gyration for an ideal polymer chain (Gaussian
chain), and

D(x) = 2

x4

(
e−x2 + x2 − 1

)
(141)

is known as the Debye function. For small x, D(x) ≈ 1 − x2/3, we can derive from
Eq. (136) the intra-chain correlation in the Fourier space

χ̃0,AA(q) = φ0,A

v2
0

P̃A(q) ≈ NAφ0,A

v2
0

(
1 − q2R2

A

3

)
. (142)
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Classical Density Functional Theory
for Molecular Systems

Jianzhong Wu

1 Molecular Models and Force Fields

A molecular system consists of a large number of atoms stoichiometrically linked
with covalent bonds. While a precise of definition of chemical bonds is not an easy
task from a fundamental perspective, atoms interactwith each other through electrons
and nuclei following quantum-mechanical (QM) descriptions. Because electrons
have a negligible mass in comparison to nuclear particles,1 they reach equilibrium
distribution almost instantaneously at the time scale relevant to the dynamics of a
molecular system. The discrepancy in electronic and nuclear relaxation times allows
for the cascade consideration of electronic and atomic motions, as assumed by the
adiabatic or the Born–Oppenheimer approximation. At any moment, the force act-
ing upon each nuclear particle can be determined by the positions of other nuclear
particles in the system and by the local electron density, ρ(r),

Fi(ri) ≡ −∇ri V (r1, . . . , rN ) = −Zi

∫
dr

ρ(r)e2

4πε0|r − ri| +
∑
j �=i

ZiZje2

4πε0|r − ri| (1)

where ∇ri represents the gradient with respect to the nuclear position ri = (xi, yi, zi)
of the ith atom, V (r1, ..., rN ) stands for the total potential energy, Zi is the nuclear
valence, e is the unit charge, and ε0 is the permittivity in free space. Intuitivelywemay
understand atomic motion in terms of the positions of nuclear particles. According
to Eq. (1), atoms are moving in an effective potential or a force field arising from the
inhomogeneous distribution of electrons.

1The electron mass is 1/1836 of that for proton, the lightest nuclear particle. As a result, most
of the atomic mass is concentrated in the nucleus.

J. Wu (B)
Department of Chemical and Environmental Engineering and Department
of Mathematics, University of California, Riverside, CA 92521, USA
e-mail: jwu@engr.ucr.edu

© Springer Science+Business Media Singapore 2017
J. Wu (ed.), Variational Methods in Molecular Modeling,
Molecular Modeling and Simulation, DOI 10.1007/978-981-10-2502-0_3

65



66 J. Wu

Thanks to recent advances in high-performance computing and quantum chem-
istry [1], we can in principle predict the bonding energy and the physicochemical
properties of many molecular systems based on QM calculations. Regrettably, QM
methods are computationally very demanding and thus are inconvenient for high
throughput applications, in particular to practical systems containing a large number
of molecules. To predict the phase behavior and thermodynamic properties of mole-
cular systems over a wide range of conditions, we mostly rely on semi-empirical
models to describe bond connectivity and inter-atomic interactions [2, 3].

In QM/MM (quantummechanics/molecular mechanics) simulations [4], the elec-
tron density is predicted from an electronic theory (e.g., the Kohn-Sham density
functional theory [5], KS-DFT), and the dynamics of nuclear particles is determined
from Newton’s equations. In conventional molecular dynamics (MD) and Monte
Carlo (MC) simulations [6], the force applied to each atom is calculated from a
semi-empirical force field without invoking the explicit properties of electrons. Most
MD andMC simulations are based onmolecular models that represent atoms as clas-
sical particles linked together with mechanical bonds. A semi-empirical force field,
rather than explicit electronic structure calculations, is often used in MD and MC
simulations because the atomic forces are repeatedly calculated in molecular simu-
lations. To further minimize the computational costs, we adopt simple mathematical
functions to represent both intra- and inter- molecular potentials.

The earliest developments of force fields were reported in the 1960s and 70s [6].
Over the years, a number of successful force fields have been established [7]. For
systems where nuclear quantum effects are negligible, a semi-empirical force field
enables fast computation of atomic motions and molecular dynamics. For example,
DREIDING [8] and UFF [9] cover essentially all elements in the periodic table and
achieve a good quality of prediction for material structures and gas adsorption [10–
12]. The classical models are convenient for practical applications owing to their
simplicity in terms of both the physical concepts and computational efficiency [13].

In a typical Class I force field,2 the intramolecular bonding potential, V 0
B , is

formulated in terms of harmonic and trigonometric functions:

V 0
B =

∑
bond

Kb(b − bo)
2 +

∑
angle

Kθ (θ − θo)
2+

∑
dihedral

Kφ

2
[1 + cos (nφ − φo)] +

∑
impr

Kϑ(ϑ − ϑo)
2

. (2)

As shown schematically in Fig. 1, hereb, θ ,φ andϑ stand for bond length, bond angle,
dihedral (or torsional) angle, and improper angle, respectively; subscript “0” stands
for equilibrium values, and Kb, Kθ , Kφ , and Kϑ are energy parameters to account
for the flexibility of the molecular configuration. The first two terms on the right
side of Eq. (2) represent deformation energies arising from deviation of bond length

2Class II and III force fields contain cubic and/or quartic terms in the potential energy for bond
lengths and angles.
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Fig. 1 The configuration of
a polyatomic molecule can
be described in terms of
bond length b, bond angle θ ,
dihedral (torsional) angle φ,
and improper angle ϑ . The
improper angle is defined by
the project of a bond vector
(here AB) into a plane
defined by 3 consecutive
atoms (BCD)

b

A

B C

D

b and bond angle θ from their respective equilibrium values. The cosine function
reflects the potential related to the rotation of chemical bonds, with the periodicity
determined by integer n. The harmonic potential related to the “improper” angle,
i.e., an out-of-plane angle arising from 4 consecutive nearest-neighboring atoms, is
introduced to reproduce the energetics due to the out-of-plane motions. The out-
of-plane term can also be used to enforce a given molecular geometry or chirality.
The simple harmonic and trigonometric forms used in Eq. (2) represent the correct
molecular structure but are unable describe bond formation or breaking. To describe
chemical reactions, one needs to account for the electronic degree of freedom by
carrying out QM calculations or to use a reactive force field (ReaxFF) [14].

In addition to the bond potential, a molecular model specifies intra- and inter-
molecular non-bonded interactions, i.e., interactions between atoms that are not
directly connected by chemical bonds.With the assumption of pairwise additivity, the
non-bonded interactions are commonly represented in terms of the Lennard-Jones
(LJ) plus the Coulomb potentials:

uij(r) = 4εij

[(σij

r

)12 −
(σij

r

)6
]

+ ZiZje2

4πε0r
(3)

where r represents the center-to-center distance between atoms i and j, εij = √
εiiεjj

and σij = (σii + σjj)/2 are obtained from the Lorentz-Berthelot combining rules, εii
and σii are the energy and size parameters of the LJ potential (viz., van der Waals
parameters) for the ith atom, and Zi denotes the atomic (fractional) valence.While we
use Zi to represent the valences of nuclear particles and individual atoms, it should
be understood that the atomic partial charge is in general different from the nuclear
charge.

The parameters affiliated with the bond length and angles are closely related to
the molecular structure, which is usually determined by energy minimization for the
configuration of individual molecules in vacuum. First principles methods such as
various versions of KS-DFT [15] are often used to predict the optimized molecular
structure and deformation energies introduced by small deviations of atomic posi-
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tions from the equilibrium configuration. The partial charges of individual atoms can
also be determined fromQM calculations for the electronic density corresponding to
the optimized molecular structure. Although conventional KS-DFT calculations are
not suitable for van der Waals interactions, [16] recent advances in computational
chemistry make it possible to generate accurate molecular structure and non-bonded
interactions from high-level QM methods (MP2/cc-PVTZ) [17, 18]. Alternatively,
the LJ parameters for each atom, εii and σii, can be obtained by correlation of simula-
tion results with the thermodynamic properties of macroscopic systems (e.g., liquid
density, heat of evaporation and bulk phase diagrams). With the rapid advances in
first principles calculations, force field development will become less dependent on
experimental input.

A conventional force field does not account for polarization effects, which arise
from fluctuations of electron distributions. Such effects can be taken into account
with common schemes such as fluctuating charges, Drude oscillators, or induced
dipole models [19]. In general, a polarizable force field provides more accurate pre-
dictions of molecular structure and thermodynamic properties in comparison with
experimental data. Besides, explicit consideration of the polarizability often leads to
better transferability of model parameters, i.e., atomic parameters obtained from one
set of molecules can be applied to another set without further fitting. While a polar-
izable model allows for a better reproduction of subtle physical phenomena, it also
comes with an important disadvantage: Introduction of atomic polarizability makes
the potential energy calculation significantly more time-consuming and complicated
owing to iteration procedures involved in induced dipole calculations.

Although a semi-empirical force field provides a convenient starting point to
investigate the thermodynamic properties of molecular systems, we should bear in
mind that the molecular models entail drastic approximations. For example, it has
been well documented that the pairwise additivity assumption is semi-quantitative to
represent non-bonded interactions. Theoretical predictions are sensitive to the assign-
ment of atomic partial charges based on the electronic density profiles. Besides, the
correlated fluctuation of electron densities plays an important role in intermolec-
ular interactions. From a practical perspective, systematic evaluation of the model
parameters is rather challenging because theymust reflect both the properties of indi-
vidual molecules in vacuum and experimental data corresponding to macroscopic
systems.

The force-field methods can be extended to systems containing polymers or
macromolecules including biomolecular species such as proteins and nucleic acids.
For macromolecular systems, the potential energy is often represented within the
framework of coarse-grained or united atom models, i.e., the interaction sites are
affiliated with monomeric units, functional groups, or ‘united atoms’. Reducing the
number of particles by use of a coarse-grained model is appealing in particular for
molecular simulations. In a united atom model, we do not consider nonpolar hydro-
gen atoms explicitly; they are instead incorporated into theLennard-Jones parameters
of the parent atoms. In a coarse-grained model, we go one step further to represent
whole chemical groups, individual monomers, or even a set of monomers as a single
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particle. Coarse-grained models are especially popular for studying large polymeric
systems or phenomena that happen at large spatiotemporal scales.

Like atomicmodels, a coarse-grained or united atommodel often uses the assump-
tions of pairwise additivity for non-bonded interactions and fixed partial charges for
individual particles. While there have been rapid developments in multiscale model-
ing, much work is still needed to establish a seamless connection of coarse-grained
models with atomic details [20]. In practical applications, coarse-grained parame-
ters are correlated with experimental data for the thermodynamic properties of direct
interest.

2 Statistical Mechanics for Polyatomic Systems

The basic concepts and key equations for the statistical mechanics of polyatomic
systems are readily available from textbooks [21–23] and outstanding reviews [24,
25]. In the following, we introduce only the terminology essential for a self-contained
introduction of the classical density functional theory for molecular systems. While
our discussion is focused on one-component molecular systems, similar definitions
can be directly extended to mixtures.

2.1 Molecular Configuration and Interaction Sites

As discussed above, in a conventional model of molecular systems, the total potential
energy is defined in terms of interactions sites, i.e., atoms, coarse-grained particles, or
localized partial charges. The latter represents a factitious position within a molecule
where the local electronic charge does not coincidewith the center ofmass (COM) for
a particular atomor coarse-grained particle. As electrons are not explicitly considered
in a classical model, the use of the acentric partial charge helps better representation
of the Coulomb interactions.

As shown inFig. 2, the difference betweenmolecular configuration and interaction
sites may be illustrated with three representative examples. For each molecule, we
define the molecular configuration in terms of the positions of individual atoms

xc ≡ (r1, r2, . . . , rM) (4)

where ri represents the COM position for atom i, and M stands for the number of
atoms per molecule. A similar composite vector may be used to specify the positions
of interaction sites

x ≡ (r1, r2, . . . , rMs). (5)

In general, the number of atoms M is not necessarily the same as the number of the
interaction sitesMs (e.g.,M = 3 andMs = 4 in the TIP4Pmodel for water molecules
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Fig. 2 Molecular
configuration xc and the
coordinates of interacting
sites x according to a typical
molecular model. a carbon
dioxide, b water, and c a
lipid molecule. While the
interaction sites coincide
with the atomic/particular
center of mass, a popular
water model consists of four
interaction sites: three of
them coincide with the
oxygen and hydrogen atoms,
and the fourth site (‘C’)
represents a localized charge
due to the acentric
distribution of electrons
around the oxygen atom

xc = x ={rO,rC,rO}

xc ={rH ,rO,rH}
x ={rH ,rO,rH ,rC}

O OC

O

C

HH

(a) (c)

(b)

xc = x ={r1,r2 , ,rM}

[26]). Nevertheless, a conventional molecular model asserts that the positions of all
interaction sites can be fully determined by the molecular configuration. In other
words, the degree of freedom for the molecular configuration is the same as that for
the interaction sites, even though the two vectorsmay have different dimensionalities.
Another difference between atoms and interactions sites is that the latter may not be
affiliated with any kinetic energy.

For an inhomogeneous system containing N polyatomic molecules, the total
energy E is typically divided into a kinetic energy due to atomic motions, poten-
tial energies for intra- and inter- molecular interactions, and external potentials:

E = K +
N∑
i=1

VB(xi) +
N∑
i=1

N∑
j>i

	(xi, xj) +
N∑
i=1

Vext(xi) (6)

where K stands for the total kinetic energy, 	(xi, xj) represents the potential for non-
bonded interactions between molecules i and j, VB(xi) and Vext(xi) are the intramole-
cular and the external potentials for molecule i, respectively. For convenience, here
the intramolecular potential VB(x) includes contributions from both bonding and
non-bonded interactions, i.e., VB(x) �= V 0

B (x). Note that, in Eq. (6), the division of
the total energy into kinetic and potential contributions is meaningful only in the
context of a classical model. Besides, the kinetic energy affiliated with a typical
molecular model is different from that with the idea-gas models introduced in stan-
dard statistical mechanics texts. Here the kinetic energy depends only on the mass
and momentum of individual atoms. In other words, the total kinetic energy of a
polyatomic system is approximated by that of the corresponding atomic system at
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the same temperature but free of both intra- and inter- molecular interactions.3 The
simplistic representation of the kinetic energy has little consequence in molecular
modeling because we are mainly concerned with configurational properties, i.e.,
those properties related to atomic distributions.

With the pairwise-additive approximation, we can calculate the intermolecular
potential 	(xi, xj) from the site-site LJ and Coulomb energies, as given by Eq. (3).
Similarly, the external potential for each molecule can be expressed in terms of the
site energies

Vext(x) =
Ms∑
k=1

ϕk(rk) (7)

where ϕk(rk) stands for the external potential for an interaction site k at position rk .
Note that both the intramolecular and the external potentials depend on molecular
configurations.

2.2 Grand Partition Function

For a one-component system consisting of polyatomic molecules at absolute tem-
perature T , volume V and chemical potential μ, the grand partition function is given
by

� =
∞∑

N=0

1

N !νN

∫
dN exp{−βE + βNμ} (8)

where ν denotes the symmetry number of a polyatomic molecule, β−1 = kBT , kB
is the Boltzmann constant, and dN stands for a dimensionless differential volume
in the phase space, i.e., the differential volume corresponding to the positions and
momenta of all atoms normalized by h3NM , h is Planck’s constant. In Eq. (8), sym-
metry number ν accounts for atomic indistinguishability within each polyatomic
molecule; it is related to the number of different but equivalent arrangements of
atoms that can be obtained by rotating the molecule.

A semi-empirical force field typically assumes that the degrees of freedom for
the kinetic energy are independent. Therefore, we may integrate analytically the
variables in Eq. (8) related to the momenta of individual atoms

� =
∞∑

N=0

1

N !(ν ∏
α �3

α)N

∫
dxNc exp{−β[

N∑
i=1

VB(xi) +
N∑
i=1

N∑
j>i

	(xi, xj) +
N∑
i=1

Vext(xi) − Nμ]}

(9)

3While quantum mechanics is used in a conventional statistical-mechanical model of polyatomic
ideal gases to describe atomic motions, bond stretching and vibrations, a semi-empirical force field
assumes that atoms are classical particles moving with the constraints of intramolecular potentials.
As a result, a semi-empirical force field is not able to describe the ideal-gas heat capacity.
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where �α = h/
√
2πmαkBT denotes the thermal wavelength for atom α, mα repre-

sents the atomic mass, and xNc stands for the configurations of all molecules in the
thermodynamic system. Formally, Eq. (9) resembles the grand partition function of
an atomic system. The main differences are that the three-dimensional vector r for
the position of each atom is replaced with composite vector xc for molecular con-
figuration, and that the atomic thermal wavelength is now replaced with an effective
molecular thermal wavelength � ≡ (ν

∏
α �3

α)1/3M . Whereas the numerical com-
plexity increases quickly with the configurational dimensionality, the similarity in
themathematical forms is conceptually useful to extend formal statistical-mechanical
equations from monatomic to polyatomic systems.

2.3 Molecular Density and Molecular Correlation Functions

For a one-component system, the multi-body configurational density profile is for-
mally defined as

ρ(x) ≡<
∑
i

δ(x − xi) >= δ�

δVext(x)
(10)

where δ(x) stands for a multi-dimensional Dirac function, < · · · > represents the
ensemble average, and � ≡ −kBT ln� is the grand potential. Equation (10) indi-
cates that the configurational density corresponds to a linear response of the grand
potential with respect to the one-body external potential. As x is a multi-dimensional
vector, numerical evaluation of the configurational density is a formidable task. The
computational cost rapidly grows as the number of interaction sites increases. Owing
to intramolecular interactions, the configurational density profile is inhomogeneous
even in a uniform system absent of the external potential.

In a uniform polyatomic system, we may specify the molecular configuration in
terms of the atomic positions relative to the molecular center of mass, {r(0)

α },

� ≡ [r(0)
1 , r(0)

2 , . . . , r(0)
M ]. (11)

Note that the degree of freedom for � is M − 1 because the molecular center of
mass is already fixed. The configurational density is thus given by

ρ0(x) = ρ0ω0(�) =<
∑
i

δ(� − �i) > (12)

where ρ0 = <N>/V is the average number density for the molecules, ω0(�) repre-
sents the intramolecular correlation function for the uniform system, and �i stands
for the configuration of molecule i.

A second-order functional derivative of the grand potential with respective to the
one-body potential gives the molecular density-density correlation function
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χ(x, x′) ≡ −β−1 δρ(x)
δϕ(x′)

=< [
∑
i

δ(x − xi) − ρ(x)][
∑
j

δ(x′ − xj) − ρ(x′)]>.

(13)
Physically, χ(x, x′) reflects the correlated fluctuations of configurational densities at
generalized positions x and x′. In dimensionless units, χ(x, x′) is related to the total
correlation function

h(x, x′) = χ(x, x′)/ρ(x)ρ(x′) − δ(x − x′)/ρ(x). (14)

In Eq. (14), the first term of the right side accounts for two-body correlations, and
the second term arises from self-correlation. Because χ(x, x′) vanishes when x and
x′ are far apart, the density distributions are uncorrelated at large distance.

Rearranging the ensemble average on the right side of Eq. (13) yields

χ(x, x′) = ρ(x)δ(x − x′) + ρ(2)(x, x′) − ρ(x)ρ(x′), (15)

where the first term of the right accounts for self-correlation, and the two-body
configurational density profile is defined as

ρ(2)(x, x′) ≡<
∑
i

∑
j �=i

δ(x − xi)δ(x′ − xj) > (16)

The two-body configurational density describes the joint probability of finding a
molecule with configuration x and another molecule with x′; it is related to the
response of the grand potential with respect to the intermolecular pair potential

ρ(2)(x, x′) = δ�

δ	(x, x′)/2
(17)

where the factor of 2 accounts for the two–body nature of intermolecular interactions.
As discussed later, the correlation functions are useful to formulate non-mean-field
approximations in the classical density functional theory.

In the absence of bonding potential V 0
B (x), the grand partition function would

reduce to that corresponding to a monatomic system. As a result, the properties of a
polyatomic system can be considered as a “perturbation” from those corresponding
to the unbounded monatomic mixture. A functional derivative of the grand potential
to the exponential of the reduced bonding energy eB(x) ≡ exp[−βV 0

B (x)] yields
δβ�

δeB(x)
= −ρ(x) exp[βV 0

B (x)] (18)

For a monatomic system with uniform density ρ0, the M-body density is given by

ρ(x) = ρM
0 g(r1, r2, . . . , rM) (19)
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where g(r1, r2, . . . , rM) stands for theM-body radial distribution function. Note that
g(x) = exp[−βV 0

B (x)] for the monatomic system in the ideal-gas limit, we have
from Eqs. (18) and (19) that the functional derivative leads to the M-body cavity
correlation function

δβ�

δeB(x)
= −ρM

0 y(x) (20)

where y(x) ≡ g(x) exp[βV 0
B (x)]. The cavity correlation function represents the den-

sity correlation beyond that introduced by the direct bonding potential. This function
is particularly useful to describe the properties of polyatomic systems from those
corresponding to monomers.

The one-body configurational density and the multi-body correlation functions
provide succinct expressions to describe the complex behavior of polyatomic sys-
tems. However, these functions are inconvenient for direct computation due to the
high dimensionality of molecular configuration. In general, the multi-dimensional
procedure is useful only for systems of small molecules or liquid crystals where each
molecule adopts only a rigid configuration. In the latter case, the one-body config-
urational density may be expressed in terms of the center-of-mass position r and
orientation ω

ρ(x) ∼ ρ(r, ω) (21)

where the proportionality constant depends on the number of atoms in each molecule
and on the molecular geometry. For a linear molecule, the molecular orientation is
specified by the polar angles, ω = (θ, φ). As a result, the orientation part of the
density profile can be expanded in terms of the spherical harmonics. If the polyatomic
molecule is non-linear, themolecular orientation is definedby threeEuler angles,ω =
(θ, φ, γ ). Sophisticated numerical procedures are also available to further reduce the
computational cost related to the angular degrees of freedom [27].

2.4 Site Density and Site Correlation Functions

For molecular systems where the external potential is represented by a summation
of individual site energies, ϕγ (r), the grand partition function becomes

� =
∞∑

N=0

eβμ

N !�3M

∫
dxNc exp{−β[

N∑
i=1

VB(xi) +
N∑
i=1

N∑
j>i

	(xi, xj) +
N∑
i=1

∑
γi

ϕγi (rγi )]}

(22)
where rγistands for the position of site γ from molecule i. As for the one-body con-
figurational density ρ(x), a functional derivative of the grand potential with respect
to the external (site) potential results in the one-body site density profile
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ρα(r) = δ�

δϕα(r)
. (23)

A second-order functional derivative of the grand potential leads to the site-site
correlation function

χαγ (r, r′) ≡ −β−1 δρα(r)
δϕγ (r′) =< [

∑
i

δ(r − rαi ) − ρα(r)][
∑
j

δ(r′ − rγi ) − ργ (r′)] > .

(24)
Similar to the molecular density-density correlation function, χαγ (r, r′) describes
the response of the one-body density with respect to the one-body external potential;
it represents the correlated fluctuations of local densities for α and γ sites at positions
rα and rγ , respectively. The site correlation involves both intra- and inter- molecular
interactions, i.e., α and γ sites can be located within the same molecule or from
different molecules.

2.5 Classical Models for Polyatomic Ideal-gas Systems

In an ideal gas of polyatomic molecules, there is no intermolecular interaction. As a
result, the grand partition function can be simplified to

�IP =
∞∑

N=0

1

N !�3MN

[∫
dx exp[−βW (x)

]N

(25)

where superscript “IP” denotes ideal polyatomic gas, W (x) ≡ VB(x) + Vext(x) − μ

stands for an effective one-body configurational potential. As noted above, VB(x)
includes both bond energy V 0

B (x) and non-bonded intra-molecular interactions.

Using the mathematical identity ex =
∞∑
n=0

xn/n!, we can evaluate the summation

in the grand potential for the ideal-gas system

β�IP = − ln�IP = − 1

�3M

∫
dx exp[−βW (x)] (26)

Recall that a functional derivative of the grand potential with respect to Vext(x) gives
the one-body configurational density profile

ρ(x) = δ�IP

δVext(x)
= 1

�3M

∫
dx′δ(x − x′) exp[−βW (x′)] = 1

�3M
exp[−βW (x)]

(27)
Equation (27) corresponds to the Boltzmann equation for the configurational distri-
bution of ideal gas molecules; it predicts that the molecular configuration depends
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on the intramolecular potential as well as the external field. In terms of the one-body
molecular density profile, the grand potential can be written as

β�IP = −
∫

dxρ(x) = −<N> (28)

where <N> stands for the average number of molecules in the ideal-gas system.
For a uniform system free of the external potential, we can express the configu-

rational density of molecules in terms of the molecular center of mass (COM)

ρ0 = < N >

V
=

∫
dxδ(r − rcom)ρ(x) = exp(βμ)

�3M

∫
d� exp[−βVB(�)] (29)

where � stands for the molecular configuration with the center of mass fixed at the
origin. Rearranging Eq. (29) leads to

βμIP = ln(ρ0�
3
M ′) (30)

where �M ′ ≡ �M/{∫ d� exp[−βVB(�)]}1/3 may be understood as an effective
thermal wave length. Because the configurational integration yields a constant,
Eq. (30) is virtually the same as the familiar equation for the chemical potential
of a uniform monatomic ideal gas. Unlike that for a monatomic system, however,
�M ′ as a function of temperature is not analytically known.

For systems where the external potential can be expressed as a summation of
the site energies, we can express the one-body site-density profile in terms of the
functional derivative of the grand potential. Recall that the grand partition function
for an ideal-gas system is

�IP =
∞∑

N=0

1

N !

[
eβμ

�3M

∫
dx exp[−βVB(x) − β

∑
γ

ϕγ (rγ )

]N

(31)

The ideal grand potential is thus given by

β�IP = − ln�IP = − eβμ

�3M

∫
dx exp{−βVB(x) − β

∑
γ

ϕγ (rγ )} (32)

A functional derivative of the grand potential with respective to the one-body site
potential leads to

ρα(r) = δ�IP

δϕα(r)
= eβμ

�3M

∫
dxδ(r − rα) exp[−βVB(x) − β

∑
γ

ϕγ (rγ )] (33)

Integrating Eq. (33) on both sides yields
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β�IP = −
∫

drρα(r) (34)

As the grand potential is immaterial to the identity of specific interaction sites,
Eq. (34) implies that

β�IP = −
∫

dxρ(x) = − 1

Ms

Ms∑
α=1

∫
drρα(r). (35)

Equation (35) is valid for both bulk and inhomogeneous systems.
In a polyatomic ideal-gas system, the site-site correlation arises from intramolec-

ular interactions (both bonded and non-bonded). It can be shown from Eq. (33) that
the site-site density correlation function is related to the intramolecular correlation
function

χ IP
αγ (r, r′) = −β−1 δρα(r)

δϕγ (r′)
= ρα(r) < δ(rγ − rα) >IPα

(36)

where < · · · >IPα
stands for the ensemble average in the ideal polymeric system. In

terms of the intramolecular potential, the ensemble average is

< δ(rγ − rα) >IPα
=

∫
dxδ(r − rα)δ(rγ − rα) exp[−βVB(x) − β

∑
γ ϕγ (rγ )]∫

dxδ(r − rα) exp[−βVB(x) − β
∑

γ ϕγ (rγ )]
(37)

Equation (37) represents the probability of finding site γ at rγ given that site α from
the same molecule is located at position rα .

The intramolecular site-site correlation function is defined as

ωIP
αγ (r, r′) ≡ χ IP

αγ (r, r′)/ρα(r). (38)

As shown in Eq. (37), ωIP
αγ (r, r′) takes into account both bond and non-bonded inter-

actions in an ideal-gas system. For inhomogeneous systems, we have in general
ωIP

αγ (r, r′) �= ωIP
γα(r, r′) because the local site densities may not be the same for dif-

ferent sites. Due to coupling with the intermolecular interactions, the intramolecular
site-site correlation of an ideal system is different from that in a real polyatomic
system.

3 Density Functional Theory

Density functional theory (DFT) was introduced into the statistical mechanics for
classical systemsfirst in the context of inhomogeneous simplefluids [28–32]. Tutorial
materials are available on the basic concepts of classical DFT for atomic systems, i.e.,
those consist ofmonomeric particles [33, 34]. In this section, we focus on formalisms
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for the applications of classical DFT to polyatomic systems. More comprehensive
discussions on recent developments of classical DFT for polymeric systems may be
found in the next chapter and from earlier reviews [35–45].

3.1 Hohenberg-Kohn-Mermin Theorem

The theoretical basis underpinning all kinds of DFT methods can be established
within the framework of the Hohenberg-Kohn-Mermin (HKM) theorem. The central
idea is that the external potential of a multi-body system is uniquely determined by
the one-body density profile, regardless of the physical nature of the inter-particle
interactions [46, 47]. Although the mathematical proof was originally given for
inhomogeneous electronic systems at 0 K, the HKM theorem is equally applicable
to thermodynamic systems containing electrons or classical particles at finite temper-
ature [48]. In other words, the HKM theorem is independent of the physical nature
of the particles [29, 47].

While conventional methods in statistical mechanics start with the numerical eval-
uation of ensemble averages (e.g., via molecular simulations [49]) or with approx-
imations for the partition functions (e.g., polymer field theories [50]), DFT seeks a
variational solution of the one-body density profile byminimizing the grand potential
functional. The variational principle facilitates direct calculations of the equilibrium
density profiles and, subsequently, multi-body correlation functions and thermody-
namic properties without an explicit consideration of the partition functions.

As discussed above, the grand partition function for a polyatomic system is for-
mally identical to that of a monatomic system. With the one-body potential and den-
sity Vext(r) and ρ(r) replaced by Vext(x) and ρ(x), the HKM theorem for monatomic
systems can be directly applicable to polyatomic systems. Similar to that for a
monoatomic system, the grand potential functional for a one-component polyatomic
system is defined as

�V [ρ(x)] = F[ρ(x)] +
∫

dx[Vext(x) − μ]ρ(x). (39)

In Eq. (39), F[ρ(x)] stands for the intrinsic Helmholtz energy, which is related to
the probability distribution for the microstates pν and the intrinsic energy of the
multi-body system E′

ν

F[ρ(x)] ≡ kBT
∑

ν

pν ln pν +
∑

ν

pνE
′
ν (40)

where the prime symbol denoting the exclusion of the external potential. Here an
intrinsic property is referred to as a quantity depending only on the identities of poly-
atomic molecules and the density profile. For a given molecular system, the intrinsic
Helmholtz energy is a unique functional of the configurational (or atomic) den-
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sity profiles. Note that the microstate probability pν is an intrinsic property because,
according to the HKM theorem, the external potential in pν is completely determined
by the configurational density profile, ρ(x).

3.2 DFT for Ideal-Gas Systems

For an ideal gas of polyatomic molecules, the configurational density profile and the
grand potential are exactly known, as given by Eqs. (27) and (28). Therefore, we can
readily derive the intrinsic Helmholtz energy from Eq. (39)

βFIP[ρ(x)] =
∫

dxρ(x){ln[ρ(x)�3M] − 1} + β

∫
dxρ(x)VB(x). (41)

Note that for an ideal-gas system, E′
ν is fully determined by the intramolecular poten-

tial, i.e., ∑
ν

pνE
′
ν =

∫
dxρ(x)VB(x). (42)

A comparison of Eqs. (41) and (40) results in the generalized Sackur–Tetrode equa-
tion for the ideal entropy

SIP/kB = −
∑

ν

pν ln pν = −
∫

dxρ(x){ln[ρ(x)�3M] − 1}. (43)

Substituting Eq. (41) in Eq. (35) yields

�IP
V [ρ(x)] = kBT

∫
dxρ(x){ln[ρ(x)�3M ] − 1} +

∫
dx[VB(x) + Vext(x) − μ]ρ(x).

(44)
It is straightforward to show that minimizing �IP

V [ρ(x)] with respect to ρ(x) leads to

ρ(x) = 1

�3M
exp{−β[VB(x) + Vext(x) − μ]}. (45)

As predicted by the HKM theorem, ρ(x) is indeed identical to the equilibrium pro-
file, i.e., the minimum�V corresponds to the grand potential,� = �V [ρ(x)]. While
application of the DFT to an ideal-gas system does not yield much new results, it
illustrates that the density functional appeared in the HKM theorem can be derived
from conventional statistical-mechanic methods and that, with an expression for the
intrinsic Helmholtz energy as a functional of the one-body density profile, minimiza-
tion of the grand potential functional leads to the one-body density profile and from
which all thermodynamic properties can be subsequently derived.
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3.3 Excess Helmholtz Energy

For most systems of practical interest, we do not have a priori knowledge on the
intrinsic Helmholtz energy. Nevertheless, reasonable approximations can be formu-
lated by following complementary statistical-mechanical procedures. Because the
HKM theorem indicates that the one-body external potential is uniquely determined
by the one-body density profile, we can identify a reference system such that its one-
body density profile is the same as that of the more complicated systems of practical
interest butwithout complex intermolecular interactions. The existence of exactmap-
ping between real and reference systems represents one of the most important ideas
of DFT calculations.

Because analytical expressions are readily available for both structural and ther-
modynamic properties, the ideal-gas model provides a good reference to study
non-ideal molecular systems. To formulate the density functional, we define the
excess Helmholtz energy, Fex[ρ(x)], in terms of the difference between the intrinsic
Helmholtz energy of a real system and that of an ideal-gas reference system with the
same configurational density profile

F[ρ(x)] = kBT
∫

dxρ(x){ln[ρ(x)�3
M] − 1} +

∫
dxρ(x)VB(x) + Fex[ρ(x)].

(46)
According to the HKM theorem, the one-body density profile satisfies the variational
principle

δ�V [ρ(x)]/δρ(x) = 0. (47)

Substituting Eqs. (39) and (46) into Eq. (47), after carrying out the functional deriv-
ative, we may derive an analytical relation between the density profile and one-body
potentials:

ρ(x) = 1

�3M
exp{−β[VB(x) + Vext(x) − μ + μex(x)]} (48)

where μex(x) = δFex/δρ(x).
Equation (48) is equivalent to the familiar Boltzmann equation except that it is

concerned with the configurational density of polyatomic molecules; it may be com-
pared with the corresponding equation for the ideal-gas reference system

ρ(x) = 1

�3M
exp{−β[VB(x) + V IP

ext(x) − μIP]} (49)

where V IP
ext(x) is the external potential of the reference system determined by ρ(x),

and μIP is the chemical potential of the ideal-gas reference system. By equaling the
right sides of Eqs. (48) and (49), we have

μ = μIP + μex(x) + Vext(x) − V IP
ext(x). (50)
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whereas the above procedure is formally exact, numerical solution of ρ(x) from
Eq. (48) requires simulation methods to sample the configuration of polyatomic
molecules [51, 52]. The numerical procedure is not much different from that used
in the polymer field theory [50], except that the molecular configuration is typically
more complicated than that in a coarse-grained polymer model. For molecules with
rigid configurations, the configurational density profile can be expressed in terms
of position and orientational angle, ρ(x) ∼ ρ(r, ω). In that case, efficient numerical
algorithms have been developed for calculating ρ(r, ω) without invoking molecular
simulations [53, 54]. Equation (49) indicates that the configurational density pro-
file of a non-ideal system can be determined from that of an ideal reference system
but with a different chemical potential and the one-body external potential. Once
we determine the density profile from the ideal-gas system, the intrinsic Helmholtz
energy, the grand potential, and all other thermodynamic properties can be subse-
quently determined from conventional statistical-mechanical relations.

While the numerical procedure for calculating the properties of an ideal system
is much simplified in comparison to that for the non-ideal system, it should be noted
that the ideal and real systems do not have the same thermodynamic properties, even
though they share the same density profile. The difference can be easily seen from the
ideal grand potential, β�IP = − ∫

dxρ(x), which is in general not true for non-ideal
systems.

In the bulk limit, the external potential vanishes for both the ideal reference system
and the real system. In that case, the chemical potential for the ideal-gas system is
exactly known viz., Eq. (30), and μex(x) reduces to the conventional expression for
the excess chemical potential, μex,

μ = kBT ln(ρ0�
3
M ′) + μex. (51)

As defined before, ρ0 is the average number density, and �M ′ denotes an effective
thermal wavelength. The latter accounts for the effect of intramolecular correlations
for individual polyatomic molecules. Equation (51) provides a connection between
the excess Helmholtz energy and the excess chemical potential, which can be readily
determined from an equation of state for bulk systems.

3.4 Direct Correlation Function

To provide further insights into the intrinsic Helmholtz energy, we rearrange Eq. (48)
to give

− βμex(x) = ln[ρ(x)�3M] + βVB(x) + β[Vext(x) − μ] (52)

The functional derivative of −βμex(x) with respective to ρ(x) defines the two-body
direct correlation function, c(2)(x, x′),
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c(2)(x, x′) ≡ −δβμex(x)
δρ(x′)

= − δ2βFex

δρ(x)δρ(x′)
. (53)

Applying the functional derivative to both sides of Eq. (52) leads to

c(2)(x, x′) = δ(x − x′)
ρ(x)

− χ−1(x, x′) (54)

where χ(x, x′) ≡ −δρ(x)/δβVext(x′) is two-body density-density correlation func-
tion.

By applying the inverse functional derivative, we can derive from Eqs. (14) and
(54) an explicit relation between the direct and total correlation functions

h(x1, x2) = c(2)(x1, x2) +
∫

dx3ρ(x3)h(x1, x3)c(2)(x3, x2). (55)

Equation (55) is known as theOrnstein-Zernike (OZ) equation formolecular systems.
The integral equation provides a good starting point to derive the properties of bulk
systems [23]. With an additional relation (closure), the OZ equation can be used to
solve for both the total and direct correlation functions.

From the excess Helmholtz energy, we can similarly define three and multi-body
direct correlation functions

c(n)(x1, x2, . . . xn) = − δβFex

δρ(x1)δρ(x2) · · · δρ(xn)
(56)

Like the two-body direct correlation function, the multi-body direct correlation func-
tions can be calculated from conventional statistical-mechanical methods based on
the variation of the multi-body density profiles in response to the changes in the
external potential. The direct correlation functions then can be used to construct
the excess Helmholtz energy. In principle, one may use the procedure to construct
the excess Helmholtz energy systematically with increasing accuracy. This would
address one common criticism of DFT for the lack of systematic procedure to con-
struct or improve the intrinsic Helmholtz energy.

3.5 Exact Functionals and Approximations

Formal expressions of the excessHelmholtz energy can be constructed from the func-
tional integrationwith respect to the direct correlation functions or the intermolecular
potentials. Using the excess Helmholtz energy of a bulk system as a reference, the
functional integration the direct correlation functions with respect to the density
inhomogeneity leads to
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βFex[ρ] =βFex[ρ0] −
∫

dx�ρ(x)c(1)(ρ0, x)

−
∫ 1

0
dλ(λ − 1)

∫ ∫
dx1dx2�ρ(x1)�ρ(x2)c

(2)(ρλ, x1, x2)
(57)

where c(1)(ρ0, x) = −βμex(ρ0), �ρ(x) = ρ(x) − ρ0(x), ρλ = ρ0ω0(x) + λ�ρ(x),
and ρ0(x) is the configurational density for the bulk system.

In the hypernetted chain (HNC) approximation or equivalently, the homogeneous
reference fluid (HRF) approximation, [55] we replace c(2)(ρλ, x1, x2) in Eq. (57) with
that of the uniform bulk system

βFHNC[ρ] ≈βFex[ρ0] −
∫

dx�ρ(x)c(1)(ρ0, x)

− 1

2

∫ ∫
dx1dx2�ρ(x1)�ρ(x2)c(2)(ρλ, x1, x2)

(58)

Equation (58) corresponds to a quadratic expansion of the excess Helmholtz energy
functional in terms of�ρ(x). All high-order terms in the functional Taylor expansion
is referred to as the bridge functional, i.e.,

FB[ρ] ≡ Fex[ρ] − FHNC[ρ] (59)

Because the grand potential corresponds to a minimum at equilibrium, the HNC
approximation is often sufficient to represent the excess Helmholtz energy quantita-
tively. One major caveat of the quadratic approximation is that it is able to describe
only one free-energy minimum, thus insufficient for representing phase transitions.

Alternatively, we can find the intrinsic Helmholtz energy by integrating the two-
body density function [Eq. (17)]

F[ρ(x)] = FID[ρ(x)] +
∫ 1

0
dλ

∫ ∫
dx1dx2ρ(2)(	λ, x1, x2)	(x1, x2) (60)

where FID[ρ(x)] represents the intrinsic Helmholtz energy of the ideal-gas reference
system, ρ(2)(	λ, x1, x2) is the two-body density function when the pair potential is
given by λ	(x1, x2). In a typical mean-field approximation, a hard-sphere model is
used to represent the excess Helmholtz energy due to the repulsive component of the
pair potential, and that due to the attractive component ignores all correlations (viz.
interacting in a “mean field”):

F[ρ(x)] = FID[ρ(x)] + FHS[ρ(x)] +
∫ ∫

dx1dx2ρ(x1)ρ(x2)	A(x1, x2) (61)

Because the density profile is self-consistently calculated by minimization of the
grand potential, Eq. (61) is analogous to the self-consistent mean-field theory for
polymer systems.
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Functional integration can also be used to connect the intrinsic Helmholtz energy
of a polyatomic system with that of a monatomic system of the same atomic density
profiles ρα(rα). Because the external and bonding potentials are uncorrelated, we
have from Eq. (20)

ς(x) ≡ ρ0(x)y(x) = − δβF

δeB(x)
(62)

where ρ0(x) ≡ ∏
α ρα(rα), and y(x) = g(x) exp[βVB(x)] represents the multi-body

cavity correlation function of the inhomogeneous system. Using the unbounded
monatomic system as a reference, the functional integration of ς(x) with respect
to eB(x) leads to

βF[ρ(x)] = βF[ρα(rα)] + β�Fcom −
∫ 1

0
dλ

∫
dxςλ(x)[eB(x) − 1] (63)

where F[ρα(rα)] corresponds to the intrinsic Helmholtz energy of the monatomic
system, β�Fcom represents the change in the communal entropy, i.e., changes in
molecular symmetry due to bond formation, and ςλ(x) corresponds to the condi-
tion when eB,λ(x) = 1 + λ[eB(x) − 1]. The communal entropy terms arises from the
distinguishability of classical particles; it can be shown that

β�Fcom =
∫

dxρ(x){ln[ρ(x)�3
M] − 1} −

∑
α

∫
drρα(r){ln[ρα(r)�3

α] − 1}.
(64)

For an ideal polyatomic system without non-bonded interactions, ς IP(x) = ρ0(x)
exp[βV 0

B (x)], it is straightforward to show that the functional integration in Eq. (63)
leads to the chain formation energy as expected

βFchain[ρ(x)] =
∫

dxρ0(x)V 0
B (x). (65)

For a non-ideal polyatomic system, applying the bonding energy to the corresponding
monoatomic system of the same site densities leads to a change in the free energy
that is equivalent to the multi-body potential of mean force −kBT ln g(x) in the
polyatomic system. In that case, the functional integration gives

βFchain[ρ(x)] = −kBT
∫

dxρ0(x) ln g(x). (66)

Equation (66) was first derived byChandler and Pratt for the formation of intramolec-
ular structures by chemical bonding [56]. With g(x) replaced by that of the monomer
system and the superposition approximation for the multi-body correlation function,
Eq. (66) reduces to the chain formation energy from Wertheim’s thermodynamic
perturbation theory [57].
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4 Interaction Site Formulism

4.1 Variational Principle

As mentioned above, the HKM theorem is immaterial to the specific form of energy
arising from interaction between particles, which can be either quantum or classical.
In otherwords, theHKM theorem is equally applicable tomonatomic and polyatomic
systems even though the latter contains both intra- and inter- molecular interactions.
In both cases, theHKMtheorem indicates that a deterministic relation can be formally
established between the one-body (site) potential and the one-body (site) density.

Application of the classical DFT to polyatomic fluids was introduced first by
Chandler, McCoy and Singer [58]. Within the framework of the interaction site
model, the grand potential functional can be formally defined as

�V [ρα(r)] = F[ρα(r)] +
∑

α

∫
dr[ϕα(r) − μα]ρα(r). (67)

In writing Eq. (67), we assume all interactions sites are distinguishable, and the site
chemical potential is defined as μα = μ/Ms. As for monatomic systems, �V [ρα(r)]
is minimized with respect to the site density ρα(r) without any constraints, and the
minimum corresponds to the grand potential. Because the thermodynamic potential
is independent of configurational or site representations of the one-body density
profile, we have F[ρα(r)] = F[ρ(x)] for systems where the external potential can be
expressed as a summation of the site energies.

The functional derivative of the grand potential functional with respect to the site
density results in the Euler-Lagrange equation for the site densities:

δ�V

δρα(r)
= δF

δρα(r)
+ ϕα(r) − μα = 0. (68)

With an analytical expression for the intrinsic Helmholtz energy, Eq. (68) allows us
to solve for the site densities by numerical iterations.

4.2 Reference Systems in Site Formalism

As discussed above, the intrinsic Helmholtz energy of a non-ideal system is often
formulated relative to those of simpler reference systems. For a polyatomic system,
wemay use several references. As shown schematically in Fig. 3, the thermodynamic
properties for a system of practical interest may be compared with those correspond-
ing to an ideal monatomic (IM) system with the density profiles the same as the site
densities, or an ideal polyatomic (IP) system of the same site densities, or a uniform
polyatomic system of the same bulk chemical potential.
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Fig. 3 Thermodynamic properties of a polyatomic system in the presence of an external field, here
shown as interaction with a spherical particle (Panel A). The reference systems may include: (1) an
ideal-gas system of monatomic particles with the density profiles the same as the site densities but
with different external field (shaded background) (Panel B), (2) an ideal-gas system of polyatomic
molecules with the same site densities and different extneral potential (Panel C), and (3) a uniform
system of the same bulk chemical potential (Panel D). The background colors in panels B and C
denote different external potentials

By applying Eq. (68) to the reference system of non-interacting polyatomic mole-
cules (see Panel C in Fig. 3), we may obtain the Euler-Lagrange equation for an
ideal-gas polyatomic system

δ�IP
V

δρα(r)
= δFIP

δρα(r)
+ ϕIP

α (r) − μIP
α = 0. (69)

where ϕIP
α (r) and μIP

α stand for, respectively, the site external potential and the site
chemical potential of the ideal polyatomic system. As predicted by the HKM theo-
rem, ϕIP

α (r) is uniquely determined by the one-body density profile ρα(r), and μIP
α

corresponds to the chemical potential of the ideal system in the bulk limit. To match
the site density profiles, the one-body site potentials of the real and ideal systems
must satisfy

uIPα (r) = uα(r) + μex
α (r) (70)

where uα(r) ≡ ϕα(r) − μα represents a one-body site potential, and

μex
α (r) ≡ δ(F − FIP)/δρα(r) (71)
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is the local excess chemical potential for site α.
No analytical expression is available for the site density of the ideal polyatomic

system owing to the intramolecular bond connectivity and correlations. To find an
even simpler reference system, we consider an ideal gas of monatomic particles (IM,
see Panel B in Fig. 3) that reproduce the site densities of the polyatomic system. The
density profiles of the uncorrelated particles in the ideal monatomic system are given
by the Boltzmann equation

ρα(r) = ρIM
α exp{−βwIM

α (r)}, (72)

where ρIM
α and wIM

α (r) stand for the bulk density and the external potential, respec-
tively. For the ideal monatomic system, the intrinsic Helmholtz energy is related to
the one-body densities

FIM[ρα(r)] = kBT
∑

α

∫
drρα(r){ln[ρα(r)�3

α] − 1}. (73)

Strictly speaking, the thermalwavelength of an interaction site�α maynot bedefined.
But this should not be an issue because they can be related to the total kinetic energy
of the polyatomic molecules as discussed above.

For a non-ideal inhomogeneous system of interest (Panel B in Fig. 3), we define
the auxiliary intrinsic Helmholtz energy as the difference between those of the real
system and an ideal monatomic system of the same site density profiles:

F[ρα(r)] = kBT
∑

α

∫
drρα(r){ln[ρα(r)�3

α] − 1} + Fau[ρα(r)] (74)

where superscript “au” designates auxiliary. From Eqs. (67) and (74) for the grand
potential functional and the intrinsic Helmholtz energy, respectively, we can derive
a formal expression for the site density profiles

ρα(r) = 1

�3
α

exp{−β[ϕα(r) − μα + μau
α (r)]} (75)

where μau
α (r) ≡ δFau/δρα(r). Comparing to the site density profile for the inhomo-

geneous distribution of monatomic particles in an inhomogeneous ideal-gas system
with bulk site density ρIM

α , we obtain an analytical expression for the effective exter-
nal potential for the reference monatomic system

wIM
α (r) = ϕα(r) − μα + μau

α (r) + kBT ln(ρIM
α �3

α). (76)

Clearly, the one-body potential for the ideal monatomic reference system is different
from that of the ideal polyatomic system [Eq. (70)], even when the two reference
systems have the same site densities.
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4.3 Direct Site Correlation Functions

To find an explicit expression for Fau[ρα(r)], we follow a mathematical procedure
formally the same as that used for monatomic systems. The one-body site direct
correlation function can be defined in terms of the functional derivatives of the
auxiliary Helmholtz energy

D(1)
α (r) ≡ −δβFau/δρα(r) = −βμau

α (r) = ln[ρα(r)�3
α] + β[ϕα(r) − μα] (77)

Similarly, the two-body site direct correlation function is

D(2)
αγ (r, r′) = −δβμau

α (r)
δργ (r′)

≡ δαγ (r − r′)
ρα(r)

− χ(−1)
αγ (r, r′) (78)

where χ(−1)
αγ (r, r′) = −δβϕα(r)/δργ (r′). As for inhomogeneous monatomic sys-

tems, the auxiliary intrinsic Helmholtz energy may be expressed as a functional
integration relative to that of a reference molecular system of uniform site densities
ρ0

α (see Panel D in Fig. 3):

βFau[ρα] =βFau[ρ0
α] −

∑
α

∫
dr�ρα(r)D(1)

α (ρ0
α)

−
∑
αγ

∫ 1

0
dλ(λ − 1)

∫ ∫
dr1dr2�ρα(r1)�ρα(r2)D(2)

αγ (ρα,λ, r1, r2)

(79)
where�ρα(r) = ρα(r) − ρ0

α , andD
(2)
αγ (ρα,λ, r1, r2) is the two-body direct correlation

function of an inhomogeneous systemwith site densityρα,λ(r) = ρ0
α + λ�ρα(r). For

the uniformmolecular system, βϕα(r) = 0, andD(1)
α (r) depends only on the average

site density ρ0
α .

The same procedure can be applied to an ideal polyatomic system with the same
site density profiles. Relative to that of an ideal monatomic system as discussed
above, the auxiliary intrinsic Helmholtz energy for the ideal polyatomic system (IP)
is given by

βFau
IP [ρα] =βFau

IP [ρ0
α] −

∑
α

∫
dr�ρα(r)D(1IP)

α (ρ0
α)

−
∑
αγ

∫ 1

0
dλ(λ − 1)

∫ ∫
dr1dr2�ρα(r1)�ρα(r2)D(2IP)

αγ (ρα,λ, r1, r2)

(80)
whereD(1IP)

α (ρ0
α) corresponds to the one-body site direct correlation function of the

ideal polyatomic system with uniform site density ρ0
α , and D(2IP)

αγ (ρα,λ, r1, r2) is the
two-body site direct correlation function of inhomogeneous molecular ideal system
with ρα,λ(r) = ρ0

α + λ�ρα(r). A comparison of Eqs. (79) and (80) yields
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βFex[ρα] =βFex[ρ0
α] −

∑
α

∫
dr�ρα(r)[D(1)

α (ρ0
α) − D(1IP)

α (ρ0
α)]

−
∑
αγ

∫ 1

0
dλ(λ − 1)

∫ ∫
dr1dr2�ρα(r1)�ργ (r2)c(2)

αγ (ρα,λ, r1, r2)]
(81)

where c(2)
αγ (ρα,λ, r1, r2) is the site-site direct correlation function defined as

c(2)
αγ (r, r′) ≡ χ(−1)IP

αγ (r, r′) − χ(−1)
αγ (r, r′). (82)

4.4 Reference Interaction Site Model

The reference interaction site model (RISM) may be understood as an extension of
the Ornstein-Zernike (OZ) equation for monatomic fluids to molecular systems [59].
TheRISMequations are useful to understand the structure ofmolecular systems from
scattering measurements and to establish analytical statistical-mechanical models to
represent non-ideal thermodynamic properties.

For a uniform polymeric system, the site-site correlation function may be parti-
tioned into an ideal part and the excess:

χαγ (r) = χ IP
αγ (r) + χ ex

αγ (r) (83)

The ideal part is free of intermolecular interactions, i.e., it is the same as the site-site
correlation function of an ideal-gas system of polyatomic molecules

χ IP
αγ (r) = ρ0ω

IP
αγ (r) (84)

The intramolecular site-site correlation function for the bulk ideal system is

ωIP
αγ (r) ≡

∫
d�δ(|rα − rγ |) exp[−βV ∗

B (�)]∫
d� exp[−βV ∗

B (�)] =< δ(|rα − rγ |) >IP . (85)

where� represents molecular configuration. If the polyatomic molecule is rigid, the
intramolecular correlation function is simply represented by the one-dimensional
Dirac functions δαγ (r − rαγ ), where rαγ is the separation between sites α and γ

from the same molecule.
In general, the site-site correlation function can be divided into intra- and inter-

molecular contributions

χαγ (r) = ραωαγ (r) + ραργ hαγ (r) (86)
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whereωαγ (r) ≡< δ(|rα − rγ |) > is defined as an ensemble of the interacting system,
hαγ (r) = gαγ (r) − 1 stands for the total correlation functions between interaction
sites α and γ from differentmolecules, and gαγ (r) is the standard radial distribution
function.

For systems containing rigid or small polyatomic molecules, the intramolecular
correlation is insensitive to the system conditions, i.e., ωαγ (r) = ωIP

αγ (r). As a result,
the excess site-site correlation function, χ ex

αγ (r), corresponds to the correlation due
to intermolecular interactions

χ ex
αγ (r) = ραργ hαγ (r) = ρ2

0hαγ (r). (87)

For simplicity, here we assume that all interaction sites are distinguishable, ρα =
ργ = ρ0. Recall that the site-site direct correlation function is defined as

c(2)
αγ (r) ≡ χ(−1)IP

αγ (r) − χ(−1)
αγ (r) (88)

or in matrix notation

χ−1 = χ−1
IP − c = ρ−1

0 ω−1
IP − c (89)

where the elements of c is c(2)
αγ (r), and similar for matrices χ−1, χ−1

IP and ω−1
IP .

From Eq. (86), we have the matrix relation

χ = ρ0ω + ρ2
0h (90)

With the assumption of ω = ωIP, the functional inversion of the site-site correlation
functions leads to

(ρ0ω̂ + ρ2
0ĥ)(ρ−1

0 ω̂−1 − c) = I (91)

where ‘hat’ symbol denotes 3-D Fourier transform, and I stands for the unit matrix.
Rearrangement of Eq. (91) leads to the RISM equation

ĥ(q) = ω̂(q)ĉ(q)ω̂(q) + ρ0ω̂(q)ĉ(q)ĥ(q) (92)

Note that in the original work by Chandler and Andersen [59], the direct correlation
function is defined as

χ−1 = ρ−1
0 ω−1 − c (93)

In that case, we may say that RISM is not derived from the microscopic princi-
ples, but instead it follows from a set of definitions. If the DCFs are defined by the
RISM equation, we would lose the connection between the site-site direct correlation
functions and the excess Helmholtz energy functional.
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4.5 Site Density Profiles

As discussed earlier in Eq. (46), Fex ≡ F − FIP represents the difference between
the intrinsic Helmholtz energies of the real and ideal polyatomic systems. Applying
the functional derivative with respect to the site density on both sides of Eq. (81)
gives

βμex
α (r) = −D(1)

α (ρ0
α) + D(1ID)

α (ρ0
α) + δβFC/δρα(r) (94)

where FC stands for the correlation energy

βFC ≡ −
∑
βγ

∫ 1

0
dλ(λ − 1)

∫ ∫
dr1dr2�ρβ(r1)�ργ (r2)c

(2)
βγ (ρβ,λ, r1, r2)] (95)

Using Eqs. (33), (70) and (94), we may determine the site density profiles from that
corresponding to the ideal polyatomic system

ρα(r) = 1

�3M

∫
dxδ(r − rα) exp{−βVB(x)

−
∑

γ

[βuγ (r) − �D(1)
γ + δβFC/δργ (r)]} (96)

where �D(1)
γ ≡ D(1)

γ (ρ0
γ ) − D(1ID)

γ (ρ0
γ ). The unknown constants in Eq. (96) can be

removed by applying the same equation to a uniform polyatomic system of the same
bulk density ρ0

α

ρ0
α = 1

�3M

∫
dxδ(r − rα) exp{−βVB(x) − βμα +

∑
γ

�D(1)
γ } (97)

A comparison of Eqs. (96) and (97) yields

ρα(r) =
∫
dxδ(r − rα) exp{−βVB(x) − β

∑
γ λγ (rγ )}∫

dxδ(r − rα) exp{−βVB(x)}
= ρ0

αe
−βλα(r) < exp[−β

∑
γ �=α

λγ (rγ )] >IP

(98)

where λγ (r) ≡ ϕγ (r) + δFC/δρα(r), and < · · · >IP represents the configurational
average for tagged molecule in the ideal molecular system with the site α posi-
tion fixed at r. Equation (98) represents one of the most important equations in site
formulism of the molecular DFT.
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4.6 Thermodynamic Potentials

To derive thermodynamic properties from the site density profiles, we may compare
the grand potential for an inhomogeneous polyatomic system with that of a uniform
system of the same bulk density (Panels B and D in Fig. 3, respectively)

�� ≡ �[ρα(r)] − �[ρ0
α] =�FIP + �Fex

+
∑

α

∫
dr[ϕα(r)ρα(r) − μαρα(r) − μαρ0

α]}. (99)

For the ideal polymeric system (Panel C in Fig. 3), the grand potential is given
by Eq. (35). The difference between the inhomogeneous and uniform intrinsic
Helmholtz energy, �FIP, is thus given by

�FIP = − kBT

M

∑
α

∫
dr[ρα(r)−ρ0

α]

+
∑

α

∫
dr[ϕIP

α (r)ρα(r) − μIP
α ρα(r) − μIP

α ρ0
α]}.

(100)

From Eq. (81), we may find the difference between the excess intrinsic Helmholtz
energies of the inhomogeneous and uniform polyatomic systems:

β�Fex[ρα] = −
∑

α

∫
dr�ρα(r)[D(1)

α (ρ0
α) − D(1IP)

α (ρ0
α)] + βFC . (101)

Because ρα(r) satisfies the variational principle for both the real and ideal polyatomic
systems, we have from Eqs. (68) and (101)

δFex

δρα(r)
= − [ϕα(r) − μα] + [ϕIP

α (r) − μIP
α ]

= −β−1[D(1)
α (ρ0

α) − D(1ID)
α (ρ0

α)] + δFC

δρα(r)
.

(102)

Substituting Eqs. (100) and (101) into (99), with the help of Eq. (102), we derive a
succinct expression for the grand potential

�� = −kBT

M

∑
α

∫
dr[ρα(r)−ρ0

α] + FC −
∑

α

∫
drρα(r)[δFC/δρα(r)]. (103)

Equation (103) indicates that the grand potential of an inhomogeneous polyatomic
system can be calculated from that of a bulk system and the site density profiles.

It is worth noting that the above procedure is formally exact for calculating the
site density and the grand potential. For a specific polyatomic system of practical
interest, however, DFT calculations require an analytical expression for the corre-
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lation energy,FC , and the grand potential for the bulk system, �(ρ0
α). The former

is defined in terms of the site-site direct correlation functions of inhomogeneous
systems, which can be calculated from an integral-equation theory or molecular sim-
ulations. For bulk systems, the grand potential can be easily determined from an
equation of state, i.e., �b/V = −P(T , ρ0), where V is the system volume, and
P stands for the bulk pressure. In practical applications, approximations will be
inevitable for both the correlation energy and the bulk equation of state.

5 The Bridge Functional and Universality Ansatz

Without loss of generality, the functional integration for the correlation energy may
be written in terms of the direct correlation function of the uniform reference system

βFC[ρα(r)] = −1

2

∑
α,γ

∫
dr

∫
dr′�ρα(r)�ργ (r′)c0αγ (|r − r′|) + FB[ρα(r)]

(104)
where c0αγ (r) denotes the site-site direct correlation function of a uniform system
with site density ρ0

α . The first term on the right side of Eq. (104) corresponds to a
quadratic expansion of the excess intrinsic Helmholtz energy with respect to that
of the uniform system [see Eq. (81)], and the second term, FB[ρα(r)], serves as a
definition of the bridge functional.

As stated above, the bridge functional accounts for all contributions to the excess
Helmholtz free energy beyond the quadratic expansion, i.e., all high-order terms
in the functional Taylor expansion of the excess intrinsic Helmholtz energy. The
correlation Helmholtz energy and the bridge functional can be similarly defined in
terms of the quadratic expansion with respect to the configurational density profiles

βFC[ρ(x)] = −1

2

∫
dx

∫
dx′�ρ(x)�ρ(x′)c0(|x − x′|) + FB[ρ(x)]. (105)

Both Eqs. (104) and (105) are formally exact and immaterial to the additivity of the
intermolecular potentials. Because themolecular and site direct correlation functions
are not equivalent, the corresponding bridge functionals are in general not the same,
i.e., FB[ρ(x)] �= FB[ρα(r)].

As shown schematically in Fig. 4, the intermolecular potential can be generally
divided into short and long-range contributions as proposed by van der Waals many
years ago. Although a priori knowledge is not available for the bridge functional, it
has beenwell documented in the liquid-state literature that the high-order terms in the
density functional expansion are dominated by short-range interactions, insensitive
to the mathematical details of the long-range intermolecular forces [23]. The insen-
sitivity of the bridge functional to the precise form of the intermolecular potential is
known as the bridge universality, proposed first by Rosenfeld [60]. The universality
ansatz was supported by the fact that the quadratic approximation (i.e., without the
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Fig. 4 Van der Waals’ wisdom on thermodynamic non-ideality. The thermodynamic properties
of a non-ideal system can be accounted for by a separate consideration of the molecular excluded
volume and long-range attraction in the intermolecular potential

bridge functional) conforms to the exact results at both the “ideal gas” and “ideal
liquid” limits for the long-range components of the intermolecular potentials.

With the universality ansatz, we may approximate the bridge functional with that
of a reference hard-sphere (HS) system:

FB[ρα(r)] ≈Fex
HS[ρα(r)] − Fex

HS(ρ
0
α) −

∑
α

μex
α,HS

∫
dr�ρα(r)

+ kBT

2

∑
α,β

∫
dr1

∫
dr2�ρα(r1)�ρβ(r2)cHSα,β(|r1 − r2|)

(106)

where Fex
HS[ρα(r)] represents the excess Helmholtz energy functional of the HS ref-

erence system, μex
α,HS and Fex

HS(ρ
0
α) are, respectively, the excess chemical potential

and the excess Helmholtz energy of the reference system at bulk density ρ0
α; and

cHSαβ (|r1 − r2|) is the corresponding direct correlation functions.
Accurate expressions are available for the excessHelmholtz energy functional and

correlation functions of inhomogeneous hard-sphere systems [61, 62]. As suggested
by Rosenfeld [60], the effective HS diameter, σα , can be fixed by the Lado criterion
[63, 64] ∑

α,β

ρ0
αρ0

β

∫
dr[g0αβ(r) − gHSαβ (r; σα)]∂b

HS
αβ (r; σα)

∂σα

= 0 (107)

where g0αβ(r) and gHSαβ (r; σα) are the radial distribution functions of the molecular
and the HS reference systems at the same bulk atomic density ρ0

α , respectively, and
bHSαβ (r; σα) is the bridge function of the HS reference system.

Using the bridge functional from the fundamental measure theory (FMT) as an
input, Rosenfeld demonstrated that the universality hypothesis performs well for a
wide variety of monatomic systems including charged Yukawa fluids and plasma
mixtures (see Ref. [65] for an overview). It has also been shown that universality
hypothesis works reasonably well for ionic liquids [66] and various models for liquid
water [67]. Application of the universality functional to anisotropic molecular fluids
and mixtures has also been explored [54].
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6 Perspectives

Conventional approaches inmolecularmodeling hinge on different theoretical frame-
works that typically include quantum-mechanical (QM) calculations for electronic
properties,molecular dynamics (MD) orMonteCarlo (MC) simulation for short-time
and small-length-scale correlations, and continuous equations for larger-scale sys-
tems. Although recent developments make it possible to connect different quantum
and classical approaches via hierarchical modeling, integration of different models
for various length and time scales is far from perfect. Owing to uncertainties affili-
ated with calculations at each scale, a careful combination of different computational
methods is critically important. An optimal multi-scale procedure should reflect not
only theoretical accuracy at individual scales but, perhaps more important, a reliable
linkage of different methods to attain the best overall performance.

Density functional theory (DFT) plays an important role in molecular model-
ing. The essential idea is to predict the properties of many-body systems using the
one-body density profiles as fundamental variables. Whereas the original concepts
were introduced in the context of inhomogeneous electronic systems at 0 K, the
mathematical procedure is applicable to electronic systems at finite temperature [68,
69], multicomponent quantum mixtures [70], as well as to diverse thermodynamic
systems ranging from those involved in materials characterization [71], electric dou-
ble layers [72] to lipids [73] and liquid crystals [74]. Because DFT circumvents
an explicit consideration of multi-body wave functions or microstates, its compu-
tational efficiency is far superior to conventional ab initio or simulation methods.
The computational efficiency is important in particular from a practical perspective
because it enables customization of molecular models for specific systems and for
more systematic calibration of the theoretical results with experimental data [75].

Conceptually, DFT is equivalent to the variational principle of thermodynam-
ics: instead of expressing thermodynamic variables as functions of a small set of
macroscopic parameters such as temperature, pressure and composition, DFT defines
thermodynamic potentials as functionals of density profiles (viz. structure). Given a
density functional for the excess free energy, we can obtain both microscopic struc-
ture and thermodynamic properties from the variational principle of equilibrium, i.e.,
the density profiles minimize the free energy. To a certain degree, the shortcomings
of DFT are inherent in thermodynamics. Although thermodynamics provides no a
priori knowledge on the fundamental equation (relating for example entropy as a
function of internal energy and system volume), DFT by itself does not give the den-
sity functionals. Nevertheless, like equations of state for thermodynamic systems,
reliable functionals can be formulated following the basic principles of quantum and
statistical mechanics, in combination with creative mathematical strategies. Impor-
tantly, quantitative predictions can often be achieved even with relatively simple
approximations [75, 76].

Like conventional molecular simulations, existing molecular DFT calculations
are based on the pairwise additive potentials that do not account for the polarization
effects. However, the importance of non-additive interactions in molecular systems
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has been well recognized [1]. Inclusion of the polarization effects may drastically
increase the computational costs of traditional simulation methods, typically by one
order magnitude in comparison to that with non-polarizable models. From a practical
point of view, there is yet no convincing procedure to properly account for the effects
of polarization on solvation free energy calculations. The computational efficiency
of DFT makes it an outstanding candidate for future development and application of
new polarizable force fields.
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Classical Density Functional Theory
of Polymer Fluids

Jan Forsman and Clifford E. Woodward

1 Introduction

Hohenberg and Kohn first established Density Functional Theory (DFT) in a quan-
tummechanical frameworkmore than fifty years ago [1]. Their formulation relates to
the ground-state energy of electrons in the presence of external fields. That work was
generalized byMermin to finite temperatures, demonstrating that the thermodynamic
free energy was minimized by the equilibrium number density of the fluid [2]. This
inspired the development of classical DFT, which now forms a powerful theoretical
tool for the treatment of non-uniform fluids and solutions. While the number density
for monomeric (or single atom) fluids is straightforwardly defined, the correspond-
ing quantity for molecular or polymeric fluid models, is not unique. These, more
realistic, chemical models usually consist of molecular entities containing a number
of “atomic” sites, thus it is not exactly clear what “density” should be used in the
density functional theory for polymeric fluids. One quantity that we could envisage
using would be the density of monomeric sites (monomer site densities), which is a
function of the position coordinate of the site. This approach was used by Chandler,
McCoy and Singer [3] in a DFT for molecules. Another choice is the molecular
density, which depends upon the coordinates of all sites in the molecular model [4],
as was utilized by Woodward [5], in arguably the first formulation of DFT for fluids
consisting of long flexible polymeric chains. Since then, most formulations of so-
called polymer DFT (PDFT) have utilized the same theoretical framework. This is
based on a separation of the free energy into ideal and excess contributions. The ideal
contribution is obtained exactly in terms of the molecular density, while the excess
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term is treated as a functional of the site densities. In this way, connectivity effects,
so important in polymer systems, are accurately accounted for within the ideal term,
while non-bonding interactions contribute to the excess free energy.

Unlike the case of simple fluids, a closed expression for the free energy func-
tional of ideal chains in terms of the monomer site densities has so far been elusive.
On the other hand, the ideal free energy is a relatively simple functional of the
multi-point molecular density. The use of this multi-point density does introduce an
apparent complexity to the formalism, as it is a 3N-dimensional function, where N
is the number of monomer sites, which is generally very large. As we shall show,
solution of the PDFT usually leads to integral equations and thus there is potential
for 3N-dimensional integrals to appear as part of the solution algorithm. However,
for nearest-neighbor bonding constraints, such as the classic freely-jointed polymer
model, the solution to the PDFT is rather straightforward. Indeed, the equilibrium
monomer site densities turn out to be expressible in terms of N coupled integral
equations, wherein the dimensionality reflects the symmetry of the perturbing field,
not the length of the polymer. For example, the problem is trivially 1-dimensional in
planar and spherical geometries and can thus be solved via straightforward numer-
ical techniques. Having said this, the solution still requires (N times) more work
than what is required to solve the DFT for single-site fluids. But this is expected
and in some sense unavoidable, as in the presence of end-effects, site densities will
generally differ along the length of the polymer chain and must be solved for sepa-
rately, an o(N) problem. It is only for very long polymers that end-effects disappear
and in this case one needs only solve a single integral equation under these condi-
tions. Surprisingly, the same is also true for equilibrium (or living) polymers, which
possess an exponential molecular weight distribution, which also lack end effects.
This notwithstanding, even in the presence of end-effects these calculations are still
much less demanding than direct computer simulations of the chain fluid, and a sub-
stantial number of model scenarios concerning polymer fluids and solutions under
non-uniform conditions can be relatively easily tackled. Having said this, the level
of difficulty in solving the DFT increases with the required specificity in the intra-
molecular structure. More precisely, the dimensionality of the problem grows with
the number of adjacent monomers required to describe the intra-molecular structure.
For example, the PDFT for stiff polymer chains, with angularly-dependent nearest
neighbor bonding, must be solved in 2-dimensions, reflecting the next nearest neigh-
bor interactions between monomers. When the problem becomes too big for solving
via direct numerical methods, single-chain simulations can be fruitfully employed.

2 Classical Density Functional for Polymers

The classical DFT for single-site monatomic liquids expresses the Helmholtz free
energy, F, as a functional of the fluid density. It is useful to decompose the free
energy as a sum of ideal and excess free energy terms and for a simple monatomic
fluid, the functional has the following general form,
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F[n(r)] = Fid[n(r)] + Fex[n(r)] (1)

where n(r) is the local particle density. The ideal term is given by

Fid[n(r)] = kBT
∫

n(r) (ln[n(r)] − 1) dr (2)

and the excess component, Fex[n(r)], accounts for all the contributions to the free
energy due to particle interactions, which are not included in the ideal functional.

In the case of a polymeric fluid, there are multiple sites per molecule and the
functional takes on a more complex form. In this exposition we will only consider
simple linear chains of identical monomers (homopolymers). The generalization to
more complex architectures is rather straightforward, but requires more complicated
solution algorithms.A simple example is a fluid composed of chains ofN tangentially
bonded hard spheres (see Fig. 1). All spheres are identical with diameter σ and the
bonds are freely rotating. This is the well-known freely jointed model. The free
energy functional for linear chain models like this can be decomposed into ideal
and excess terms, using the concept of an equivalent ideal fluid (EIF) [5]. The EIF
is the ideal chain model (no non-bonded or intermolecular interactions), which has
the same monomer site densities as the fluid of real chains. The free energy can be
formally decomposed as,

F[N(R)] = Fid[N(R)] + Fex (3)

whereR = {r1, ......, rN } denotes the coordinates ofNmonomers on a single polymer
chain andN(R) represents themulti-point polymeric density of theEIF. This function
can be used to generate the site densities ni(r) using the relation,

ni(r) =
∫

δ(r − ri)N(R) dR (4)

We reiterate that N(R) is generally not equal to the polymeric density of the real
fluid, but that of the EIF, which has the same monomeric density. The free energy of
the EIF is given by

Fig. 1 A schematic diagram
for the simple polymer
model composed of freely
and tangentially jointed
spheres, each with
diameter σ
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Fid[N(R)] = kBT
∫

N(R) (ln[N(R)] − 1) dR

+
∫

N(R)Φ(b)(R)dR (5)

Here we shall set Φ(b)(R) equal to the bare bonding potential, though other choices
are possible. One of the current open questions in PDFT is how to optimize Φ(b)(R).
Intuition would suggest that this would ideally be chosen to emulate the real intra-
molecular distribution. For rigid molecules this would be achieved with the bare
bonding potential, but that is not the case for flexible polymers. It would seem
that these considerations would be usefully informed by scaling results for intra-
molecular correlations of the polymer chains. We also note that different choices for
Φ(b)(R), will necessarily alter the form of the excess free energy.

For the rigid bonds of the freely jointed chain, our current choice of the bare
bonding potential gives the following relation,

e−βΦ(b)(R) =
N−1∏
i=1

δ(|ri − ri+1| − σ)

4πσ2
(6)

with β = 1/kBT , δ(r) is the Dirac delta function and σ is also the bond length
between the monomers, as the spheres are tangential. Note that we have assumed the
bonding potential has an additive constant, which normalizes the Boltzmann factor.
This constant can be physically interpreted as an entropic contribution due to free
bond rotation.

The excess free energy, Fex, accounts for the additional contributions to the free
energy not included in the EIF. This will be dominated by non-bonding monomer-
monomer interactions. Though, as mentioned earlier, the excess functional will also
have an intrinsic intra-molecular component,which varieswith the choice ofΦ(b)(R).
However, we will assume this is relatively small for our current choice. The excess
free energy, can always be formally expressed as a functional of the set of monomer
site densities, i.e., Fex[{ni(r)}] [5].

For a polymer fluid in contact with a bulk reservoir, it is appropriate to use the
grand canonical ensemble. The corresponding grand free energy functional, Ω , is
obtained as the Legendre transform of the Helmholtz free energy F,

Ω = kBT
∫

N(R) (ln[N(R)] − 1) dR

+
∫

N(R)Φ(b)(R)dR + Fex[{ni(r)}]

+
∫

[Ψ 0(R) − μ]N(R)dR (7)
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Here, μ is the chemical potential of polymer molecules in the bulk and we have also
accounted for the presence of an external potential,Ψ 0(R). We shall assume that this
can be written as a sum of single site terms, namely,

Ψ 0(R) =
N∑
i=1

ψ0
i (ri) (8)

where we have allowed for different interactions for the various sites.
The accuracy of PDFT essentially boils down to how well the excess free energy

functional has been approximated, as the ideal contribution is essentially exact. For
the freely jointed model considered in this example, the excess term accounts for
the steric or hard sphere interactions between monomers. If longer-ranged inter-
actions, such as dispersion and electrostatic potentials, were present the excess
functional would account for those too. The steric contributions to the excess free
energy describes the entropic loss due to particle repulsions at short range. Several
approaches have been used to account for these, which include phenomenological
approaches such as the fundamental measure theory [6–11] and hard chain equations
of state [12, 13].Otherwork has used functional expansions,which aremore formally
rigorous, but not expected to be accurate for highly structured fluids. Minimization
of the grand free energy with respect to the polymeric density gives

δΩ

δN(R)
|Neq(R) = 0 (9)

which yields a set of non-linear integral equations at equilibrium [5, 14],

Neq(R) = exp[−βΦ(b)(R) + βμ − βΨ (0)(R) − δβFex[ni(r)]
δN(R)

] (10)

Given the relation between N(R) and ni(r) in Eq. (4), the density derivative of the
excess free energy is

δFex[N(R)]
δN(R)

=
N∑
i=1

δFex[{ni(ri)}]
δni(ri)

(11)

A local excess chemical potential, λi(r), thus acts on each monomer site i, {i =
1, ...,N}, on the polymer, given by

λi(r) = δβFex[{ni(r)}]
δni(r)

+ βψ(0)
i (r) (12)
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One then obtains

Neq(R) = φp

N−1∏
i=1

δ(|ri − ri+1| − σ)

4πσ2

N∏
i=1

exp(λb
i − λi(ri))] (13)

where λb
i is the excess chemical potential in the bulk and φp is the bulk polymer

density.

2.1 End Segment Distributions

The site density of bead i on the polymer chain is obtained by the integral,

ni(r) =
∫

δ(r − ri)φp

N−1∏
j=1

δ(|rj − rj+1| − σ)

4πσ2

N∏
j=1

exp(λb
j − λj(rj))dR (14)

Due to the fact that the bonding extends only to nearest-neighbourmonomers, the site
densities can be re-expressed in terms of the product of end-segment distributions.
Namely,

ni(r) = φpc(N − i, r)
∫

dr′T(|r − r′|)c(i, r′) (15)

where

T(|r − r′|) = δ(|r − r′| − σ)

4πσ2
(16)

is the nearest-neighbour bonding kernel. The end point distributions c(i, r) corre-
spond to the non-normalized distribution of end-monomers of chain segments of
length i. They satisfy the recurrence formula,

c(i, r) = exp(λb
i − λi(r))

∫
dr′c(i − 1, r′)T(|r − r′|) (17)

with the boundary condition, c(0, r) = 1.

2.2 Estimating the Excess Free Energy: Accounting for
Steric Interactions

In this example, we shall consider the chain model depicted in Fig. 1. The excess free
energy Fex[{ni(r)}] arises primarily from the excluded volume interaction between
beads in the chains (which all have diameter σ). This excess functional is generally



Classical Density Functional Theory of Polymer Fluids 107

not known exactly and there have been many approximate forms proposed, since the
earliest attempts over twenty years ago [5, 15–18]. All of these approximate choices
for the excess free energy contain essentially the same physics and give rise to the
same general type of mathematical expressions to solve, given that they invariably
invoke the ansatz that the excess free energy is a functional of the monomer site
densities. Of course different levels of accuracy may be expected, depending on the
choice of functional, though this can be model dependent as well. Our general phi-
losophy has been to utilize equation of state approaches, which are non-perturbative
and therefore well-behaved at high fluid density, a quality recognized by van der
Waals centuries ago.

The generalization of the vanderWaals approach to non-uniform structures in sim-
ple fluids, using weighted density functionals, was pioneered more than thirty years
ago by Nordholm [19–21]. Here we shall describe our adaptation of this approach to
polymer fluids using the so-called generalized Flory equation of state for pure poly-
mer fluids and mixtures. [12, 13, 22–25]. This equation of state relates the insertion
probability of polymers to the excluded volume of the bulk fluid. The detailed deriva-
tion of this equation of state is not provided here, and the interested reader can consult
the original article [22]. Briefly, the probability for insertion of an oligomeric chain
is approximated as the product of probabilities for insertion of a dimer and then sub-
sequent monomer beads in between, so that the original dimer forms the end beads of
the linear chain. A set of shape parameters are defined relevant to monomers (i = 1)
and dimers (i = 2),

ci = r2i , ωi = risi
bi

, φi = cis2i
9b2i

(18)

where

r1 = 0.5σ, r2 = 0.75σ

s1 = πσ2, s2 = 2πσ2

b1 = π

6
σ3, b2 = π

3
σ3 (19)

These are used to define a set of coefficients

Wi = − r2i s
2
i

9b2i
,

Xi = Wi − 2ωi − 1

Yi = −Wi + 2ωi − (3φi − ωi − 2)

Zi = (φi − 1) − ω,

Υi = Wi + Yi + 3Zi
Φi = 0.5Xi + 2.5Yi + 5.5Zi + 3Wi (20)
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which are used to construct the free energy densities of the monomer and dimer
components, aex1 and aex2 , respectively.

aexi (η) = 1 − η

η
ln[1 − η] + 1 + Υi[ln[1 − η](1 − η

η
+ 1) − 1

1 − η
− 1

2(1 − η)2
+ 5

2
]

+ (Φi + 2Zi − Xi)(
1

2(1 − η)2
− 1

2
) + Wi(

1

2(1 − η)2
− 2

1 − η
− ln[1 − η] + 3

2
)

+ Φi(
1

1 − η
− 1

2(1 − η)2
− 1

2
) (21)

where

η = πσ3

6
nbm (22)

is the volume fraction of monomers, with bulk density, nbm = Nφp. The bulk
Helmholtz free energy density of the uniform hard sphere chain fluid is then approx-
imated as,

f bhs = (nbm − nbe)
ve(3) − ve(2)

ve(2) − ve(1)
[aex2 (nbm) − aex1 (nbm)]

+ 1

2
nbea

ex
2 (nbm) (23)

where nbe(= 2n
b
m/N) is the density of end monomers, ve(n) is the average excluded

volume of an n-mer chain, estimated from simulation. This equation of state can be
generalized to mixtures of monomers of different sizes [24], but that is not required
for the model under consideration.

The conversion of the bulk equation of state to an excess density functional for
non-uniform fluids follows a straightforward procedure whereby the bulk densities
are replaced by their weighted non-uniform counterparts [12, 13, 23, 24, 26]. The
device of weighted densities was originally introduced by Nordholm to reflect the
non-local influence of excluded volume [19]. This phenomenological approach has
been extended within so-called fundamental measure theory to incorporate other
weight functions, which reflect geometric measures in the convex fluid [6–11]. For
simplicity, we shall follow Nordholm’s original formulation and use only a single
volume weighted density. For example, the weighted total monomer density, n̄m(r),
is,

n̄m(r) = 3

4πσ3

∫
|r−r′ |<σ

nm(r′) dr′ (24)

where nm(r) is the sum of the local site densities.

nm(r) =
N∑
i=1

ni(r) (25)
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The subsequent replacement of the bulk densities appearing in Eq. (23) gives rise
to a hard sphere contribution to the free energy which is a functional of the total
monomer density, nm(r), and end site density, ne(r), where

ne(r) = n1(r) + nN (r) (26)

Finally, we arrive at the following excess functional [13, 24],

Fex
hs [ne(r), nm(r)] =

∫
(nm(r) − ne(r))

ve(3) − ve(2)

ve(2) − ve(1)
[aex2 (n̄m(r)) − aex1 (n̄m(r))] dr

+1

2

∫
ne(r))aex2 (n̄m(r)) dr (27)

where the nomenclature reflects the steric origin of the excess contribution.

2.3 The Lennard-Jones Chain Model

Suppose now the polymer chains also attract each other via longer-ranged forces. As
a generalization of the hard sphere chain model considered above, we assume that
all the monomers interact instead via a pairwise additive Lennard-Jones potential,

φLJ(r) = 4εLJ [(σ
r
)12 − (

σ

r
)6] (28)

where εLJ and σ determine the attractive strength and repulsive range of the dis-
persion interaction respectively. We connect with the hard chain model, and assume
the parameter σ is also equal to the bond-length as well as the distance of closest
approach of the monomers. The excess free energy is then divided into hard sphere
and attractive components. The hard sphere functional is again given by Eq. (27), and
the additional attractive dispersion term is approximated by a mean-field expression,

Fex
disp[nm(r)] ≈ 1

2

∫ ∫
|r−r′|)≥σ

nm(r)nm(r′)φdisp(|r − r′|) dr dr′ (29)

It is worthwhile noting that this approximation also applies for other long-ranged
forces, including electrostatic interactions, in which case we arrive at a kind of
polymer version of the celebrated Poisson-Boltzmann theory [27].
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2.4 Solving the Density Functional Equations

A typical PDFT calculation will follow an iterative (Picard) scheme, due to the
generally complex dependence of λi(r) on the site densities. The site densities are
defined on a grid of points in the spatial region to be solved, where the number of
points usedwill be determined by the length-scale of the expected structural variation.
In a simple Picard iteration scheme:
1. An initial guess is made for the {ni(r)} and the corresponding {λi(r)} are obtained
from Eq. (12). This is usually an integral equation of some type.
2. A new set of densities {nnewi (r)} are then obtained from Eqs. (13) and (4).
3. The set {nnewi (r)} is then mixed with the initial set (now labelled as {noldi (r)})
according to,

ni(r) = fmix · nnewi (r) + (1 − fmix) · noldi (r) (30)

where fmix < 1.
4. Steps 2 and 3 are iterated until the density difference between consecutive itera-
tions drops below a preset threshold at all spatial points for all species.

The equilibrium density can be substituted back into Eq. (7) to compute the equilib-
rium grand free energy, Ωeq, together with other static thermodynamic properties.

3 Density Functional Theory for Polydisperse Semi-flexible
Polymers

Polymer density functional calculations usually focus on monodispersed chains.
This is despite the fact that laboratory samples of polymers rarely possess chains of
a single molecular weight. In recent years, polydispersity has come to be viewed as
a potentially useful experimental variable, that can be used to alter the effect that
polymers have on surface interactions. Some examples of theoretical treatments of
polymers including polydispersity have been reported, [28] including the special case
of equilibrium polymers, which have an exponential molecular weight distribution
[29–32]. Additionally, lattice-based self-consistent field (SCF) theory has been
applied to polydisperse polymers at surfaces [33] and there have also been recent
attempts to treat more general molecular weight distributions with continuum space
Edwards-de Gennes SCF theories [34–36]. In the latter approaches, the molecular
weight distribution is numerically integrated within the solution algorithm using
adapted quadrature methods [37–39]. These methods were originally devised to
consider effects of polydispersity on bulk phase diagrams. However, recent work
has studied the effect of polydispersity on the depletion interaction between non-
adsorbing surfaces [40].

In this section we shall outline our recent advances in introducing polydispersity
into thePDFT.Weshall show that, for a commonlyusedmolecularweight distribution
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(namely the Schulz-Flory-Zimm distribution), the PDFT becomes very simple to
solve. This is demonstrated within the framework of a more complex polymer model
than that used in the previous section. Specifically, polydispersity will be introduced
into a model of semi-flexible polymers.

The solution of thePDFT formonodisperse semi-flexible polymermodels requires
a greater computational workload when compared to calculations for flexible chains.
While this workload still scales linearly with the length of the polymer, the number
of numerical operations required increases significantly per additional monomer.
This is because next-nearest neighbor interactions come into play, requiring storage
of higher dimensional (albeit sparse) matrices. One would generally expect that
introducing polydispersity into the mix would increase the computational demands
even further, especially for broad molecular weight distributions. Recently, however,
we showed how the PDFT could be easily generalized to include polydispersity, in
the case where the molecular weight distribution is of the Schulz-Flory-Zimm (SFZ)
form [41]. Quite surprisingly, we found that the algebraic structure of the PDFT
was simpler than that for the monodispersed fluid and this manifested itself in a
numerically more efficient solution algorithm.

We begin our derivation by writing down the expression for the ideal free energy
of a fluid model consisting of semi-flexible r-mer polymer chains

βFid
r =

∫
dRNr(R) (ln[Nr(R)] − 1) + (31)

∫
dRNr(R)Φ(b)(R) +

∫
drnm(r)ψ0(r) +

∫
dRNr(R)

r−2∑
i=1

EB(si, si+1)

where we have explicitly labelled the polymer density, Nr(R) with the degree of
polymerization. As before, Φ(b)(R) describes the nearest-neighbor (non-directional
bonding) i.e.,

exp[−βΦ(b)(R)] =
r−1∏
i=1

δ(|ri − ri+1| − σ)

4πσ2
(32)

=
r−1∏
i=1

T(|ri − ri+1|)

What is new in the ideal functional is the bending potential, EB, which introduces
a degree of stiffness into the polymer molecules. We shall assume the following
general form for this potential,

βEB(si, si+1) = ε(1 − si · si+1

σ2
) (33)
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where, si, denotes the bond vector betweenmonomers i and i + 1, i.e., si = ri+1 − ri,
and ε is the strength of the bending potential. The incorporation of the bending
potential into the freely-jointed chain model, described earlier, creates a decidedly
more complex problem, due to the presence of next-nearest neighbor interactions.

To simplify the problem,we shall assume that allmonomers in the chain interact in
the same way with the external potential, ψ0(r). We consider now a grand canonical
ensemble system, whereby the bulk fluid consists of a polydisperse polymer solution.
The chemical potential of the r-mer in the bulk, μr , is given by the expression,

βμr = ln[φpF(r)] + βμex(r) (34)

where φp is now the total bulk density of polymer molecules and μex(r) is the excess
chemical potential of the r-mer. The latter is ultimately determined by the equation
of state used in the model and in our model it will be linearly dependent on r. Finally,
F(r), is the normalized, molecular weight distribution of the bulk fluid. As stated
above, it will be described by the SFZ distribution, which has the generic form,

F(r) = Krne−κr (35)

where

K =
(

n + 1

< r >b

)n+1 1

�(n + 1)
(36)

κ = n + 1

< r >b
(37)

�(x) is a gamma function and < r >b is the average degree of polymerization of
the bulk solution. The quantity, n, determines the width of the distribution, which
becomes narrower as n increases. The case n = 0 corresponds to equilibrium (living)
polymers. As in our earlier work, we shall assume that n is an integer.

The total grand potential functional,Ω , for the polydisperse polymer fluid is given
by

Ω =
∑
r

Fid
r [Nr(R)] + Fex[nm(r)] −

∑
r

μr

∫
dRNr(R) (38)

Note that we have assumed that the excess free energy is only a functional of the
total monomer density, nm(r). This approximation means that the excess chemical
potential of the polymer in the bulk, is proportional to the degree of polymerization.
While it is possible to include the dependence on the end monomers (as was done in
the previous section) that would add a complication which would detract from the
clarity of our subsequent analysis.

Minimizing the grand free energy with respect to Nr(R) gives the following inte-
gral equation,
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Nr(R) = φpF(r)
r−1∏
i=1

T(|ri − ri+1|)
r−2∏
i=1

Ψ (ri, ri+1, ri+2)

r∏
i=1

exp(λb − λ(ri)) (39)

where most of the terms that appear here have been defined earlier. For example, we
have

λ(r) = δβFex[nm(r)]
δnm(r)

+ βψ(0)(r) (40)

which has bulk value λb. The introduction of bond stiffness introduces a new, next-
nearest neighbour term, given by,

Ψ (ri, ri+1, ri+2) = e−βEB(si,si+1) (41)

The total average monomer density is given by the slightly more general relation,

nm(r) =
∞∑
r=1

∫
dR

r∑
i=1

δ(|r − ri|)Nr(R) (42)

As for the case of the freely-jointed model, it is useful to define segment end distri-
butions, but these are more complicated in the presence of the bending potential. It
is necessary to introduce the end distribution for the last two monomers in a chain.
We shall denote these as end pair distributions. These satisfy the following recursion
formula,

c(i; r′, r) = exp[λb − λ(r′)]
∫

c(i − 1, r′′, r′)T(|r′ − r|)Ψ (r′′, r′, r)dr′′ (43)

with boundary condition c(0; r′, r) = 1. We note that the arguments r′ and r of
c(i; r′, r), are ordered to denote the coordinates of the second to last and last
monomers in the segment respectively. In terms of these functions, the monomer
density can be recast into the following useful form,

nm(r) = φp

∞∑
r=1

F(r)
r∑

i=1

∫
dr′c(r − i; r′, r)T(|r − r′|)c(i; r, r′)dr′ (44)

Equations (40)–(44) form a closed set of equations to be solved self-consistently.
The effect of polydispersity requires the determination of end pair distributions for
each r-mer in the distribution. As the molecular weight distribution is continuous,
one would generally need to discretize it so as to provide a finite quadrature approx-
imation to the integral over the distribution. This approach has been used in several
applications [37, 38], where it has been shown that adaptive quadrature methods
can lead to efficiently determined approximate integrals. Nevertheless, this gener-
ally leads to more expensive and complex solution algorithms, when compared with
a typical calculation for monodispersed polymer fluid. Below we shall demonstrate
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how a much simpler approach can be used for semi-flexible polymers having the
SFZ molecular weight distribution.

We begin by substituting the explicit form of the SFZ distribution into Eq. (44),
which gives,

nm(r) = φpK
∞∑
r=1

r∑
i=1

rne−κr
∫

dr′c(r − i; r′, r)T(|r − r′|)c(i; r, r′) (45)

= φpK
∞∑
r=1

r∑
i=1

(r − i + i)ne−κ(r−i)
∫

dr′c(r − i; r′, r) ×

T(|r − r′|)e−κic(i; r, r′)

= n!φpK
n∑

l=0

∞∑
r=1

r∑
i=1

∫
dr′ (r − i)l

l! e−κ(r−i)c(r − i; r′, r) ×

T(|r − r′|) in−l

(n − l)!e
−κic(i; r, r′)

The double sum over r and i can be carried out, being careful to treat the term i = r
as a special case (which includes the r = 1 term). We are led to the very simple
equation,

nm(r)/φpKn! =
n∑

l=0

∫
dr′ĉ(l; r′, r)T(|r − r′|)ĉ(n − l; r, r′) +

∫
dr′T(|r − r′|)ĉ(n; r, r′)

(46)
where the transformed end-point distributions are defined by,

ĉ(k; r, r′) =
∞∑
i=1

e−κiikc(i; r, r′)/k! (47)

Thus, the multiple sum in Eq. (44) is replaced by a much smaller sum of terms in
Eq. (46) involving only n + 1 transformed end distributions. A recursion formula for
these can be obtained by multiplying both sides of Eq. (43) by (i + 1)le−κ(i+1)/l! and
summing over i. This results in the following expression,

ĉ(l; r′, r) = e−ψ(r′)e−κ{
l∑

m=0

1

(l − m)!
∫

dr′′ĉ(m; r′′, r′)T(|r′′ − r′|)Ψ (r′′, r′, r) + 1}
(48)

which is closed by the initial condition,

ĉ(0; r′, r) = e−ψ(r′)e−κ{
∫

dr′′ĉ(0; r′′, r′)T(|r′′ − r′|)Ψ (r′′, r′, r) + 1} (49)



Classical Density Functional Theory of Polymer Fluids 115

3.1 Application to Semi-flexible Polymer Solution Films

We shall apply the theory to the case of a polymer solution. To simplify matters, we
treat the solvent molecules implicitly. Thus the solvent influences the problem only
via effective interactions between the monomers and also between the monomers and
the surfaces. It is worth mentioning, however, that it is relatively straightforward to
generalize our approach to explicit solvents, but thiswill not be done in this study. The
implicit solvent model is reasonable if the monomer units are relatively larger than
the solvent molecules. If we further assume that the attractive dispersion interactions
between monomers are strongly screened by the solvent, we arrive at essentially the
same model as considered earlier, which consists of a fluid of excluding chains. In
order to treat the steric interactions between the monomers in the chains, we shall
once again use the generalized Flory-Dimer expression. Hence we assume that the
intrinsic stiffness does not significantly affect the steric contributions to the free
energy [12, 42].

In this example, we shall investigate the fluid film between two large planar
surfaces, immersed in the polymer solution, at some separation h. The (solvent
mediated) interaction between the surfaces and monomers is given by ψ(0)(z, h) =
w(z) + w(h − z), where w(z) is modelled as a truncated and shifted Lennard-Jones
potential,

w(z) = wLJ(z) − wLJ(zc) z < zc
= 0 otherwise (50)

where,

βwL−J(z) = 2π[ 2
45

(
σ

z
)9 − aw

3
(
σ

z
)3] (51)

and we have set zc = 4σ. An adsorbing surface is characterized by aw = 1, while
aw = 0 creates a non-adsorbing surface. In order to avoid the effect of surface-surface
interactions, we have only investigated separations at which there is no overlap
between the potentials, i.e. h > 8σ.

Firstly, we note that the planar symmetry of the system allows a simplification
of the bending contribution to the polymer distribution as follows. Using Δzi ≡
zi+1 − zi, we can write the vector product between adjacent bond vectors as,

si · si+1 = ΔziΔzi+1 + (σ2 − Δz2i )
1
2 (σ2 − Δz2i+1)

1
2 cosφi,i+1. (52)

where φi,i+1 is the angle between si and si+1, as projected onto the plane of the
surfaces. Averaging the corresponding Boltzmann factor over this angle we obtain,

Ψ (Δzi,Δzi+1) = e−ε(1− ΔziΔzi+1
σ2

)I0

[
ε(1 − (

Δzi
σ

)2)
1
2 (1 − (

Δzi+1

σ
)2)

1
2

]
(53)
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where I0(x) = 1
2π

∫ 2π
0 exp [−xcosφ] dφ is a modified Bessel function, which can be

evaluated from a polynomial expansion.

3.2 Interaction Free Energy Between Non-adsorbing
Surfaces

We now consider the polymer solution in contact with non-adsorbing surfaces. The
solution-mediated interaction between the surfaces is obtained by considering the
change in the fluid free energy as a function of the surface separation. That is, the
equilibrium polymer density is obtained by solving the functional in Eq. (38) at
different surface separations. These densities are reinserted back into the free energy
functional in order to obtain, Ωeq(h), which is the total equilibrium grand potential
at a given separation. The corresponding total free energy per unit area, g(h), is
obtained by adding the contribution due to volume changes in the bulk reservoir and
then scaling with the area of the surface, S. This gives,

g(h) = Ωeq(h)/S + Pbh (54)

where Pb is the osmotic pressure in the bulk. Figure2a, b shows the net interaction
between surfaces for a fully flexible polymer (ε = 0) and stiff polymers (ε = 6), as
a function of the degree of polydispersity. The net interaction free energy, which
is plotted in the figures is obtained by removing the bulk surface terms that sur-
vive at infinite surface separation, i.e.,Δg(h) = g(h) − g(∞). In the figures we also
show for comparison a typical hydrocarbon-water-hydrocarbon dispersion interac-
tion (Hamaker constant 5x10−21 joules).
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Fig. 2 Interaction free energies per unit area (Δg), between non-adsorbing surfaces, immersed
in polymer solutions containing chains with an average length, < r >b = 400. The parameter
λ = n + 1. The bulk monomer concentration is nbσ3 = 0.01. The dashed line shows a typical
Hamaker attraction for hydrocarbon surfaces across water. a Flexible polymers, with varying degree
of polydispersity. b Semi-flexible polymers, ε = 6, with varying degree of polydispersity. Repro-
duced, with permission, fromMacromolecules 42, 7563 (2009). Copyright 2009, American Chem-
ical Society
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These interaction curves display the depletion attraction, typical of polymer solu-
tions in contact with excluding surfaces. Reduction of the configurational entropy
of the polymers at the excluding walls decreases the internal density leading to
an osmotic attraction between the surfaces. The surface interactions are much
stronger and have a longer range for stiffer polymers. The increase in the strength of
attraction with stiffness is due to the stronger intra-molecular correlations, which
leads to relatively larger configurational entropy losses per molecule due to the sur-
face confinement. That is, while a stiff polymer has less configurational entropy than
a flexible polymer, the effect of the surfaces is more drastic on stiff polymers, leading
to a greater degree of depletion. The depletion interaction begins to act at separations
on the length-scale of the polymer radius of gyration, Rg . This means that the inter-
action free energy has a larger range with stiffer polymers, which of course have a
larger Rg . In addition, we also see a small but discernable increase in the range of
the attraction between the surfaces as the degree of polydispersity increases. This
is because the depletion of polymer molecules longer than the average molecular
weight (present in polydisperse samples) leads to an osmotic attraction at larger sep-
arations, compared with the monodispersed case. This effect is also reflected in the
average polymer length < r > in the slit as a function of the surface separation.

Figure3 shows that < r > is smaller between the surfaces than its bulk value,
even at rather large separations. Not surprisingly, this effect is greater for the stiffer
polymers, given their larger radius of gyration. We also note that the relative increase
in the number of short polymers between the surfaces, as the separation decreases,
is greater for samples with higher polydispersity. For example, the average polymer
length has diminished to approximately 15 for stiff polymers with n = 0 at a separa-
tion of h = 10σ. It is four times larger for n = 3, at the same separation. Nevertheless,
as noted above, the consequent changes to the interaction free energies are small.
That is, at large separations, the osmotic pressure for polydisperse systems is only
slightly more attractive than for the monodispersed case, with a cross-over occur-
ring at smaller separations. The cross-over occurs because monodispersed polymers
are now significantly depleted from between the surfaces, whilst in the polydisperse

Fig. 3 The average polymer
length, < r >, of chains in
the inter-surface (slit) region,
λ = n + 1. Polymer
solutions as defined in Fig. 2.
Reproduced, with
permission, from
Macromolecules 42, 7563
(2009). Copyright 2009,
American Chemical Society
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Fig. 4 Interaction free energies per unit area, between nonadsorbing surfaces, immersed in polymer
solutions containing chains with an average length in the bulk, < r >b = 400. The bulk monomer
concentration is nbσ3 = 0.0001, i.e. considerably lower than in Fig. 2. a Flexible polymers, with
varying degree of polydispersity, λ = n + 1. b Semi-flexible polymers, ε = 6, with varying degree
of polydispersity. Reproduced, with permission, fromMacromolecules 42, 7563 (2009). Copyright
2009, American Chemical Society

case the number of shorter polymers between the surfaces creates a relatively more
repulsive osmotic pressure. This leads to a relatively larger free energy as the con-
figurational entropy of these shorter polymers is reduced by the surfaces. Though
polydispersity effects appears to be small under these conditions, it is well-known
that if the monomer concentration is high enough, excluded volume effects on the
correlation length can be significant. That is, monomer correlations become screened
and the surface interaction can become relatively insensitive to chain length. At con-
siderably lower concentrations, the range of the depletion attraction is essentially
governed by the radius of gyration and the effects of polydispersity are expected
to be more pronounced. This is verified by the results shown in Fig. 4 wherein the
polymer concentration is reduced 100-fold. In this case, the range of the depletion
attraction increases considerably with the width of the molecular weight distribution.

3.3 Interaction Free Energy Between Adsorbing Surfaces

Figure5a, b, shows the interaction between two surfaces that adsorb monomers
via the truncated L-J potential described above. The general shape of the interac-
tion free energy curves is qualitatively different to the depletion interaction between
non-adsorbing walls. We again see that the introduction of stiffness into the model
increases both the strength and the range of the interaction. In addition to this, the
presence of an attraction between monomers and the surfaces has caused the forma-
tion of a barrier into the interaction free energy. The nature of this barrier is somewhat
well-known [25, 43–46]. It is due to the steric interaction experienced between the
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Fig. 5 Interaction free energies per unit area, between adsorbing surfaces, immersed in polymer
solutions containing chains with an average length in the bulk given by, < r >b = 400. The bulk
monomer concentration is nbσ3 = 0.01. The dashed line shows a typical Hamaker attraction for
hydrocarbon surfaces across water. a Flexible polymers, with varying degree of polydispersity,
λ = n + 1. b Semi-flexible polymers, ε = 6, with varying degree of polydispersity. Reproduced,
with permission, from Macromolecules 42, 7563 (2009). Copyright 2009, American Chemical
Society

Fig. 6 The average polymer
length of chains in the
inter-surface (slit) region.
Polymer solutions as defined
in Fig. 5, λ = n + 1.
Reproduced, with
permission, from
Macromolecules 42, 7563
(2009). Copyright 2009,
American Chemical Society
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tails of the adsorbed polymer layers on each surface. For the stiffer polymers inves-
tigated here (ε = 6), the tails of adsorbed polymers generally project further than for
flexible polymers. Thus the barrier occurs at larger separation for the stiffer polymers.
As the surfaces approach even closer, penetration of tails to the other surface occurs
and attractive bridging interactions begin to dominate, leading to a strong attraction
at shorter separation.

Surfaces which are attractive to monomers have a different effect on polydis-
perse polymers. In this case, longer polymers will tend to adsorb more strongly
between attractive surfaces due to cooperative adsorption between monomers. This
co-operativity is greater for stiffer polymers, which lose less configurational entropy
when they adsorb onto surfaces, than flexible polymers. Thus, for polydisperse sys-
tems, the average molecular weight of polymers between the surfaces is larger than
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that of the bulk. This occurs at all separations, as shown in Fig. 6. Not surprisingly, the
more widely polydisperse samples allow adsorption of longer polymers. For exam-
ple, equilibrium polymers (n = 0) between the surfaces have an average length some
five times higher (at separation h = 10σ) than in the bulk. Generally, the average poly-
mer length between the surfaces increases as the surfaces approach. As the average
length of the adsorbed chains becomes larger, the bridging attraction also increases.
It is the ability of longer polymers to bridge between surfaces, at relatively small
cost to their configurational entropy, which leads to their preferential accumulation
in the region at and between the surfaces. The increased bridging strength leads to a
reduction of the free energy barrier, as clearly seen in Fig. 5a, b. Again, this effect is
stronger for stiffer chains. One interesting result is that for equilibrium polymers, the
free energy barrier appears to have disappeared completely. Compared with the case
of depletion attraction between non-adsorbing surfaces, the effect of both stiffness
and polydispersity on the interaction free energies are relatively much larger.

In order to determine if the magnitude of the polymer mediated forces are relevant
to phenomena such as colloidal stability, we have employed the Derjaguin approxi-
mation [47], which allows us to estimate the interaction between large particles. The
expression for the interaction between two spherical colloidal particles, with radius
R, is given by,

W(D) ≈ −πR
∫ ∞

D
dxg(x) (55)

where g(x) is the free energy per unit area between the surfaces, andD is the surface
to surface separation between the spheres. Recent work by us has shown that the
Derjaguin approximation can be quite accurate, even for surprisingly small colloidal
radii (relative to that of the polymer radius of gyration) [48].We chose a sphere radius
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Fig. 7 Interaction free energies (W ), between adsorbing spherical colloids, as obtained via the
Derjaguin approximation, Eq. (55), assuming a colloid radius of 100 σ. The bulk monomer density
is nbσ3 = 0.01. a Flexible polymers, with varying degree of polydispersity, λ = n + 1. b Semi-
flexible polymers, ε = 6, with varying degree of polydispersity. Reproduced, with permission, from
Macromolecules 42, 7563 (2009). Copyright 2009, American Chemical Society
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of 100 σ. The resulting interactions, under adsorbing conditions, are presented in
Fig. 7. The free energy barrier is about 0.6kBT for monodispersed flexible polymers,
and 3.5kBT for monodispersed stiff polymers. Note also that the barrier occurs at
larger separation in the latter case, which makes the barrier more relevant. This
is because the van der Waals attraction rapidly becomes weak as the separation
increases.

The most important effect of polydispersity is the progressive diminishing of
this free energy barrier, as the samples are made more polydisperse, to the point
of monotonic attraction, in the presence of equilibrium polymers. These barriers
seem to contradict a well-known theorem by de Gennes, according to which surface
interactions at full equilibriumsupposedly give amonotonic attraction [36].However,
this theorem relies on the Edwards-de Gennes theory, in the limit of infinitely long
chains. As demonstrated in previous work [44] a sizable free energy barrier will
persist even for very long polymers. This has also been shown by van der Gucht et
al. [49].

3.4 Approaching the Rod-Like Limit

In the approach to the rod-limit, the persistence length, lp(≈ ε), approaches the
polymer contour length, L = (r − 1)σ. One may expect that polydispersity effects
for semi-flexible polymers approaching the rod limit may be relatively larger than
for flexible chains. Between non-adsorbing walls, for example, one expects to find a
population of shorter (more rod-like) polymers between the surfaces, compared with
the bulk. On the other hand, for adsorbing walls, longer (less rod-like) polymers
will be found. Figure8 shows the interaction free energy for adsorbing surfaces
immersed in a fluid of short, monodispersed polymers. As one approaches more rod-
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Fig. 8 Interaction free energies per unit area, between adsorbing surfaces, immersed in monodis-
perse polymer solutions, where r = 50. The bulk monomer concentration is nbσ3 = 0.01. Interac-
tions are given for various values of the bend stiffness parameter, ε. Reproduced, with permission,
from Macromolecules 42, 7563 (2009). Copyright 2009, American Chemical Society
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Fig. 9 Adsorbing surfaces, immersed in polydisperse polymer solutions, with average length
< r >b = 50 in the bulk. The bend stiffness parameter is high, ε = 25, which renders the chains
rod-like. The bulk monomer concentration is nbσ3 = 0.01. a Interaction free energies per unit area.
b The average chain length, in the inter-surface (slit) region. Reproduced, with permission, from
Macromolecules 42, 7563 (2009). Copyright 2009, American Chemical Society

like behaviour (by increasing ε),we see a non-monotonic behaviour in the free energy.
In the presence of flexible polymers we see the onset of a weak free energy barrier,
due to the overlap of adsorbed monomers, as described earlier. Of course, this occurs
at smaller separation now, as the polymers are much shorter (r = 50). As ε increases,
the position of the barrier, and its magnitude, initially shifts out to larger separation,
as expected, but then starts tomove inward, as the adsorbed layers become flatter. The
flattening out of the adsorbed layer is due to the increasing stiffness, which promotes
the cooperative adsorption ofmonomers on the same chain. One also begins to see the
onset of a depletion attraction regime at intermediate separations (h ≈ 20σ), which
is quite pronounced for the stiffest polymer investigated (ε = 25). This depletion
comes fromexclusionof non-adsorbedmonomers between the surfaces at separations
around the persistence length of the polymer (lp ≈ ε).

As shown in Fig. 9a, if the sample containing the stiffest chains is polydisperse,
we find dramatically different interaction free energies. The typical rod-like char-
acteristics of the free energy is suppressed. Instead, we observe a behaviour which
is reminiscent of longer polymers between adsorbing surfaces. In particular, we see
that at intermediate polydispersity (n = 3), the depletion attraction has disappeared
and a free energy barrier occurs at a separation that indicates an interaction between
two thicker adsorbed layers. For the equilibrium polymer case (n = 0), we once
again see a purely attractive interaction that is due essentially entirely to bridging.
The reason for this behaviour is clearly shown in Fig. 9b, which indicates a dramatic
growth in the average length of polymer population between the surfaces. Thus the
interaction free energy is similar to those found with longer semi-flexible polymers.
Interactions between non-adsorbing surfaces, immersed in solutions containing rod-
like polymers, are presented in Fig. 10a. The forces are much stronger in this case,
as compared to those seen in Fig. 2a, b. This is due to the fact that maximal depletion
forces in general are stronger with shorter polymers, at a fixed bulkmonomer concen-
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Fig. 10 Non-adsorbing surfaces, immersed in polydisperse polymer solutions, with average length
< r >b = 50 in the bulk. The bend stiffness parameter is high, ε = 25, which renders the chains
rod-like. The bulk monomer concentration is nbσ3 = 0.01. a Interaction free energies per unit area.
b The average chain length, in the inter-surface (slit) region. Reproduced, with permission, from
Macromolecules 42, 7563 (2009). Copyright 2009, American Chemical Society

tration, since the bulk osmotic pressure is higher. For the monodispersed case, we see
the occurrence of a slight free energy barrier, at a separation somewhat larger than the
persistence length. Here, polymer molecules begin to lose significant configurational
free energy due to exclusion by both surfaces simultaneously, but depletion is not
yet large enough to create an osmotic attraction. Instead the entropic losses, includ-
ing those due to an increased excluded volume, cause the free energy to increase
slightly, with a resulting barrier. Once the separation is small enough to cause sig-
nificant depletion, the free energy is monotonically attractive, down to contact. In
a very polydisperse solution, the free energy barrier is absent. This is because long
chains are replaced (to some degree) by shorter ones, as the surfaces approach. The
subsequent osmotic effect leads to an attraction. This is a similar mechanism to that
described above for longer polymers. In this case, however, there is an additional
effect from short polymers being more rod-like.

The overall response is illustrated in Fig. 10b, which shows the average molecular
weight of polymers in the region between the surfaces. If we compare with results
of flexible polymers, we note that long, flexible polymers are less depleted at large
separations, than are stiff molecules. At short separations, though, the greater loss
of configurational entropy experienced by the flexible chains, causes them to be
depleted more rapidly, and a crossover occurs at h ≈ 10σ. Interestingly, this occurs
at approximately the same separation for both degrees of polydispersity, n = 0, 3,
though we cannot see a fundamental reason why this should be the case and expect
this result is coincidental.
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4 Other Polymeric Architectures

One of the simplifying aspects of the PDFT as implemented here is that the excess
term in the functional is assumed to be largely independent of the polymer molecular
architecture. In this case, the influence of architecture is manifested only in the ideal
part of the functional via the bonding potential, Φ(b)(R). One recent example of this
type of formulation is in the application of PDFT to room temperature ionic liquids
[50, 51]

4.1 Using the PDFT for Room Temperature Ionic Liquids

Room-Temperature ionic liquids (RTILs) are salts that remain in the liquid state at
temperatures lower than 100 ◦C. Unlike traditional molten salts, RTILs generally
possess a complex molecular structure, which precludes them easily packing into
a crystal even at room temperatures [52, 53]. The often robust chemical structure
of RTILs also imparts them with a high electrochemical stability. The combination
of chemical stability and low melting point makes RTILs potentially good replace-
ments for traditional molten salts in many applications. Some specific uses of RTILs
include: solvents for heterogeneous and homogeneous catalysis; electrolytes in var-
ious electrochemical processes, and dispersive agents for stabilization of nanopar-
ticles [54–56]. Additionally, RTILs have so-called “green” applications, e.g., as a
solvent for cellulose, an important bio-resource [57] and as selective solvents for
the removal of heavy metal contaminants in waste-water treatments [58]. Polymer
density functional theory provides us with a theoretical framework with which to
describe this fascinating class of fluids. In the brief exposition below, we will focus
on the class of imidazolium-based RTILs, but it is clear that the theory can be rather
straightforwardly applied to other RTIL types.

The 1-alkyl-3-methyl imidazolium cation will be generally denoted as, [C+
nMIM],

where n denotes the length of the alkyl chain. Using a united-atom approach we
shall model the CH2 and CH3 groups of the alkyl chain as neutral spheres (Fig. 11).
The imidazolium ring is assumed to be made up of a 4-branched star of tangen-

tial spheres, with each sphere carrying a partial charge of +0.2, to mimick charge
delocalization. The tetrafluoroborate, [BF−

4 ], anion is represented by a similar star,
with each spherical bead carrying a −0.2 partial charge. To simplify the treatment,
the bond distance for all connected sites has the same value of σ = 2.4 Å. This
reflects the approximate size of the molecules concerned [59]. We also assume that
the molecules are freely-jointed, which means that there is no inherent stiffness in
the oligomeric chains and the spheres are allowed to freely rotate over each others’
surfaces. Clearly, both approximations of uniform bond-length and lack of stiffness
can be removed in a more elaborate version of the PDFT.

The partial charges are fixed at the geometric center of each hard sphere site. In
reality, however, the electron density in RTIL molecules will be polarized by fields
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Fig. 11 Coarse-grained
model of RTILs cations
[C2MIM+], [C4MIM+] and
[C6MIM+]; anion [BF−

4 ].
Coloured spheres are
charged and the rest are
neutral (Color figure online)

induced by the local (highly charged) environment. To account for this polarizability
effect, themodel fluid is assumed to be immersed in a dielectric continuumwith a rel-
ative dielectric constant, εr . Although this approximation compromises the dynamic
behaviour, compared to polarizable models [60], it doesn’t significantly affect many
equilibrium properties, such as fluid density profiles and the differential capacitance
[61–63]. We chose, εr = 2.3, which is typical of the electronic polarizability of
hydrocarbon groups. Hence the electrostatic interaction between partial charges is
given by,

φ
αβ
el (r) = zαzβe2

4πε0εrr
(56)

where zα and zβ are the valencies of the interacting pair of charged sites α and β
separated by distance r, e is the elementary charge and ε0 is the vacuum permittivity.
In addition, all beads are assumed to interact via dispersion forces, modelled as a
pairwise additive Lennard-Jones potential,

φLJ(r) = 4εLJ [(σ
r
)12 − (

σ

r
)6] (57)
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where εLJ and σ determine the attractive strength and repulsive range of the dis-
persion interaction respectively. The parameter σ is set equal to the bond-length
(=2.4 Å) and εLJ is assumed to be the same for all pairs of sites. Its value was cho-
sen to reproduce the experimental density (for all n) in the simulated fluid model
for [CnMIM+][BF−

4 ] at 1 atm and a temperature of 294K. Remarkably, this could
be achieved with essentially a single value, εLJ = 100kBK , where kB is Boltzmann
constant.

5 A Classical Density Functional Theory for RTILs

To construct a DFT for the ionic liquid model, it is necessary to adapt the polymer
theory described above. As with the PDFT, the free energy is written as a functional
of the oligomeric densities describing the distribution of the cation and anion sites.
The general form of the grand potential functional, Ω , can be written as,

Ω = Fid[Nc(Rc),Na(Ra)] + Fex
hs [ns(r)] + Fex

disp[ns(r))] + Fex
corr[nc(r), na(r)]

+
∑

α=c,a

∫
Φα(R)Nα(R) dR −

∑
α=c,a

(μα + zαΨD)

∫
Nα(R) dR (58)

Here {Rα;α = c, a} are collective coordinates of the constituent sites on the cation
(c) and anion (a) oligomers. Thus Rα = (rα

1 , ...), where rα
i is the ith site on species

α. The set {Nα(R);α = c, a} are the oligomeric densities for cations and anions.
The function Φα(R) is an externally applied potential, μα is the chemical potential
of species α in the bulk with total charge zα and ΨD is the Donnan potential, whose
value ensures that the system remains electroneutral.

The ideal contribution to the free energy is exactly given by,

βFid[Nc(Rc),Na(Ra)] =
∑

α=c,a

∫
Nα(R) (ln[Nα(R)] − 1) dR

+
∑

α=c,a

∫
Nα(R)βΦ(b)

α (R) dRα (59)

where Φ(b)
α (R) is the bond potential for molecular species α. As bonded spheres are

able to roll over each others’ surfaces without angular constraints and all bonds have
the same length, σ, we have

e−βΦ(b)
α (Rα) =

∏
〈i,j〉α

δ(|ri − rj| − σ)

4πσ2
(60)

where 〈i, j〉α runs over all pairs of bonded sites i and j on species α.
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The site density, nα
i (r), is the contribution to the monomer density of the site i on

species α. It is obtained as an integral over the oligomeric density Nα(Rα),

n(i)
α (r) =

∫
δ(r − rα

i )Nα(R)dR (61)

The excess functionals are assumed to depend upon certain collective site densities,
which are sums over the individual site densities. For example, {nβ(r);β = c, a, n},
refer to densities of positive, negative and neutral sites where, e.g., nc(r) is the sum of
density contributions over all the charged sites on the cation. The overall sum of site
densities is, ns(r) = nc(r) + na(r) + nn(r). The excess hard sphere term, Fex

hs [ns(r)],
is a functional of the total site density and was given earlier in Eq. (27). As was done
above, we will neglect the dependence on terminal monomers. The dispersion term,
Fex
disp[ns(r)], has the same form as Eq. (29).

5.1 Dealing with Electrostatic Correlations

The electrostatic correlation functional is assumed to be second-order with respect to
the relevant charge densities, and can be divided into like-charge and unlike-charge
terms,

Fex
corr ≈ 1

2

∫ ∫ ∑
α,β

nα(r)nβ(r′)Kαβ
corr(|r − r′|) dr dr′ = Flike

el + Funlike
el (62)

5.1.1 Correlations Between Like Charges

The mean-field expression for the electrostatic interaction between like-charged ions
is given by,

FMF
el = 1

2

∫ ∫ ∑
α

nα(r)nα(r′)Φαα
el (|r − r′|) dr dr′ (63)

where Φαα
el (|r − r′|) is given by Eq. (56). This mean-field expression does not ade-

quately account for electrostatic correlations. In dilute electrolytes, the correlation
term is expected to be small and delocalized. In dense RTILs, however, it is more
localized and contributes a significant repulsive interactionwhich should be removed.
This can be viewed as a “Coulomb hole” in the like-charge density around a given
particle. This is a soft hole as particles carrying charges of the same sign naturally
tend to avoid each other due to electrostatic repulsions. To describe this effect, we
shall use a so-called “hole” function, H(r), with the following properties: H(0) = 0
and H(r) → 1 as r → ∞. In terms of this function, the electrostatic interactions
between like-charges is given by,
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Flike
el = 1

2

∫ ∫ ∑
α

nα(r)nα(r′)Hα(|r − r′|)Φαα
el (|r − r′|) dr dr′ (64)

As a simple approximation, we choose an exponential form for the hole function,
i.e.,

Hα(r) = (1 − e−λαr) (65)

The parameter λα is determined by a bulk condition that the hole function describes
the exclusion of a single charge, i.e.,

n(α)

b

∫
{Hα(|r|) − 1} dr = −1 (66)

where n(α)

b is the bulk density of the charged species α. Thus we obtain,

λα =
√
2

sα
(67)

with

sα =
[

3

4πn(α)

b

]1/3

(68)

5.1.2 Correlations Between Opposite Charges

The correlation between oppositely charged ions is generally overestimated by the
mean-field electrostatic interaction. This is due to the fact that the mean-field expres-
sion allows complete penetration by opposite charges, which in reality is excluded by
the steric repulsion between particles. A simple way to correct the mean-field theory
is to build in an effective hard sphere like exclusion hole around each oppositely
charged pair. The unlike-charge electrostatic interaction is then given by

Funlike
el = 1

2

∫ ∫ ∑
α �=β

nα(r)nβ(r′)�(|r − r′| − d)Φ
αβ
el (|r − r′|)drdr′ (69)

where the Heaviside function is defined as: �(x) = 1 for x > 0 and �(x) = 0 for
x ≤ 0. The parameter d is a “distance of closest approach” between unlike charged
species. As such it should be numerically equal to the sum of the radii of the species,
σ. However, additional correlations (beyond the hard sphere diameter σ) between
oppositely charged species can be mimicked to some extent by setting d = χσ,
with χ an adjustable parameter. Given this ansatz, the question then arises as to
how χ should be chosen. In the same way that εLJ was chosen so as to obtain
agreement between experimental and simulated bulk RTIL densities, we chose χ
so that the correct bulk densities were obtained from density functional theory. For
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[CnMIM+][BF−
4 ] this procedure gives rise to the values χ = 0.64, 0.71 and 0.80 for

n = 2, 4, 6 respectively. We not that χ is generally less than unity, which reflects the
positive adsorption between unlike ions.

5.2 Numerical Solution via End Segment Distribution

Minimizing the grandpotential functionalΩ inEq. (58)with respect to the oligomeric
densities Nα(Rα), leads to the now familiar looking general formula for the config-
urational densities,

Nα(Rα) = nb exp[−βΦ(b)
α (Rα) +

∑
j

(λb
αj − λαj(rj))] (70)

where nb is the density of cations (and anions) in the bulk. Each site j on themolecular
species α carries an excess chemical potential λb

αj − λαj(r) where,

λαi(r) = δβFex[Nc(Rc),Na(Ra)]
δn(i)

α (r)
+ βφ(i)

α (r) (71)

Here Fex[Nc(Rc),Na(Ra)] is the sum of all the non-ideal terms in Eq. (58), and we
have included the external potential, φ(i)

α (r), which is assumed to act on individual
beads. The form of this potential is determined by the system being studied, but
we will usually have only three possible types of excess site terms, λβ(r), with
β = c, a, n, corresponding to positive, negative and neutral sites. In the bulk we
have λβ(r) = λb

β . Equation (70) needs to be solved self-consistently, as the λβ(r) are
usually functionals of the site densities.

It is useful to represent the solutions to the DFT diagrammatically. To do this, we
define a set of vertices and bonds, as shown in Fig. 12. The open symbols in the shape
of circle, square and diamond respectively, correspond to the neutral, positive and

Fig. 12 Diagrams of bonds and vertices with circle for neutral, square for positive and diamond for
negative beads in themodel. Vertices stand for local excess chemical potential factors. The solid line
represents the rigid bond between neighbouring beads. Colouring in a vertex means integrating the
bead over spherical surface of its neighbouring bead. An example is given of integrating a positive
bead over the bond terminating at r
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Fig. 13 Diagram of
normalized density solution
of Nc(Rc)/nb for cation
[C2MIM+]

negative factors containing the corresponding excess chemical potential terms (as
indicated). The solid line represents the normalized Dirac delta function, describing
the freely rotating rigid bond between sites. Graphs consisting of vertices connected
by bonds represent the product of the associated functions. Colouring in a vertex
indicates integrating that site over all space, as shown in Fig. 12. With these rules it
is easy to see that the normalized equilibrium configurational density for the cation
(from Eq. (70)), Nc(Rc)/nb, can be represented diagrammatically as in Fig. 13. The
site density of bead i on molecule α is obtained by the integral,

n(i)
α (r) =

∫
δ(r − rα

i )N(R)dRα

=
∫

δ(r − rα
i )nb exp[−βΦ(b)

α (Rα) +
∑
j

(λb
αj − λαj(rα

j ))]dR (72)

in which j runs over all sites on molecule α. These can also be represented in terms
of the product of simpler diagrams, as we shall now illustrate.

As before, we will define end segment distribution functions, but these will be
slightly different to those described in earlier sections. One type of end distribution
will be called branch end segment distributions, denoted as c(αi, r). The function
c(αi, r) contains coloured vertices connected by bonds with one terminal site (a
site with only a single adjacent bond), but no branching sites of the molecule and a
dangling bond attached at siteαi. A branching site is onewithmore than two adjacent
bonds, e.g., site c3 on the cation in Fig. 13. Two examples of branch end segment
distributions at c1 and c2 are given in Fig. 14. The other type of segment distribution
we will call complementary end segment distributions. These are connected graphs
of coloured vertices and a dangling bond attached at the end site. All the molecular
vertices not included in the complementary graph can be connected and coloured to
make a branch end segment distribution. In linearmolecules the discrepancy between
branch and complementary end segment distributions doesn’t exist. An example of
a complimentary end segment distribution, denoted here as c′(c2, r) is also given in
Fig. 14. The branch end segment distributions are obtained recursively along each
chain branch. For example, we have
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Fig. 14 Diagrams for the recursive process of generating branch end segment distribution, c(c2, r)
from c(c1, r). Example of the complementary end segment distribution c′(c2, r) for [C2MIM+]

c(c1, r) = eλb
n

4πσ2

∫
e−λn(r′)δ(|r′ − r| − σ) dr′ (73)

The function c(c2, r) is then generated from c(c1, r), as illustrated in Fig. 14, accord-
ing to the recursion formula.

c(c2, r) = eλb
c

4πσ2

∫
c(c1, r′)e−λc(r′)δ(|r′ − r| − σ) dr′ (74)

On the other hand, complementary segment distributions must be constructed using
products of branch end segment distributions. For example, the complementary graph
c′(c2, r) is given by,

c′(c2, r) = eλb
c

4πσ2

∫
e−λc(r′)c′(c3, r′)δ(|r′ − r| − σ) dr′ (75)

with

c′(c3, r) = eλb
c

4πσ2

∫
e−λc(r′)c(c4, r′)c(c7, r′)c(c8, r′)δ(|r′ − r| − σ) dr′ (76)

While it is not clear from the simple nomenclature used here, we note that there are
three different complimentary distributions at the branching site c3 (as there are three
branches emerging from that site). Two of these will be equivalent due to symmetry.
Any site density can always be written as a product of the site vertex and branch
and complementary end segment distributions. For example, the graph in Fig. 15
representing the normalized site density at c2, contains a product of end segment
distributions, given by
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Fig. 15 Diagram for
normalized site density of
bead c2 on cation
[C2MIM+]. End segment
distribution c(c1, r) and
c′(c3, r) are combined

Fig. 16 Diagram for
normalized site density of
central bead c3 on cation
[C2MIM+]. It is obtained as
the product of 4 branch end
segment distributions (as
shown) and the site vertex

n(2)
c (r) = nbe

λb
c−λc(r)c(c1, r)c′(c3, r) (77)

The density contribution due to all other sites can be calculated in a similar fashion.
The monomer density at branching sites can be written in terms of the product of a
vertex and end segment distribution functions. For example the graphical expression
for the density at site c3 is depicted in Fig. 16 and is given by,

n(3)
c (r) = nbe

λb
c−λc(r)c(c2, r)c(c4, r)c(c7, r)c(c8, r) (78)

5.3 RTILs at Planar Electrodes: Comparison of the DFT
with Simulations

The performance of the DFT for the RTIL is evaluated by considering the screening
of charged electrodes [59] immersed in the fluid. We compare the predictions of the
DFT to Monte Carlo simulations for the coarse-grained model described above. The
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electrodes are assumed to be planar with an inverse surface charge density given by
the parameter a(s). Furthermore, all sites of the RTIL fluid experience a dispersion
interaction with the electrode, obtained by integrating the Lennard-Jones potential
over the half-space constituting the surfaces:

βwLJ(z) = 2πεLJ

[
2

45
(
σ

z
)9 − 1

3
(
σ

z
)3

]
(79)

where z is the distance from the plane of the surface, and we assume a particle
density for the half-space of 1/σ3. Figure17 compares the DFT predictions for the
density profiles of positive, negative and the sum of all sites with simulation data for
[C4MIM+][BF−

4 ] adjacent to electrodes with varying surface charge densities. The
DFT performs remarkablywell, seemingly able to capture all the important structural
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Fig. 17 Comparing simulated (solid lines) and calculated (dashed lines—by DFT) density dis-
tributions, of positive, negative and sum of all beads for [C4MIM+][BF−

4 ] adjacent to charged
surfaces (at z = 0). At various surface charge densities: a as = −100Å2/e; b as = −200Å2/e
c as = −400Å2/e; d as = 100Å2/e
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features of the density profiles with onlyminor variations from the (exact) simulation
results.

6 Conclusion

Classical density functional theory for fluids has developed rapidly over the last few
decades. The application to polymeric and other complex fluids, followed from its
demonstrated early successes in simple fluid models. We have shown how the poly-
mer density functional theory can be successfully applied to both monodisperse and
polydisperse polymers, where the latter displays a Schulz-Flory-Zimm molecular
weight distribution. In that case, the theory is significantly simplified, with relatively
modest numerical requirements for its solution. This was specifically illustrated for
semi-flexible polydisperse polymers in solution. Finally, we showed howmore com-
plex molecular architectures could also be handled merely by introducing the con-
nectivity constraints in the ideal free energy contribution. This was illustrated using
a coarse-grained model for room temperature ionic liquids. For these highly charged,
dense fluids a relatively simple treatment of electrostatic correlations, coupled with
established steric contributions to the free energy, led to a very accurate theory, as
compared to simulations.

The computational advantages of classical polymer density functional theory
facilitates the study of systems with boundary conditions that better mimic experi-
mental scenarios. One example of this is dealing with the grand canonical ensemble,
which ensures that equilibrium with a bulk reservoir is maintained. This condition
is often very difficult to achieve in simulations. Furthermore, one is able to consider
systems with a greater degree of polymerization.

One of the drawbacks of the polymer density functional theory is that it employs
mean-field approximations that generally fail to capture the effect of correlations on
chain configurations. This could be addressed by using a more accurate treatment of
intra-molecular constraints, or else using experimental measurements to enforce say
a given radius of gyration. These issues notwithstanding, density functional theory
has now established itself as a valuable tool for the study of non-uniform complex
fluids, for both theoreticians and experimentalist alike.
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Variational Perturbation Theory
for Electrolyte Solutions

Leo Lue

1 Introduction

In typical treatments of the statistical mechanics of electrolyte solutions, the focus is
on the particles (ions) in the system. The state of the system is labeled by the particle
positions and orientations, and the partition function of the system is given by an
integral over all these degrees of freedom. Another approach, which we pursue and
present here, is to focus on the interaction potential generated by the particles, rather
than on the particles themselves. We illustrate this approach by examining systems
of particles interacting through electrostatic forces; however, these techniques can
be used for a broad range of interaction potentials.

The remainder of the work is organized as follows. First we describe the repre-
sentation of the partition function of an electrolyte system in terms of a functional
integral over shapes of an interaction potential, rather than the positions and orien-
tations of the ions in the system. As part of this, we will review electrostatics, and
in particular, we will discuss the Green’s function, which describes the propagation
of the electric potential from a charge and plays a central role in the theory. The
use and limitations of the mean-field approximation to evaluate the functional inte-
gral are discussed. In the following section, we present the variational perturbation
approximation, which is a method that overcomes some of the limitations of the
mean-field approximation. Some general aspects of this approach are discussed. The
resulting theory is then illustrated in Sect. 4 by applying it to the point charge model.
The first order variational perturbation theory is compared to the Poisson-Boltzmann
theory, and various features of the model, which are not captured within the classic
Poisson-Boltzmann theory, are discussed, including the influence of image-charge
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or polarization interactions due to dielectric interfaces. Finally, the main points of
this work are summarized in Sect. 5, along with other applications and extensions of
the theory.

2 Development of the Field Theory

We consider a multicomponent mixture of charged particles at fixed temperature T ,
volume V , and species chemical potentials μα . Associated with each particle of type
α is a rigid charge density, given by Qα(r,Ω), where Ω represents its orientation.
These particles are embedded in amediumwith a spatially varying dielectric constant
ε(r). In addition, there could be a fixed charge distributionΣ(r) through the system,
for example, due to a charged boundary.

2.1 Electrostatics

The total charge densityQ(r) in the system is composed of a contribution from the
mobile particles and a contribution from a fixed charge density Σ(r) and can be
written as

Q(r) =
∑
kα

Qα(r − Rkα,Ωkα) + Σ(r) (1)

whereRkα is the position of the kth particle of typeα, andΩkα denotes its orientation.
Charges are sources for the electrostatic potential φ(r). These two quantities are

related by the Poisson equation [1]:

− 1

4π
∇ · [ε(r)∇φ(r)] = Q(r). (2)

Key to the description of electrostatic interactions is the Green’s function G0 of the
Poisson equation, which is defined through [1]

− 1

4π
∇ · [ε(r)∇G0(r, r′)] = δd(r − r′), (3)

The Green’s function G0(r, r′) gives the electrostatic potential φ(r) generated at
position r due to a point charge located at r′. In the specific case where the dielectric
constant has a uniform value ε through the entire system, the explicit form of the
Green’s function, denoted by Gfree, is

Gfree(r, r′) = 1

ε|r − r′| . (4)
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The formof theGreen’s function is affected by the variations in the dielectric constant
ε(r) through the system, which reflects the polarizability of the background.

The manner in which the potential emanates from a general charge distribution
and propagates through the system is characterized by the Green’s function:

φ(r) =
∫

dr′G0(r, r′)Q(r′) (5)

which is simply another manner to write the Poisson equation.
The total electrostatic energy Eelec of the system can be written as the product of

the charge density in the system and the electrostatic potential [1]:

Eelec = 1

2

∫
drQ(r)φ(r). (6)

Substituting the expression for the electrostatic potential in terms of the charge den-
sity, as given in Eq. (5), the energy of the electrostatic field can be written in a more
familiar form:

Eelec = 1

2

∫
drdr′Q(r)G0(r, r′)Q(r′) (7)

This expression for the energy generalizes Coulomb’s law (where G0 is replaced
with Gfree) for the situation where the dielectric constant is not spatially uniform.

The expression for the electrostatic energy given in Eq. (7) contains contributions
from the interaction of the charge of a particle with the electrostatic potential that it
generates—the self energy of the particle. The electrostatic self energy of a particle
of type α is given by

eseα (R,Ω) = 1

2

∫
drdr′Qα(r − R,Ω)Gfree(r, r′)Qα(r′ − R,Ω) (8)

The self energy is the interaction of a particle’s charge distribution with the elec-
trostatic potential it generates in the absence of spatial variations of the background
dielectric constant. The introduction of inhomogeneities in the dielectric constant,
such as polarizable bodies or dielectric interfaceswill lead to a shift of the self energy.

Removing this self energy contribution (which is potentially infinite, such as for
a point charge), the electrostatic interaction energy between particles is given by

Eelec = 1

2

∫
drdr′Q(r)G0(r, r′)Q(r′) −

∑
kα

eseα (Rkα,Ωkα). (9)
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2.2 Partition Function

All the equilibrium static properties (e.g., structural and thermodynamic) of an open
system of fixed volume V , temperature T , and species chemical potential μα can be
determined from knowledge of the grand partition function ZG . The grand partition
function of this system is given by [2]

ZG[γ,Σ] =
∞∑

N1=0

· · ·
∞∑

NM=0

∏
ν

1

Nν !ΛdNν
ν

×
∫ ∏

tτ

dRtτdΩ tτ e
−βEelec−βEref+∑

kα γα(Rkα,Ωkα) (10)

where β = 1/(kBT), kB is the Boltzmann constant, Λα is the de Broglie wavelength
of particles of type α, γα(Rkα,Ωkα) = βμα − βu(1)

α (Rkα,Ωkα) is a dimensionless
chemical potential which includes the effect of an applied one-body potential u(1)

α ,
and Eref is the interaction energy between particles that is not due to electrostatics
(e.g., excluded volume).

In order to transform the partition function from a sum over particle positions and
orientations to a sum over shapes of a fluctuating field, we introduce the Hubbard-
Stratonovich transformation [3, 4]. In terms of the electrolyte systems, this approach
has been used by many researchers [5–8]. This transformation allows us to represent
the electrostatic interaction energy Eelec of the charge distribution in the system in
terms of the following average

exp

(
− 1

2β

∫
drdr′Q(r)G0(r, r′)Q(r′)

)
=

〈
e− ∫

drQ(r)iψ(r)
〉
0

(11)

where

〈(· · · )〉0 = 1

N0

∫
Dψ(·)(· · · )e−H0[ψ], (12)

the Hamiltonian H0 is given by

H0[ψ] = 1

2β

∫
drdr′ψ(r)G−1

0 (r, r′)ψ(r′), (13)

and N0 is a normalization constant which is given by

N0 =
∫

Dψ(·)e−H0[ψ] ∝ (detG−1
0 )1/2 (14)
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Consequently, we find that the grand partition function can be written as

ZG[γ,Σ] =
〈
Z ref
G [γ − Qiψ + βese] exp

[
−

∫
drΣ(r)iψ(r)

]〉
0

(15)

where Z ref
G [γ ] is the grand partition function of a system where there are no electro-

static interactions between the particles.
The main physical interpretation of this mathematical transformation of the par-

tition function is that the grand partition function of a system with electrostatic
interactions is identical to a system without electrostatic interactions, but with each
particle interacting with a “randomly” fluctuating external field. The strength of the
coupling of each particle to this field is proportional to its charge:

γα(R,Ω) → γα(R,Ω) −
∫

drQα(r − R,Ω)iψ(r) + βeseα (R,Ω).

The field ψ is not entirely randomly distributed but, rather, is spatially correlated
to itself. It is actually distributed according to a Gaussian probability distribution
function with a zero mean. The correlation of a fluctuation of ψ at a position r and a
fluctuation at a position r′ is given by the Green’s function of the Poisson equation
(i.e. 〈ψ(r)ψ(r′)〉 = βG0(r, r′)). The Hubbard-Stratonovich transformation is not
limited to electrostatic interactions, but it can also be performed on any general
pairwise additive interaction. The two-point correlation of the fluctuating field is
proportional to the pairwise interaction potential of the system.

2.3 Dispersion Interactions

Before we discussmethods to evaluate the grand partition function, there are a couple
of nice features that should be mentioned about the functional integral formulation.
First, the “fluctuations” of the electric potential in the systemwere assumed to be due
to the thermalmotion of the ions in the system.However,we can consider the partition
function for a systemwithout any charged particles. The partition function essentially
becomes the determinant of the Green’s function of the Poisson equation. Changes
in the arrangement of dielectric bodies in the system will alter the function ε(r), and,
consequently, will affect the Green’s function G0(r, r) of the Poisson equation. This
will lead to differences in the normalization constant N of the functional integral,
which are essentially related to the determinant of the Green’s function

βF = − ln
N0

Nfree
= 1

2
Tr ln

G0

Gfree
. (16)

where Tr stands for the operator trace. Interestingly, in this case, the functional inte-
gral formulation reduces to the Lifshitz theory of the dispersion interaction [9]. The
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theory is able to nicely couple dispersion (aka van derWaals) forces and electrostatic
interactions within a single framework [10].

The difference in this determinant in the situationwhere there are dielectric bodies
versus the absence of dielectric bodies (the free state), leads to an effective interaction
between the bodies due to a shift in the normal modes available to the electric
potential. So one nice thing about this transformation is that it allows us to naturally
couple the thermalmotion of the charged particles in the system to the zero frequency
dispersion interactions. For example, we naturally get screening of the dispersion
interaction [7, 11–13].

2.4 Mean-Field Approximation

The functional integral formulation of the partition function is exact. Unfortunately,
it is not possible to analytically evaluate the functional integral due to the nonlinear
dependence of the reference partition function ln Z ref on the one-body potentials
γα(R,Ω). As with all exact truths, we really can not do anything useful until we
make some sort of approximation.

One of the simplest approximations is to neglect the fluctuations in the field alto-
gether and simply choose the value of the field which has the “largest” contribution
to the free energy—the largest value of the integrand. That is, we approximate the
average of a quantity of a functional A[ψ] as

〈
eA[ψ]〉

0 ≈ eA[ψ̄] (17)

where ψ̄ is the form of the function ψ which makes the functional eA[ψ] stationary:

δA[ψ̄]
δψ(r)

= 0 (18)

This is known as the mean-field approximation.
Applying this to the evaluation of the grand partition function, we find

ln ZG[γ,Σ] ≈ 1

2β

∫
drdr′iψ̄(r)G−1

0 (r, r′)iψ̄(r) −
∫

drΣ(r)iψ̄(r)

+ ln Z ref
G [γ − Qiψ̄] (19)

The final term is the grand potential of the reference system, where the chemical
potential (or one-body potential) of the particles has been shifted by a coupling of
the particle by its charge to the mean field ψ̄ :

γα(R,Ω) → γα(R,Ω) −
∫

drQα(r − R,Ω)iψ̄(r). (20)
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In the mean field approximation, contributions of configurations of the system that
deviate from the representative value ψ̄ are entirely neglected.

The value of ψ̄ is determined by the stationary condition

δ ln ZG[γ,Σ]
δψ̄(r)

= 0. (21)

This leads to the Poisson equation:

− 1

4πβ
∇ · ε(r)∇iψ̄(r) =

∑
α

∫
dRdΩQα(r − R,Ω)ρα(R,Ω) + Σ(r) (22)

where ρα(R,Ω) density of particles of type α in the system. From this, we find that
the field iψ̄ can be directly related to the average electrostatic potential in the system
as iψ̄(r) = βφ(r).

The particle density is given by

ρα(R,Ω) = ρref
α (R,Ω; γ − Qiψ̄). (23)

Within the mean-field approximation, we see that the particle density is the same as
for the reference system (which does not include electrostatic interactions) but with
an additional one-body interaction given by the coupling of the particle charge to the
average electrostatic potential [14].

This is a good approximationwhen the charge of the particles and themagnitude of
any fixed charges are relatively small. However, if either of these become significant
(e.g., multivalent ion or surfaces with a high charge density), then fluctuations make
an important contribution to the properties of the system. There are also situations
where even though the fluctuations in a system may be small, they can lead to
qualitative differences in the predictions of the theory. One such example is the
depletion of ions in aqueous solution from an air-water interface, thereby increasing
the interfacial tension.

One manner to incorporate fluctuations in the evaluation of the functional integral
is to expand the Hamiltonian in terms of fluctuations in the field around the mean
field value. This is known as the loop approximation. When truncated at quadratic
order, this is the one-loop approximation. This type of approach has been performed
analytically [7, 11, 15] and numerically (e.g., lattice field theorymethods [6, 16, 17]).
One difficulty with the loop expansion is that it leads to divergences, which must be
dealt with by careful renormalization of the theory. In the following section, we will
present another approach, known as the variational perturbation approximation, that
is free of this issue and has many other nice features.
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3 Variational Perturbation Approximation

In the previous section,wementionedmean field theory,where the functional integral
is approximated by only one representative distribution of the field ψ̄ . So long as
the contributions of other shapes of the field are much smaller, then the mean field
approximation should be good. In this section, we discuss the variational perturbation
approximation [18], a method to systematically include fluctuation contributions to
the partition function to increasing orders of accuracy.

In this approach, the integrand in the partition function (see Eq. (15)) is approxi-
mated with a Gaussian function:

HK [ψ] = 1

2β

∫
drdr′[ψ(r) − ψ̄(r)]G−1

K (r, r′)[ψ(r′) − ψ̄(r′)] (24)

where GK is a renormalized Green’s function, defined as

G−1
K (r, r′) = G−1

0 (r, r′) + K (r, r′). (25)

where ψ̄ andK are arbitrary functions which will be used as variational parameters.
The grand partition function is then rewritten in terms of averages with respect to

the variational Hamiltonian HK as

ln ZG[γ,Σ] =
〈
eln Z

ref
G [γ−iQψ+βese]−(H[ψ]−HK [ψ])

〉
K

NK

N0
(26)

where 〈(· · · )〉K denotes an average with respect to the Hamiltonian HK , and NK

is the associated normalization constant. The ratio which follows the average is the
change of the normalization constant due to the change of the average from using
H0 to using HK .

The average of the exponential term in Eq. (26) can be evaluated using a cumulant
expansion:

ln
〈
eA[ψ]〉 ≈ 〈A[ψ]〉(c) + 1

2! 〈A
2[ψ]〉(c) + 1

3! 〈A
3[ψ]〉(c) + · · ·

where 〈An[ψ]〉(c) denotes the nth cumulant of the distribution. Truncating this expan-
sion to the first order, we find the following inequality

ln ZG[γ,Σ] ≥
∫

drdr′iψ̄(r)G−1
0 (r, r′)iψ̄(r′) −

∫
drΣ(r)iψ̄(r)

+ 〈
ln Z ref

G [γ − iQψ + βese]〉
K

+ 1

2
TrK GK + ln

NK

N0
(27)

The true value of the grand partition function will be larger than the estimate of the
first order cumulant approximation for any choice of ψ̄ and K .
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In the exact theory, the predictions for the properties of the system are independent
of the choice of ψ̄ andK ; however, by making approximations, the resulting theory
will have a dependence on these quantities. In order to minimize this effect, we select
these values such that the free energy is stationary with respect to variations in these
quantities. This leads to the following variational conditions:

δF

δψ̄(r)
= 0 (28)

δF

δK (r, r′)
= 0. (29)

These conditions can be used to determine the “optimal” values of the quantities ψ̄

and K .
Equation (28) leads to the Poisson equation

− 1

4πβ
∇ · ε(r)∇iψ̄(r) =

∑
α

∫
dRdΩQα(r − R,Ω)ρα(R,Ω) + Σ(r) (30)

where ρα(R,Ω) is the density of particles of type α and is given by

ρα(R,Ω) = 〈
ρref

α (R,Ω; γ − Qiψ + βese)
〉
K

. (31)

From this relation, we see that ψ̄(r) = βφ(r) can be identified with the average of
the electrostatic potential, as in the mean-field approximation.

The variational relation with respect to the screening function K (see Eq. (29))
leads to

K (r, r′) = 〈
ψ(r)ψ(r′) ln Z ref

G [γ − Qiψ + βese]〉
K

−GK (r, r′)
〈
ln Z ref

G [γ − Qiψ + βese]〉
K

. (32)

One of the key challenges to applying this theory is the ability to solve Eq. (32).
In particular, it is typically quite difficult to determine a closed, analytical form for
GK (r, r′). One approximation strategy is to find some simple variational form for
K (r, r′) where the Green’s function is known, and then vary the parameters of this
function to minimize the free energy.

The Helmholtz free energy functional can be determined by performing a Legen-
dre transform:

F[ρ,Σ] =
∑

α

∫
dRdΩρα(R,Ω)γα(R,Ω) − ln ZG[γ,Σ]. (33)
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The resulting expression for the free energy is:

F[ρ,Σ] =
∑

α

∫
dRdΩρα(R,Ω)[ln ρα(R,Ω)Λd

α − 1]

− 1

2β

∫
drdr′iψ̄(r)G−1

0 (r, r′)iψ̄(r′) (34)

+
∫

dr
[∫

dRdΩρα(R,Ω)Qα(r − R,Ω) + Σ(r)
]
iψ̄(r)

− ln
NK

N0
− 1

2
TrK G0.

From the free energy functional, we can derive all equilibrium properties of the
system.

The use of the variational approximation assumes that the fluctuations of the field
are weak and can be represented by a Gaussian distribution. While this is a good
approximation for fluctuations over large length scales, at short wavelengths it breaks
down.

4 Point Charge Model

To concretely illustrate the application of this theoretical framework, we consider
a system of point charges. This model is commonly used to describe electrolyte
systems. The charge density for a point charge is given by

Qα(r,Ω) = qαδd(r) (35)

Half of the particles are cations (denoted by +) with charge q, and the other half are
anions (denoted by −) with charge −q.

There are no other interactions in the system apart from electrostatic interactions.
The reference system is, therefore, an ideal gas, which has a grand partition function
given by

ZG[γ ] =
∑

α

Λα

∫
dRdΩeγα(R,Ω). (36)

A key length scale for this system is the Bjerrum length lB = βq2/ε, which is the
distance at which the electrostatic interaction energy between two charges equals
their thermal energy kBT .
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4.1 Mean-Field Approximation

We first examine the mean-field approximation for the point charge system. The
grand partition function for the point charge model in the mean-field approximation
is given by

ln ZG[γ,Σ] ≈ 1

2β

∫
drdr′iψ̄(r)G−1

0 (r, r′)iψ̄(r′) −
∫

drΣ(r)iψ̄(r)

+
∑

α

Λd
α

∫
dReγα(R)−qα iψ̄(R). (37)

The value of the mean field is determined from the stationary condition, given in

− 1

4πβ
∇ · ε(r)∇iψ̄(r) =

∑
α

qαρα(r) + Σ(r) (38)

where ρα(r) is the density of particles of type α.
From the grand partition function, we can derive all static equilibrium properties

of the system. In particular, the density of particles of type α is give by:

ρα(R) = Λd
αe

γα(R)−qα iψ̄(R). (39)

Therefore, we see that the mean-field approximation leads to the Poisson-Boltzmann
theory.

The corresponding expression for the Helmholz free energy is

F[ρ,Σ] ≈ − 1

2β

∫
drdr′iψ̄(r)G−1

0 (r, r′)iψ̄(r) +
∫

dr

[∑
α

qαρα(r) + Σ(r)

]
iψ̄(r)

+
∑
α

∫
dRρα(R)[ln ρα(R)Λd

α − 1]. (40)

4.2 Debye-Hückel Theory

Now we apply the variational perturbation theory at first order to the point charge
model. First we consider a uniform system. In a uniform system, ψ̄(r) = 0 due
to symmetry. Using this fact, combined with the expression for the renormalized
Green’s function, the grand partition function is determined to be

1

V
ln ZG[γ ] ≥

∑
α

zαe
κlB
2 − κ3

24π
(41)
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where κ is inverse Debye screening length

κ2 = 4πβ

ε

∑
α

q2αρα = 8πρ± (42)

and zα = Λd
αe

γα is the fugacity of ions of type α. Due to electroneutrality, the fugacity
of the cations and anions must be equal; we denote this common value by z±.

From the variational condition (see Eq. (29)), the renormalized Green’s function
is

GK (r, r′) = e−κ|r−r′ |

ε|r − r′| . (43)

and ρ± is the electrolyte concentration. Accounting for the fluctuations of the electro-
static potential due to the thermal motion of the point charges leads to an exponential
decay of the Green’s function. Physically, this corresponds to screening of charge.

The Helmholtz free energy is

F[ρ,Σ] ≈ +V
∑

α

ρα(ln ραΛd
α − 1) − V

κ3

24π
. (44)

The chemical potential of species α is given by

βμα = ln ραΛd
α − βq2ακ

2ε
. (45)

The first-order variational perturbation approximation for point charges leads to the
Debye-Hückel theory of electrolyte solutions.

For a nonuniform systems, the Helmholtz free energy is:

F[ρ,Σ] ≈ − 1

2β

∫
drdr′iψ̄(r)G−1

0 (r, r′)iψ̄(r′) +
∫

dr

[∑
α

qαρα(r) + Σ(r)

]
iψ̄(r)

+
∑
α

∫
dRρα(R)[ln ρα(R)Λd

α − 1] − ln
NK

N0
− 1

2
TrK G0. (46)

In this case the screening function becomes local

K (r, r′) = δd(r − r′)
∑

α

q2αρα(r) (47)

We can identify K with the inverse Debye screening length κ , which varies with
the local density

κ2(r) = 4πβ

ε

∑
α

q2αρα(r) (48)

For a uniform system, this becomes a constant.
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Before, we mentioned that there is a “self-energy” of the particles, due to the
interaction of each charge with the electrical potential that it generates itself. This
seemingly irrelevant term, which is infinite for point charges, was subtracted out.
However, interestingly, it reappears again in the theory. Due to the screening of
charge by the response of the other charged particles in the system, the electric
potential that a point charge generates is altered. This shifts the self-energy of the
point charge. What we find is that the difference in the self-energy of the point
charge in the presence and in the absence of other mobile charges actually is the
excess chemical potential of the particle. We can see this term in the expression for
the particle density

ρα(R) = Λd
αe

γα(R)−qα iψ̄(R)− βq2

2 ΔGK(R,R). (49)

where ΔGK = GK − ΔGfree is the shift in the Green’s function due to the presence
of fluctuations. The self energy term changes propensity of a particle to remain at
a location due to fluctuations in the local environment caused by thermal motion of
charge.

4.3 Stability of the Point Charge Model

In the previous section, we demonstrated that the first order variational perturbation
approximation leads to the Debye-Hückel theory for electrolyte solutions. In the
variational perturbation approximation, the value of the inverse screening length is
determined by maximizing the grand partition function, and this leads to the stan-
dard relationship between the inverse screening length and the ionic strength of the
system. The astute reader, however, may have noticed that the expression for the
grand partition function (see Eq. (41)) actually diverges as κ → ∞. From a physical
perspective, this is a consequence of the fact that the point charge model is inher-
ently unstable. The positive and negative point charges will collapse with each other,
resulting in a situation where there are an infinite number of ions in the system. So
then what is the relevance of the Debye-Hückel expression for κ?

To investigate this point, we show the variation of the grand partition function
with κ , given by the solid lines in Fig. 1, for several different values of the elec-
trolyte fugacity z±. For all fugacities, ln ZG is maximized when κ → ∞, indicating
that the point charge system wants to collapse. At high fugacities, ln ZG increases
monotonically with increasing κ . However, for sufficiently low values of z±, which
corresponds to low ion densities, the grand partition function has a local maximum.
This corresponds to the Debye-Hückel theory for the point charge model.

For real electrolytes, excluded volume interactions prevent the collapse of the
system. These interactions suppress the fluctuations at a short length scales. Prop-
erly accounting for their effect on the grand partition function is quite difficult,
however, we can get a qualitative understanding of their influence by introduction
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Fig. 1 Stability of the point
charge model. a Variation of
the grand potential with the
inverse screening length κ

for a fugacity:
(i) z±l3B = 0.07 (black),
(ii) z±l3B = 0.08 (red), and
(iii) z±l3B = 0.09 (green).
(iv) z±l3B = 0.12 (green).
The solid lines represent the
situation without a cutoff,
and the dashed lines are for a
cutoff of ΛlB = 20

a cutoff wavevector Λ. Fluctuations of length scales less than 2π/Λ are neglected.
The resulting expression for the grand partition function is

1

V
ln ZG[γ ] ≥

∑
α

zα exp

[
κlB
2

2

π
arctan

Λ

κ

]

− κ3

24π

2

π

[
arctan

Λ

κ
− Λ

κ
+

(
Λ

κ

)3

ln

(
1 +

( κ

Λ

)2
)]

(50)

This is plotted as the dashed lines in Fig. 1.
Suppressing the short wavelength fluctuations stabilizes themodel. Themaximum

of ln ZG no longer occurs for κ → ∞; it now occurs for finite values of the inverse
screening length for all values of the fugacity. At high electrolyte fugacities, the
maximum in the grand partition function is no longer related to the Debye-Hückel
value. In this situation, the systemdepends sensitively on the value ofΛ. Its properties
are controlled by the physics at short wavelengths. At these conditions, the point
charge model is irrelevant and not applicable.

At low electrolyte fugacities, the maximum is close to the Debye-Hückel value,
although it is slightly shifted; the lower the fugacity (ion concentration), the nearer
this peak is to the Debye-Hückel value. For these conditions, the system is relatively
insensitive to the precise value of the cutoff Λ. In this case, the short wavelength
physics are irrelevant, and the point charge model is relevant.

It is also interesting to note that multiple peaks can appear in the dependence of
the grand partition function on the inverse screening length. Each peak correspond
to a distinct phase of the system. Phase coexistence occurs when the height of the
peaks are the same. Consequently, we see that this approach is able to predict the
vapor-liquid transition of the electrolyte system [19]. Note, however, the quantitative
features of this transition (e.g., critical temperature and density) will depend the
details of short length scale physics of the system.
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4.4 Dielectric Interfaces

Variations in the dielectric constant of the backgroundmediumwill affect themanner
in which the electrostatic potential propagates from a charge. Here, we examine the
influence of a dielectric interface on the properties of the point charge electrolyte.
An electrolyte is immersed in a medium with dielectric constant ε and confined to
remain in the half-space defined by z > 0. For z < 0, there is a planar body with
dielectric constant ε′. A schematic diagram of the system is shown in Fig. 3.

When a charge of magnitude q is placed near a planar dielectric discontinuity,
the difference in the polarizabilities of the two media leads to an induced charge
distribution on the interface. The potential generated by this induced charge can
be mathematically represented by a point charge of magnitude q(ε − ε′)/(ε + ε′),
located within the dielectric body (see Fig. 2 the same distance from the interface as
the original charge. This is known as an image charge.

Consequently, charges are repelled from a low dielectric surface (i.e. ε′ < ε),
regardless of the sign of the charge. This leads to an electrostatic depletion effect
in the case of the low dielectric bodies [13, 20, 21]. Charges are attracted to high
dielectric bodies (i.e. ε′ > ε), such as metals.

In this planar geometry, the presence of the dielectric interface shifts the Green’s
function [1]

G0(r, r′) = 1

ε|r − r′| + ε − ε′

ε + ε′
1

ε
√

(x − x′)2 + (y − y′)2 + (z + z′)2
. (51)

The first term on the right of the equation is the Green’s function in a uniform
dielectric (i.e. Gfree). The second term is the influence of the dielectric interface and
can be interpreted as the potential that eminates from the image charge.

The renormalized Green’s function GK of this system can be determined by
solving the variational condition given in Eq. (29). It can be written as the Green’s
function for the uniform bulk system, where the inverse screening length is equal to
κ , plus a term due to the presence of the dielectric interface:

Fig. 2 Schematic diagram
of a charge located a distance
z from a dielectric interface
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GK (r, r′) = e−κ|r−r′ |

ε|r − r′| + δGK (r, r′) (52)

where δGK (r, r′) is shift in the Green’s function [20, 22, 23].
If wemake the simplifying assumption that the inverse screening length is approx-

imately constant for z > 0, we find that [20]

δGK (r, r) = −
(

η − 1

η + 1

)
e−2κz

2εz

− 2η

η + 1

κ

ε

∫ ∞

1
dx

√
x2 − 1 − x

η
√
x2 − 1 + x

e−2xκz. (53)

The resulting density profiles for the cations ρ+(r) and the anions ρ−(r) are given
by

ρ+(r) = ρ−(r) = ρ± exp

[
−βq2

2
δGK (r, r)

]
, (54)

where ρ± is the ion concentration far from the dielectric interface (i.e. z → ∞).
This is plotted in Fig. 3a for a system with an electrolyte concentration ρ±l3B = 0.1
near planar interfaces of various dielectric constants. When the dielectric constant
of the interface is larger that that of the solvent (i.e. ε′ > ε), the ions absorb to the
interface. When ε′ < ε, such as for electrolytes near an air-water interface, the ions
desorb from the interface. Even in the case where there is no dielectric discontinuity

(a) (b)

Fig. 3 a Ion density profile for an electrolyte solution of concentration ρ±l3B = 0.1 near a dielectric
interface with (i) ε′/ε = 0 (black), (ii) ε′/ε = 0.5 (red), (iii) ε′/ε = 1 (green), and (iv) ε′/ε = 2
(blue). b Incremental interfacial tension
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(i.e. ε′ = ε), there is a slight desorption of ions from the interface. This is due to the
exclusion of particles from z < 0 and the preference of charged particles to be fully
surrounded by other charged particles.

Adsorption of molecules on an interface will lead to a decrease in the interfacial
tension. On the other hand, desorption of solutes from an interface will increase the
interfacial tension. This effect is what leads to the increase of the surface tension
of water with the addition of electrolytes. For the planar geometry within constant
screening approximation, the interfacial tension is given by

βσ = − κ2

32π

(
η − 1

η + 1

)
− 2ρ±

∫
dz

[
e−(βq2/2)δGK (z,z) − 1

]
. (55)

where ρ± is the bulk electrolyte concentration. The dependence of the interfacial
tension with the bulk electrolyte concentration is presented in Fig. 3b.

5 Conclusions

We have described a field theory approach to the description of electrolyte systems.
The evaluation of this theory using the variational perturbation approximation has
been discussed. The theory has been developed for particles with a rigid charge
distribution. The point chargemodel is used to illustrate the application of themethod.
In this case, it was found that themean-field approximation for this system leads to the
Poisson-Boltzman theory and the first-order variational perturbation approximation
leads to the Debye-Hückel theory.

The theoretical framework presented here is quite flexible and applicable to a
wide variety of systems and geometries. For example, it has been applied to particles
with nonspherically symmetric charge distributions, such as lines [24] and disks [8].
In these cases, the system can form liquid crystalline phases, where the orientations
of the molecules are ordered, although the translational degrees of freedom are not.
It has also been applied to examine ions confined within pores [13, 22, 23].

When truncated at first order, the variational perturbation approximation is able
to go beyond the Poisson-Boltzmann theory, allowing it to capture phenomena like
the influence of dielectric interfaces and the coupling between dispersion and elec-
trostatic interactions (i.e. screening of the dispersion). However, it is only accurate
for systems where the electrostatic interactions are relatively weak (e.g., low sur-
face charge densities, low ion valencies, and high temperatures). This is due to the
assumption that the fluctuations in a system can be well represented by a Gaussian
probability distribution, which is good for long wavelength fluctuations but breaks
down at short wavelengths. As a consequence, it cannot capture effects that occur at
high charge densities, such as overcharging. In principle, the approximation can be
extended to higher orders to increase its range of applicability to higher electrostatic
coupling strengths; however, the rate of improvement of this expansion is relatively
slow.
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Another approach to improving the theory is to divide the long and short wave-
length fluctuations and treat each with a separate approximation scheme: the varia-
tional perturbation approximation for long wavelengths and a virial expansion, for
example, for the short wavelength fluctuations. This splitting strategy has been found
to be successful in describing electrolyte systems over a broad range of conditions
[25, 26], from theweak to the intermediate and including the strong electrostatic cou-
pling regime. This “splitting” approach is able to quantitatively describe phenomena
such as charge inversion and like-charge attraction.
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Self-consistent Field Theory
of Inhomogeneous Polymeric Systems

An-Chang Shi

1 Introduction

Inhomogeneous polymeric systems, such as polymer blends, polymer solutions and
block copolymers, exhibit rich phase behavior with various spatial structures. Exam-
ples include the interfaces between different polymers and the ordered phases self-
assembled from block copolymers [1]. Understanding the formation and structure
of these rich morphologies demands predictive theoretical frameworks that could
be used to describe phase behavior and structural properties of polymeric systems.
Ideally the theory should take the molecular properties of the polymers as input and
be able to predict thermodynamically stable phases, the phase transition boundaries
among them, as well as the physical properties of the phases. Towards this goal, a
variety of theoretical methods have been developed to study the phases and phase
behavior of inhomogeneous polymeric systems.

One of the most successful theoretical frameworks for inhomogeneous polymeric
systems, including polymer blends, polymer solutions and block copolymers, is the
self-consistent field theory (SCFT). The polymeric SCFT has its origin in the work
by Edwards in the 1960s [2]. This theoretical framework was explicitly adapted to
treat block copolymers by Helfand in 1975 [3], and later important contributions to
the theory were made by, among others, Hong and Noolandi [4]. The applications
of SCFT to numerous polymeric systems have been made in recent years. There is
a large body of literature on the SCFT of polymeric systems, including a number of
valuable review articles [5], book chapters and books [6].

The most fruitful application of SCFT to polymeric systems is the study of phases
and phase transitions of block copolymers. In particular, powerful methods have
been developed over the last decades to obtain highly accurate solutions of the SCFT
equations using numerical techniques. The earliest attempts to obtain numerical
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solutions of SCFT for block copolymers were made by Helfand and coworkers [7].
Later Shull [8] and Whitmore and coworkers [9] have computed phase diagrams of
block copolymer melts and solutions using approximate numerical techniques. The
first three-dimensional numerical solutions of block copolymer phaseswere obtained
by Matsen and Schick [10], who utilized the crystalline symmetry of the ordered
phases and provides exact numerical solutions to the SCFT equations. This technique
has been applied to a variety of block copolymer systems [11]. Further development
of the SCFT included the theory for Gaussian fluctuations in ordered phases [12],
numerical techniques for solving the mean field theory in real space [13], and fully
fluctuating field-theoretical simulations [14]. Based on the numerous studies, it can
be stated that SCFT forms a powerful basis for the study of inhomogeneous polymeric
systems.

The essence of the self-consistent field theory is to transform a particle-based
description of a statistical-mechanical system into a field-based description. In the
particle-based description, the partition function of the system is written as a sum
over all the particle positions, whereas in a field-based description the partition func-
tion of the system is written as a functional integral over a set of fluctuating fields.
Within the field-based description, the many-body interactions are replaced by the
interaction of one particle with certain fluctuating fields. This description makes it
simpler to develop approximation methods. In particular, a saddle-point approxima-
tion of the functional integral leads to the mean-field approximation of the system.
The resulting mean-field equations, or SCFT equations, can be solved analytically or
numerically, providing information about the structure and property of the inhomo-
geneous polymeric phases. This theoretical framework is flexible in that it applies to
any statistical-mechanical systems.

This chapter provides a systematic description of the self-consistent field the-
ory using a binary polymer blend as a model system. In particular, we will present
a detailed derivation of the field-theoretical formulation of polymers using both
canonical and grand-canonical ensembles. The theoretical development results in
the free-energy functional of the system, which can be used as the starting point to
study the phases, phase transitions, and the physical properties of inhomogeneous
polymeric systems. We try to present a pedagogical account of the theoretical devel-
opment and hope that this approach would serve as a reference source for the readers
who are interested in learning and applying the SCFT to different polymeric systems.

2 Formulation of SCFT

The starting point of SCFT is the construction of a molecular model for the system
under investigation. In this chapter we develop the self-consistent field theory using
a binary mixture of A and B homopolymers as a model system. We formulate the
theory by transforming the particle-based description of the partition function into a
field-based description, in which the partition function is expressed as a functional
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integral over a set of fluctuating fields. This field-theoretical framework is then used
as the starting point to develop SCFT equations in the canonical and grand-canonical
ensembles.

2.1 Molecular Model of A/B Homopolymers

The model binary mixture is composed of two types of homopolymers, labeled as
A-polymers and B-polymers, respectively. The system under investigation is com-
posed of nA A-polymer chains and nB B-polymer chains contained in a volume
V . Each polymer chain consists of Nα monomers of species α = A or α = B. The
length of the A-polymers is used as the reference, so that the degree of polymeriza-
tions can be written in the form Nα = καN with κA = 1 and κB = κ . Therefore the
ratio of the two polymer lengths is κ = NB/NA. Each polymer is assumed to have an
associated Kuhn length bα = σαb (α = A, B), where b is a reference Kuhn length
and σα describes the relative size or the conformational asymmetry of the A- and
B-monomers. For simplicity, the monomers are further assumed to have the same
monomer density, ρ0A = ρ0B = ρ0, defined as the number of monomers per unit
volume. Thus the volume per monomer is ρ−1

0 . In the final expressions all lengths
are scaled by the Gaussian radius of gyration of the A-polymers, Rg = b

√
N/6. Fur-

thermore, the chain arc length will be scaled by the degree of polymerization of the
A-polymers N .

The partition function of a polymeric system is obtained by a summation over
all the configurations of the polymers. For a continuous model of polymers such
as Gaussian model, a configuration of a polymer chain is denoted by a space curve
�Ra,i (s), which specifies the position of the s-th monomer of the i-th chain of type

α = A, B (Fig. 1). For a given chain configuration,
{ �Ra,i (s)

}
, the concentrations,

i.e., the reduced local densities of the A and B monomers at a given spatial position
�r are given by,

Fig. 1 In SCFT a
configuration of a polymer
chain is described by a space
curve
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φ̂α(�r) = 1

ρ0

nα∑
i=1

Nα∫
0

ds δ[�r − �Rα,i (s)],

where the hat on φ̂α (�r) indicates that these concentrations are functionals of the

chain configurations
{ �Rα,i (s)

}
.

For simplicity, we assume that the polymer chains are flexible Gaussian chains,
althoughothermodels of polymers such as semiflexible chains or rotational-isomeric-
state model could be used as well. For a Gaussian chain, there is no interaction
between polymer segments other than the chain connectivity represented by a har-

monic potential. As a result, the probability distribution, p0
[ �Ra,i (s)

]
, for a given

chain configuration is given by the standard Wiener form,

p0
[ �Rα,i (s)

]
= Aα exp

⎡
⎣− 3

2b2α

Nα∫
0

ds

(
d �Rα,i (s)

ds

)2
⎤
⎦ ,

where Aα is a normalization constant. It should be noted that in this expression the

length scale is not specified. The probability P0
({ �Ra,i (s)

})
of a given chain con-

figuration,
{ �Ra,i (s)

}
, of the binary mixture can be constructed from the probability

of individual polymer chains,

P0
({ �R(s)

})
=

(
nA∏
i=1

p0
[ �RA,i (s)

] )(
nB∏
i=1

p0
[ �RB,i (s)

] )
.

It should be emphasized that the above expression is specific for a binary blend of
A/B homopolymers as ideal Gaussian chains. For more complex polymers such as
block copolymers, this expression should be modified according to the architecture
of the polymers [5, 6].

2.2 Field-Theoretical Formulation of the Partition Function

For a statistical-mechanical system in the canonical ensemble, its thermodynamic
properties are described by the Helmholtz free energy, F , of the system. The
Helmholtz free energy can be obtained from the partition function, F = −kBT lnZ .
The partition function of the system, in turn, is given by a summation over all
microstates (ν), weighted by their Boltzmann factor,Z = ∑

νe
−Eν/kBT . For the spec-

ified polymer blends under consideration, its partition function can be written in
terms of the summation over the polymer configurations, which can be viewed as a
functional integral over all chain configurations,
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ZnA,nB = znA
0A

nA!
znB
0B

nB !
∫

D{ �R(s)}P0({ �R(s)})	
�r

δ[φ̂A(�r) + φ̂B(�r) − 1]e−W ({φ̂}),

where z0α is the partition function of a polymer chain due to the kinetic energy of

the monomers, δ is the Dirac-delta function, and W
({

φ̂
})

= V
({

φ̂
})

/kBT is the

intermolecular interaction potential. For simplicity, we assume that the short-range
hardcore interactions could be represented by incompressibility condition for the
local polymer density, φ̂A (�r) + φ̂B (�r) = 1, and that the interaction potential has the
Flory-Huggins form,

W
({

φ̂
})

= ρ0χ

∫
d�r φ̂A (�r) φ̂B (�r) ,

where χ is the so-called Flory-Huggins parameter which depends on the polymers
and the temperature. The above equation implies that the polymermelt is incompress-
ible,mimicking the hardcoremonomer-monomer interactions, and the delta-function
is introduced in the partition function to enforce the incompressibility.

The partition function,ZnA,nB , contains all information about the thermodynamic
properties of the system. However, a direct evaluation of ZnA,nB is not possible since
the integrand depends on the chain configuration through the concentration variables.
This expression of the partition function presents a particle-based formulation of the
theory, in the sense that the summation in the partition function is over the positions of
all the particles or monomers of the system. In many applications, it is advantageous
to transform the partition function into a field-based description. A standard algebraic
trick to accomplish this transformation is to insert the functional identity,

1 =
∫

D {φα}
∏
α

∏
�r

δ
[
φα (�r) − φ̂α (�r)

]
,

into the expression of the partition function. In this expression it is important to distin-
guish the fields, φα (�r), which are integral variables, and the monomer concentration

fields, φ̂α (�r), which are specified for a given polymer configuration
{ �Rα,i (s)

}
. Using

the properties of the delta-functions we can rewrite the partition function in the form,

ZnA,nB = znA
0A

nA!
znB
0B

nB !
∫

D {φα} e−W ({φ}) ∏
�r

δ
[
φA (�r) + φB (�r)

− 1
] ∫ D

{ �R(s)
}
P0

({ �R(s)
}) ∏

α

∏
�r

δ
[
φα (�r) − φ̂α (�r)

]
.

In this expression the summation over the polymer configurations is weighted

by the probability distribution P0
({ �R(s)

})
and the delta-functions, which is not

straightforward to be evaluated. A further development of the theory is to introduce
a set of auxiliary fields by converting the delta-function to its integral definition,
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1 =
∫

D {φα}D {ωα} e
∑

αρ0
∫
d�r ωα(�r)

[
φα(�r)−φ̂α(�r)

]
,

where the range of the ωα integral is along a path in the complex plane, from −i∞
from to +i∞, and the factor ρ0 is introduced for convenience. Substituting this
expression into the expression of the partition function, ZnA,nB , and rearranging the
order of integrations, we obtain,

ZnA,nB = znA
0A

nA!
znB
0B

nB !
∫

D {φα}D {ωα} e
∑

αρ0
∫
d�r ωα(�r)φα(�r)−W ({φ}) ∏

�r
δ
[
φA (�r) + φB (�r)

− 1
] ∫ D

{ �R(s)
}
P0

({ �R(s)
})

e−∑
αρ0

∫
d�r ωα(�r)φ̂α(�r)

The advantage of this expression is that the integration over the chain configura-
tions can nowbe carried outwith the relatively simpler integrand e−∑

αρ0
∫
d�r ωα(�r)φ̂α(�r).

With the Gaussian probability distributions and the definition of the polymer con-
centrations, the integral over the chain configuration can be written as,

∫
D

{ �R (s)
}
P0

({ �R (s)
})

e−∑
αρ0

∫
d�r ωα(�r)φ̂α(�r)

=
∏
α

⎛
⎝ nα∏

i=1

⎧⎨
⎩
∫

D
{ �Rα,i (s)

}
p0

[ �Rα,i (s)
]
exp

⎡
⎣−

Nα∫
0

ds ωα

( �Rα,i (s)
)⎤⎦

⎫⎬
⎭

⎞
⎠

=
∏
α

[Qα ({ωα}) V ]nα ,

where Qα ({ωα}) is the partition function of a single polymer chain in an external
fields ωα (�r), which is defined by the following path integral,

Qα ({ωα}) = 1

V

∫
D

{ �Rα,i (s)
}

p0
[ �Rα,i (s)

]
exp

⎡
⎣−

Nα∫
0

ds ωα

( �Rα,i (s)
)⎤⎦ .

The introduction of the single chain partition functions allows us to rewrite the
partition function, ZnA,nB , of the binary blend of AB homopolymers as a functional
integral over the concentrations fields, φα (�r) , and the auxiliary fields, ωα (�r),

ZnA,nB =
∫

D {φα}D {ωα}D {η} e
∑

αρ0
∫
d�r ωα(�r)φα(�r)−W ({φ})−ρ0

∫
d�r η(�r)[φA(�r)+φB (�r)−1]

× (z0AQAV )nA

nA!
(z0BQBV )nB

nB ! .

In this expression the delta-function due to the incompressibility condition has
been rewritten using a Fourier formulation of the delta-function, with η (�r) as a field
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coupled to that. With the above expression of the partition function of the system,
we have transformed the particle-based theory of the polymer blends to a field-based
formulation. The central quantity of the theory is the single-molecule, or single-chain,
partition function, Qα ({ωα}), which is the partition function of one polymer chain in
the field ωα (�r). It should be noted that in deriving this field-theoretical formulation
of the partition function, we have not made any approximations. Thus the partition
function of the system in the form of a functional integral over the fields, φα (�r) and
ωα (�r), is an exact formulation of the theory. This field-theoretical formulation of the
partition function is the starting point of the SCFT.

2.3 The Single-Chain Partition Function and the
Propagators

It is useful to explore the properties of the single-chain partition function. The single-
chain or single-molecule partition functions,Qα ({ωα}), given in the above section are
obtained by summing over all the chain configurations in the presence of an external
field ωα (�r). These quantities contain contributions of the chain configurations to
the total partition function. It is obvious that the single-chain partition function,
Qα ({ωα}), is a functional of the fields, ωα (�r). In our derivation, the single-chain
partition function is obtained as a path-integral or functional-integral of the form,

Qα ({ωα}) = 1

V

∫
D

{ �Rα,i (s)
}

p0
[ �Rα,i (s)

]
exp

⎡
⎣−

Nα∫
0

ds ωα

( �Rα,i (s)
)⎤⎦ .

The expression of the single-chain partition function as a path integral is an elegant
formulation, resembling its counterpart in quantum mechanics. For computational
purpose, however, it is more convenient to express the single-chain partition function
in terms of the chain propagators or Greens function, Qα

(�r , s|�r ′), of the polymers,

Qα ({ωα}) = 1

V

∫
d�r1d�r2 Qα (�r1, s|�r2) .

where the chain propagator is defined by the following constrained path integral,

Qα

(�r , s|�r ′) = 1

V

�R(s)=�r∫
�R(0)=�r ′

D
{ �R(s)

}
e
−

Nα∫
0
ds

[
3

2b2α

Nα∫
0
ds

(
d �R(s)
ds

)2+ωα( �R(s))

]

.

The physical meaning of the propagators is that Qα

(�r , s|�r ′) represents the con-
ditional probability distribution of the sth-monomer at position �r , given that the
0th-monomer is at position �r ′, in the presence of an external field ωα (�r). A direct
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evaluation of the path integrals is not straightforward. Alternatively, and more con-
veniently, it can be shown that the propagators can be obtained from the following
differential equations, or the modified diffusion equations,

∂

∂s
Qα

(�r , s|�r ′) = b2α
6

∇2Qα

(�r , s|�r ′) − ωα (�r) Qα

(
�r , s|�r ′)

,

with the initial conditions, Qα

(�r , 0|�r ′) = δ
(�r − �r ′). It is interesting to observe that

the theoretical framework of Gaussian chain statistics is analogous with the quantum
mechanics. In particular, the modified diffusion equation can be regarded as the

Schrödinger equation with a Hamiltonian H = − b2α
6 ∇2 + ωα (�r) and an imaginary

time. Many developments of polymer physics stem from this analogy.
In further applications, it is convenient to introduce the end-integrated propaga-

tors, qα (�r , s), which is defined by,

qα (�r , s) =
∫

d�r ′
Qα

(�r , s|�r ′) .

The end-integrated propagators satisfy the same differential equation as
Qα

(�r , s|�r ′), with different initial conditions, qα (�r , 0) = 1. The physical meaning
of qα (�r , s) is that it represents the probability distribution of the sth-monomer at
position �r , irrespective to where the end-segment at s = 0 is, in the presence of an
external field ωα (�r). In terms of the end-integrated propagators, the single chain
partition function is given by,

Qα ({ωα}) = 1

V

∫
d�r qα (�r , Nα) .

In principle, for each segment at s, there are two end-integrated propagators,
qα (�r , s) and q†

α (�r , s), representing the probability of reaching to that particular seg-
ment starting from the two ends at s = 0 and s = Nα , respectively. For homopoly-
mers, these two end-integrated propagators are the same due to the symmetry of
the chain. However, qα (�r , s) and q†

α (�r , s) are in general different for more complex
polymers. For example, the two ends of A-B diblock copolymers are not equivalent,
thus these two propagators, qα (�r , s) and q†

α (�r , s), are different and needed to be
computed separately.

2.4 Functional Derivatives of the Propagators

In the derivation of the mean-field equations, functional derivatives of the single-
chain partition functions are required.All these functional derivatives can be obtained
from the functional derivative of the propagators with respect to the field,
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δQα (�r1, s|�r2)
δωα (�r) .

This functional derivative could be obtained using the path integral formulation.
Alternatively we can use the differential equation as the starting point. Taking the
functional derivative of the modified diffusion equation, we have,

∂

∂s

δQα (�r1, s|�r2)
δωα (�r) = b2α

6
∇2
1
δQα (�r1, s|�r2)

δωα (�r) − ωα (�r1) δQα (�r1, s|�r2)
δωα (�r) − δωα (�r1)

δωα (�r) Qα (�r1, s|�r2) .

Using the fact that δωα(�r1)
δωα(�r) = δ(�r1 − �r) and rearranging the terms, we obtain an

equation for the required functional derivative δQα(�r1, s|�r2)
δωα(�r) ,

[
∂

∂s
− b2α

6
∇2

1 + ωα (�r1)
]

δQα (�r1, s|�r2)
δωα (�r) = −δ (�r1 − �r) Qα (�r , s|�r2) .

It is now useful to define the Green functionsGα

(�r1, s|�r2, s ′)which are solutions
of the differential equations,

[
∂

∂s
− b2α

6
∇2

1 + ωα (�r1)
]
Gα

(�r1, s|�r2, s ′) = −δ
(
s − s ′) δ (�r1 − �r2) .

It is easy to show that the Green function Gα

(�r1, s|�r2, s ′) are related to the
propagators,

Gα

(�r1, s|�r2, s ′) = θ
(
s − s

′)
Qα

(�r1, s − s ′|�r2
)
,

where θ
(
s − s

′)
is the Heaviside step function. Using the Green functions, it is

straightforward to show that the functional derivative δQα(�r1, s|�r2)
δωα(�r) can be expressed

as,

δQα (�r1, s|�r2)
δωα (�r) = −

∞∫
−∞

ds
′
∫

d�r ′
Gα

(
�r1, s|�r ′

, s ′
)

δ
(
�r ′ − �r

)
Qα

(�r , s ′|�r2
)

= −
s∫

0

ds
′
Qα

(�r1, s − s ′|�r) Qα

(�r , s ′|�r2
)
,

where we have used the implicit relations that Qα (�r1, s|�r) = 0 for s < 0..
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3 Canonical Ensemble and Helmholtz Free Energy
Functional

3.1 SCFT in Canonical Ensemble

In the canonical ensemble, the numbers of polymer chains in the volume are fixed.
In this case the partition function could be written in terms of a functional integral
over a Boltzmann factor weighted by a free energy functional,

ZnA,nB =
∫

D {φα}D {ωα}D {η} e
∑

αρ0
∫
d�r ωα(�r)φα(�r)−W ({φ})−ρ0

∫
d�r η(�r)[φA(�r)+φB (�r)−1]

× (z0AQAV )nA

nA!
(z0BQBV )nB

nB !
=

∫
D {φα}D {ωα}D {η} e−F({φ},{ω},{η}) ,

where the free energy functional, or,more precisely, the “Hamiltonian”, of the system,
F ({φ} , {ω}), is given by,

F({φ} , {ω} , {η})

=W ({φ}) −
∑
α

ρ0

∫
d�r ωα (�r) φα (�r)

+ ρ0

∫
d�r η (�r) [φA (�r) + φB (�r) − 1

] − ln
(z0AQAV )nA

nA! − ln
(z0BQBV )nB

nB !
= ρ0χ

∫
d�r φA (�r) φB (�r) −

∑
α

ρ0

∫
d�r ωα (�r) φα (�r)

+ ρ0

∫
d�r η (�r) [φA (�r) + φB (�r) − 1

] −
∑
α

nα ln

(
z0αeQαV

nα

)
,

where the Stirling formula n! ≈ (
n
e

)n
has been used. The average concentrations

of the polymers in the volume V are given by φ̄α = nαNα

ρ0V
. In terms of the average

polymer concentrations, the free energy functional of the system can be written as,

F({φ} , {ω} , {η})

= ρ0χ

∫
d�r φA (�r) φB (�r) −

∑
α

ρ0

∫
d�r ωα (�r) φα (�r)

+ ρ0

∫
d�r η (�r) [φA (�r) + φB (�r) − 1

] − ρ0V
∑
α

φ̄α

Nα

ln

(
z0αeNαQα

ρ0φ̄α

)
.

In this expression the length scale is not specified. It is convenient to use the radius

of gyration of the A-polymers, Rg = b
√

N
6 , as the length scale. Rescaling all lengths

by Rg , we can write,
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F( {φ} , {ω} , {η} )

= ρ0R3
g

N

{
χN

∫
d�r φA (�r) φB (�r) −

∑
α

∫
d�r Nωα (�r) φα (�r)

+
∫

d�r Nη (�r) [φA (�r) + φB (�r) − 1
] − V

∑
α

φ̄α

κα

ln

(
z0αeNαQα

ρ0φ̄α

)}
.

Inmany cases it is convenient to express the free energy in terms of the free energy
density,

f ({φ} , {ω} , {η}) ≡ NF ({φ} , {ω} , {η})
ρ0V R3

g

= 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

Nωα (�r) φα (�r) + Nη (�r) [φA (�r) + φB (�r) − 1
]}

−
∑
α

φ̄α

κα

ln Qα +
∑
α

φ̄α

κα

ln

(
φ̄α

e

)
+

∑
α

μ0αφ̄α.

where μ0α ≡ 1
κα
ln ρ0

z0αNα
are constants, which can be viewed as a constant term in

the fields ωα (�r). This constant can be ignored since adding a constant to the fields
does not change the physics of the system.

The modified diffusion equation for the chain propagators can be rewritten in the
form,

N
∂

∂s
Qα

(�r , s|�r ′) = Nb2σ 2
α

6
∇2Qα

(�r , s|�r ′) − Nωα (�r) Qα

(
�r , s|�r ′)

.

We can now define the length scale using Rg and the arc-length scale using N .
Furthermore we redefine the fields by including the factor N , N , Nωα (�r) → ωα (�r).
In this scaled form the modified diffusion equation becomes,

∂

∂s
Qα

(�r , s|�r ′) = σ 2
α∇2Qα

(�r , s|�r ′) − ωα (�r) Qα

(
�r , s|�r ′)

,

with the initial conditions, Qα

(�r , 0|�r ′) = δ
(�r − �r ′). The end-integrated propaga-

tors, qα (�r , s), are given by,

qα (�r , s) =
∫

d�r ′
Qα

(�r , s|�r ′) .

These end-integrated propagators satisfy the same differential equation as
Qα

(�r , s|�r ′), with different initial conditions, qα (�r , 0) = 1. In terms of the end-
integrated propagators, the single chain partition function is given by,

Qα ({ωα}) = 1

V

∫
d�r qα (�r , κα) .
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The formula of the functional derivative stays the same,

δQα (�r1, s|�r2)
δωα (�r) = −

s∫
0

ds
′
Qα

(�r1, s − s ′|�r) Qα

(�r , s ′|�r2
)
,

The free energy density now has the simple form,

f
({φ} , {ω} , {η})

= 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

ωα (�r) φα (�r) + η (�r) [φA (�r) + φB (�r) − 1
]}

−
∑
α

φ̄α

κα

ln Qα +
∑
α

φ̄α

κα

ln

(
φ̄α

e

)
+

∑
α

μ0αφ̄α.

The partition function of the system is then written in the form,

ZnA,nB =
∫

D {φα}D {ωα}D {η} e−F({φ},{ω},{η}).

This expression of the partition function is exact. However evaluation of the
partition function is in general a formidable task. A variety of approximate methods
have been developed to evaluate the partition function. Themost fruitfulmethod is the
mean-field approximation, which amounts to evaluating the functional integral using
a saddle-point technique. Technically the saddle-point approximation is obtained by
demanding that the functional derivative of the integrand is zero,

δF ({φ} , {ω} , {η})
δφα(�r) = δF ({φ} , {ω} , {η})

δωα(�r) = δF ({φ} , {ω} , {η})
δη(�r) = 0.

Carrying out these functional derivatives leads to the following mean-field equa-
tions, or SCFT equations, of the binary blends of A/B homopolymers:

φA (�r) = φ̄A

κAQA

κA∫
0

ds qA (�r , s) qA (�r , κA − s) ,

φB (�r) = φ̄B

κBQB

κB∫
0

ds qB (�r , s) qB (�r , κB − s) ,

ωA (�r) = χNφB (�r) + η (�r) ,

ωB (�r) = χNφA (�r) + η (�r) ,

φA (�r) + φB (�r) = 1.
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The field η (�r) can also be viewed as a Lagrangian multiplier to ensure the incom-
pressibility condition. It should be note that, with α = A, B, there are five SCFT
equations for five unknown variables, {φA (�r), φB (�r), ωA (�r), ωB (�r), η (�r)}. The
parameters controlling the thermodynamic properties of the system are the average
polymer concentrations φ̄α , the molecular weights κα , the relative Kuhn lengths σα ,
and the interaction parameters χN .

Within the mean-field approximation, the free energy per chain of the system
is obtained by inserting the solution of the SCFT equations into the free energy
expression,

f
({φ} , {ω} , {η})

= 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

ωα (�r) φα (�r)
}

−
∑
α

φ̄α

κα

ln Qα ({ωα})

+
∑
α

φ̄α

κα

ln

(
φ̄α

φ̄

)
+

∑
α

μ0αφ̄α.

It is useful to observe that adding a constant to the fields, ωα (�r) → ωα (�r) + cα ,
leads to a change in the propagator of the form, Qα

(�r , s|�r ′) → e−cαs Qα

(�r , s|�r ′),
and, Qα → e−cακα Qα . These changes leave the mean-field concentrations and the
free energy density invariant. Therefore we can choose the constant level of the fields
based on convenience.

3.2 Homogeneous Phase

The simplest and exact solution of the SCFT equations is obtained for a homo-
geneous phase, in which the polymer concentrations and the mean-field poten-
tials are constants, φα (�r) = φα = φ̄α , ωα (�r) = ωα , leading to the trivial solu-

tions, Qα

(�r , s|�r ′) = 1
(4πσ 2

α s)
3/2 e

− (�r−�r ′)2
4σ2α s

−ωαs , qα (�r , s) = e−ωαs , and Qα = e−ωακα . The

mean-field equations become,

φA = φ̄A, φB = φ̄B;

ωA = χNφB + η, ωB = χNφA + η;

φA + φB = 1.

In this case the free energy per chain of a homogeneous phase is given by the
simple expression,

fH = χNφAφB + φA

κA
ln

(
φA

e

)
+ φB

κB
ln

(
φB

e

)
+ μ0AφA + μ0BφB .
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It is noted that this expression of the free energy of a polymer blend is exactly
the same as the textbook result of Flory and Higgins. The Flory-Higgins free energy
is the starting point to analyze the phase behavior of polymer blends, including the
construction of phase diagrams and the calculation of spinodal lines.

One useful quantity to analyze the thermodynamic property is the chemical poten-
tial. For a polymer blend, the total free energy of the system is given by, FH = ρ0V fH

N .
The chemical potentials of the two polymers are defined as the free energy difference
when one more polymer chain is added to the system,

μα = FH (nα + 1) − FH (nα) = ∂FH

∂nα

=
(

ρ0V

N

)
∂ fH
∂nα

+ fH
∂

∂nα

(
ρ0V

N

)
.

In a homogenous system, the number of polymer chains is related to the con-
centrations by φα = nακαN

ρ0V
. The incompressibility condition requires,

∑
αφα =

N
ρ0V

∑
α (nακα) = 1, therefore the volume is given by, ρ0V

N = ∑
α (nακα) , or

∂
∂nα

(
ρ0V
N

)
= κα . Another useful relation is that,

∂φβ

∂nα
= καN

ρ0V

(
δαβ − φβ

)
. Using these

relations it is straightforward to derive the chemical potential per monomer of the
blends,

μα

κα

= ∂ fH
∂φα

+
⎛
⎝ fH −

∑
β

φβ

∂ fH
∂φβ

⎞
⎠ .

Using the expression of the homogeneous free energy density, the chemical poten-
tial of the binary blends is obtained as,

μA

κA
= ln φA

κA
+ χNφB − K + μ0A,

μB

κB
= ln φB

κB
+ χNφA − K + μ0B,

where the constant K is given by K = χNφAφB + φA

κA
+ φB

κB
. At thermal equilibrium,

the chemical potential of the system must be a constant. This condition determines
the equilibrium values of the bulk concentrations φb

α , or the binodal points of the
blends above the critical point.

4 Grand-Canonical Ensemble and Grand Potential
Functional

4.1 SCFT in Grand-Canonical Ensemble

For systems undergoing macroscopic phase separation, it is more convenient to work
in the grand-canonical ensemble, in which the chemical potentials of the polymers
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are control parameters. In the grand canonical ensemble, the chemical potential of
the polymers is given whereas the number of polymers in the system is not fixed. The
thermodynamic properties of the system in the grand-canonical ensemble is given
by the grand potential Ω , which is related to the grand-partition function, �, via
Ω = −kBT ln�. Thus in the grand-canonical formulation, we need to calculate the
grand partition function �. For the binary mixtures of A/B polymers, the grand-
partition function is defined by a summation over all number of polymer chains,

� =
∞∑

nA=0

∞∑
nB=0

enAμA+nBμB ZnA,nB

=
∫

D {φα}D {ωα}D {η} e
∑

α

ρ0
N

∫
d�r ωα(�r)φα(�r)−W ({φ})− ρ0

N

∫
d�r η(�r)[φA(�r)+φB (�r)−1]

×
∏
α

( ∞∑
nα=0

(eμα z0αQαV )nα

nα!

)

=
∫

D {φα}D {ωα}D {η}
× e

∑
α

ρ0
N

∫
d�r ωα(�r)φα(�r)−W ({φ})− ρ0

N

∫
d�r η(�r)[φA(�r)+φB (�r)−1]+eμA z0AQAV+eμB z0B QBV

=
∫

D {φα}D {ωα}D {η} e−Ω({φ},{ω},{η}) ,

where the grand potential functional Ω ({φ}, {ω}, {η}) is given by,

Ω
({φ}, {ω}, {η}) =

ρ0χ

∫
d�r φA (�r) φB (�r) −

∑
α

ρ0

N

∫
d�r ωα (�r) φα (�r)

+ ρ0

N

∫
d�r η (�r) [φA (�r) + φB (�r) − 1

] − eμA z0AQAV − eμB z0BQBV .

Equivalently a grand potential density can be defined as,

g
({φ} , {ω} , {η}) ≡ N

ρ0V R3
g

Ω ({φ} , {ω} , {η})

= 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

ωα (�r) φα (�r) + η (�r) [φA (�r) + φB (�r) − 1
] }

−
∑
α

eμα−καμ0α
Qα

κα

,

where μ0α ≡ 1
κα
ln ρ0

z0αNα
are constants as defined before in the case of canonical

ensemble.
The mean-field equations are again obtained by demanding that the first-order

functional derivatives of the free energy functional vanish,
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δΩ ({φ} , {ω} , {η})
δφα(�r) = δΩ ({φ} , {ω} , {η})

δωα(�r) = δΩ ({φ} , {ω} , {η})
δη(�r) = 0.

Carrying out these functional derivatives leads to the following mean-field, or
SCFT, equations for the polymer blends in the grand-canonical ensemble,

φA (�r) = eμA−κAμ0A

κA

κA∫
0

ds qA (�r , s) qA (�r , κA − s) ,

φB (�r) = eμB−κBμ0B

κB

κB∫
0

ds qB (�r , s) qB (�r , κB − s) ,

ωA (�r) = χNφB (�r) + η (�r) ,

ωB (�r) = χNφA (�r) + η (�r) ,

φA (�r) + φB (�r) = 1.

This set of equations is similar to the canonical SCFT equations. The difference
is that, in the current case, the chemical potentials are the controlling parameters. In
particular, the average concentrations are given in terms of the chemical potentials
as, φ̄α = e�μα Qα where �μα = μα − καμ0α is the effective chemical potential of
the polymers.

Once solutions of the mean-field equations are obtained, the grand potential den-
sity can be computed using the expression,

g ({φ} , {ω} , {η}) = 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

ωα (�r) φα (�r)
}

−
∑
α

e�μα Qα

κα
.

Again in the case of grand-canonical ensemble, there are five SCFT equations for
five unknown variables, {φA (�r) , φB (�r) , ωA (�r) , ωB (�r) , η (�r)}. The parameters
controlling the thermodynamic properties of the system are the chemical potentials
of the polymers μα , the molecular weights κα , the relative Kuhn lengths σα , and the
interaction parameters χN .

4.2 Homogeneous Phase

It is instructive to work out the grand potential for the homogeneous phase and
related the expression with the results from the canonical ensemble. For a homoge-
neous or disordered phase all concentrations andfields are constants,φα (�r) = φα, ωα
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(�r) = ωα . Due to the lack of spatial variation, the solutions of the propagators are
easily obtained in this case,

Qα

(�r , s|�r ′) = 1

(4πσ 2
α s)

3/2 e
− (�r−�r ′)2

4σ2α s
−ωαs

, qα (�r , s) = e−ωαs, Qα = e−ωακα .

Therefore the mean-field equations become,

φA = e�μA−ωAκA , φB = e�μB−ωBκB ;

ωA = χNφB + η, ωB = χNφA + η;

φA + φB = 1.

These five equations are to be solved to obtain {φA, φB, ωA ωB, η} as functions
of the chemical potentials {�μA,�μB}. The corresponding grand potential density
is now obtained by inserting these solutions to the follow expression,

g = χNφAφB +
∑

α

ωαφα −
∑

α

e�μα−ωακα

κα

.

It should be noted that, although the above expression is given in terms of the
concentrations {φA, φB} and the fields {ωA ωB}, the grand potential is a function of
the chemical potential thus all the variables {φA, φB, ωA ωB, η} should be taken as
functions of the chemical potentials {�μA,�μB}.

5 Summary of SCFT

The self-consistent field theory of a binary polymer blend can now be summarized
for both canonical and grand canonical ensembles in a unified formulation. The basic
quantity in the theory is the chain propagators, which are solutions of the modified
diffusion equations,

∂

∂s
Qα

(�r , s|�r ′) = σ 2
α∇2Qα

(�r , s|�r ′) − ωα (�r) Qα

(
�r , s|�r ′)

,

with the initial conditions, Qα

(�r , 0|�r ′) = δ
(�r − �r ′). The physical significance of the

propagator is that it represents the conditional probability distribution for a polymer
chain of type α in an external field ωα (�r). It is obvious that the propagators are
functional of the field ωα (�r). Mathematically, the propagator can be expressed as
a path integral, thus linking the mathematical structure of polymer statistics with
quantummechanics. One useful formula is the functional derivative of the propagator



172 A.-C. Shi

with respect to ωα (�r),

δQα (�r1, s|�r2)
δωα (�r) = −

s∫
0

ds
′
Qα

(�r1, s − s ′|�r) Qα

(�r , s ′|�r2
)
.

For numerical implementations, it is useful to work with the end-integrated propa-
gators, qα (�r , s), which are defined by,

qα (�r , s) =
∫

d�r ′
Qα

(�r , s|�r ′) .

These end-integrated propagators satisfy the same differential equation as
Qα

(�r , s|�r ′), with different initial conditions, qα (�r , 0) = 1. In terms of the end-
integrated propagators, the single chain partition function is given by,

Qα ({ωα}) = 1

V

∫
d�r1d�r2 Qα (�r1, s|�r2) = 1

V

∫
d�r qα (�r , κα) .

It should be noted that the end-integrated propagators assumemore complex form
for block copolymers because their two or more ends are not equivalent. The above
equations determining the propagators and the single-china partition functions when
the fields, ωα (�r), are specified. These equations apply to both canonical and grand
canonical ensembles.

The self-consistent mean field equations are a set of nonlinear and nonlocal equa-
tions determining the concentrations φα (�r) and the fields ωα (�r), as well as the field
η (�r) which ensures the incompressibility condition. In the canonical ensemble, the
number of polymer chains nα or, equivalently, the average polymer concentrations
φ̄α , are fixed control parameters. In this case the polymer concentrations are deter-
mined by,

φα (�r) = φ̄α

καQα

κα∫
0

ds qα (�r , s) qα (�r , κα − s) .

In the grand canonical ensemble, the chemical potentials of the polymer chains
�μα = μα − καμ0α are fixed control parameters. In this case the polymer concen-
trations are determined by,

φα (�r) = e�μα

κα

κα∫
0

ds qα (�r , s) qα (�r , κα − s) .

These two expressions are related to each other by the fact that, from the
grand canonical ensemble expression, we can obtain the average concentrations as
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φ̄α = e�μα Qα . Inserting this relation to the grand canonical ensemble expression
leads to the canonical result.

The fields ωα (�r) and η (�r) are determined self-consistently from the following
equations, which are the same for both ensembles,

ωA (�r) = χNφB (�r) + η (�r) ,

ωB (�r) = χNφA (�r) + η (�r) ,

φA (�r) + φB (�r) = 1.

These SCFT equations must be solved to obtain solutions corresponding to dif-
ferent phases. Inserting the SCFT solutions to the expression of the free energy leads
to the evaluation of the free energy of different phases. A comparison of the free
energy of the phases can then be used to construct phase diagrams of the system.

The appropriate free energies for the two ensembles are the Helmholtz free energy
F(T, V, nα) and the grand potentialΩ(T, V, μα). These two free energies are related
by a Legend transformation, Ω (T, V, μα) = F (T, V, nα) − ∑

αnαμα . In terms
of the free energy densities, F = ρ0V

N f and Ω = ρ0V
N g, we have g (T, V, μα) =

f (T, V, nα) − ∑
α

μαφ̄α

κα
. The free energy densities are specified in terms of the SCFT

solutions (where the constants καμ0α have been absorbed into the chemical potential,
μα − καμ0α → μα),

f
(
φ̄α

) = 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

ωα (�r) φα (�r)
}

−
∑

α

φ̄α

κα

ln
eQα

φ̄α

,

g (μα) = 1

V

∫
d�r

{
χNφA (�r) φB (�r) −

∑
α

ωα (�r) φα (�r)
}

−
∑

α

eμα Qα

κα

.

These two expressions are equivalent and they are related by the Legend trans-
formation. This statement can be easily proven using the relationship φ̄α = eμα Qα .

For a binary polymer blend, there are two chemical potentials, μA and μB . In
general these two chemical potentials could be changed independently. However
for an incompressible system, these two chemical potentials are not independent
because the incompressibility condition requires that, 1 = ∑

αφ̄α = ∑
αe

μα Qα . In
practice we could choose one chemical potential as the independent parameter, and
the second one should be determined self-consistently from the theory.

6 Ginzburg-Landau Free Energy Functional
of Polymer Blends

Within the mean-field approximation, the SCFT developed above provides a useful
framework for the studyof the thermodynamic property of inhomogeneous polymeric
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systems. On the other hand, the polymeric SCFT equations are a set of nonlinear and
nonlocal equations, whose solutions could be obtained using various approximate
methods or numerical techniques. Formany applications, it might be advantageous to
cast the free energy functional in terms of the density variables alone, thus paralleling
the classical density functional theory. For polymer blends, a widely used free energy
functional is casted in the form of a Ginzburg-Landau theory [15, 16],

FGL ({φα (�r)}) =
∫

d�r
{
f (φα (�r)) +

∑
α

g (φα (�r)) [∇φα (�r)]2
}

,

where f (φα (�r)) is a local free energy density, the gradient terms provides a penalty
to the inhomogeneity in the system and g (φα (�r)) includes contributions from the
polymer configurations. It is noted that this particular form of the Ginzburg-Landau
free energy applies to polymer blends. More complex gradient terms are required to
describe the formation of ordered phases from block copolymers [17].

In principle, it is possible to obtain a free energy functionalF ({φ}) by integrating
out the field variables within the SCFT framework,

ZnA,nB =
∫

D {φα}D {ωα}D {η} e−F({φ},{ω},{η}) =
∫

D {φα} e−F({φ}).

Regrettably, performing this functional integration exactly is not possible in most
cases. Various approximate methods, such as the random phase approximation [17],
have been developed to evaluate this functional integral, resulting in different forms
of the free energy functional. Among the many approximate methods, a simple
and effective one is to carry out a mean-field or saddle-point approximation over
the integral over the fields, δF({φ},{ω},{η})

δωα(�r) = 0, resulting in the following mean-field
equations,

φα (�r) = φ̄α

καQα

κα∫
0

ds qα (�r , s) qα (�r , κα − s) ,

where the propagators are solutions of the modified diffusion equations,

∂

∂s
qα (�r , s) = σ 2

α∇2qα (�r , s) − ωα (�r) qα (�r , s) .

Normally this equation is used to obtain the density profiles when the fieldsωα(�r),
thus the propagators qα (�r , s), are given. In the current case, however, the task is
reversed in that we would like to obtain the fields ωα(�r) or the propagator qα (�r , s)
for a given density profile φα (�r) , ωα (�r) = ωα(�r , [φα(�r)]). Inserting this solution to
the SCFT free energy functional,

F ({φ} , {ω} , {η}) =
∫

d�r
{

χNφA (�r) φB (�r) −
∑
α

[
ωα (�r) + 1

κα
ln

eQα

φ̄α

]
φα (�r)

}
,
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we obtain the desired density functional for the system F ({φ}).
Evenwithin the saddle-point approximation, inverting themean-field equations to

obtain the solution ωα (�r) = ωα(�r , [φα(�r)]) is not straightforward. For cases where
the inhomogeneity is weak, it is possible to carry out an expansion in terms of the gra-
dients of the density [16]. In what followswewill find approximation solutions of the
relationshipωα (�r) = ωα(�r , [φα(�r)]) at theweak-segregation and strong-segregation
limits.

In order to proceed, it is convenient to write the integral
∫
d�r ωα (�r) φα (�r) in

terms of the propagators. To this end, we multiply the modified diffusions equation
by qα (�r , κα − s), leading to the expression,

qα (�r , κα − s)
∂

∂s
qα (�r , s) = σ 2

αqα (�r , κα − s) ∇2qα (�r , s) − ωα (�r) qα (�r , κα − s) qα (�r , s) .

Using the expression of the mean-field density profile we have,

ωα (�r) φα (�r) = − φ̄α

καQα

κα∫
0

ds

{
qα (�r , κα − s)

∂

∂s
qα (�r , s) − σ 2

αqα (�r , κα − s)∇2qα (�r , s)

}
.

Therefore the integral
∫
d�r ωα (�r) φα (�r) can be written as,

∫
d�r ωα (�r) φα

(�r)

= − φ̄α

καQα

∫
d�r

κα∫
0

ds

{
qα (�r , κα − s)

∂

∂s
qα (�r , s)

+ σ 2
α

[∇qα (�r , κα − s)
] [∇qα (�r , s)

] }
,

where we have used integration by part to write the second terms in terms of the
gradients of the propagators.

At the weak-segregation limit, the amplitude variation is small so the gradient
terms could be treated as perturbations. Ignoring the gradient term in the modified
diffusion equation, we obtain an analytic solution of the propagator, qα (�r , s) ≈
e−ωα(�r)s . The density profile is then given by,

φα (�r) ≈ φ̄α

Qα

e−ωα(�r)κα .

Inverting this expression gives an approximate expression of the fields and the
propagators in terms of the density profiles. In particular, the propagators are related
to the density profiles by,
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qα (�r , s) ≈
[
Qα

φ̄α

φα (�r)
] s

κα

.

Using this expression of the propagators, it is straightforward to obtain,

φ̄α

καQα

κα∫
0

ds

{
qα (�r , κα − s)

∂

∂s
qα (�r , s)

}
= φα (�r)

κα

ln

[
Qα

φ̄α

φα (�r)
]

,

φ̄α

καQα

κα∫
0

ds
{
σ 2

α

[∇qα (�r , κα − s)
] [∇qα (�r , s)

]} = σ 2
α

6

[∇φα (�r)]2
φα (�r) .

Inserting these results to the expression of the free energy functional, we obtain,

FGL ({φα (�r)}) =
∫

d�r
{

χNφA (�r) φB (�r) +
∑
α

φα (�r)
κα

ln

[
φα (�r)

e

]
+

∑
α

σ 2
α

6

[∇φα (�r)]2
φα (�r)

}
,

which can be written in the standard form,

FGL ({φα (�r)}) =
∫

d�r
{
fFH ({φα (�r)}) +

∑
α

σ 2
α

6

[∇φα (�r)]2
φα (�r)

}
,

where the Flory-Huggins free energy density is given by,

fFH ({φα (�r)}) = χNφA (�r) φB (�r) +
∑

α

φα (�r)
κα

ln
φα (�r)
e

.

This form of the free energy functional has been derived previously using random
phase approximation or gradient expansion. It is the starting point to investigate
the phase behavior, interfacial property and phase-separation dynamics of binary
polymer blends [14, 16, 18, 19].

An approximate solution of the relationship ωα (�r) = ωα(�r , [φα(�r)]) can also be
obtained at the strong-segregation limit. At this limit the interaction between the
different polymers is strong so that the phase separation is approximately complete.
In this case the solution of the propagators is dominated by the ground state of the
“Hamiltonian” of the chains [20],

qα (�r , s) ≈ qα,0e
−εα,0sψα,0 (�r) ,

where ψα,0 (�r) is the ground-state eigenfunction of the chain Hamiltonian
Hα = −σ 2

α∇2 + ωα (�r) and εα,0 is the corresponding eigenenergy, Hαψα,n (�r) =
εα,nψα,n (�r). Furthermore, qα,0 is a normalization constant. The polymer density
profile corresponding to this approximate propagator is then given by,



Self-consistent Field Theory of Inhomogeneous Polymeric Systems 177

φα (�r) ≈ φ̄α

Qα

e−εα,0κα
[
qα,0ψα,0 (�r)]2 .

Using this expression an approximate relationship between the propagator and
density is obtained,

qα (�r , s) ≈ e−εα,0(s− κα
2 )

[
Qα

φ̄α

φα (�r)
] 1

2

.

Inserting this expression into the integrals over the propagators leads to,

φ̄α

καQα

κα∫
0

ds

{
qα (�r , κα − s)

∂

∂s
qα (�r , s)

}
= −εα,0φα (�r) ,

φ̄α

καQα

κα∫
0

ds
{
σ 2

α

[∇qα (�r , κα − s)
] [∇qα (�r , s)

]} = σ 2
α

4

[∇φα (�r)]2
φα (�r) .

Combining these results into the expression of the free energy results in the follow-
ingGinzburg-Landau free energyof a binarypolymer blends at the strong-segregation
limit,

FGL =
∫

d�r
{

χNφA (�r) φB (�r) +
∑
α

[−εα,0φα (�r)] +
∑
α

σ 2
α

4

[∇φα (�r)]2
φα (�r)

}
−

∑
α

φ̄α

κα

ln
eQα

φ̄α

.

It is useful to observe that the terms linear in the density do not affect the thermo-
dynamic property of the system. They could be removed by choosing proper levels
of the energy. Ignoring the linear terms, we obtain,

FGL =
∫

d�r
{

χNφA (�r) φB (�r) +
∑

α

σ 2
α

4

[∇φα (�r)]2
φα (�r)

}
.

It is interesting to note that this expression is similar to that derived at the weak-
segregation limit. The differences are in the coefficient of the gradient term, 1

6 versus
1
4 , and the lack of the entropic contribution at the strong-segregation limit.

7 Conclusion and Discussions

In this chapter a detailed derivation of the self-consistent field theory for inhomo-
geneous polymeric systems is presented using a binary blend of homopolymers as
an example. The resulting SCFT equation and free energy functional could be used
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to study the phase diagram and interfacial structure of polymer blends. Although a
binary blend of polymers is used as a model system, it should be emphasized that
the theoretical methods for deriving the SCFT equations are very flexible and ver-
satile. Extension of the theoretical framework to more complex many-body systems
is straightforward. In particular, the SCFT equations developed here can be easily
extended tomore complex polymeric systems includingmultiblock copolymers [11],
block copolymer blends and solutions [21], as well as semiflexible polymers [22]
and charge polymers [23].

Extension of the SCFT equations to polymers with complex architectures, such as
block copolymers and grafted polymers, could be carried out by constructing model
polymers with appropriate architectures. In particular, the architecture of a given
block copolymer could be described by specifying the constraints on the probability
distribution function of the polymer configurations. For example, an AB diblock
copolymer is obtainedby connecting the ends of anA-polymer and aB-polymer. Thus
the configurations of an AB diblock copolymer could be specified by using delta-
functions to enforce the connectivity of the chains. Mathematically, the probability

of find a particular configuration (
{ �R(s)

}
) of an AB diblock copolymer chain is

given by,

PAB

({ �R(s)
})

= p0
[ �RA,i (s)

]
p0

[ �RB,i (s)
]

δ
[ �RA,i (NA) − �RB,i (NB)

]
.

In this expression the delta-function ensures that the two ends of the A- and
B-polymers are linked together, thus forming a diblock copolymers. The correspond-
ing single-chain partition function should be modified to include contributions from
both blocks,

Qα ({ωα}) = 1
V

∫ D
{ �R(s)

}
PAB

({ �R(s)
})

exp

[
− ∑

α=A,B

Nα∫
0
ds ωα

( �Rα(s)
)]

.

In terms of the propagators, the partition function of an AB diblock copolymer
becomes,

Qα ({ωα}) = 1

V

∫
d�r1d�r2d�r3 QA (�r1, NA |�r2) QB(�r2, NB |�r3).

Similar expressions for more complex block copolymers can be obtained analo-
gously.

The SCFT equations are a set of nonlinear and nonlocal equations. Analytic
solutions of the SCFT equations could be obtained only for very simple cases such
as the homogeneous phases. The SCFT solution of a homogeneous phase leads to a
free energy expression, corresponding to that given by the Flory-Huggins theory for
homogeneous polymer blends. The Flory-Huggins free energy, originally obtained
using a lattice model, can be used to construct phase diagrams and calculate spinodal
lines for polymer blends.

For complex ordered phases, typically formed from polymeric systems containing
block copolymers, approximate analytical solutions could be obtained by using a
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number of approximation methods, such as the weak-segregation theory [17] or
strong-segregation theory [24]. These solutions provide useful insight into the self-
assembly of ordered polymeric phase. At the same time, sophisticated numerical
methods to solve the SCFT equations have been developed over the last few decades
[10, 13]. These solutions provide accurate description of the various ordered phases
self-assembled from block copolymers [11].

The derivation of the SCFT is based on the Gaussian model of polymer chains,
so that the partition function of a single polymer chain in the field can be obtained
by solving the modified diffusion equations. On the other hand, the transformation
from a particle-based description to a field-based description is a generic procedure,
which applies to any statistical mechanical systems. For a generic molecular model,
the partition function of the system will be described by the partition function of a
single molecule in an external field. The evaluation of this single-particle partition
function depends on the particularity of the molecular model. For example, if the
molecule can be modeled as a simple particle, the single-particle partition function
is given by the usual summation over the Boltzmann factor,

Qα ({ωα}) = 1

V

∫
d �R exp

[
−ωα

( �R
)]

.

On the other hand, if the molecule is more complex, such as a semiflexible chain,
the single-molecule partition function has more complex expression.
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Variational Methods for Biomolecular
Modeling

Guo-Wei Wei and Yongcheng Zhou

1 Introduction

Living biological systems require a constantly supply of energy to generate and
maintain certain biological orders that keep the systems alive. This warrants the
biophysical models that quantify the management and balance of energy in bio-
logical systems, i.e., the energy budget of metabolism. Taking cells—the building
blocks of life—as an example, energy is derived from the chemical bond energy in
food molecules, passed through a sequence of biochemical reactions, and is used in
cells to produce activated energy carrier molecules (i.e., ATPs) for powering almost
every activity of the cells, including muscle contraction, generation of electricity in
nerves, and DNA replication [2]. For solvated biomolecular systems1 discussed in
this chapter, including solvated proteins, bilayer membranes, or their complexes, one
can make similar energy budgets too. Various types of energies can be identified for
biomolecular systems, such as

1. kinetic energies of atoms or molecules in motion;
2. potential energies for bonded atoms: potential energies characterizing the stretch-

ing, bending, torsion of the covalent bonds between atoms;

1Water constitutes a large percentage of cellular mass and therefore biomolecules are mostly
living in an aqueous environment where various types of ions such as sodium (Na+), potassium
(K+), calcium (Ca2+), and chloride (Cl−) present at different concentrations.
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3. potential energies for unbounded atoms: electrostatic energy and van der Waals
energy; and

4. kinetic andpotential energy interconversions in enzymatic processes and chemical
reactions.

The first three energy terms constitute the basis for the molecular dynamics (MD)
simulations of non-reactive solvated biomolecular systems. Using the spatial coor-
dinates of individual atoms as parameters, MD simulations trace the motion of each
atom by using the Newton second law, where the force applied to each atom is com-
puted as the variational of the total energy with respect to the atom’s spatial coor-
dinates [15, 20, 104, 133]. Additional forces that models temperature-dependent
thermal fluctuations can be added as well, giving rise to Langevin dynamics simu-
lations [114]. In this regard, MD simulation is indeed a classical application of the
variational principle.

The large amount of solvent molecules in a molecular dynamics simulation of
solvated biomolecular system can make the simulation daunting and expensive. This
deficiency motivates the development of various continuum or multiscale models for
part of or the entire solvated biomolecular system [16, 23, 28, 32, 46, 52, 120, 129,
147, 162]. Notably among these simplifications are implicit solvent models, which
manage to replace the atomic degrees of freedom of solvent molecules with a contin-
uum description of averaged behavior of solvent molecules while retain an atomistic
description of the solute molecule [52, 120]. Accordingly, the solvent-solute inter-
face must be identified as the boundary between the continuum solvent region and
the discrete biomolecular domain. This interface is of particular importance because
it is related to a range of solvent-solution interactions such as hydrogen bonding, ion-
ion, ion-dipole, dipole-dipole and multipole interactions, and Debye attractions [41].
Thus the parametrization of the total energy of the systemmust include the geometry
of this interface. Mean and Gaussian curvatures are generally involved in such para-
metrization because they measure the variability or non-flatness of a biomolecular
surface and characterize respectively the extrinsic and intrinsic measures of the sur-
face [76]. In these multiscale models of solvated biomolecules systems the motion
of the atoms still follows the Newton’s law where the force is given as the variational
of the total energy with respect to the atoms’ spatial coordinates, the electrostatic
potential, and the interface [58, 59, 137, 147, 160]. The change in the solvent-solute
interface induces variation in curvatures, whose energies might be treated as a part
of the total energy functional. These curvature based or differential geometry based
biomolecular models offer a manifest of mathematical analysis and computational
methodologies for the dynamics of the solvent-solute interface and the equilibrium
energy landscape of solvated biomolecules. In other words, one can derive dynamic
partial differential equations to evolve the interface morphology, and this evolution
can bemapped to the path toward the global or local minimumon the landscape of the
total energy. Here in this chapter we shall present three representative applications
of interface geometry based variational principles to the modeling of biomolecular
interactions: (i) biomolecular electrostatics and solvation, (ii) surface microdomain
formation in bilayer membranes, and (iii) curvature driven protein localization in
bilayer membranes.
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In the first applicationwe consider the long-range electrostatic interactions among
partially charged static atoms in the solute and the aqueous solvent with mobile
ions. These interactions strongly depend on the position of solvent-solute boundary,
also referred to as the molecular surface in this context, where a rapid transition of
dielectric permittivity is observed. Inclusion of this interface, albeit implicitly, in
the formulation of the total energy of the system facilitates the coupling of polar
and nonpolar solvent-solute interactions, as well as the nonlinear solvent response,
in the form of interface energy functional of surface curvature energy, electrostatic
energy and van der Waals potential. Such a coupling finally gives rise to a novel
variational multiscale solvation model [26, 27, 46, 47, 147]. In a more elaborated
model, the solute molecule can be described in further detail by using the quantum
density functional theory (DFT) in an iterative manner, which allows amore accurate
account of solvent-solute interaction and response [25]. Differential geometry based
solvation models have been shown to deliver superb predictions of solvation free
energies for hundreds of molecules [28, 138]. This variational principle based sol-
vation model can be further extended to describe essential biological transportation
such as transmembrane ion or proton flows that depend critically on the geometry
of the associated protein channels. By including the chemical potential and entropy
of the diffusive ion species into the total energy functional one can obtain simul-
taneously the optimized channel protein surfaces as well as the corresponding I–V
(current-voltage) curve [28, 149, 158].

Curvature is believed to play an important role in many biological processes, such
as protein-DNA and protein-membrane interactions, including membrane curvature
sensing. Classical phase field modeling of surface pattern formation in bilayer mem-
branes contains a curvature term in its definition of the total energy [18, 24, 42,
44, 56, 102]. However, when modeling the surface pattern formation in our second
application here, we show that it is the geodesic curvature rather than the curvature
of pattern interfaces that plays an essential role in modulating the interface energy.
Noting that this geodesic curvature is defined on a general differentiable manifold,
and thus the classical phase field modeling of phase separation with specified intrin-
sic curvature can be regarded as a special case of this geodesic curvature model
in the Euclidean spaces. By providing various intrinsic geodesic curvatures that
model the geometry of the contact of different species of lipids, we are able to simu-
late the generation of lipid rafts as the formation and equalization of localized surface
domains.

In contrast to most amphiphilic lipids whose relatively long and geometrically
regular hydrophobic tails allow they to pack together, membrane proteins usually do
not present in large distinct domains in membrane surfaces, although small amount
of membrane proteins can compound together forming functional complexes such as
ion channels or membrane transporters. Most membrane proteins have amphipathic
transmembrane helices, which contain both hydrophobic and hydrophilic groups,
complementing to amphiphilic lipids. Therefore, the localization of these membrane
proteins in general can not be modeled using the geodesic curvature based phase
separation model as described in our second application. Many membrane proteins,
however, do prefer bilayer membranes with particular curvature, in the sense that
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they can induce particular curvature in the bilayer membrane and they tend to be
localized in regions with specific curvature. Therefore, one can imagine that mem-
brane curvature can provide a driving force for the distribution of membrane proteins
in the bilayer, and thus an appropriate energy functional that represents the mem-
brane curvature must be added to the classical electrochemical potential and entropy
to describe the localization of membrane proteins.

These three applications of variational principles in biomolecular modeling are
by no means exhaustive, even in the context of solvation analysis and membrane-
protein interactions. There are inspiring studies of ion and water transport in
membrane channels using energetic variational approaches, where the effects of
surface charge density and non-uniform particle sizes can be readily included in
investigations thanks to the flexibility of variational approaches [67, 69–71, 83,
89, 147, 149, 153]. Similar flexibility also enables the extension of the application
of variational principles from the standard phase field modeling of bilayer mem-
brane deformation and morphology [42, 44, 45] to multi-components membranes
[86, 157], pore formation [35, 113], and double layer [38, 57]. Some of these mod-
els, particular those for bilayer membranes, share various degree of similarity to the
models used for self-assembly or phase separation of polymers or co-polymers. It
is this wide diversity of lipid structures and the complicated interactions between
proteins and lipid bilayers in solution that makes the energetic variational modeling
of bilayer membranes unique and challenging. As we shall present below, most of
our efforts are concentrated on the formulation of potential energy functional of these
interactions so that the variational principle can be applied and numerical solutions
can be found by solving the corresponding systems of nonlinear partial differential
equations (PDEs).

2 Variational Multiscale Methods for Biomolecular
Electrostatics and Solvation

By definition, the solvation energy of biomolecules is the cost of free energy required
to transfer the biomolecules from the vacuum to the solvent environment. It is
therefore an essential quantitative characterization of the solute-solvent interactions.
Electrostatic free energy, also called polar solvation free energy, is an important com-
ponent of the solvation free energy since most biomolecules are charged and there
are always mobile ions in the solvent under physiological conditions. Various critical
applications of the electrostatic and solvation free energies can be found in chemistry,
biophysics, and medicine. We refer the reader to [31, 40, 48, 52, 73, 79, 91, 92,
109, 117, 137, 142–144] for theoretical underpinning of these applications and the
determination of the electrostatics and solvation free energies. Apart from electro-
static effects, the solvation free energy also involves the nonpolar energy, namely,
the energy cost for creating a suitable cavity in the continuum solvent to allow the
transferring of the biomolecules and for the dispersive interactions between the
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solvent and the biomolecule on the surface of this cavity. Implicit solvent models are
particularly appearing for computing the solvation free energy since the number of
solvent degrees of freedom can be dramatically reduced by a well fitted bulk dielec-
tric permittivity while the atomistic representations of solute biomolecules can be
retained to maintain a detailed modeling of the solute. The framework of implicit
solvent models allows the solvation free energy to be decomposed into two com-
ponents, polar solvation and nonpolar solvation [79, 81, 137]. In this approach, the
electrostatic contribution can be readily computed from the solution of the Poisson-
Boltzmann equation, or the Poisson equation if there is no explicit ion in the solvent
[6, 7, 61, 63, 88, 101, 136]. The solution of these equation depends on the contrast
of dielectric permittivity in vacuum and the solvent environments, and this contrast
is concentrated at the boundary between the biomolecule and the solvent. Likewise,
the calculation of nonpolar solvation free energy depends on the geometry of the bio-
molecular surface. The fact that both polar and nonpolar components are determined
by the solvent-solute interface warrants the importance of a biophysically justifiable,
mathematically well-posed, and computational feasible definition of the molecular
surface or dielectric interface. In fact, the decoupling of polar and nonpolar compo-
nents makes implicit solvent models conceptually convenient and computationally
simple.

However, there are many structural imperfections associated with implicit solvent
models. First, intrinsic thermodynamical and kinetic coupling makes it impossible to
completely separate the electrostatic component from the non-electrostatic compo-
nents in the solvation modeling. Additionally, a pre-prescribed solvent-solute inter-
face, such as solvent excluded surface and van derWaals surface, decouples polar and
nonpolar components. As a result, the solvation induced solute polarization and sol-
vent response are not appropriately accounted in implicit solvent models. Moreover,
implicit solvent models neglect potential solvation induced surface reconstruction
and possible conformational changes. Finally, thermodynamically, the change in the
Gibbs free energy of solvation can be formally decomposed into the change in internal
energy, work, and entropy effect. There is no guarantee that all of these components
are fully accounted in implicit solvent models. In addition to the aforementioned
structural or organizational imperfections, the performance of implicit solvent mod-
els is subject to a wide range of implementation deficiencies, such as the modeling
of nonpolar component, the treatment of the electrostatic component, the exclusion
of high-order polarization, the exclusion of curvature, the geometric singularity of
solvent-solute interface, the stability of numerical schemes and algorithms, the grid
convergence of the solvation free energy, to mention only a few.

Some of the aforementioned problems have been the subjects of intensive study
in the past few decades. One approach starts from improving the surface definitions,
so that earlier van der Waals surface, solvent accessible surface [77], and molec-
ular surface (MS) [111] are replaced by smooth surface expressions [22, 60–62,
159]. Geometric analysis, which combines differential geometry (DG) and differ-
ential equations, is a powerful mathematical tool for signal and image processing,
data analysis, and surface construction [100, 139–141, 145]. Geometric PDEs and
DG theories of surfaces provide a natural and simple description for a solvent-solute
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interface. The first curvature-controlled PDEs for molecular surface construction
and solvation analysis was introduced in 2005 [146]. A variational solvent-solute
interface, namely a minimal molecular surface (MMS), was proposed for molec-
ular surface generation in 2006 [9, 10]. In this work, the minimization of surface
free energy is equivalent to the minimization of surface area, which can be imple-
mented via the mean curvature flow, or the Laplace-Beltrami flow, and gives rise to
the MMS. The MMS approach has been used in implicit solvent models [10, 28].
Potential-driven geometric flows, which admit potential driven terms, have also been
proposed for biomolecular surface construction [8]. This approach was adopted by
many researchers [21, 29, 30, 154–156] for biomolecular surface identification and
electrostatics/solvation modeling.

It is natural to extend DG based variational theory of the solvent-solute interface
into a full solvation model by incorporating a variational formulation of the PB
theory [28, 59, 116, 147] following the spirit of a similar approach by McCammon
and coworkers [46, 47]. However, the formalism ofMcCammon and coworkers does
not involve geometric flowand has aGaussian curvature term thatmight lead to jumps
in the energy when there are topological changes. Our DG based variational model
addresses many of the aforementioned imperfections of implicit solvent models. For
example, by parametrizing both polar and nonpolar components of the solvation
energy using the geometry of the interface, these two components can be coupled
naturally in a single free energy functional. Application of the variational principle
and the equilibrium solution of the associated Laplace-Beltrami flow gives rise to an
optimal biomolecular surface along with an optimized solvation energy.

2.1 Polar Solvation Free Energy

We start with the definition of polar solvation energy, which is associated with the
energy difference for charging biomolecules in the vacuum and the solvent environ-
ment. Variational formulation of Poisson-Boltzmann equation was discussed in the
literature [59, 116]. Here we recast this formulation in our DG based formalism.
Considering a solvated biomolecular system occupying a three-dimensional (3D)
domain Ω ∈ R

3, one can relate the polar solvation energy of the biomolecule to the
electrostatic potential Φ(r) : R3 → R by the formulation [27, 147]

Gp =
∫
Ω

⎧⎨
⎩S

[
ρmΦ − 1

2
εm |∇Φ|2

]
− (1 − S)

⎡
⎣ 1

2
εs |∇Φ|2 + kBT

Nc∑
i=1

ci (e
−qiΦ/KBT − 1)

⎤
⎦
⎫⎬
⎭ dr,

(1)

where S(r) and 1 − S(r) are respectively the domain indicators for the solute and the
solvent domains.We set 0 ≤ S(r) ≤ 1,which is related to thewidely used phase-field
function |φ̄(r)| ≤ 1 by
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Fig. 1 Left A typical phase field function S changes smoothly from its value of −1 in the solvent
domain to the value of 1 in the solute domain. Right The dielectric constant ε(S) depends on the
phase field function and changes smoothly from a value of 78 (or 80) in the solvent domain to a
value of 2 (or 1) in the solute domain

S = 1 + φ̄

2
, 1 − S = 1 − φ̄

2
. (2)

Here S and 1 − S are introduced to distinguish the contributions to the total free
energy from the solute region Ωm and solvent region Ωs . The dielectric permittivity
in these two complementary subdomains of Ω are given by εm and εs , respectively.
Thefixed charge densityρm of biomolecule consists of a summation of partial charges
(Q j ) from atoms

ρm(r) =
∑
j

Q jδ(r − r j ), (3)

where r j ∈ R
3 is the position of j th charged atom. InEq. (1),qi and ci are respectively

the charge and bulk concentration of the i th ion species, Nc is the number of ions
species in the solvent, kB is the Boltzmann constant, and T is the temperature.

The surface function S(r) can be chosen initially as a smooth function to simplify
the numerical implementation, as seen in the left chart of Fig. 1. We show below
the classical Poisson-Boltzmann equation can be reproduced by using this energy
functional when a sharp solvent-solute interface is adopted, i.e., when S becomes a
Heaviside function. In the sequel we shall work on a generalized Poisson-Boltzmann
equation in the sense that the transition from the solvent region to the solute region
is smooth rather than discontinuous.

2.2 Nonpolar Solvation Free Energy

The nonpolar solvation energy involves a number of terms. The scaled-particle the-
ory (SPT) for nonpolar solutes in aqueous solutions [105, 124] utilize a solvent-
accessible surface area term [95, 127]. Solvent-accessible volume was shown to be
relevant in large length scale regimes [68, 90]. It was pointed out that van der Waals
(vdW) interactions near solvent-solute interface are important as well [33, 54, 55,
137]. Dzubiella et al. convert these terms into a nonpolar energy functional, which,
however involves a Gaussian curvature term [46]. We modify this functional in spirit
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of our MMS [9, 10] to give the following nonpolar term [27, 147]

Gnp = γ Am + pVm + ρ0

∫
Ωs

U attdr. (4)

Here the first term on the right is the surface energy given by the surface tension γ and
the biomolecule’s surface area Am . This term measures the disruption of inter- and
intra-molecular noncovalent bonds of solvent molecules when an internal surface
is created. In our approach, the surface tension γ does not depend on Gaussian
curvature so that the first term in Eq. (4) avoids possible energy jumps suggested by
the Gauss-Bonnet theorem. Additionally, such a term follows our minimum surface
energy functional formulation [9, 10]. The second term represents the mechanical
work for expanding a volume of Vm in solvent against a hydrostatic pressure p. The
last term quantifies the attractive dispersion effects near the solvent-solute interface,
determined by the solvent bulk density ρ0 and the attractive portion of the van der
Waals potential U att at position r. Since the biomolecular surface is not explicitly
known in the present modeling, we relate the surface area and its enclosed volume
to the surface function S through

Vm =
∫

Ωm

dr =
∫

Ω

Sdr (5)

and the coarea formula [147, 150]

Am =
∫

Ω

|∇S|dr. (6)

With these relations we can assemble the polar and nonpolar contributions to give
the formulation of the total solvation free energy functional for biomolecules at
equilibrium [27, 147]

G tot =
∫

Ω

{
γ |∇S| + pS + (1 − S)ρ0U

att + S

[
(ρmΦ) − 1

2
εm |∇Φ|2

]
+

(1 − S)

[
−1

2
εs |∇Φ|2 − kBT

Nc∑
i=1

ci (e
−qiΦ/KBT − 1)

]}
dr. (7)

There are a variety of definitions of nonpolar free energies alternative to that in
Eq. (4), but most of them are determined by the surface area, its enclosed volume
and ver der Waals term in a similar way [79, 81, 137]. The present formulation and
the variational principle introduced here are applicable to these alternative nonpolar
solvation models as well.
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2.3 Governing Equations

We search for the critical point of the free energy functional to obtain the optimal free
energy of the biomolecular systems. By construction, the free energy functional is
determined by the surface function S and the potential Φ. The latter indeed depends
on the position of dielectric interface hence on the surface function S as well. Since
the electrostatic potential follows the Poisson equation, it is theoretically possible to
replace the electrostatic potential using the convolution of the Green’s function with
the change density. However, the dependence of this Green’s function on the surface
function S does not have an explicit representation. Consequently, it is practically
impossible to represent the total energy as the functional of the surface function only
and compute its variation. In our investigations we shall compute the critical point
by evolving the gradient flow of the free energy functional to a steady state; while the

electrostatic potential defined by the vanishing variation
δG tot

δΦ
is used as a constraint

during the evolution. These two variations are

δG tot

δΦ
= Sρm + ∇ · ((1 − S)εs + Sεm)∇Φ) + (1 − S)

Nc∑
i=1

ciqi e
−qiΦ/KBT , (8)

δG tot

δS
= −∇ ·

(
γ

∇S

|∇S|
)

+ p − ρ0U
att + ρmΦ + 1

2
(εs − εm)|∇Φ|2

+ kBT
Nc∑
i=1

ci (e
−qiΦ/KBT − 1). (9)

The vanishing variation in Eq. (8) gives rise to a generalized Poisson-Boltzmann
equation (GPBE) [27, 147]

− ∇ · (ε(S)∇Φ) = Sρm + (1 − S)

Nc∑
i=1

ciqi e
−qiΦ/KBT . (10)

where the dielectric function

ε(S) = (1 − S)εs + Sεm, (11)

is also plotted in the right chart in Fig. 1. The gradient flow for the surface function
S follows a generalized Laplace-Beltrami equation [27, 147]

∂S

∂t
= −|∇S|δG tot

δS
= |∇S|

[
∇ ·

(
γ

∇S

|∇S|
)

+ V

]
, (12)
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where a generalized potential function V collects the relevant terms in Eq. (9) as

V = −p + ρ0U
att − ρmΦ + 1

2
(εm − εs)|∇Φ|2 − kBT

Nc∑
i=1

ci (e
−qiΦ/KBT − 1),

(13)
and |∇S| is added to the front of the variation to introduce the local curvature of the
molecular surface to adjust the rate at which the surface function evolves toward its
steady configuration. In this sense Eq. (12) is a generalized geometric flow equation.
Note that the time in Eq. (12) is artificial.

We expect that theGPBEwith smooth S converges to its sharp interface limitwhen
S becomes aHeaviside functionwith a discontinuity located at the dielectric interface
Γ , in that case the GPBE can be written as the following two elliptic equations

−εm∇2Φm = ρm, r ∈ Ωm, (14)

−εs∇2Φs =
Nc∑
i=1

ciqi e
−qiΦs/KBT , r ∈ Ωs . (15)

These two equations are coupled through the interface conditions on Γ . In this case,
to make the above two equations well posed, one has to introduce two interface jump
conditions,

Φs = Φm, εm∇Φm · n̄ = εs∇Φs · n̄, r ∈ Γ (16)

whereΦm, Φs are the limit values of the electrostatic potential from solution domains
Ωm and Ωs , respectively, and n̄(r) is the unit normal vector on Γ .

2.4 Computational Simulations and Summary

A second-order finite difference scheme was designed to solve the coupled general-
ized Poisson-Boltzmann equation (10) and the Laplace-Beltrami equation (12).Most
of physical parameters involved in Eq. (12) are taken from the references [81, 99]
and the CHARMM force field. A constant surface tension γ is chosen in our investi-
gation whose value shall vary for different molecular surfaces [81, 99]. In particular,
γ is implemented as a fitting parameter so that the optimized solvation free energy
ΔG from our computational studies can match the experimental measurements. By
definition,

ΔG = G tot − G0, (17)

where G tot is defined in Eq. (7) and G0 is the total energy of the solvent molecules
in vacuum with εs = εm = 1 and without nonpolar energy. To facilitate the fitting of
γ we rewrite Eq. (12) as
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Fig. 2 The phase field function evolves from its initial configuration to the final state where the
surface S = 0.0 fits the molecular surface for a diatomic system. Here we show only the profiles of
S at the cross section (x, y, 0.05) sampled at six moments during the evolution

∂S

∂t
= γ |∇S|

[
∇ ·

( ∇S

|∇S|
)

+ V

γ

]
. (18)

More details of the numerical methods for solving the coupled partial differential
equations can be found in [27]. In Fig. 2 we show a simulation where the initial
surface function is set such that the target diatomic system is well contained in the
region S = 1. The surface function evolves from the initial profile toward the final
configuration that fits the molecular surface of a diatomic system, reaching a state
where the total solvation energy is optimized. A more realistic simulation on the
protein (PDB ID: 1frd) is shown in Fig. 3, where isosurfaces defined by different
S are plotted along with the electrostatic potential Φ on the surface. While S = 1

2
is usually chosen as the molecular surface, the three surfaces are very close due to
the high resolution of the numerical method. The availability of the surface position
and surface potential could significantly facilitate the analysis of binding affinity of
protein-protein or protein-ligand systems, of which the electrostatic potential is an
important component [5, 34, 63, 87, 108, 119].

Numerically, this model can be computed by using both the Eulerian formulation,
in which the solute boundary is embedded in the 3D Euclidean space so evaluation
of the electrostatic potential can be carried out directly [27], and the Lagrangian
formulation, wherein the solvent-solute interface is extracted as a sharp surface and
subsequently used in solving the GPB equation for the electrostatic potential [26].



192 G.-W. Wei and Y. Zhou

Fig. 3 Electrostatic potential on molecular surfaces with different values of S. Left S = 0.25;
Middle S = 0.5; Right S = 0.75

Lagrangian formulation requires direct tracking of the sampling points on the mole-
cular surface, which is convenient for the surface visualization, the mapping of the
surface electrostatic potential field, and the enforcement of the van der Waals radii in
constraint. However, it suffers from the development of singularities while evolving
molecular surface and the difficulty of handling the change of topology. In contrast,
the Eulerian representation gets around of the explicit tracking of sampling points by
modeling the solvent-solute interface either a smooth 3D density profile or as a spe-
cific level set of the smooth profile. The dynamics of the solvent-solute interface can
be obtained by evolving this 3D density profile following the Laplace-Beltrami flow
of the energy functional. The Eulerian representation is therefore capable of repro-
ducing complicated dynamics of surface topology. As we shall introduce below, it
also greatly facilitates the computation of a number of geometric quantities that are
otherwise difficult to compute in the Lagrangian representation, such as the area of
entire surface and surface enclosed volume.

The parametrization of solvation energy using the surface function S allows one to
track the molecular surface by following the isosurface S = 0.5 during the evolution
of S. This formulation is referred to the Eulerian formulation. Alternatively, one can
explicitly define a molecular surface Γ to separate the solvent and solute domains,
and to use this surface to parametrize the solvation energy. Denote such an energy
functional as G tot(Γ ). Similar to the optimization procedure presented above, the
total energy is optimized by evolving Γ following the gradient flow of the energy,
and in this case, the energy variation is with respect to the spatial coordinates of this
explicitly defined surfaceΓ . Numerically, this can be achieved by discretizingΓ into
a collection of surface elements or surface vectors {Ŝ j }, each element parametrized by
a local coordinate system (x1, x2), and thus G tot(Γ ) becomes G tot(Ŝ j ). Furthermore,
we can constrain the motion of Γ to the normal direction n(x1, x2) only, for that
a tangential displacement of Γ does not change the surface configuration and the
solvation energy. A scalar displacement field ψ(x1, x2) in the normal direction can
be defined through

Ŝσ
j (x1, x2) = Ŝ(x1, x2) + σψ(x1, x2)n(x1, x2), (19)
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which states that the surface element Ŝ j is updated from its original position by
σψ(x1, x2) along the normal direction to the new position Ŝσ

j , where σ is a number
to scale the normal displacement fieldψ(x1, x2). The optimization of the total energy
at a particular molecular surface Γ means that any normal displacement will violate
the nature of optimum at this point, indicating

∂ Ŝσ
j

∂σ

∣∣∣∣∣
σ=0

= 0. (20)

Now we can observe the transition of the independent variables in calculating the
energy variation:

δ

δΓ
→ ∂

∂ Ŝσ
j

→ ∂

∂σ
, (21)

as a result of replacing the motion of the explicit surface Γ using the scaled normal
motion of a collection of surface elements. The readers are referred to [26] for the
detailed calculation of the energy variation, the derivation of the equation governing
the gradient flow, and the numerical techniques for solving the equation. This inves-
tigation also shows that the optimized solvation energy and molecular surface are
well matching those generated by the Eulerian formulation if there is no topological
change in Γ during its evolution. Notice that a single point on Ŝ j may evolves to two
distinct points, or two distinct points in two different surface elements may converge
to a single point when there is a topological change during the evolution of Γ . This
intrinsic singularity in handling the topological change limits the applications of the
Lagrangian formulation to complex biomolecular systems, for which it is impossible
to set an initial surface Γ that is topologically equivalent to the final optimized mole-
cular surface. The Eulerian formulation is hence suggested for the investigations of
the solvation energy and molecular surfaces of general biomolecular systems.

Recently, differential geometry based implicit solvent model has been tested
extensively via solvation analysis [26–28, 39, 132, 138]. The differential geome-
try based nonpolar model was found to deliver some of the best nonpolar solvation
predictions [28]. However, for general molecules with a significant polar compo-
nent, our initial predictions were not up to the state of the art [26, 27]. It turns out
that both the generalized Laplace-Beltrami equation and the generalized Poisson-
Boltzmann equation can be easily solved individually. However, when these equa-
tions are coupled, there is a stability problem [155, 156]. Essentially, when S admits
unphysical values beyond its physical definition 0 ≤ S ≤ 1, the dielectric function
(11) will adopt unphysical (negative) values as well, which gives rise to an instability
in updating the Laplace-Beltrami equation (12). This issue hinders the performance
of DG based solvation models for molecules with significant polar component. To
address this problem, a convex optimization algorithm [138] has been developed to
ensure the stability in solving coupled PDEs (10) and (12). As a result, the differen-
tial geometry based solvation model is found to deliver some of the most accurate
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prediction of experimental solvation free energies for more than 100 molecules of
both polar and nonpolar types [138].

Most recently, Wei and coworkers have taken a different treatment of non-
electrostatic interactions between the solvent and solute in the DG based solvation
models so that the resulting total energy functional and PB equations are consistent
with more detailed descriptions of solvent densities at equilibrium [148, 149]. To
account for solute response to solvent polarization, a quantum mechanical (QM)
treatment of solute charges was introduced to the DG-based solvation models using
the Kohn-Sham density functional theory (DFT) [25]. This multiscale approach self-
consistently computes the solute charge density distribution which simultaneously
minimizes both the DFT energy as well as the solvation energy contributions.

Currently, efforts are invested to improve the accuracy and robustness of DG
based solvation models by combining physical models with knowledge based mod-
els, namely, machine learning approaches. Additionally, DG based solvation models
and machine learning approaches are utilized for accurate predictions of the protein
binding energies and ligand binding affinities over a wide range of conformational
states. Furthermore, it is worth noting that the method depends only on the rep-
resentation of the solvent-solute interfaces, and this representation is independent
of the atomic or coarse-grained description of the biomolecules. It is therefore
possible to adopt this method to compute the potential of mean force of coarse-
grained biomolecular structures along selected coordinate, and the results can be
utilized for parametrization the force field for coarse-grained molecular systems as
well. Finally, we would like to point out that many critical applications to biophysics,
chemistry, and medicine mostly remain unexplored.

3 Variational Methods for Pattern Formation in Bilayer
Membranes

As one of the most important biomolecular systems, the lipid bilayer membranes
sustain the regular functions of cell and subcelluar compartments by regulating the
transmembrane ion or molecular flows and by providing platforms for various essen-
tial biochemical processes [2, 123]. These critical functions of bilayer membranes
are determined by their lipid compositions, the specific membrane proteins, and
their dynamical arrangement in the bilayers during the course of membrane mor-
phology change as a result of various membrane-solvent, membrane-membrane, or
membrane-protein interactions. Applications of the variational principle for bilayer
membrane modeling have been mostly focused on four types of problems: (i) mean-
curvature dependent membrane morphology [37, 42, 45, 96], (ii) ionic or proton
flows in protein channels [153, 158], (iii) lateral diffusion on membrane surfaces
[161], and (iv) pattern formation in bilayer membranes [17, 43, 151]. Here in this
section we focus on the local pattern formation in bilayer membranes, for that there
are many controversial investigations concerning the biophysical underpinning of
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these patterns, their spatial and temporal distributions, and their roles in modulat-
ing relevant biochemical processes [3, 106, 128, 134]. These patterns are called
lipid rafts, which are small (10–200nm), heterogeneous, highly dynamic, sterol-
and sphingolipid-enriched domains that compartmentalize cellular processes [118].
Lipids move laterally within the domains mostly rather than over the entire mem-
brane surface [4]. Classical phase separation models manage to minimize the total
area of the domain boundaries and large domains appear at the end of the minimiza-
tion; this process is usually referred to as coarsening. When these classical models
are directly extended to model surface phase separation, the total arc length of the
domain boundaries on the surface is minimized to generate large domains, which do
not match the measured sizes of lipid rafts [17, 43, 151].

3.1 Classical Phase Field Models

We first examine the classical phase separation model for binary systems. Consider
two species of particles in R

3 with respective mass or volume fractions m1,m2 ∈
[0, 1]. The interactions between particles of the same species are favorable while
the interactions between different species are unfavorable. This preference can be
modeled by defining a phase field function

φ̄ = m1 − m2

m1 + m2
, (22)

where φ̄(r) ∈ [−1, 1], r ∈ R
3 and minimizing the Ginzburg-Landau free energy

functional in Ω ∈ R
3

G(φ̄) =
∫

Ω

(
f (φ̄) + σ

2
|∇φ̄|2

)
dr, (23)

where f (φ̄) is a double well potential that has two minimums at φ̄ = ±1. A typical
choice is

f (φ̄) = φ̄4

4
− φ̄2

2
(24)

which has two symmetric potential wells of the same depth at φ̄ = ±1. It is apparent
that a complete phase separation with φ̄ changing discontinuously between 1 and
−1 is favorable by f (φ̄) when G(φ̄) is minimized. Such an unphysical distribution

of φ̄ is to be penalized by the term
σ

2
|∇φ̄|2 that regulates the transitional gradient of

φ̄ between 1 and −1.
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Fig. 4 Left Schematic illustration of themismatch of the lipid structures at the interface that induces
a transitional hybrid region between two lipid domains [14].MiddleWithin the transitional hybrid
layer the otherwise regular lattices of the lipids in either domain relax to match each other, causing
a bending interface [14]. Right Circles on a sphere have constant geodesic curvatures. The great
circle, i.e., the lowest circle, has a vanishing geodesic curvature in particular

3.2 Geodesic Curvature Based Membrane Models

3.2.1 Lagrangian Formulation

Our variational model is motivated by the recent theoretical studies of the hybrid
lipids saturation at the interface between saturated and unsaturated of lipids with
geometrical and molecular mechanical mismatch [14]. As illustrated in Fig. 4, two
species of lipids at their interface have different intermolecular interactions that are
determined by their structures. Otherwise, the regular lattice of either species of lipids
has to be relaxed in a way such that the intermolecular interactions in the transitional
region near the interface will fit the different lattice structure of other species. This
relaxation generates curved interface between two species of lipids in a manner
similar to the generation of surface tension. Since the domain boundary is a curve
on a two-dimensional (2D) surface embedded in R

3, it is the geodesic curvature of
the interface rather than the interface curvature that determines the intermolecular
interactions between two species of lipids near the interface.2 The geodesic curvature
of the interface measures how far the interface curve is from being a geodesic. We
define the curvature energy of the microdomain boundary by a one-dimensional (1D)
on-curve integration

G =
∫
C
k(H − H0)

2ds, (25)

where C is the domain boundary contour embedded in R3, H is the geodesic curva-
ture, H0 is the spontaneous geodesic curvature of the lipid mixture to be separated,

2In Sect. 2, we use S to denote the surface function, which is a domain indicator, and use Φ to
denote the electrostatic potential following the traditional usage in the studies of biomolecular
electrostatics. Here in Sects. 3 and 4 the models do not involve electrostatics, and we denote φ the
phase field function, while use S to denote the 2D surface embedded in R

3 when applicable. An
interface in Sect. 2 refers to solvent-solute boundary region, whereas in Sects. 3 and 4, it refers a
boundary curve on a given surface.
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and k is the geodesic curvature energy coefficient. The spontaneous geodesic curva-
ture H0 is an intrinsic property of the combination of any two species of lipids in the
bilayer membrane that will be separated to form local microdomains as a result of
geometric and molecular mechanical mismatch. In the transitional region near the
interface two species of lipids are arranged in a hybrid state rather than the regu-
lar lattice structure. Indeed a recent theoretical study adopted a free energy for the
hybrid packing of two species of lipids (denoted by the subscript 1 and 2 below) at
the interface [13, 14]:

F = ks(L1 − L0
1)

2 + ku(L2 − L0
2)

2 + γ (L1 − L2)
2, (26)

where Li is the length of the lipid chains in the transitional region and L0
i is the length

of the equilibrium chain in the bulk. Parameters ks and ku are the free energetic costs
of mismatch between two species and their hybrids at the interface, respectively
and similarly, γ is the energy cost of mismatch between two chains of the hybrid.
Furthermore, the following relations are identified to related the domain curvature
and lipid geometrical properties:

Vi = Lia0wi

(
1 ± wi H

2

)
, i = 1, 2, (27)

where Vi is the molecular volume of the lipid chains, wi is the length that charac-
terizes the molecular spacing of the lipid head groups, and a0 = (w1 + w2)/2 is the
headgroup spacing of the hybrids along the interface. Here the subtraction sign is
chosen if the species is included in the microdomain, otherwise the addition sign is
used. The chain length in the equilibrium bulk state, L0

i , can be computed from the
molecular volume divided by the head group area in the bulk state

L0
i = Vi

w2
i

. (28)

Equations (26–27) represent the interface bending energyF as a function of it geo-
desic curvature H . The minimizer H0 can be analytically calculated to the linear
order:

H0 = 1

wT

[
(1 − 2B)wd

(1 + 2B)wT
+ 2BVd

(1 + 2B)VT

]
, (29)

where B is a constant characterizing the free energetic cost of lipid mismatch at the
interface, wT = (w1 + w2)/2, wd = w1 − w2, VT = (V1 + V2)/2, and Vd = V1 −
V2. By truncating the Taylor series approximation of F (H) with respect to H0 to
the second order we get an energy functional in the form of Eq. (25).
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3.2.2 Eulerian Formulation

It has been seen in Sect. 2 that the parametrization of solvation energy using the
surface function allows one to implicitly track the molecular surface by following
the iso-surface extraction during the evolution of the surface function, which is
referred as to the Eulerian formulation. We could also evolve a phase field function
to minimize the energy in Eq. (25) and to obtain the configuration of microdomains.
This is achieved by using the following 2D Eulerian formulation of the microdomain
geodesic curvature energy defined on the entire membrane surface S:

G(φ) =
∫
S

kε

2

(
Δxφ + 1

ε2
(φ + Hcε)(1 − φ2)

)2

dx (30)

where Hc = √
2H0 and ε is a small positive parameter that characterizes the

width of the transitional layer from φ(x) = −1 to φ(x) = 1. Here S is a surface
embedded in R3, x = (x1, x2) and dx is an infinitesimal surface element. The equiv-
alence of this Eulerian formulation (30) to the Lagrangian formulation (25) is anal-
ogous to the equivalence between the Canham-Helfrich-Evans curvature energy and
the membrane elastic energy [1, 42]. In particular, if the phase field function is
defined by

φ(x) = tanh

(
d(x)√
2ε

)
(31)

with d(x) being the signed geodesic distance at the surface point x to the interface
contour C where φ = 0, then

∇xφ = 1

ε
q ′(d(x))∇xd, Δxφ = 1

ε
q ′′(d(x))|∇xd|2 + 1

ε
q ′(d(x))Δxd,

where

q(x) = tanh

(
x√
2ε

)
, q ′(x) = 1√

2

[
1 − tanh2

(
x√
2ε

)]
,

q ′′(x) = −1

ε
tanh

(
x√
2ε

)
sech2

(
x√
2ε

)
,

and ∇x,∇x· are surface gradient and surface divergence operators, respectively. The
geodesic curvature of a contour is given by

H = ∇x · n, (32)

where n is the normal vector to the contour C . Since n = ∇xd we have H = ∇x ·
∇xd = Δxd and
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Δxd = ε

q ′ Δxφ − q ′′

q ′ |∇xd|2, ∇xd = ε

q ′ ∇xφ.

Therefore, one has

Δxd = ε

q ′ Δxφ − q ′′

q ′

∣∣∣∣ ε

q ′ ∇xφ

∣∣∣∣
2

.

Writing q ′(x) and q ′′(x) in terms of q(x) we can convert the above representation to

Δxd =
√
2ε

1 − q2

(
Δxφ + 2q

1 − q2
|∇xφ|2

)
,

which is the geodesic curvature H = Δxd. Replacing q(x) with φ one obtains the
final form of H as

H =
√
2ε

1 − φ2

(
Δxφ + 2φ

1 − φ2
|∇xφ|2

)

=
√
2ε

1 − φ2

(
Δxφ + 1

ε2
(1 − φ2)φ

)
, (33)

where we assume ‖n‖ = 1 in the last step of derivation. When minimizing the cur-
vature energy in Eq. (30) the following constraint

A(φ) =
∫
S
φ(x)dx = constant (34)

must be enforced such that quantities of both species of lipids are conserved.
To derive the equation of the geometric flow for the energy G(φ) we compute its

first variation with respect to φ:

δG

δφ
= k

[
ΔxW − 1

ε2
(3φ2 + 2Hcεφ − 1)W

]
(35)

where

W = εΔxφ − 1

ε
(φ + Hcε)(φ

2 − 1).

We then split the linear and nonlinear components (WL and WN ) of W to facilitate
the numerical treatments. They are given respectively by

WL = εΔxφ + 1

ε
φ + Hc, WN = −1

ε
φ3 − Hcφ

2.
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We then have the full expansion of the variation

δG

δφ
= kΔxWL + k

ε2
WL + kΔxWN − k

ε2
(3φ2 + 2Hcεφ)(WN + WL) + k

ε2
WN

= kεΔ2
xφ + k

ε

(
2 − 6φ2 − 4kHcε

)
Δxφ −

(
6k

ε
φ + 2kHc

)
|∇xφ|2

+ k

(
−2H 2

c

ε
+ 1

ε3

)
φ − 3kHc

ε2
φ2 − k

(
4

ε3
− 2H 2

c

ε

)
φ3 + 5kHc

ε2
φ4 + 3k

ε3
φ5

+ kHc

ε2
. (36)

Also note that the variation of the mass conservation constraint is

δA

δφ
= 1. (37)

The appearance of fourth order derivative in the variation δG/δφ motivates us to
adopt the following equation of the geometric flow with an artificial time for φ:

∂φ

∂t
= −δG

δφ
+ λ

δA

δφ
, (38)

where λ is a Lagrangian multiplier used to ensure the conservation of φ. We can

derive a representation of λ by integrating Eq. (38) and noting that
∫
S

∂φ

∂t
dx = 0,

hence

0 = −
∫
S

δG

δφ
dx +

∫
S
λdx,

and consequently

λ = 1

|S|
∫
S

δG

δφ
dx,

which yields
∂φ

∂t
= −δG

δφ
+ 1

|S|
∫
S

δG

δφ
dx. (39)

Equation (39) is a fourth-order nonlinear surface diffusion equation. Alternatively,
one could derive a Cahn-Hilliard equation for the surface phase field function φ as

∂φ

∂t
= Δx

(
δG

δφ

)
, (40)

which guarantees the conservation of φ and thus does not need a Lagrangian multi-
plier. However, it involves a sixth order surface derivative and thus is more compli-
cated when the equation is to be solved numerically on a discretized surface S.
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To simplify the exposition of numerical treatments we adopt λ = 1
|S|

∫
S

δA
δφ
dx and

define g = δG
δφ
. Then we write Eq. (39) as

φt = −g + λ. (41)

To implement the time discretization we average the nonlinear function g(φ) over the
current and next time steps φn, φn+1 to implement a Crank-Nicolson approximation

φn+1 − φn

Δt
+ g(φn+1, φn) − λ(φn) = 0, (42)

where the averaged function is defined by

g(φn+1, φn) = k

2
Δx( fc(φn+1) + fc(φn))

− k

2ε2
(φ2

n+1 + φn+1φn + φ2
n + εHc(φn+1 + φn) − 1)( fc(φn+1) + fc(φn)),

and

fc(φ) = k

(
εΔxφ − (

1

ε
+ εHc)(φ

2 − 1)

)
.

To numerically solve Eq. (42) which is an implicit scheme for φn+1, we define an
interior iteration for computing ψm such that ψm → φn+1 as m → ∞. The equation
for ψm reads as

ψm+1 − φn

Δt
+ g(ψm+1, ψm, φn) − λ(ψm) = 0, (43)

where new averaged functions are defined by

g(ψm+1, ψm , φn) = k

2
Δx f̃c(ψm+1, ψm , φn)

− k

2ε2
(ψ2

m + ψmφn + φ2
n + εHc(ψm + φn) − 1)( fc(ψm) + fc(φn)),

f̃c(ψm+1, ψm , φn) = ε

2
Δx(ψm+1 + φn) − 1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn + 2εHc).

Convergent ψm is obtained by iterating over the interior index m, usually up to a tol-
erance ‖ψm+1 − ψm‖ ≤ εψ for some small εψ > 0. This convergent ψm is assigned
to φn+1, and computation is advanced to the next time step. The linear and nonlinear
components of ψm+1 in Eq. (43) are further split. The nonlinear components are
updated slower than the linear components, allowing an efficient numerical solution.
The spatial approximation of the equation is obtained by a newly developed a C0

interior penalty surface finite element method [1, 12].
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3.3 Computational Simulations and Summary

We apply the geodesic curvature driven phase separation model to simulate the
microdomain formation on surfaces. We present four simulations on different sur-
faces or with different spontaneous geodesic curvatures. The energetic histogram and
the dynamics of the domain formation in each simulation are compared to those gen-
erated by the Allen-Cahn equation obtained by the direct extension of the Ginzburg-
Landau energy based a classical phase separation model on surfaces [43]. We also
compute the radii of the microdomains which are expected to approximate the recip-
rocal of the given spontaneous geodesic curvature.

In the first simulation (#1) on unit sphere with 3963 approximately uniformly dis-
tributed nodes, we choose ε = 0.1, Hc = 1

0.3 , k = 0.01 and Δt = 0.001. A random
field is initialized on the surface such that

∫
S φds = 0. The results are compared side

by side with those of the classical Allen-Cahn equation in Fig. 6. Using a K-means
clustering method we are able to identify a number of microdomains whose radii are
then calculated. The radius associatedwith eachmicrodomain is approximately 0.23.
This means the curvature is approximately 1

0.23 , close to the specified spontaneous
geodesic curvature.

The total energies for the geodesic curvature model and the classical Allen-Cahn
model are plotted in Fig. 5. Both converge as time evolves. The number of iterations
is large because of the smallΔt , which is constrained by the stability of our numerical
method for the fourth-order nonlinear partial differential equation.

In the second simulation (#2) on the unit sphere as shown in Fig. 7, we choose
ε = 0.1, Hc = 1

0.40 , k = 0.01 and Δt = 0.002. This spontaneous curvature matches
the reported spontaneous curvature for DOPE/DOPS mixture [53]. A coarser while
quasi-uniform mesh with 984 nodes is deployed on the unit sphere. The radius asso-
ciated with the each microdomain is approximately 0.37, indicating a curvature
approximately 1

0.37 . The convergence of the energies of the geodesic curvature model
and the classical Allen-Cahn mode are plotted in Fig. 5 as well. The lower resolution
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Fig. 5 Minimization of the geodesic curvature total energy and the Ginzburg-Landau Energy. Left
Simulation #1 on unit sphere with 3963 nodes and Hc = 1

0.3 . Right Simulation #2 on unite sphere
with 984 nodes and Hc = 1/0.4
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Fig. 6 Simulation #1. Formation of localmicrodomains simulated by the geodesic curvature energy
(top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom row)
from the same initial random field (left column) on the unite sphere with 3963 nodes. Sampling
time from left to right is: t = 0, 3, and 7

Fig. 7 Simulation #2. Formation of localmicrodomains simulated by the geodesic curvature energy
(top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom row)
from the same initial random field (left column) on unit sphere with 984 nodes. Sampling time from
left to right is: t = 0, 3, and 7
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resulting from the coarser mesh in the second simulation can be seen in the larger
spots in the initial field and the wider transitional layers between different domains.

The third simulation (#3) is conducted on a more complicated surface as shown
in Fig. 8. We choose the molecular surface of three particles of unit radius respec-
tively centered at (0, 1, 0), (−0.864,−0.5, 0) and (0.864,−0.5, 0). The surface is
quasi-uniformly meshed with 2974 nodes and we set ε = 0.1, Hc = 1

0.4 , k = 0.01
and Δt = 0.001. Starting with a random initial field we finally identified six
microdomains using the K-mean clustering method at the equilibrium state, whose
radii are estimated. As seen in Fig. 9, the radii of the microdomains approximate the
given spontaneous geodesic curvatures.

Fig. 8 Simulation #3. Formation of localmicrodomains simulated by the geodesic curvature energy
(top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom row)
from the same initial random field (left column) on the molecular surface of three-atom with 2974
nodes. Sampling time from left to right is: t = 0, 3, and 7

Fig. 9 The radii of the
prominent 6 microdomains
produced in Simulation #3
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In the last simulation (#4) we choose the molecular surface of six particles of unit
radius respectively centered at (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and
(0, 0,−1). The quai-uniform surface mesh has 3903 nodes and we set ε = 0.1,
Hc = 1

0.4 , k = 0.01 and Δt = 0.001 for the simulation. One can see from Fig. 10
that the largest raft radius obtained by the simulation is about 0.35 which means
the curvature of that raft is about 1

0.35 , a value close to given spontaneous geodesic
curvature (Fig. 11)
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Fig. 10 The radii of the prominent 9 rafts produced by Simulation #4

Fig. 11 Simulation #4. Formation of local microdomains simulated by the geodesic curvature
energy (top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom
row) from the same initial random field (left column) on the molecular surface of six-atom with
3903 nodes. Sampling time from left to right is: t = 0, 3, and 7
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The radii of the microdomains generated in our simulations are not exactly the
given spontaneous geodesic curvature. Rather they are distributed around the given
curvature. Apart from the numerical error in simulation and in K-means clustering
and radii estimate, this non-uniform distribution of domain radii is mostly related to
the total quantity of the lipid phases in the initial randomfield.The initial quantitymay
not exactly cover an integer number ofmicrodomainswith the given radius. However,
the overall distribution of radii around the given radius of curvature demonstrated that
our geodesic curvaturemodel is capable of predicting the formation ofmicrodomains
that are caused by the geometrical and molecular mechanical mismatch of lipid
mixtures. The predicted microdomains can be compared to the observed lipid rafts,
and the boundaries of these microdomains can be identified to provide locations
where specific proteins can aggregate. Coupling of our model of geodesic curvature
driven microdomains formation to the localization of proteins will provide a very
useful quantitative technique for studying the crucial roles of these proteins in high-
fidelity signal transduction in cells [66, 85].

4 Variational Methods for Curvature Induced Protein
Localization in Bilayer Membranes

Rather than forming distinct domains in a way similar to lipids as modeled in Sect. 3,
many membrane proteins do not form distinct domains in membranes.3 Given the
fact that their distribution on bilayer membranes is not uniform, molecular mech-
anisms need to be identified to quantitatively investigate this distribution and its
biological consequences. On the one hand, approximately 30–90% of all membrane
proteins can freely diffuse along the membrane [50, 74, 94, 107]. On the other hand,
insertion or tethering of the membrane proteins to bilayer membrane will cause
membrane curvature [64, 110, 163]. For instances, the rigid proteins such as those
in the BAR (Bin/Amphiphysin/Rvs) domain family can act as a scaffold to the mem-
brane. These proteins have an intrinsic curvature and, upon attaching, the membrane
bends to match the protein curvature [98]. In a similar fashion, several proteins can
oligomerize to create a rigid shape and bend the membrane. Protein coats such as
clathrin, COPI (COat Protein I) andCOPII (COat Protein II) are examples of this type
[51, 75]. Other proteins may insert themselves into the membrane. Membrane curva-
ture is also induced when there is a difference between the length of the hydrophobic
region of a membrane protein and the thickness of the hydrophobic core of the lipid
bilayer in which it is embedded [103]. Epsin proteins do this by forming an alpha-
helix known as H0 upon binding to the membrane, and this helix inserts itself into

3A protein unit consisting of several segments such as most ion channel proteins or G-protein-
coupled receptors (GPCRs) is not taken as a distinct domain in this study. The whole unit is
considered as a single protein instead.
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the membrane [11]. Moreover, local crowding of peripheral proteins can cause mem-
brane bending by creating an asymmetry of the monolayer areas and thereby curling
the membrane away from the side on which the crowding occurred. This effect is
experimentally demonstrated in [122]. Further illustrating the importance of proteins
in membranes, Schmidt et al. showed that the M2 protein plays an essential role in
generating regions of high curvature in the influenza A virus membrane [115]. This
specific protein accumulates in regions of negative Gaussian curvature and can gen-
erate curvature in the membrane itself, allowing the replicated virus to be wrapped
and released from the infected cells. While these examples should provide sufficient
motivation to include proteins to the model, we note that all endocytosis and exocy-
tosis processes are promoted in one way or another by proteins. Therefore, any viral
replication process requires proteins. Antagonizing the curvature effects of proteins
is a viable antiviral strategy [115]. This motivates the necessity for a model coupling
membrane curvature and lateral diffusion of proteins. We shall observe below that
the final governing equation for this curvature-driven lateral transportation appears
a drift-diffusion equation in its essential form. This mechanism is different from the
transportation of surfactants on interfaces moving with the fluid flow as investigated
in the literature [130, 131, 152].

4.1 Lagrangian Formulation

Modeling generation of membrane curvature using energetic variational principle
has been well established in the past few decades [19, 45, 49, 65]. These research
have been inspirational to our work. However, the focus of our discussion in this
section is on the curvature driven protein localization. We sketch the framework of
the integration of these two components. The numerical implementation is computa-
tionally intensive because of the coupling of dynamical membrane morphology and
the varying surface concentration of proteins. Consider a membrane with (m + 1)
distinct lipid species with concentrations ρ

lip
l , l = 0, . . . ,m and a single type of dif-

fusive membrane proteins with a concentration ρpro. A closed membrane is modeled
as a structureless surface S contained in a 3D domain Ω ∈ R

3 and separated Ω into
two subdomains, one inside the membrane and the other outside. The total energy of
the system is composed of the membrane curvature energy and the entropic energy
from the lipids and proteins

G tot = Gmem + Gent, (44)

where the membrane curvature energy is given in the classical Canham-Helfrich-
Evans form

Gmem =
∫
C
k(H − H0(ρ

lip
l , ρpro))2ds, (45)
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and the entropic energy for the membrane with membrane protein attachments is

Gent = 1

β

∫
C

(
m∑
l=0

ρ
lip
l

[
ln(ρ lip

l (alipl )2) − 1
]

+ ρpro [ln(ρpro(apro)2) − 1
])

ds,

(46)
Here H is the membrane mean curvature and H0 is the spontaneous membrane cur-
vature, k is a curvature energy coefficient, and β = 1/(kBT ) is the inverse of thermal
energy. The effective sizes of lipids and proteins are respectively given by alipl and
apro. By modeling lipids and proteins as hard disks, the occupied surface areas in
the membranes are taken as (alipl )2 and (apro)2, respectively. The essential feature of
our model is seen in the dependence of the membrane spontaneous curvature on the
local lipid composition ρ

lip
l and the protein concentration ρpro. This dependence is

justifiable considering that (i) each lipid species l has its own spontaneous curvature
[93] therefore the membrane spontaneous curvature must be a function of the local
lipid composition, and (ii) membrane proteins will induce membrane curvature so
that the observed spontaneous curvature must be a function of the local protein con-
centration [72, 103, 115, 126, 135]. We define the membrane curvature induced by
a single membrane protein as the spontaneous (membrane) curvature of the protein.
Here we define H0 as the average spontaneous curvature of lipids and proteins weight
by their respective surface coverage fraction:

H0 = √
2

m∑
l=0

Cl
0(a

lip
l )2ρ

lip
l + Cpro

0 (apro)2ρpro

m∑
l=0

(alipl )2ρ
lip
l + (apro)2ρpro

, (47)

where Cl
0 and Cpro

0 are the spontaneous curvature of the lth species of lipids and
proteins, respectively. Considering that the membrane surface is completely covered
by the lipids and proteins, the following saturation constraint holds true:

m∑
l=0

(alipl )2ρ
lip
l + (apro)2ρpro = 1. (48)

With this constraint we can write the spontaneous curvature in Eq. (47) as

H0 = √
2

(
m∑
l=0

Cl
0(a

lip
l )2ρ

lip
l + Cpro

0 (apro)2ρpro

)
(49)

and the membrane entropic energy as
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Gent = 1

β

∫
C

{
1

(alip0 )2

(
1 − ρpro(apro)2 −

m∑
l=1

ρ
lip
l (alipl )2

)

×
[
ln

(
1 − ρpro(apro)2 −

m∑
l=1

ρ
lip
l (alipl )2

)
− 1

]
+

m∑
l=1

ρ
lip
l

[
ln(ρ lip

l (alipl )2) − 1
]

+ ρpro
(
ln(ρpro(apro)2) − 1

)}
ds. (50)

To obtain the dynamics of the membrane morphology, one can calculate the variation
of the total energy G tot in Eq. (44) and solve the resulting equation for the gradient
flow of φ. This process is routine and can be found in the studies of spontaneous
curvature effects of pure or multi-component membranes without proteins [42, 45].
Since our interest here is to investigate the protein localization onmembrane surfaces,
we choose to fix the membrane morphology, i.e., H0 is a time-independent function.
We then only need to calculate the variation of the total energy with respect to the
membrane protein concentration, which turns out to be

δGtot

δρpro
= δGmem

δρpro
+ δGent

δρpro

= kBT

⎡
⎣−

(
apro

a
lip
0

)2

ln

⎛
⎝1 − ρpro(apro)2 −

m∑
l=1

ρ
lip
l (a

lip
l )2

⎞
⎠ + ln(ρpro(apro)2)

⎤
⎦

+ 2Cpro
0 (apro)2(H − H0). (51)

4.2 Eulerian Formulation

While we are working on the membrane with fixed morphology, the formulation
of the curvature driven protein localization is expected to interface with dynamical
morphology where the membrane surface is not a prior known. For that purpose one
could trace the position of membrane implicitly by evolving a phase field function
φ(x) on surface S embedded inΩ ∈ R

3, where φ takes the value of−1 in the exterior
of the membrane enclosure and 1 inside [42, 45]. The membrane mean curvature at
φ = 0 can be computed as a function of φ following

H =
√
2ε

2(1 − φ2)

(
Δxφ + 1

ε2
(1 − φ2)φ

)
, (52)

where ε > 0 is a small parameter that adjust the transition of φ from −1 to 1 near
the membrane as in Eq. (30). We then identify three components of the chemical
potential defined by the variation in Eq. (51)
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Lpro = ln(ρpro(apro)2), (53)

Rpro = −
(
apro

alip0

)2

ln

⎛
⎝1 − ρpro(apro)2 −

m∑
j=1

ρ
lip
j (alipj )2

⎞
⎠ , (54)

Ppro = ε√
2(1 − φ2)

(
Δxφ + 1

ε2
φ(1 − φ2)

)
− H0 (55)

to write this chemical potential as

μpro = δG tot

δρpro
= kBT (Lpro + Rpro) + 2Cpro

0 (apro)2∇xP
pro. (56)

This chemical potential allows us to define the diffusion flux vector and the trans-
portation equation. Two options are available for the definition of the transportation
equation. One could extract the membrane surface S from the phase field function φ

and solve a surface transportation on S. This involves the dynamic meshing or mesh
deformation if φ is evolving in time, and singularity will arise if there is topological
change in S as φ evolves.

Alternatively, one could formally define a 3D transportation equation in the entire
domain Ω but practically restrict the transportation of membrane proteins to a very
small neighborhood near the membrane surface S. This is accomplished by intro-
ducing to the flux vector

Jpro(r) = −DproδSβρpro(r)∇μpro (57)

a function δS which is concentrated at the membrane S where φ = 0. Various choices
of such functions are available and their numerical properties differ subtly [78]. We
choose

δS =
{
tanh(10(φ + 1)), −1 ≤ φ ≤ 0,

− tanh(10(φ − 1)), 0 ≤ φ ≤ 1,
(58)

so that effective domain near φ = 0 can be automatically identified as φ evolves.
The general transportation equation for membrane proteins reads

∂ρpro(r)
∂t

+ ∇ · (v∇ρpro(r)) = −∇ · Jpro(r), (59)

where v is the velocity of the membrane in which the membrane proteins move.
Although this velocity is taken to be zero in our computations simulations to be
presented here, it can be computed if the membrane moves with the evolving phase
field function. The nature of the equation can be seen if the size effects of lipids and
membrane proteins are not considered, i.e., alipl = apro = 0. In this case Rpro = 0
and

∂ρpro

∂t
= ∇ · (DproδS∇ρpro + 2kBT DproCpro

0 (apro)2δSρ
pro∇Ppro), (60)
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which is a drift-diffusion equation with a potential Ppro. The mean curvature of the
membrane therefore appears a potential that drives the transportation of membrane
proteins to membrane surfaces where its mean curvature well fits the spontaneous
membrane curvature of proteins. To numerically solve the equation, we separate the
linear and nonlinear components of the equation, which are then treated using an
implicit-explicit splitting interaction methods similar to the treatment of Eq. (40)
presented in Sect. 3. The spatial approximation of the equation is obtained by using
the Fourier spectral method, and a change of variable is necessary to convert the
equation with variable diffusion coefficient DδS to a constant diffusion coefficient
so that the Fourier spectral method is applicable [36, 125].

4.3 Computational Simulations and Summary

To demonstrate the curvature preference of protein localization we consider in the
domainΩ = (−4, 4)3 a torus because it has regions with positive and negative mean
curvatures where the proteins may populate or not depending on their spontaneous
curvature. The torus surface is given by

(R −
√
x2 + y2)2 + z2 = r2, (61)

where R and r are the major and minor radii, respectively. Its alternative parame-
trization

(x, y, z) = ((R + r cos θ) cosϕ, (R + r cos θ) sin ϕ, r sin ϕ) (62)

can be handy when computing the curvature. Here 0 ≤ θ ≤ 2π is the angle made
from the surface around the center of the tube, known as the poloidal angle, and
0 ≤ ϕ ≤ 2π is the anglemade from the surface to the positive x-axis (projected on the
xy-plane), knownas the toroidal angle.When R > r , one gets the so-called ring torus.
Here we choose R = 2 and r = 1.1. The phase field function φ is set as the signed
distance function with this torus surface. We consider only one species of diffusion
proteins and one species of lipids. The saturation condition (48) then indicates that
we only need to model the distribution of proteins only. The membrane proteins
are initially concentrated near the highest point of the positive y-axis, smoothly
distributed along the surface, and because of the adoption of phase field function
which expands the transportation domain from the surface to a small neighborhood
in the vicinity of the surface, smoothly distributed from the surface to the bulk:

ρ = ρ0e
−
√

x2+(y−R)2+z2e
−2

(
r−

√
(x−cx )2+(y−cy)2+z2

)
, (63)
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where r = √
x2 + y2 + z2 and (cx , cy, 0) is the center of the torus tube on the same

plane of which locates the point (x, y, z). The scaling constant ρ0 is chosen such that
the maximum of the concentration is 1 on the torus surface.

We first set the spontaneous curvature of membrane proteins and lipids to be
Cpro
0 = 0.5,C lip

0 = −0.1, respectively. Notice that the mean curvature of a torus is
given by

Htorus = R + 2r cos θ

2r(R + r cos θ)
, (64)

which gives a mean curvature Htorus ≈ 0.6158 for the chosen values of R, r at the
outer ring of the torus where θ = 0 and Htorus ≈ −0.1 at the inner ring of the torus
where θ = π .With this first choice ofCpro

0 ,C lip
0 we expect that themembrane proteins

will populate near the outer ring where the mean curvature is close to the specified
spontaneous curvature of membrane proteins. Our expectation is verified by Fig. 12,
where the plots of the concentrations of the membrane proteins on the membrane

Fig. 12 Simulated localization of the membrane proteins from its initial position to the outer ring
of the torus on a 1283 uniform mesh. ε = 0.1. Time incrementΔt = 10−3. Spontaneous curvatures
Cpro
0 = 0.5,C lip

0 = −0.1, and sampling moments are t = 0, 0.1, 0.25, 0.5, 1.0, 5.0. Color is scaled
by the maximum concentration in each plot
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φ = 0 and the cross section y = 0 at six sampling moments show the transportation
of membrane proteins from its initial position to the outer ring of the torus.

In the second simulation we start with same initial condition as in the first sim-
ulation but switch the spontaneous curvatures to Cpro

0 = −0.1 and C lip
0 = 0.5. It is

expected that the membrane proteins will finally populate at the inner ring of the
torus, and this is verified by the snapshots of concentrations in Fig. 13.

These two computational simulations demonstrate the successful modeling of the
curvature driven membrane protein localization using the drift-diffusion equation
(60). Full version of Eq. (59) can also be considered to include the effects of finite
sizes of effects of lipids and proteins, and multiple species of lipids. Our choice
of small time increment (Δ = 10−3) is restricted by the stability of the implicit-
explicit splitting method used for integrating the nonlinear equation. We expect the
development of more efficient numerical methods for the integration of the equation,
in particular when it is to be coupled with the dynamic phase field function φ, in
that case a membrane velocity shall be added to Eq. (60) to make it an advection-
drift-diffusion equation. Such coupling reveals the positive feedback of membrane

Fig. 13 Simulated localization of themembrane proteins from its initial position to the outer ring of
the torus on a 1283 uniform mesh. ε = 0.1. Time increment is Δt = 10−3. Spontaneous curvatures
are Cpro

0 = −0.1 and C lip
0 = 0.5, and sampling moments are t = 0, 0.1, 0.25, 0.5, 1.0, 5.0. Color

is scaled by the maximum concentration in each plot
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curvature accumulation to membrane protein localization. On the other hand, the
number of major membrane proteins involved in the membrane fusion, budding,
endocytosis, or exocytosis is not a constant over the entire time course because
there is continuous intracellular protein transport. Proteins may be recruited from
the solution to membrane at specific regions of the membrane and meanwhile they
are released from the membrane to the solution [112, 121]. The model presented
here can be extended by adding a reaction term that models the dynamic exchange of
membrane proteins between the membrane and the solution. Indeed, it is shown that
some membrane budding proteins such as influenza virus hemagglutinin (HA) and
neuraminidase (NA) are associated with raft-like microdomains, while some are not
[80]. An integration of the curvature driven localization and local clustering within
the microdomains will help elucidate the competing or collaborative effects of these
membrane proteins in the same biophysical process.

5 Conclusions

Energetic variational principle constitutes a tangible link between multiscale theory
and the experimental observation of biomolecular structure, function, and dynam-
ics, aided by computational simulations. Although the applications of variational
principle have been well established for research in various areas of mechanics, clas-
sical and modern physics, and material sciences, novel insights are offered by this
principle when it is applied to the biomolecular systems. Among the progresses
achieved in recent years, a significant step forward has been made using the geome-
try of the molecular interface to parametrize the total energy [1, 26, 27, 71, 82, 84,
97, 149]. This unified representation allows the investigators to focus on the identifi-
cation of energies that characterize various molecular interactions at multiple spatial
and temporal scales. The flexibility of the analytical and computational framework of
the variational principle ensures that the critical states and dynamics of the biomolec-
ular system can be trackedwith confidence by evolving the total energy. Furthermore,
by introducing a phase field function we can implicitly define and track themolecular
interface which may subject to large deformation and topological change. The three
topics presented here demonstrated the desirable flexibilities of formulating the total
energy, of parametrizing the energy using phase field function, and of simulating
the equilibrium state and dynamics of the system though the numerical solutions of
the nonlinear partial differential equations (PDEs) for the geometric flow of the total
energy.

The geometrically parametrized total energy obtained by the energetic variational
principles entails a rich body of features for mathematical and numerical analysis,
including the stability of its critical points, the coarsening dynamics, the solution
periodicity, and the conservative discretization of the resulting PDEs, while most
of them remain open as long as the applications to biomolecular problems are con-
cerned. More broad usefulness of the methodology outlined in the present three
topics are expected to be established in chemistry, biophysics, and medicine through
interdisciplinary research and collaboration.
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A Theoretician’s Approach to Nematic
Liquid Crystals and Their Applications

Apala Majumdar and Alexander H. Lewis

1 Introduction

Liquid crystals are classical examples of mesogenic materials or partially ordered
materials that are intermediate in character between the conventional solid and liquid
phases [5, 13, 22, 32]. Liquid crystals are a flourishing sub-field of Soft Matter, both
from a purely scientific and an applications point of view. Liquid crystal research is
inherently interdisciplinary and is a perfectmeeting point for physics, chemistry, biol-
ogy, engineering and, more recently, mathematics. This chapter is a self-contained
but not exhaustive account of the different modelling approaches to nematic liquid
crystals—the simplest but most widely used class of liquid crystals with examples
of how to apply mathematical tools to prototype confined nematic systems yielding
quantitative predictions. These examples hopefully illustrate the rich mathematical
content of liquid crystal theory and, reciprocally, the use of mathematics in an inter-
disciplinary context.

We often grow up with the notion that matter typically exists in three forms:
solid, liquid and gas. However, materials science is far more complex than this
simple classification. There are everyday examples of materials that are neither fluid
nor solid, such as toothpaste, butter, gels, soaps and the very human skin and cell
membranes themselves [32]! These materials, to some extent, combine the flexibility
and mobility of liquids with a degree of order characteristic of solids and hence, they
are partially ordered materials.
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Liquid crystals are one of the most widely studied classes of partially ordered
materials. Indeed, they are the only examples of thermodynamically stable soft mat-
ter phases, metastable states being common among other soft matter classes [32].
Liquid crystals were discovered accidentally in 1888 by Friedrich Reinitzer, a plant
physiologist at the Charles University, in Prague, when he discovered two melt-
ing points for cholesteryl benzoate [1]. The first melting point corresponded to the
temperature-induced transition from the solid to cholesteric liquid crystal phase and
the second melting point corresponded to the transition from a liquid crystalline to
liquid phase. Between 1889–1908, European scientists had discovered more than
200 compounds with liquid crystalline properties and by the early 1920s, the work
of Georges Friedel and Otto Lehmann resulted in a basic classification scheme for
liquid crystals into nematic, smectic and cholesteric phases [1]. In the 1960s, sci-
entists became aware of the electro-optic potential of liquid crystals, notably, their
sensitivity to light and external electric fields. Pioneering research at the RCA Labo-
ratories in Princeton, in particular the contributions of Richard Williams and George
Heilmeier, led to the successful commercialization of liquid crystal displays (LCDs),
and liquid crystal research then accelerated throughout Europe and North America,
particularly in the 70’s with special reference to the works of Wolfgang Helfrich,
Martin Schadt and James Fergason, to generate the multi-billion dollar LCD market
in vogue today.

Nematic liquid crystals are the simplest type of liquid crystals, with constituent
anisotropic rod-like molecules of length between 10–30 nm [5, 32]. These rod-
like molecules tend to move freely as in a conventional liquid but whilst moving,
they align along certain locally preferred directions. In other words, nematics are
anisotropic liquids or liquids with special directions and long-range orientational
order [22]. The theory of nematic liquid crystals is largely devoted to describing the
concept of partial orientational order and how this order manifests in macroscopic
and experimental phenomena. As with most complex materials, one can describe the
partial orientational order in terms ofmolecular interactions at amicroscopic level, in
terms of a probability distribution function for the molecular orientations at a mean-
field level and in terms of a macroscopic order parameter, which is typically defined
in terms of a macroscopic signature of the material anisotropy, at the macroscopic
level [7, 37, 43].

Nematic liquid crystals are the working material of choice for the multi-billion
dollar LCD industry [5]. They have two key properties that render them useful for a
range of electro-optic applications: (i) they are optically anisotropic or birefringent
materials, i.e., the optical response, measured in terms of the refractive index, is
typically different along thedistinguisheddirectionofmolecular alignment compared
to other directions, and (ii) they are sensitive to external electric fields, the sensitivity
measured in terms of the dielectric anisotropy which quantifies the difference in
the nematic response to electric fields along the preferred directions compared to
the non-preferred directions [22]. Consequently, it is relatively straightforward to
tune nematic properties with incident light, external fields and mechanical effects,
making themhugely popularworkingmaterials for phones, TVs, laptops, calculators,
watches and even thermometers [5, 32].
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Fig. 1 Sketch of the twisted nematic device, with no external field (left) and applied field (right).
Copyright 2004 From The static and dynamic continuum theory of liquid crystals: a mathematical
introduction by Iain W. Stewart [44]. Reproduced by permission of Taylor and Francis Group, LLC,
a division of Informa plc

The classical Twisted Nematic Display is illustrated in Fig. 1. The basic construc-
tion is straightforward: a layer of nematic material, a few microns thick, sandwiched
between two flat plates. The molecular orientation is fixed on both plates; this can
be easily achieved in experiments [5]. However, the molecular orientations on the
two plates are conflicting, as can be seen from Fig. 1. In the absence of an electric
field, the nematic molecules naturally twist between the two plates and the resulting
twisted configuration is transparent to incident light [44]. When we apply an elec-
tric field along the height of the cell, the nematic molecules prefer to align with the
electric field (if the material has positive dielectric anisotropy) and consequently, the
nematic molecules are largely oriented in field direction throughout the cell, losing
the twisted structure. The resulting field-aligned nematic configuration is opaque
to incident light and on the removal of the electric field, the nematic configuration
naturally relaxes to the twisted transparent state. This effect has been widely stud-
ied in the literature in terms of the classical Fredericks transition and we refer the
interested reader to [3, 22] for quantitative details.

There are, of course,many different kinds of liquid crystals, and some of the major
phases are shown in Fig. 2. For example, smectics are examples of layered liquid
crystals for which molecules tend to arrange themselves in well-spaced layers and
the molecules tend to align with each other inside each layer [22]. There are several
variants of the smectic phase, depending on the relative orientation between the
molecular orientations represented by a unit-vector n, referred to as director, and the
layer normals [22]. Equally common are cholesteric liquid crystals or chiral nematic
liquid crystals for which the nematic molecules organize themselves into layers but
unlike smectics, there is no positional ordering within layers but rather the director
field rotates between the layers with a helical profile [14, 22]. In fact, cholesterics
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Fig. 2 Sketches of the major liquid crystal phases for rod or disk shaped particles. Copyright 2004
From The static and dynamic continuum theory of liquid crystals: a mathematical introduction by
Iain W. Stewart [44]. Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa plc

have also been successfully used as working materials for LCDs, examples of which
include flexible ePaper, called i2R based on ChLCD technology [14].

Liquid crystal research has now moved far beyond the conventional LCD tech-
nology and scientists are keen to find new ways to exploit the symmetries and mate-
rial properties of liquid crystals in diverse areas such as nanostructured materials,
biosensors, pharmaceutical sciences, drug/nutrient delivery methods and even the
liquid crystalline nature of DNA for synthetic biology [32]. This chapter is a modest
review of nematic liquid crystals, the widely used continuum modelling approaches:
the Landau-de Gennes theory, the Ericksen theory and the Oseen-Frank theory fol-
lowed by a case study on the mathematical modelling of a planar bistable nematic
device, reported in [45]. The case study is based on published work [29, 35, 39] and
unpublished private communication [34].

2 Continuum Theories for Nematic Liquid Crystals

There are a number of theoretical approaches for nematic liquid crystals, ranging
from atomistic, molecular theories to mean-field theories and fully macroscopic
continuum theories [33, 36, 37, 47]. This chapter focuses on continuum theories
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for nematic liquid crystals and such theories are largely based on the underpinning
assumption that the structural details are varying slowly on themolecular length scale.
These theories do have limitations and can fail outside certain temperature regimes,
near defects or interfaces or are inadequate for describing critical phenomena [40,
47]. Nevertheless, they have been used with great success for modelling generic
confined nematic systems, including LCDs and new microfluidic experiments, and,
given their rich mathematical landscapes, such theories are the perfect meeting point
for mathematicians and practitioners in the field.

Nematic liquid crystals are broadly classified into three categories according to
their type and degree of orientational ordering. Nematics are said to be in the isotropic
phase when the constituent molecules are disordered and we cannot define distin-
guished directions of molecular alignment. The most widely studied nematic phase
is the uniaxial phase wherein the constituent molecules have a single distinguished
direction of molecular alignment i.e. the molecules either prefer to align along this
direction or in the plane orthogonal to it. For example, if we deal with a system of
rod-like molecules in an uniaxial phase, then the preferred direction might be the
average of the local axes of the rods [22, 46]. Similarly, for disc-shaped nematic
molecules in an uniaxial phase, the preferred direction may be the average of the
unit normal to the discs. The preferred direction of uniaxial alignment is typically
denoted by a unit-vector, n ∈ S2, where S2 is the unit sphere in three dimensions. It is
also useful to measure the degree of uniaxial ordering about n; this is conventionally
measured in terms of a scalar order parameter S, often defined to be

S =
∫ π

0

(
1 − 3

2
sin2 θ

)
P(θ) sin θ dθ, (1)

where P(θ) sin θdθ is the fraction of molecules that make an angle between θ and
θ + dθ relative to the director, n [4]. In particular, this definition ensures that

− 1

2
≤ S ≤ 1, (2)

with three characteristic values: S = −1/2 for which molecules are identically
oriented perpendicular to n, S = 0 which describes the disordered isotropic phase
and S = 1which describes a state of perfect molecular alignment with n. The bounds
(2) are not necessarily respected in continuum approaches [40], particularly for low
temperatures, as will be detailed below and one would argue that the limiting values
S = −1/2 and S = 1 are unrealistic or unattainable in a physical situation. In [7], we
propose an alternative formulation that couples probabilistic approaches as in (1) and
(2) and the continuum Landau-de Gennes theory, to prescribe a new Ball-Majumdar
potential; similar approaches have also been adopted by Katriel et al. [26]. This new
approach is outside the scope of this chapter and we focus on traditional continuum
models.

Nematics are said to be in the biaxial phase if they have a primary and secondary
preferred direction of molecular alignment, typically denoted by two unit-vectors
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n,m ∈ S2 and two order parameters that measure the orientational ordering about
these directions, referred to as S and R respectively.

In Sect. 2.1, we describe the celebrated Landau-de Gennes theory; in Sect. 2.2, we
briefly overview Ericksen’s theory for uniaxial nematics with variable order and in
Sect. 2.3, we outline the simplest and hugely popular Oseen-Frank theory for uniaxial
nematics with constant order.

2.1 The Landau-de Gennes Theory

TheLandau-deGennes (LdG) theory is one of themost celebrated continuum theories
for nematic liquid crystals [22, 37, 46]. In fact, Pierre-Gilles de Gennes was awarded
the Nobel prize in Physics in 1991 for discovering that “methods developed for
studying order phenomena in simple systems can be generalized to more complex
forms ofmatter, in particular to liquid crystals and polymers” and the theory is named
after him and Lev Landau of superconductivity fame.

The LdG theory describes the state of a nematic liquid crystal by a macroscopic
order parameter—theQ-tensor order parameter, which is defined in terms of macro-
scopic quantities such as the magnetic susceptibility [22, 46]. From an applications
point of view, the LdGQ-tensor measures the deviation of the ordered nematic phase
from the isotropic disordered phase, so that we recover the isotropic fluid state when
Q = 0. In the LdG framework, the Q tensor is a symmetric, traceless 3 × 3 matrix
with no a priori bounds on the eigenvalues; in particular, the eigenvalues are not
constrained by the inequalities (2). The LdG Q-tensor necessarily has five degrees
of freedom and from the spectral decomposition theorem, can be written as [42]

Q = λ1n ⊗ n + λ2m ⊗ m + λ3p ⊗ p, (3)

where n,m,p are the three eigenvectors of Q, λ1, λ2 and λ3 are the corresponding
eigenvalues with λ3 = − (λ1 + λ2), from the tracelessness constraint. Informally
speaking, the eigenvectors represent the preferred directions of molecular alignment
and the eigenvalues measure the degree of orientational order about these directions.
In the biaxial phase, λ1 �= λ2 �= λ3 and Q can be concisely written as

Q = S

(
n ⊗ n − I

3

)
+ R

(
m ⊗ m − I

3

)
, (4)

where I is the 3 × 3 identity matrix, S = (2λ1 + λ2) and R = (2λ2 + λ1). In
the uniaxial case, the LdG Q tensor has a pair of degenerate non-zero eigenvalues,
(λ1, λ2, λ3) = (λ, λ,−2λ), so that Q can be written as

Q = S

(
n ⊗ n − I

3

)
, (5)



A Theoretician’s Approach to Nematic Liquid Crystals and Their Applications 229

where n is the distinguished eigenvector, referred to as the director, with the non-
degenerate eigenvalue and the scalar order parameter, S = −3λ.

In the absence of any external fields or surface energies, the LdG energy functional
has a particularly simple form [18, 22, 42, 46]:

I [Q] :=
∫ ∫ ∫

Ω

[ fB (Q) + fE (Q,∇Q)] dV, (6)

where Ω ⊂ R
3 is the computational domain, fB is a bulk potential that determines

the degree of orientational order as a function of temperature and fE is an elastic
energy density that penalizes spatial inhomogeneities.

The bulk potential, fB , is a polynomial function of the eigenvalues of theQ-tensor
and drives the isotropic-nematic transition as a function of the temperature [22, 40,
46]. It is quite common to work with a quartic form of fB as shown below:

fB(Q) = A

2
trQ2 − B

3
trQ3 + C

4

(
trQ2

)2
, (7)

where A = α(T −T ∗) is the re-scaled temperature, α, B,C > 0 are positivematerial
constants, trQ2 = ∑3

i=1 λ2
i and trQ3 = ∑3

i=1 λ3
i . The minimizers of fB determine

the bulk preferred state in the absence of any inhomogeneities or external effects and
the bulk preferred state depends on A as shown below.

Proposition 1 ([6, 40]) The critical points of the bulk energy density, fB in (7), are
given by either uniaxial or isotropic Q-tensors of the form (5) for all admissible
values of A and all material constants α, B,C > 0.

Proof For a symmetric, traceless matrix Q of the form (3), trQn = ∑3
i=1 λn

i subject
to the tracelessness condition so that the bulk energy density fB only depends on the
eigenvalues λ1, λ2 and λ3. Then the critical points of fB are given by the stationary
points of the function f : R3 → R defined by

f (λ1, λ2, λ3) = A

2

3∑
i=1

λ2
i − B

3

3∑
i=1

λ3
i + C

4

(
3∑

i=1

λ2
i

)2

− 2δ
3∑

i=1

λi , (8)

where we have recast fB in terms of the eigenvalues and introduced a Lagrange
multiplier δ for the tracelessness condition.

The equilibrium equations are given by a system of three algebraic equations

∂ f

∂λi
= 0 ⇔ Aλi − Bλ2

i + C

(
3∑

k=1

λ2
k

)
λi = 2δ, for i = 1. . .3, (9)

together with the tracelessness condition
∑

i λi = 0. The system (9) is equivalent to
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(
λi − λ j

) [
A − B

(
λi + λ j

) + C
3∑

k=1

λ2
k

]
= 0; 1 ≤ i < j ≤ 3. (10)

Let {λi } be a solution of the system (9) with three distinct eigenvalues λ1 �= λ2 �= λ3.
We consider Eq. (10) for the pairs (λ1, λ2) and (λ1, λ3). This yields two equations

A − B (λ1 + λ2) + C
3∑

k=1

λ2
k = 0,

A − B (λ1 + λ3) + C
3∑

k=1

λ2
k = 0, (11)

from which we obtain
− B (λ2 − λ3) = 0, (12)

contradicting our initial hypothesis λ2 �= λ3. We, thus, conclude that a stationary
point of fB must have at least two equal eigenvalues and therefore correspond to
either an uniaxial or isotropic Q-tensor. In particular, there are no biaxial stationary
points for the particular choice of fB in (7).

Therefore, we can compute the bulk preferred state in terms of minimizers of
the bulk potential fB in (7), which are necessarily either uniaxial or isotropic. In
particular, one can check that the isotropic state, Q = 0, is always a critical point
(not necessarily aminimizer) of fB for all values of A. A standard computation shows
that there are three characteristic values of A in this framework: (i) A = 0 such that the
isotropic critical point loses stability for A < 0, (ii) the nematic-isotropic transition
temperature, A = B2

27C , for which fB has two families of minimizers: the isotropic
state with Q = 0 and a continuum of uniaxial nematic states given by

Qmin =
{
s+

(
n ⊗ n − I

3

)
;n ∈ S2 arbitrary

}
,

s+ = B + √
B2 − 24AC

4C
, (13)

and (iii) A = B2

24C so that Q = 0 is the unique critical point of fB for A > B2

24C . To

summarize, the bulk preferred state is the isotropic critical point for A > B2

27C and
the bulk preferred state is defined by the family of uniaxial minimizers in (13) for
A < B2

27C and the simple quartic potential, fB , in (7), predicts a first order isotropic-

nematic transition at A = B2

27C . It is worth noting that s+ in (13) is less than unity if
and only if

A ≥ 1

3
(B − 3C) , (14)
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so that the probabilistic bounds in (2) are not respected for low temperatures (as A
decreases) [40].

The elastic energy density, fE , is typically a quadratic function of ∇Q and a
commonly used version is

fE (Q) :=
3∑

i, j,k=1

L1

2

(
∂Qi j

∂xk

)2

+ L2

2

∂Qi j

∂x j

∂Qik

∂xk
+ L3

2

∂Qi j

∂xk

∂Qik

∂x j
, (15)

where the material elastic constants, L1, L2, L3 are constrained by [18]

L1 > 0; −L1 < L3 < 2L1; L2 > −3

5
L1 − 1

10
L3. (16)

Mathematicians and modellers often work with the one-constant approximation
[29, 31, 41], for which L2 = L3 = 0 and the resulting LdG energy in (6) has a
nice variational structure and bears resemblance to the celebrated Ginzburg-Landau
energy in superconductivity [10]:

I [Q] :=
∫ ∫ ∫

Ω

[
fB (Q) + L

2
|∇Q|2

]
dV, (17)

where fB is given by (7). As with any problem in the calculus of variations, applied
mathematicians model the experimentally observed states in terms of minimizers of
the energy functionals, (6) or (17). The energy minimizers are typically solutions
of the associated Euler-Lagrange equations [18, 42] and the Euler-Lagrange equa-
tions associated with a three-constant elastic energy density as in (15) are not readily
amenable to analytic methods. However, the Euler-Lagrange equations associated
with the one-constant LdG energy in (17) have a nice mathematical structure (see
below)

LΔQi j = AQi j − B

(
Qi pQpj − δi j

3

)
+ C |Q|2Qi j ; i, j, p = 1, 2, 3, (18)

where we have used the Einstein summation convention, and the analysis of the
system (18) has generated much interest in the mathematical community in recent
years. A particularly interesting observation is that all solutions of the system (18)
are smooth i.e. critical points of the LdG energy (17) have no mathematical sin-
gularities and yet, experimentally observed nematic textures abound in point and
line singularities [32, 41]. The mathematical characterization of defects in the LdG
theory continues to attract worldwide analytical interest.

We note that the bulk potential fB in (7) is the simplest polynomial of Q that
allows for an isotropic-nematic transition in terms of bulk preferred states, as a
function of the temperature. It is restrictive in the sense that it can only account for
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uniaxial or isotropic bulk preferred states. There are more general sixth-order bulk
potentials, gB [2],

gB(Q) := A

2
trQ2 − B

3
trQ3 + C

4

(
trQ2

)2 + D

2

(
trQ2

) (
trQ3

) + E

6

(
trQ2

)3
+ (F − E)

(
trQ3

)2
, (19)

where A is the re-scaled temperature as before, B,C, D, E, F arematerial-dependent
constants and gB admits isotropic, uniaxial and biaxial critical points [2, 34].

Nematics, in confinement, are strongly influenced by boundary effects and a nat-
ural question is—how do we incorporate boundary effects into the LdG formula-
tion? There are multiple approaches to this question. The simplest approach is to
use Dirichlet conditions for which we explicitly prescribe the LdG Q-tensor on the
domain boundary. The Dirichlet condition fixes the preferred molecular alignment
on the boundary. A more realistic approach is to employ a surface anchoring energy
which enforces a preferred LdG Q-tensor on the boundary i.e. it is a weaker version
of Dirichlet conditions. There are several choices for surface anchoring, such as the
popular Durand-Nobili surface energy [19, 39, 46]

ES[Q] :=
∫ ∫

∂Ω

W tr (Q − QB)2 d A, (20)

where W is the surface anchoring strength and QB is the preferred LdG Q-tensor
on the boundary, ∂Ω . As W → ∞, we recover the Dirichlet condition, Q = QB

on ∂Ω . The interested reader is referred to [39] for detailed numerical comparisons
between different surface energies.

A related question is—how do we include external electric fields into the LdG
framework? The interaction between the external field and the LdG Q-tensor is
typically described by an additional field energy density of the form

F[E,Q] := 1

2
εaEiQi jE j , (21)

where εa is the dielectric anisotropy, E is the electric field vector in R3 and we have
used the Einstein summation convention [18, 22, 42, 46].

In all cases, the mathematical approach is the same: we consider the LdG energy
functional, compute the associated Euler-Lagrange equations and boundary condi-
tions and study critical points of the LdG energy functional, with special emphasis on
local and global minimizers. In the next two sub-sections, we briefly review two other
widely used continuum theories for uniaxial nematic phases: the Ericksen theory and
Oseen-Frank theory. Both of these theories are less general than the LdG theory but
have a rich mathematical theory in their own right and have been successfully used
for modelling nematic systems in different contexts.
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2.2 The Ericksen Theory

The Ericksen theory is often viewed as a bridge between the LdG theory and the
Oseen-Frank theory [20]. The Ericksen theory is restricted to uniaxial phases, char-
acterized by a scalar order parameter S and a director n as in (5). The Ericksen theory,
like the LdG theory, is a variational theory and the simplest form of the Ericksen
energy is

IE [S,n] :=
∫ ∫ ∫

Ω

[
K

(|∇S|2 + S2|∇n|2) + fB(s)
]
dV, (22)

where K is an elastic constant, the bracketed energy density penalizes any varia-
tions in S or n and fB(s) is a bulk potential such that fB → ∞ as S → −1/2 or
S → 1, in accordance with the bounds established in (2). The boundary conditions
can be imposed by either a fixed condition for n and S on ∂Ω or by employing
a surface potential. As with any variational theory, modellers study energy mini-
mizers to explain experimentally observed nematic textures. The Ericksen theory
has received attention in the mathematical literature e.g. see [38], but is somewhat
under-represented compared to the LdG and Oseen-Frank theories. This is simply
because an analysis of the Ericksen theory is at least as demanding as the LdG the-
ory and yet the theory contains less information by definition, for example, biaxiality
is outside the scope of Ericksen theory. The Oseen-Frank theory is mathematically
simpler than the LdG and Ericksen theories and yet has been adequate for a range of
modelling scenarios.

2.3 The Oseen-Frank Theory

The Oseen-Frank (OF) theory is the simplest continuum theory for nematic liquid
crystals, developed by Oseen and Frank [21]. The Oseen-Frank theory is restricted
to uniaxial nematics with a constant scalar order parameter, and hence, the nematic
state is purely characterized in terms of the director field, n ∈ S2.

The OF energy can be viewed as a Taylor expansion, in terms of ∇n, of the
elastic Helmholtz free energy, subject to the conditions of frame indifference and
equivalence under the n → −n relation. The second constraint, n ≡ −n, is a
consequence of the achirality of the nematic molecules i.e. the rod-like molecules
do not have a direction but have an orientation [22, 46]. These conditions naturally
eliminate any linear terms in (∇n) and the OF energy functional is usually taken to
be

IOF [n] :=
∫ ∫ ∫

Ω

1

2

(
K1 (∇ · n)2 + K2 (n · ∇ × n)2 + K3 (n × ∇ × n)2

)
dV

+
∫ ∫ ∫

Ω

1

2
(K2 + K4) (∇ · [(n · ∇)n − (∇ · n)n]) dV . (23)
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Splay (K1) Twist (K2) Bend (K3)

Fig. 3 The three types of director deformation (dashed lines) for a nematic sample

where the first three terms are the energetic penalties associated with splay, twist and
bend deformations respectively, shown in Fig. 3, and the positive elastic constants,
K1, K2, K3 are a measure of the corresponding energetic penalty [22]. The elastic
constants have the units of force. The last term is a surface energy, as can be seen
from an immediate application of the Divergence Theorem.

The director field, n, is necessarily a unit-vector field that can be written in terms
of polar angles as

n = (sin φ cos θ, sin φ sin θ, cosφ) , (24)

and one can re-write the OF functional in (23) in terms of (φ, θ). As with the LdG
theory and Ericksen theory, we model the experimentally observed states in terms
of OF energy minimizers. Questions related to the existence and partial regularity of
OF energy minimizers have been addressed in [24]. Additional effects like electric
or magnetic fields can be modelled by extra terms in the OF energy functional, as
with the LdG energy functional in (21). A common analytic approximation is the
one-constant approximation for which K1 = K2 = K3 = K and K4 = 0 and the
OF energy reduces to the Dirichlet energy

IOF [n] := K

2

∫ ∫ ∫
Ω

|∇n|2 dV, (25)

with any additional contributions from external fields or boundary effects. The cor-
responding Euler Lagrange equations are

Δn + |∇n|2n = 0, (26)

which are simply the harmonicmap equations. The one-constant OF energy ismathe-
matically appealing since it establishes a direct connection between the mathematics
of liquid crystals and the theory of harmonicmaps, the latter beingwell-studied in the
mathematical community. Indeed, this connection was beautifully elucidated in the
celebrated paper [11] where the authors use the analogies between the one-constant
OF energy minimizers and harmonic maps to yield a complete classification of point
defects in the one-constant OF energy minimizers.
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As in the LdG framework, boundary conditions play a crucial role in the mini-
mizer profiles. In the presence of strong surface forces, one might assume Dirichlet
conditions for n on the boundary i.e. work with a fixed boundary condition n = nB

on ∂Ω , where nB ∈ S2 is arbitrary. There are two common choices for nB : (i) nB = ν

where ν is the outward unit normal to ∂Ω , referred to as homeotropic anchoring,
(ii) nB · ν = 0 which requires nB to be in the plane of ∂Ω , referred to as planar
anchoring. For case (ii), nB may not be prescribed so that n can take any value in the
plane of ∂Ω , referred to as planar degenerate anchoring. For model problems with
planar degenerate anchoring, one could employ a surface energy which penalizes
any out-of-plane orientation, a common choice being the Rapini-Papoular surface
energy below [8]:

ES[n] :=
∫ ∫

∂Ω

W

2
(n · ν)2 d A, (27)

where ν is the outward normal to the surface, W > 0 is the anchoring strength and
the surface energy is a minimum when n · ν = 0 on ∂Ω or equivalently when n is
tangent to ∂Ω . As W → ∞, we recover the Dirichlet regime.

3 The Planar Bistable Device

This section focuses on the modelling of the planar bistable nematic device reported
in [45]. The planar bistable nematic device has a simple geometry comprising a
periodic array of three-dimensional square or rectangular wells filled with nematic
liquid crystalline material, say the conventional MBBAmaterial [45]. We denote the
edge lengths of the wells by Lx , Ly, Lz in the x , y and z-directions respectively and
Lz is typically much smaller than Lx or Ly . The well dimensions are typically in
the range Lx , Ly ∈ (20, 80) microns and Lz < min

{
Lx/5, Ly/5

}
, so that we treat

these geometries as shallow wells; see Fig. 4. The well surfaces are treated to induce
tangential or planar degenerate boundary conditions so that the nematic molecules on
the well surfaces are constrained to lie in the plane of the surfaces [45]. In Fig. 6, we
consider the bottom cross-section of a generic well in the periodic array; the tangent
boundary conditions mean that the nematic molecules are free to take any orientation
in the plane of the well surface or equivalently, in the xy-plane. However, they are
constrained to be tangent to the edges so that they are aligned in the x-direction on
the edges parallel to the x-axis and aligned in the y-direction along the pair of edges
parallel to the y-axis. There is a natural mismatch in the molecular alignments at

Fig. 4 Shallow rectangular
well
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the square vertices and hence, one expects to see some singular behaviour near the
corners although the singular profile may be highly localized with negligible impact
on macroscopic experimentally relevant measurements.

In [45], the authors experimentally find at least two different stable states for this
simple geometry which are labelled as diagonal and rotated states respectively. The
authors numerically model this device within a two-dimensional LdG theoretical
framework; we omit the details for brevity but the qualitative conclusions can be
summarized as follows: (i) the nematic molecules roughly align along a diagonal
for the diagonal state and there are two equivalent diagonal states; (ii) the nematic
molecules approximately rotate by π radians as we move between a pair of parallel
edges for a rotated solution and there are four rotationally equivalent rotated states.
Both of these states have long-term stability and have optically contrasting proper-
ties when viewed between crossed polarizers, as suggested by the experiments and
simulations in [45].

In [15], the authors perform detailed experiments on suspensions of fd-viruses in
rectangular microchambers (also see [34]). Suspensions of fd-viruses are known to
exhibit liquid crystalline behaviour [23] and since these viruses are typically larger
than nematic molecules, they can be readily visualized using confocal microscopy
techniques. In [15], the authors use two related viruses: the semi-flexible wild-type
fd-virus with approximately equal elastic constants [16] and the Y21M fd-virus
with elastic constant ratio K3

K1
≈ 20 [9]. In both cases, the authors allow the virus

suspensions to settle into equilibrium and observe at least five different types of
states (see Fig. 5), two of which are strongly reminiscent of the rotated and diagonal
solutions and the others are variants of the rotated or diagonal solutions with internal
defects. This example serves to illustrate that the diagonal and rotated solutions may
be observed for a larger class of systems than conventional confined nematic systems
and are hence, an interesting mathematical case study.

In the next two sub-sections, we summarize two recent papers on the modelling of
this planar device. In Sect. 3.1, we summarize the results in [35] to demonstrate the
strengths and predictive prowess of simple mathematical models and in Sect. 3.2, we
summarize the LdG numerical simulations of this device reported in [29] to reveal a
new well order reconstruction solution for nano-scale square wells.

3.1 A Two-Dimensional Oseen-Frank Model

The planar bistable nematic device is a periodic array of shallow square/rectangular
wells, with Lz typically much smaller than the cross-sectional parameters. We work
in the OF framework so that the nematic state is described by a unit-vector field, n,
where n represents the single distinguished direction of molecular alignment. We
model the nematic profile within a single well and given that these are shallow wells,
we take our computational domain to be a rectangle:

Ω := {
(x, y) ∈ R

2; 0 ≤ x ≤ 1, 0 ≤ y ≤ λ
}
, (28)
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Fig. 5 Sample director
fields observed in shallow
rectangular wells for WT fd
and Y21M. a Sketch of the
director field, with internal
defects indicated by red
circles. b Four overlaid
confocal images and scale
bar = 10 μm. c Final
experimental director field,
calculated from a series of
1000 confocal images. The
D and L states are wild-type
fd and U1, U∗

1 and D∗ states
are the Y21M strain.
Reproduced from Ref. [35]
with permission from the
Royal Society of Chemistry

(a) (b) (c)

where λ = Ly

Lx
is the rectangular aspect ratio and take n to be a two-dimensional

unit-vector
n = (cos θ(x, y), sin θ(x, y), 0) , (29)

independent of z-the vertical coordinate. The OF energy in (23) then reduces to

E[θ ] := K3

2

∫ ∫
Ω

[
|∇θ |2 − δ

(
θy cos θ − θx sin θ

)2]
dΩ, (30)
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where δ := 1 − K1
K3

is a measure of the elastic anisotropy. The corresponding Euler-
Lagrange equations are

Δθ + δ

(
1

2
sin 2θ

(
θ2
y − θ2

x + 2θxy
) + θxθy cos 2θ − θxx sin

2 θ − θyy cos
2 θ

)
= 0.

(31)
In [35], the authors study the model (28)–(31) within the one-constant approxi-

mation with δ = 0, prescribe boundary-value problems for the diagonal and rotated
solutions, derive analytic expressions for the corresponding n’s and the OF energies
in terms of λ, accompanied by some asymptotics in the λ → 0 limit. We reproduce
the key mathematical results in [35] as an example of mathematical modelling for a
prototype bistable device.

In the one-constant approximation, the OF energy in (30) reduces to

E[θ ] := K

2

∫ ∫
Ω

|∇θ |2 dΩ, (32)

and the energy minimizers are solutions of the Laplace’s equation

Δθ ≡ θxx + θyy = 0, (33)

subject to the appropriate boundary conditions on ∂Ω .
Following [34, 35], we impose Dirichlet conditions for θ on the four rectangular

edges. By virtue of the imposed tangent conditions, θ ∈ {0, π} on the edges, y = 0
and y = λ and θ ∈ {−π

2 , π
2

}
on the edges, x = 0 and x = 1. We assume that the

director profile defined by θ : Ω → R has no internal defects and any arbitrary
solution of (33) subject to Dirichlet boundary conditions can be written as:

θ(x, y, λ) := a1 f1 (x, y; λ)+a2 f2 (x, y; λ)+a3 f3 (x, y; λ)+a4 f4 (x, y; λ) . (34)

The constants ai ’s are determined by the Dirichlet conditions and the function f1 is
a solution of Δ f1 = 0 subject to f1(x, 0; λ) = 1 and f1 (0, y; λ) = f1 (1, y; λ) =
f1 (x, λ; λ) = 0. We use the method of separation of variables i.e. assume an ansatz
of the form f1(x, y; λ) = X (x; λ)Y (y, ; λ) with

X ′′(x; λ) + ω2X (x; λ) = 0; X (0; λ) = X (1; λ) = 0,

Y ′′(y; λ) − ω2Y (y; λ) = 0; Y (λ; λ) = 0, (35)

yielding a general Fourier series

f1 (x, y; λ) :=
∞∑
n=1

An sin (nπx) {cosh (nπy) − coth (nπλ) sinh (nπy)} , (36)
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Table 1 Values of the coefficients ai for three equilibria

State a1 a2 a3 a4

D 0 π/2 0 π/2

U1 0 −π/2 0 π/2

U2 0 π/2 π π/2

and we use the condition f1(x, 0; λ) = 1 to compute the Fourier coefficients An . A
straightforward computation shows that

f1 (x, y; λ) :=
∞∑
n=0

4 sin ((2n + 1)πx)

(2n + 1)π
{cosh ((2n + 1) πy)

− coth ((2n + 1) πλ) sinh ((2n + 1) πy)} . (37)

The remaining functions are defined by re-scaling and rotation:

f2 (x, y; λ) := f1

(
y

λ
,
1 − x

λ
; 1
λ

)
,

f3 (x, y; λ) := f1 (x, λ − y; λ) ,

f4 (x, y; λ) := f1

(
y

λ
,
x

λ
; 1
λ

)
. (38)

The aim is to model the experimentally observed diagonal and rotated solutions
and we assume that there are no internal defects. We model three states in terms
of three distinct boundary-value problems for θ : (i) the D state where θ = 0 on
{y = 0, λ} and θ = π

2 on x = {0, 1}, rendering an average alignment along the
diagonal connecting the vertices (0, 0) and (1, λ), (ii) the rotated U1 state for which
θ = 0 on {y = 0, λ}, θ = π

2 on x = 0 and θ = −π
2 on x = 1, and (iii) the rotated

U2 state for which θ = 0 on y = 0, θ = π on y = λ and θ = π
2 on {x = 0, 1}. The

corresponding choices for a1, . . . , a4 are enumerated in Table1. Given the values of
ai ’s for each of the three competing states and the expressions, (34), (37)–(38), we
obtain analytic expressions for the director fields of the D,U1,U2 states respectively
shown in Fig. 6.

The next step is to compute the one-constant OF energies of these states as a
function of λ. The Dirichlet conditions naturally imply that θ is not defined at the
vertices i.e. there is a point defect at every vertex. The D,U1,U2 states have 4 defects
each by construction: two splay defects where n has a local radial profile near the
defect and two bend defects for which n has a local bend profile near the defect
(see Fig. 7), and point defects have infinite energy on a two-dimensional domain
[22, 46]. Hence, we cannot compute the one-constant OF energy of these 3 states
on the rectangle, Ω . Since the total number and types of defects are identical for
all 3 states, we argue that the energetic differences between the three states is a
consequence of the bulk distortion or interior profiles. We excise a quarter-disc of
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Fig. 6 The director fields
for the three equilibrium
states within a rectangle with
rectangular aspect ratio
λ = 0.5. From top; diagonal
(D), rotated (U1), rotated
(U2)

Fig. 7 Local behaviour of
the director about a splay
defect (left) and a bend
defect (right). Defect
location indicated by the red
point

radius ε (0 < ε � λ) centered at each vertex and derive an asymptotic expression
for the one-constant OF energy on the excised domain, denoted by Ωε (see Fig. 8),
in the ε → 0 limit [35]. The following calculations have been reproduced from [34].

The one-constant OF energy on Ωε can be converted to a line integral on the
boundary, ∂Ωε, by an immediate application of Green’s first identity [17]:

E[θ ] := K

2

∫ ∫
Ωε

|∇θ |2 dx dy = K

2

∫
∂Ωε

θ
∂θ

∂ν
ds

= K

2

4∑
i=1

[∫
Ci

θ
∂θ

∂ν
ds +

∫
γi

θ
∂θ

∂ν
ds

]
, (39)
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Fig. 8 The boundary ∂Ωε

expressed in terms of straight
edges Ci and arcs γi

where ∂θ
∂ν

= ∇θ · ν, ν is the outward pointing unit normal to ∂Ωε, ∂Ωε is oriented
in the anti-clockwise sense and ∂Ωε comprises 4 straight segments, Ci , and the
four quarter circles around each vertex, denoted by γi . The contribution from each
boundary segment needs to be considered separately.

The line integral about the arc, γi , is approximated by considering the local solu-
tion, θc, near the corresponding vertex. Let us consider the arc γ4 about the vertex
(x, y) = (0, 0) as an example (see Fig. 8). The function, θc is defined by a solution of
the Laplace’s equation,Δθc = 0, in polar coordinates, (r, φ), about the origin, subject
to θc(r, 0) = a1, θc

(
r, π

2

) = a4 and the condition, θc (ε, φ) = θ(ε cos(φ), ε sin(φ))

where θ is defined by (34). In this case, θc is given by

θc = a1 + 2

π
(a4 − a1) φ +

∞∑
n=1

bnr
2n sin (2nφ) , (40)

where the coefficients, bn , can in principle be determined by matching with the outer
solution for θ . Then we can compute the line integral in (39) to be

−
∫ π

2

0
θc

∂θc

∂r

∣∣∣∣
r=ε

ε dφ ∼ − (a1 + a4) b1ε
2 + O

(
ε4

)
, (41)

and the remaining three line integrals about γ1, γ2, γ3 can be dealt with similarly, each
making an O

(
ε2

)
-contribution to the energy. These energetic contributions vanish

in the ε → 0 limit.
It remains to consider the line integrals about the straight lines, Ci . From the

definition of the functions fi in (37)–(38), fi = δi j on the edge C j and hence, the
line integrals about the straight edges, Ci , simplify to

4∑
i=1

∫
Ci

θ
∂θ

∂ν
ds =

4∑
i

ai

4∑
j=1

a j

∫
Ci

∂ f j
∂ν

ds. (42)

There are a total of 16 integrals and we use the symmetries of the functions fi to
reduce the 16 integrals to six integrals as shown below:
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I1 :=
∫
C1

∂ f1
∂ν

ds =
∫
C3

∂ f3
∂ν

ds,

I2 :=
∫
C1

∂ f3
∂ν

ds =
∫
C3

∂ f1
∂ν

ds,

I3 :=
∫
C2

∂ f1
∂ν

ds =
∫
C4

∂ f1
∂ν

ds =
∫
C2

∂ f3
∂ν

ds =
∫
C4

∂ f3
∂ν

ds,

I4 :=
∫
C2

∂ f2
∂ν

ds =
∫
C4

∂ f4
∂ν

ds,

I5 :=
∫
C2

∂ f4
∂ν

ds =
∫
C4

∂ f2
∂ν

ds,

I6 :=
∫
C1

∂ f2
∂ν

ds =
∫
C3

∂ f2
∂ν

ds =
∫
C1

∂ f4
∂ν

ds =
∫
C3

∂ f4
∂ν

ds. (43)

These relations can be further simplified by noting that

∫
∂Ωε

∂ fi
∂ν

ds = 0 i = 1, . . . 4, (44)

since Δ fi = 0. Hence, it follows that

I1 + I2 + 2I3 ∼ O(ε2), I4 + I5 + 2I6 ∼ O(ε2), (45)

where the ε2 contribution originates from the curved arcs, γi . We use (45) to simplify
the one-constant OF energy in (39) to

E[θ ] ∼ K

2

((
a21 + a23

)
I1 + 2a1a3 I2 + (

a22 + a24
)
I4 + 2a2a4 I5

)

− K

2

(a1 + a3) (a2 + a4)

2
(I1 + I2 + I4 + I5) + O

(
ε2

)
. (46)

The remaining task is to evaluate the integrals I1, I2, I3, I4 in the ε → 0 limit.
Let us consider the integral I1:

I1 = −
∫ 1−ε

ε

∂ f1
∂y

∣∣∣∣
y=0

dx =
∞∑
n=0

8 cos ((2n + 1) πε) coth ((2n + 1) πλ)

(2n + 1) π

=
∞∑
n=0

8 cos ((2n + 1) πε)

(2n + 1) π
(coth ((2n + 1) πλ) − 1)

+
∞∑
n=0

8 cos ((2n + 1) πε)

(2n + 1) π
. (47)



A Theoretician’s Approach to Nematic Liquid Crystals and Their Applications 243

The first sum is a convergent series which we denote by

∞∑
n=0

8 cos ((2n + 1) πε) (coth ((2n + 1) πλ) − 1)

(2n + 1) π
∼ 4

π
s1 (λ) + O

(
ε2

)
, (48)

where

s1 (λ) := 2
∞∑
n=0

coth ((2n + 1) πλ) − 1

(2n + 1)
. (49)

The second sum in (47) is a Fourier series given in [25]:

∞∑
n=0

8 cos ((2n + 1) πε)

(2n + 1) π
= 4

π
ln

(
cot

(πε

2

))
∼ 4

π
ln

(
2

πε

)
+ O

(
ε2

)
, (50)

and combining (48)–(50), we obtain

I1 ∼ 4

π
ln

(
2

πε

)
+ 4

π
s1 (λ) + O

(
ε2

)
. (51)

We repeat analogous arguments to compute

I2 ∼ − 4

π
s2 (λ) + O(ε2),

I4 ∼ 4

π
ln

(
2λ

πε

)
+ 4

π
s1

(
1

λ

)
+ O

(
ε2

)
,

I5 ∼ − 4

π
s2

(
1

λ

)
+ O

(
ε2

)
, (52)

where

s2 (λ) := 2
∞∑
n=0

csch ((2n + 1) πλ)

(2n + 1)
. (53)

Combining (51)–(53), the energies of all three competing states can be expressed as

E[θ ] ∼ Kπ

(
ln

(
1

ε

)
+ Ẽ[θ ] + O

(
ε2

))
, (54)

where the logarithmic contribution is the defect energy and the defect energy is
identical for all states, since they have the same number of splay and bend defects.
Thenormalized energy, Ẽ , represents the bulk distortion energy and is a goodmeasure
of the relative energies of the three competing states as shown below:
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Fig. 9 The normalized
energies of the three
equilibrium states plotted
against the rectangular
aspect ratio λ
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ẼD = ln

(
2λ

π

)
+ s1

(
1

λ

)
− s2

(
1

λ

)
, (55)

ẼU1 = ln

(
2λ

π

)
+ s1

(
1

λ

)
+ s2

(
1

λ

)
, (56)

ẼU2 = ln

(
2

π

)
+ s1 (λ) + s2 (λ) . (57)

One can immediately see that ẼD < ẼU1 < ẼU2 for λ < 1. In Fig. 9, we plot the
normalized energies of the three states versus λ. These energy expressions in (55)–
(57) provide quantitative information about how λ or equivalently the geometrical
aspect ratio manifests in energetic trends. These expressions are consistent with the
experiments on fd-viruses in rectangular microchambers if one hypothesises that the
observational frequency is determined by the bulk distortion energy and lower energy
states are more frequently observed in the sense that D state is the most frequently
observed state in experiments and the U2 state is seldom observed [35].

3.2 A Landau-de Gennes Approach

The OF approach in the previous section is a useful first approach to modelling the
planar bistable wells but suffers from several limitations. The OF approach does not
give us any information about the defect structures near the square vertices, does not
contain any information about biaxiality and largely complements the experiments in
[45]without providing any new insight thatmay potentially guide future experiments.

In this section, we reproduce the LdGmodelling of this bistable device reported in
[29] with emphasis on how the stable equilibria depend on the well cross-sectional
size, denoted by R. We work with shallow square wells and measure R in units
of a material-dependent length scale, the biaxial correlation length ξ

(0)
b , at different

temperatures. The bare biaxial correlation length is typically tens of nanometers [12].



A Theoretician’s Approach to Nematic Liquid Crystals and Their Applications 245

We find the conventional diagonal and rotated solutions when R is large compared
to ξ

(0)
b i.e. when R is on the micron scale, but as R decreases, there is a critical

well size, Rc, such that there is a stable well order reconstruction solution (WORS)
for all R < Rc. The WORS is featured by a star-shaped rim of maximal biaxiality
connecting the four square vertices, and is hence, outside the scope of conventional
OF modelling. In the following paragraphs, we discuss the modelling details and
reproduce some of the numerical results from [29].

In the LdG framework, the nematic state is described by a LdG Q-tensor order
parameter or equivalently by a symmetric, traceless 3 × 3 matrix that contains
information about the orientational ordering within its eigenvalues and eigenvec-
tors respectively. We adopt the following three-dimensional parameterization for the
Q-tensor:

Q = (q3 + q1) ex ⊗ ex + (q3 − q1) ey ⊗ ey + q2
(
ex ⊗ ey + ey ⊗ ex

) − 2q3ez ⊗ ez,
(58)

where q1, q2, q3 only depend on the planar variables, x and y, and are independent of
z and ex , ey, ez are the unit coordinate vectors in the x, y and z directions respectively.
One can prove that there exist LdG critical points of the form (58) or equivalently,
the LdG Euler-Lagrange equations in (18) admits solutions of the form (58). The
parameterization (58) has one fixed eigenvector, ez , and the remaining two eigenvec-
tors can be arbitrary orthogonal unit-vectors in the xy-plane. When q2 = 0, the three
eigenvectors are the Cartesian unit-vectors, ex , ey, ez , respectively. The eigenvalues

are given by, λ1 = q3 +
√
q2
1 + q2

2 , λ2 = q3 −
√
q2
1 + q2

2 and λ3 = −2q3. The

biaxiality parameter, β2, is a common measure of how biaxial a Q-tensor is and we
adopt the usual definition [46]:

β2 = 1 − 6
(
trQ3

)2
|Q|6 , (59)

so that β2 ∈ [0, 1] by definition. In particular, β2 = 0 if and only if 6
(
trQ3

)2 = |Q|6
which is a sufficient condition for uniaxiality and β2 = 1 if there is a null eigenvalue,
corresponding to maximal biaxiality. If Q = 0, then β2 = 0 by definition.

The next step is to define the boundary conditions. We work with weak anchoring
on the four lateral surfaces, defined by x = {0, R} and y ∈ {0, R}, i.e. impose
a preferred nematic state, described by a preferred QB , on these surfaces and free
boundary conditions on the top and bottom surfaces, z = 0 and z = h, respectively.
We take h < R

10 by assumption since these are shallow wells and work with low
temperatures that favour nematic ordering. On the surfaces, x = 0 and x = R, we
have

QB = Seq
3

(
2ey ⊗ ey − ex ⊗ ex − ez ⊗ ez

)
, (60)

where Seq = B+√
B−24AC
4C and QB ∈ Qmin where Qmin has been defined in (13).

Similarly, on the surfaces, y = 0 and y = R, we have
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QB = Seq
3

(
2ex ⊗ ex − ey ⊗ ey − ez ⊗ ez

)
, (61)

and
∂Q
∂z

= 0 on z = 0 and z = h. (62)

We take the LdG energy to be

I [Q] :=
∫
B

[
L

2
|∇Q|2 + fB(Q)

]
dV +

∑
x∈{0,R};y∈{0,R}

ES[Q], (63)

where B = {
(x, y, z) ∈ R

3; 0 ≤ x, y ≤ R; 0 ≤ z ≤ h
}
, fB is the bulk potential

defined in (7) and the surface energies are defined in (20) over the lateral surfaces,
usingQB as defined in (60) and (61). In particular, A < 0 in (7) since we are working
with low temperatures.

The nematic profiles are dictated by a complex interplay between material prop-
erties, temperature, geometry and boundary effects. In order to better quantify these
effects, we measure the length R in units of the bare biaxial correlation length, ξ (0)

b ,
defined to be [30]

ξ
(0)
b = 2

√
LC

B
, (64)

which is a purely material-dependent length scale. Let t be a dimensionless tempera-
ture defined to be t = T−T∗

T∗∗−T∗ , T∗ is defined in (7) and T∗∗ is the nematic supercooling
temperature such thatQ = 0 is the unique critical point of fB for T > T∗∗. We define

τ := 1 + √
1 − t, (65)

then the key material and temperature-dependent length scale is [27–30]

ξb = ξ
(0)
b√
τ

, (66)

and in what follows, we work with fixed ξ
(0)
b and vary τ . The strength of the surface

interactions is typically described in terms of the surface extrapolation length [30]:

d = L

W
, (67)

where we assume that the anchoring is equally strong on all four lateral surfaces and
W is the corresponding surface anchoring strength. Typical values of L are around
10−12– 10−11 Newtons and W ∈ (

10−8, 10−3
)
N/m [42].
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We non-dimensionalize the energy (63) using the following scalings: Q̃ =
Q
S∗∗ , x̃ = x

R , ỹ = y
R , z̃ = z

R , S∗∗ = B
4C and Ĩ = I

I0
where I0 = LS2∗∗R3(

2ξ (0)
b

)2 and repro-

duce the formalism in [29] verbatim. In what follows, we drop the tildes from the
dimensionless variables and the corresponding dimensionless free energy densities
are defined to be:

fB = τ

6
trQ2 − 2

3
trQ3 + 1

8

(
trQ2)2 (68)

= τ

3

(
q2
1 + q2

2 + 3q2
3

) − 4q3
(
q2
1 + q2

2 − q2
3

) + 1

2

(
q2
1 + q2

2 + 3q2
3

)2
, (69)

fe =
(

ξ
(0)
b

R

)2

|∇Q|2 = 2

(
ξ

(0)
b

R

)2 (
3 |∇q3|2 + |∇q1|2 + |∇q2|2

)
, (70)

fS = ξ
(0)
b

2

dR
tr (Q − Qs(ϕs))

2 (71)

= 2

3

(
ξ

(0)
b

R

) (
ξ

(0)
b

d

) (
9q2

3 + 3q2
1 + 3q2

2 − 3q3τ + τ 2 − 3q1τ cos(2ϕs)

−3q2τ sin(2ϕs)
)
. (72)

where fe is the one-constant elastic energy density, fS is the surface energy density,
the angle ϕs is either ϕs = 0 (plates at y = 0 and y = R) or ϕs = π/2 (plates at
x = 0 and x = R). The strong anchoring limit, W → ∞, corresponds to vanishing
surface extrapolation length, d → 0. The corresponding Euler-Lagrange equations
are

(
ξ

(0)
b

R

)2

Δ⊥q1 − τ

6
q1 + 2q3q1 − q1

2
(3q2

3 + q2
1 + q2

2 ) = 0, (73)

(
ξ

(0)
b

R

)2

Δ⊥q2 − τ

6
q2 + 2q2q3 − q2

2
(3q2

3 + q2
1 + q2

2 ) = 0, (74)

(
ξ

(0)
b

R

)2

Δ⊥q3 − τ

6
q3 + 1

3
(q2

1 + q2
2 − 3q2

3 ) − q3
2

(3q2
3 + q2

1 + q2
2 ) = 0, (75)

where Δ⊥ ≡ ∂2

∂x2 + ∂2

∂y2 .
The boundary conditions on the plates x = 0 and x = R are

∂q1
∂x

= ∓ R

d

(
q1 − τ

2

)
, (76)

∂q2
∂x

= ∓ R

d
q2, (77)
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∂q3
∂x

= ∓ R

d

(
q3 − τ

6

)
, (78)

−(+) in ∓ refers to the right (left) plate and d is the surface extrapolation length
defined in (67). Similarly, the boundary conditions on the plates y = 0 and y = R
ares

∂q1
∂y

= ∓ R

d

(
q1 + τ

2

)
, (79)

∂q2
∂y

= ∓ R

d
q2, (80)

∂q3
∂y

= ∓ R

d

(
q3 − τ

6

)
, (81)

where −(+) in ∓ refers to the top (bottom) plate and d is the surface extrapolation
length as before. The corresponding strong anchoring conditions are {q1 = − τ

2 ,

q2 = 0, q3 = τ
6 } on y = {0, R} and {

q1 = τ
2 , q2 = 0, q3 = τ

6

}
on x = {0, R}, as can

be recovered from (76)–(78) and (79)–(81) in the d → 0 limit.
The Euler-Lagrange equations (73)–(75) and the boundary constraints (76)–(81)

are solved using relaxation methods in [29]. These methods compute the static solu-
tions, (q1, q2, q3), by mimicking a dynamic gradient-flow procedure along which
the free energy continuously decreases till the system reaches equilibrium, for an
explicitly prescribed initial condition. The authors use three different kinds of initial
conditions: (i) bulk uniaxial alignment along −→ex , (ii) bulk uniaxial alignment along−→ex + −→ey , and (iii) the isotropic phase with Q = 0. The Q-tensor follows from the
solution, (q1, q2, q3), by using the parametrization (58). The converged solutions are
robust with respect to different choices of initial conditions and are thus numerically
stable.

We now offer some heuristic insight on nematic pattern formation as a function

of the critical ratios, ξ
(0)
b
R and ξ

(0)
b
d . On the one hand, if τ is large compared to the re-

scaled elastic constant,
(

ξ
(0)
b
R

)2
, then the solution predominantly minimizes the bulk

potential i.e. is largely uniaxial with constant order parameter, S = Seq(T ) (at least

away from defects). On the other hand, if τ and
(

ξ
(0)
b
R

)2
are of comparable magnitude,

then elastic distortions and deviations from the bulk energy minima (uniaxial phases
with S = Seq(T )) e.g. biaxiality, have comparable energetic costs and hence, biaxial

patterns are energetically viable. Similarly, if ξ
(0)
b
R � ξ

(0)
b
d , then the uniaxial boundary

conditions are relatively weakly implemented and the system has greater freedom
to adopt almost “spatially homogeneous” or uniform states. This, in turn, allows the
system to avoid complex structural transitions for sufficiently weak anchoring.

We reproduce Figs. 10 and 11 from [29]. The well size is R = 4.5ξ (0)
b at τ = 4

with strong anchoring on the lateral surfaces. In dimensional terms, this corresponds
to a well with size length between 120 and 150 nanometers. The authors compute
solutions of the Euler-Lagrange equations (73–75) subject to different initial condi-
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(a) (b)

Fig. 10 The degree of biaxiality, β2(x, y), on the bottom cross-section of a square well with
R/ξ

(0)
b = 4.5, τ = 4 and strong anchoring conditions. The shading code for β2 ∈ [0, 1] is on the

right side. Reproduced from Ref. [29] with permission from the Royal Society

Fig. 11 The maximal
eigenvector (eigenvector
with the largest positive
eigenvalue) of the Q-solution
with R/ξ

(0)
b = 4.5, τ = 4

and strong anchoring
conditions. In the uniaxial
limit, this eigenvector is
simply the nematic director
field. The corresponding
β2(x, y) dependence is
plotted in Fig. 10.
Reproduced from Ref. [29]
with permission from the
Royal Society

tions and in all cases, recover a diagonal structure with defects, referred to as theDSD
structure in [29]. In Fig. 10, the authors plot β2 on the bottom cross-section, z = 0
and the leading eigenvector (with the largest eigenvalue) in Fig. 11. It is evident that
the leading eigenvector has a diagonal profile, strongly reminiscent of the diagonal
solution in the OF framework. The Dirichlet conditions on the lateral surfaces create
discontinuities at the square corners which persist as line defects along the vertical
edges. This is somewhat artificial but the qualitative trends are unchanged with the
more realistic weak anchoring model, e.g. for ξ

(0)
b /d > 20 i.e. for sufficiently large

values of the anchoring coefficient W . The β2 profile on z = 0 reveals interest-
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(a) (b)

(c) (d)

Fig. 12 Plots of β2(x, y) with decreasing η = R/ξ
(0)
b , at a fixed temperature τ = 4 and strong

anchoring conditions. a η = 4.5, b η = 3.8, c η = 3.6 and d η = 3. We observe the WORS below
the critical value ηc = 3.28 ∓ 0.01. Reproduced from Ref. [29] with permission from the Royal
Society

ing information about the vertex profiles that is outside the scope of traditional OF
modelling. Let us look at a small neighbourhood of the bottom left vertex, which is
the point of intersection of the edges, x = 0 and y = 0. The Dirichlet conditions
are uniaxial and conflicting on the two intersecting edges; consequently β2 = 0 on
both edges but the nematic profile mediates between the two prescribed uniaxial
“edge” states via a biaxial profile, as is evident by a pear-shaped lobe with non-zero
β2 around the vertex. These simulations suggest that the DSD structure is a more
refined description of the diagonal solution described in Sect. 2.3 with additional
information about the biaxial defect cores near the square vertices. However, these
biaxial lobes are relatively small and localized and hence, probably not significant
for experimental measurements.

In Fig. 12, the authors study structural transitions induced by gradually decreasing
the ratio η = R/ξ

(0)
b at τ = 4, with strong anchoring on four lateral surfaces. They

illustrate the structural transitions by plotting the β2-profiles on z = 0 for different
values of η. As η decreases, the biaxial lobes around the vertices become larger,
start to overlap and at a critical value η = ηc = 3.38 ± 0.01, the four biaxial lobes
connect yielding the Well Order Reconstruction Solution (WORS). The WORS is
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the only stable solution for η < ηc. The WORS is distinctive for two reasons: (i) it is
featured by an uniaxial cross (with β2 = 0) connecting the four square vertices along
the square diagonals and (ii) the uniaxial cross is surrounded by a star-shaped rim
of maximal biaxiality, with β2 = 1. The uniaxial cross along the square diagonals
has negative scalar order parameter. Further, in contrast to the DSD, biaxiality is not
localized near the vertices but is a prominent feature of the entire spatial pattern i.e.
there is a prominent biaxial ring that separates the negatively ordered uniaxial cross
from the positively ordered uniaxial alignments on the square edges.

A potential concern is that the WORS is only observable (at least for τ = 4) for
wellswith size comparable to the biaxial correlation length and the validity of theLdG
theory is not clear for such small length scales.However, recent experiments show that
the LdG theory can work well in the nano-regime [27, 28]. Equally importantly, the
numerical results in [29] show that ηc is an increasing function of temperature and the
WORS may be observable for wells with size between 240–420 nm, close to τ = 0.
The LdG theory is certainly valid close to τ = 0, for such length scales. The LdG
simulations in [29] and theWORS solution are an interesting example of new biaxial
solutions in the LdG framework, outside the scope of OF methodologies. These
biaxial solutions offer the possibility of newelectro-optical andmechanical properties
and hence, hold the promise of a new world of biaxiality induced phenomena with
fresh perspectives.

4 Conclusions

This chapter is a self-contained introduction to the basic mathematical modelling
framework for nematic liquid crystals, at a continuum level. This chapter largely
focuses on the Oseen-Frank and Landau-de Gennes theories and the key ingredi-
ents are—definition of a nematic order parameter, a continuum energy functional,
the governing Euler-Lagrange equations (which are typically a system of elliptic
partial differential equations for a range of choices of the elastic constants) and
an analysis of the corresponding solutions or equivalently the critical points of the
energy. The static experimentally observed equilibria are modelled by the energy
minimizers. There are of course, more refined approaches to modelling nematic liq-
uid crystals e.g. the Gay-Berne molecular model, the Lebwohl-Lasher molecular
model or the Ball-Majumdar potential (see [7, 47]). However, they present signif-
icant analytical and computational difficulties and the Oseen-Frank and Landau-de
Gennes approaches are both analytically and computationally tractable, yielding a
good match with experiments for a range of physically relevant scenarios. For exam-
ple, in Sect. 3.1, we use separation of variables and Fourier series methods, both of
which are well established in the literature, to derive analytic expressions for the
nematic director fields and their energies as a function of the well aspect ratios. Fur-
ther, the mathematical landscape of these continuum approaches is very rich: the
analysis of continuum energies intersects many different branches of mathematics,
namely calculus of variations, theory of partial differential equations and algebraic
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topology. A study of the multiplicity of solutions as a function of model parame-
ters raises highly non-trivial questions in bifurcation theory and dynamical systems
and the numerical simulations, particularly multiscale simulations, generate cutting-
edge questions in scientific computation and numerical analysis. The natural next
step is to study the dynamics of such confined nematic systems in the presence of
flow and external electric fields. There are well-established theories to this effect
e.g. Leslie-Ericksen [36, 37] and Beris Edwards theories of nematodynamics. The
study of nematodynamics is confronted with fresh theoretical and computational
challenges, originating from the complex coupling between the nematic director and
fluid flow, interfacial phenomena, motion of defects and anisotropic stresses and a
self-contained description of nematodynamics warrants a separate dedicated account
in future work.
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Dynamical Density Functional
Theory for Brownian Dynamics
of Colloidal Particles

Hartmut Löwen

1 Introduction

Variational methods play a key role in physics. Density functional theory (DFT) is
a special and important example of such a variational formulation. DFT relies on
the fact that there is a functional of the one-particle density which gives access to
the equilibrium thermodynamics when it is minimized with respect to the density.
This important theory can be both applied to quantum-mechanical electrons and to
classical systems.

In this book chapter we shall consider nonequilibrium situations for completely
overdamped Brownian dynamics of colloids. A dynamical version of DFT, the so-
called dynamical density functional theory (DDFT), is available and makes dynam-
ical predictions which are in good agreement with computer simulations. Here we
shall derive DDFT for Brownian dynamics in a tutorial way from the microscopic
Smoluchowski equation and mention some applications such as crystallization on
a patterned substrate. The theory will then be generalized towards hydrodynamic
interactions between the particles and to orientational degrees of freedom describing
e.g. rod-like colloids. Finally some recent developments will be discussed. For parts
of this tutorial we follow the ideas outlined in Ref. [60, 61].
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2 Density Functional Theory (DFT) in Equilibrium

2.1 Basics

We shall consider density functional theory (DFT) here for classical systems at finite
temperature as opposed to DFT for quantum mechanical electrons. The cornerstone
of classical density functional theory is an existence theorem combined with a basic
variational principle [25, 55, 57, 58, 86]. In detail, there exists a unique grand
canonical free energy-density-functional Ω(T,μ, [ρ]), which gets minimal for the
equilibrium density ρ0(r) and then coincides with the real grand canonical free
energy, i.e.

δΩ(T,μ, [ρ])
δρ(r)

∣∣∣∣
ρ(r)=ρ0(r)

= 0. (1)

Here, T is the imposed temperature and μ the prescribed chemical potential of the
system. In particular DFT is also valid for systems which are inhomogeneous on a
microscopic scale. In principle, all fluctuations are included if an imposed external
potential Vext (r) breaks all symmetries. For interacting systems in three dimensions
(3d), however, the functionalΩ(T,μ, [ρ]) is not known. One can split the functional
Ω(T,μ, [ρ]) exactly as follows

Ω(T,μ, [ρ]) = F (T, [ρ]) +
∫
V

d3r ρ(r) (Vext (r) − μ) (2)

where F (T, [ρ]) is a Helmholtz free energy functional and V denotes the system
volume.

Fortunately, there are few exceptions where the density functional is known
exactly. First, for low density, the ideal-gas-limit is reached and the density functional
can be constructed analytically (see below). Next leading orders for finite densities
can be incorporated via a virial expansion which is quadratic in the densities. Con-
versely, in the high-density-limit, themean-field approximation (see below) becomes
asymptotically exact for penetrable potentials. Indeed this approximation also works
surprisingly well for finite densities beyond overlap. Furthermore, the density func-
tional is exactly known (as the so-called Percus-functional) in one spatial dimension
for the Tonks gas (hard rods on a line). However, the latter system does not exhibit
freezing. Please note that the knowledge of a functional is much more than a bulk
equation of state since it can be applied to any external potential Vext (r).
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2.2 DFT of Freezing

One important application of DFT is freezing: First one has to chose an approxi-
mation. Then the density field is parametrized with variational parameters. In the
homogeneous gas and liquid bulk phase one takes

ρ(r) = ρ̄ (3)

where ρ̄ is a variational parameter. On the other hand, for the solid, the Gaussian
approximation of density peaks on the lattice positions is an excellent choice [83],
where

ρ(r) =
(α

π

)−3/2 ∑
n

exp
(−α (r − Rn)

2
)

. (4)

Here both the lattice structure and spacing as well as the width α are variational
parameters. Finally, for a given chemical potential μ and temperature T , one has to
minimize the functional Ω(T,μ, [ρ]) with respect to all variational parameters. As
a result one obtains the phase diagram in the μT plane.

The procedure itself is sketched close to a solid-liquid transition in Figs. 1 and 2.
A solid-liquid transition line in the μT plane is schematically shown in Fig. 1 and we
consider a path with fixed μ and increasing T crossing the solid-liquid transition at
μ = μcoex and T = Tcoex . Coexistence implies that temperature T , chemical potential
μ and pressure p are the same in both phases. Since in the bulk p = −Ω/V (V
denoting the system volume) coexistence means that at given μ and T ,Ω/V has two
minima with equal depth. A contour plot of the density functional in the space of
variational parameters is shown in Fig. 2 for three different temperatures on the path
shown in Fig. 1. The liquid minimum occurs at zeroαwhile the solid is characterized
by aminimum at finiteα. The globalminimum is the stable phase and, at coexistence,
the two minima have equal depth.

Fig. 1 Solid-liquid
coexistence line in the μT
plane. The path along which
three state points are
discussed in Fig. 2 is
indicated

μ

μ

TTcoex

coex

solid

liquid



258 H. Löwen

Fig. 2 Contour plot of the
grand canonical free energy
Ω(T,μ, ρ̄,α) for fixed T
and μ as a function of two
variational parameters α and
the averaged density ρ̄. The
latter is given by the lattice
constant in the solid phase.
a with a stable solid phase,
b at solid-liquid coexistence,
c with a stable liquid phase
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2.3 Approximations for the Density Functional

Let us first recall the exact functional for the ideal gas where the pair interaction
V (r) between the particles vanishes, V (r) = 0. It reads as

F (T, [ρ]) = Fid(T, [ρ]) = kBT
∫
V
d3r ρ(r)

[
ln(ρ(r)Λ3) − 1

]
(5)

whereΛ is the irrelevant thermal wave length and kB the Boltzmann constant. In this
case, the minimization condition

δΩ

δρ(r)

∣∣∣∣
0

= kBT ln(ρ(r)Λ3) + Vext(r) − μ = 0 (6)



Dynamical Density Functional Theory for Brownian Dynamics … 259

leads to the generalized barometric law

ρ0(r) = 1

Λ3
exp

(
−Vext(r) − μ

kBT

)
(7)

for the inhomogeneous density. In the interacting case, V (r) �= 0, one can split

F (T, [ρ]) =: Fid(T, [ρ]) + Fexc(T, [ρ]) (8)

which defines the excess free energy density functional Fexc(T, [ρ]). Approxima-
tions work on different levels. In the mean-field approximation, we set

Fexc(T, [ρ]) ≈ 1

2

∫
d3r

∫
d3r ′ V (|r − r′|)ρ(r)ρ(r′) (9)

In fact, the mean-field approximation (together with a correlational hole in the solid)
yields freezing of a Gaussian pair potential V (r) ∼ exp(−(r/σ)2) [6, 50] and is the
correct starting point for cluster crystals for penetrable potentials [33, 53, 54].

The Ramakrishnan-Yussouff (RY) approximation is a perturbative treatment out
of the bulk liquid which needs the bulk liquid direct correlation function c(2)(r, ρ̄, T )

as an input. A functional Taylor expansion around a homogeneous reference density
up to second order yields

Fexc(T, [ρ]) ∼= −kBT

2

∫
d3r

∫
d3r

′
c(2)(|r − r

′ |, ρ̄, T )(ρ(r) − ρ̄)(ρ(r
′
) − ρ̄)

(10)

The RY approximation leads to freezing for hard spheres and was historically the
first demonstration that freezing can be described within DFT. The RY functional
can readily be generalized to soft interactions [106] (as the one-component plasma)
and gives reasonable results for freezing there (though it is better to improve the
functional by including triplet correlations). The input c(2)(|r − r

′ |, ρ̄, T ) can be
gained by liquid integral equation theory [11].

A non-perturbative functional is based on Rosenfeld’s fundamental measure the-
ory (FMT) [105]. This works, however, only for a hard interaction, such as hard
spheres. In FMT we have

Fexc[ρ]
kBT

=
∫

d3r Φ[{nα(r)}] (11)

with

nα(r) =
∫

d3r
′
w(α)(r − r

′
)ρ(r

′
) (12)

where the six weight function are given explicitly as

w(0)(r) = w(2)(r)
πσ2

(13)
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w(1)(r) = w(2)(r)
2πσ

(14)

w(2)(r) = δ
(σ

2
− r

)
(15)

w(3)(r) = Θ
(σ

2
− r

)
(16)

w(V1)(r) = w(V2)(r)
2πσ

(17)

w(V2)(r) = r
r
δ
(σ

2
− r

)
(18)

with σ denoting the hard sphere diameter and

Φ = Φ1 + Φ2 + Φ3 (19)

Φ1 = −n0 ln(1 − n3) (20)

Φ2 = n1n2 − nv1 · nv2

1 − n3
(21)

Φ3 =
1
3n

3
2 − n2(nv2 · nv2)

8π(1 − n3)2
(22)

This FMT functional yields the Percus-Yevick solution of the direct correlation func-
tion as an output. It furthermore survives the dimensional crossover [96]: If the three-
dimensional hard sphere system is confined within a one-dimensional tube, the exact
Percus functional is recovered. Moreover, in a spherical cavity which holds one or
no particle at all, the exact functional is recovered. This helps to understand that the
constraint packing argument of freezing is geometrically included in the FMT. In
fact (also with a tensor modification in Φ3 [103]), the FMT gives excellent data for
hard-sphere freezing [96], see Table1 and the review by Roth [97].

Last but not least we mention perturbation theories which can be used for
attractive tails. The total potential V (r) is then split into a purely repulsive short-
ranged part Vrep(r) and a longer-ranged attractive part Vattr (r) such that V (r) =
Vrep(r) + Vattr (r). The repulsive part is treated as an effective hard core with an
effective (temperature-dependent) Barker-Henderson diameter

σ(T ) =
∫ ∞

0
dr

(
1 − e−βVrep(r)

)
(23)

Table 1 Coexisting number densities and solid Lindemann parameter at coexistence for the
hard sphere system. “Exact” computer simulation data are shown as well as DFT data using the
Ramakrishnan-Yussouff (RY) or Rosenfeld’s fundamental measure theory

ρl σ3 ρs σ3 L (: Lindemann)

Computer simulations 0.94 1.04 0.129

RY 0.97 1.15 0.06

Rosenfeld 0.94 1.03 0.101
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where β = 1/kBT and the attractive part is treated within mean-field approximation.
Accordingly, the total excess free energy functional reads as

Fexc(T, [ρ]) ∼= FHS
exc (T, [ρ])∣∣

σ=σ(T )
(24)

+ 1

2

∫
d3r

∫
d3r

′
ρ(r)ρ(r

′
)Vattr(|r − r

′ |)

This procedure yields good phase diagrams for both Lennard-Jones potentials and
sticky-hard-sphere systems including the isostructural solid-solid transition [52].

To summarize:

1. Rosenfeld’s FMT yields excellent data for hard sphere freezing.
2. The much less justified RY perturbative approach works in principle for softer

repulsions.
3. Themean-field density functional approximation works for penetrable potentials.
4. Hard sphere perturbation theory yields stability of liquids and solid-solid isostruc-

tural transitions.

3 Brownian Dynamics (BD)

We now proceed to consider dynamics described by time-dependent DFT. Time-
dependent DFT iswell-known in the quantum-mechanical context of electronswhere
the time-dependence is described by Schrödinger’s equation [99]. Here we consider
classical systems with a completely overdamped dynamics which experiences ther-
mal fluctuations, i.e. we consider dynamical density functional theory (DDFT) for
Brownian dynamics as appropriate for colloidal particles. Colloidal particles are
embedded in a molecular solvent and are therefore randomly kicked by the solvent
molecules on timescales much smaller than the drift of the colloidal motion [17, 88].

3.1 Noninteracting Brownian Particles

Let us first discuss the Smoluchowski picture. Here the time-dependent density field
is the central quantity. It should follow a simple deterministic diffusion equation.
For noninteracting particles with an inhomogeneous time-dependent particle density
ρ(r, t), Fick’s law states that the current density j(r, t) is

j(r, t) = −D0∇ρ(r, t) (25)

where D0 is a phenomenological diffusion coefficient.
The continuity equation of particle number conservation



262 H. Löwen

∂ρ(r, t)
∂t

+ ∇ · j(r, t) = 0 (26)

then leads to the well-known diffusion equation for ρ(r, t):

∂ρ(r, t)
∂t

= D0Δρ(r, t) (27)

In the presence of an external potential Vext(r), the force F = −∇Vext(r) acts on
the particles and will induce a drift velocity vD giving rise to an additional current
density

jD = ρvD . (28)

We now assume totally overdamped motion since inertia effects are small as the
colloids are much bigger than the solvent molecules. This results in

vD = F
ξ

= −1

ξ
∇Vext(r) (29)

with ξ denoting a friction coefficient. For a sphere of radius R in a viscous solvent,
ξ = 6πηsR, with ηs denoting the shear viscosity of the solvent (Stokes law). Now
the total current density is

j = −D0∇ρ(r, t) − ρ(r, t)
1

ξ
∇Vext(r) (30)

In equilibrium, the one-particle density is a Boltzmann distribution, see Eq. (7).

ρ(r, t) ≡ ρ(1)(r) = ρ(0)(r) = A exp(−βVext(r)) (31)

Furthermore, in equilibrium, the total current has to vanish. Therefore, necessarily

D0 = kBT

ξ
(32)

which is the so-called Stokes-Einstein relation. Hence j = − 1
ξ
(kBT∇ρ + ρ∇Vext)

and the continuity equation yields

∂ρ(r, t)
∂t

= 1

ξ
(kBTΔρ(r, t) + ∇(ρ(r, t)∇Vext(r))) (33)

which is called Smoluchowski equation (for non-interacting particles).
The same equation holds for the probability density w(r, t) to find a particle at

position r for time t . For N non-interacting particles,
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w(r, t) = 1

N
ρ(r, t) , (34)

and the Smoluchowski equation reads:

∂w

∂t
= 1

ξ
(kBTΔw − ∇(w∇Vext)) (35)

3.2 Interacting Brownian Particles

Now we consider N interacting particles. Using a compact notation for the particle
positions

{xi } = {ri } = {x1, x2, x3︸ ︷︷ ︸
r1

, x4, x5, x6︸ ︷︷ ︸
r2

, · · · , x3N−2, x3N−1, x3N︸ ︷︷ ︸
rN

} (36)

we assume a linear relation between acting forces on the particles and the resulting
drift velocities. (The same compact notation is used for other multiple vectors.) The
details of this relation embody the so-called hydrodynamic interactions mediated
between the colloidal particles by the solvent flow field induced by the moving
colloidal particles. This linear relation is in general

vi =
3N∑
j=1

Li j ({xn})F j (37)

where F j = − ∂
∂x j

Utot whereUtot involves both the internal and the interaction poten-
tial energy and v is the drift velocity. The underlying assumption in (37) is that the
hydrodynamic interactions act quasi-instantaneously. This is justified by the fact that
the timescale upon which a shear perturbation is traveling through the suspension
within an interparticle distance is much smaller than that of Brownian motion. The
coefficients Li j constitute the so-called 3N × 3N mobility matrix and can in princi-
ple be obtained by solving the Stokes equations of N spheres with appropriate stick
boundary conditions of the solvent flow field on the particle’s surfaces.

In general, Li j depends on rN , and we postulate:

• symmetry
Li j = L ji (38)

• positivity ∑
i j

Fi Fj Li j > 0 for all Fi, j �= 0 (39)
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with w({ri }, t) denoting the probability density for interacting particles, the suitable
generalization of the continuity equation is

∂w

∂t
= −

3N∑
n=1

∂

∂xn
(vtot,nw) (40)

with

vtot,n =
3N∑
m=1

Lmn
∂

∂xm
(kBT lnw +Utot) (41)

which leads to the generalized Smoluchowski equation for interacting particles.

∂w

∂t
= Ôw (42)

with the Smoluchowski operator

Ô =
3N∑

n,m=1

∂

∂xn
Lnm(kBT

∂

∂xm
+ ∂Utot

∂xm
) (43)

In many applications, hydrodynamic interactions are neglected. This means that the
mobility matrix is constant and a diagonal

Lnm = 1

ξ
δnm (44)

This assumption, however, is only true for small volume fractions of the colloidal
particles.

4 Dynamical Density Functional Theory (DDFT)

Here we derive a deterministic equation for the time-dependent one-particle density
from the Smoluchowski equation [6]. We follow the idea of Archer and Evans [7].
First, we recall Smoluchowski equation for the N -particle density

w(r1, . . . , rN , t) ≡ w(rN , t), rN = {r1, . . . , rN } as

∂w

∂t
= Ôw = 1

ξ

N∑
i=1

∇i · [kBT∇i + ∇iUtot(rN , t)]w (45)
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with

Utot(rN , t) =
N∑
i=1

Vext(ri , t) +
N∑

i, j=1
i< j

V (|ri − r j |) (46)

involving a time-dependent external potential Vext (r, t) and a time-independent inter-
action V (r). Here, we assume a pairwise additivity of the interactions and neglect
hydrodynamic interactions. Now the idea is to integrate out degrees of freedom. In
fact, an integration yields

ρ(r1, t) = N
∫

d3r2 . . .

∫
d3rN w(rN , t) (47)

The 2-particle density is analogously obtained as

ρ(2)(r1, r2, t) = N (N − 1)
∫

d3r3 . . .

∫
d3rN w(rN , t) (48)

Integrating the Smoluchowski equation with N
∫
d3r2 . . .

∫
d3rN yields

⇒ ∂

∂t
ρ(r1, t) = N

∫
d3r2 . . .

∫
d3rN {

N∑
i=1

(kBTΔiw(rN , t)

+∇i (∇i Vext(ri , t)w(rN , t)))

+
N∑
i=1
i< j

∇i (∇i (V (|ri − r j |)w(rN , t)))}

The right-hand-side of this equation is a sum of three terms which we now discuss
step by step. The first term can be rearranged as follows:

N
∫

d3r2. . .
∫

d3rN

N∑
i=1

kBTΔi w(rN , t) = kBTΔ1ρ(r1, t)

+ N
∫

d3r2 . . .

∫
d3rN kBT

N∑
i=2

Δi w(rN , t)

= kBTΔ1ρ(r1, t)

+
N∑
i=2

NkBT
∫

d3ri∇i (∇i

∫
d3r2 . . .

∫
d3ri−1

∫
d3ri+1 . . .

∫
d3rN w(rN , t))

︸ ︷︷ ︸
f (r1,ri ,t)

Now the theorem of Gauss tell us that
∫
S d

2ri∇i f (r1, ri , t) = 0 such that the first
term becomes equal to:
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kBTΔ1ρ(r1, t) +
N∑
i=2

NkBT
∫

d3ri∇i (∇i ( f (r1, ri , t)))︸ ︷︷ ︸
=0

= kBTΔ1ρ(r1, t)

Using the same argument, the second term becomes

N
∫

d3r2. . .
∫

d3rN

N∑
i=1

∇i (∇i Vext(ri , t)w(rN , t))

=N
∫

d3r2 . . .

∫
d3rN∇1(∇1Vext(r1, t))w(rN , t) + 0

=∇1((∇1Vext(r1, t))ρ(r1, t))

Finally the third terms which involves the interactions is:

N
∫

d3r2. . .
∫

d3rN

N∑
i, j=1
i< j

∇i · (∇i V (|ri − r j |))w(rN , t)

=N
∫

d3r2 . . .

∫
d3rN∇1(

N∑
j=2

∇1V (|r1 − r j |)w(rN , t))

The integral is symmetric in the coordinates, therefore without loss of generality
we can set j = 2 and obtain for the third term

N (N − 1)∇1

∫
d3r2∇1V (|r1 − r2|)

∫
d3r3 . . .

∫
d3rN w(rN , t)

=
∫

d3r2∇1(∇1V (|r1 − r2|))ρ(2)(r1, r2, t)

Summarizing the previous calculations we end up with the following integrated
Smoluchowski equation:

ξ
∂

∂t
ρ(r1, t) = kBTΔ1ρ(r1, t) + ∇1(ρ(r1, t)∇1Vext(r1, t)

+ ∇1

∫
d3r2 ρ(2)(r1, r2, t)∇1V (|r1 − r2|) (49)

In equilibrium, necessarily ∂ρ(r1,t)
∂t = 0 which implies

0 = ∇
(
kBT∇ρ(r) + ρ(r)∇Vext(r) +

∫
d3r

′
ρ(2)(r, r

′
)∇V (|r − r

′ |)
)

(50)

The constant must vanish for r → ∞ and is thus identical to zero. Therefore
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0 = kBT∇ρ(r) + ρ(r)∇Vext(r) +
∫

d3r
′
ρ(2)(r, r

′
)∇V (|r − r

′ |) (51)

This is also known asYvon-Born-Green-hierarchy (YBG). This equation also reflects
a balance of fluxes generated by entropic, external and internal forces.

In equilibrium, DFT implies, see Eq. (1):

δF

δρ(r)
= μ − Vext(r) (52)

= kBT ln(Λ3ρ(r)) + δFexc

δρ(r)
(53)

We now apply the gradient which gives:

∇Vext(r) + kBT∇ ln(Λ3ρ(r)) + ∇ δFexc

δρ(r)
= 0 (54)

combined with YBG we obtain
∫

d3r ′ ρ(2)(r, r′)∇V (|r − r′|) = ρ(r)∇ δFexc[ρ]
δρ(r)

(55)

We postulate that this argument holds also in nonequilibrium. In doing so, non-
equilibrium correlations are approximated by equilibrium ones at the same ρ(r, t)
(via a suitable Vext(r) in equilibrium). Equivalently, one can say that it is postu-
lated that pair correlations decay much faster to their equilibrium one than the
one-body density. Therefore the basic approximation of DDFT is sometimes called
adiabatic approximation. (For an alternate derivation, see Marconi and Tarazona
[67–70] or Español and Löwen [24].)

Hence:

ξ
∂ρ(r, t)

∂t
= ∇(kBT∇ρ(r, t) + ρ(r, t)∇Vext(r, t)

+ ρ(r, t)∇ δFexc

δρ(r, t)
) (56)

or equivalently

ξ
∂ρ(r, t)

∂t
= ∇ρ(r, t)∇ δΩ[ρ]

δρ(r, t)
(57)

which constitutes the basic equation of dynamical density functional theory (DDFT).
The applications of DDFT are numerous. The dynamics of a strongly inhomoge-

neous Brownian fluid has found to be in good agreement with BD computer simula-
tions [43, 44].
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5 An Example: Crystal Growth on Patterned Substrates

Dynamical density functional theory can be used for the dynamics of crystallization
[20, 46]. This is demonstrated by an example in the following. A two-dimensional
hard disk system is considered. The freezing behavior is reasonably well described
by a fundamental-measure-like density functional [98]. The stable two-dimensional
solid has a hexagonal structure corresponding to the close-packing of hard disks.
Here we study the two-dimensional crystallization on a patterned substrate which
has a square symmetry. This is described by an external potential of the form

Vext(r) = V0

[
1 − 1

4
(1 − cos(kx x))

(
cos(ky y)

)]
(58)

where kx = ky = π/aV are the components of a reciprocal lattice vector and V0

denotes the strength of the external potential.We chose an amplitude of V0 = 0.5kBT
and an area fraction of 0.74. Furthermore, the length scale of the substrateaV is chosen
such that on average there is always one particle per minimum. For these parameters,
in equilibrium the system is in a triangular crystalline phase [82].

Now an initial crystalline nucleus with 19 density peaks is exposed to the external
potential. Obviously there is a mismatch between the stable hexagonal lattice and
the underlying substrate. DDFT predicts that the crystal nucleus grows in time but
in an strongly anisotropic way, see Fig. 3. This can be understood by overlaying the
hexagonal structure with the square structure resulting in a Moirée pattern. It is the
compatibility of the two structures which dictates the solid growth. Regions of high
compatibility grow the crystal earlier than others.

This example shows that dynamical density functional theory represents a micro-
scopic approach to nonequilibrium phenomena like crystal growth in an external
field. A similar behavior has been seen for growing crystallites [80, 107] and crystal
fronts [107, 109] as well as for vacancy dynamics in two-dimensional solids [108].
As long as the data can be compared to Brownian dynamics simulations [107, 109]
there is agreement, at least for the underlying trends in nonequilibrium. Stille one
has to keep in mind that DDFT is a mean-field theory such that subtle dynamical
effects caused by fluctuations may not be encaptured completely [9]. An interesting
example is the flow of colloidal solids and fluids through geometric constrictions
[117] where intermittent flow effects of the solid are predicted by the theory and
confirmed by the simulations. However the dynamical correlations are periodic in
time in the mean-field DDFT but decay as a function of time in the BD computer
simulations.



Dynamical Density Functional Theory for Brownian Dynamics … 269

Fig. 3 a Schematic representation of a nucleus of hard discs with diameter σ located on a 2D
substrate with square symmetry rotated counterclockwise by an angle φ = 5 relative to a symmetry
direction of the substrate and lattice constant aV . The snapshots b–f are density contour plots and
illustrate the growth of a spherical nucleus influenced by the substrate with amplitude V0 = 0.5kBT
at (b) t = 0.0, c t = 0.6τB , d t = 1.0τB , e t = 2.0τB and f t = 4.0τB , where τB is a suitable
Brownian time. Red regions display the compatibility wave and are defined by density peaks above
a threshold value ρthσ

2 = 1.5061. Black regions denote crystalline areas (ρthσ2 = 2.0), whereas
blue regions remain fluid (ρthσ2 ≤ 1.5060). From Ref. [81]

6 Hydrodynamic Interactions

Nowwe address the question how Lnm({x j }) looks like explicitly. Solving the Stokes
equations with appropriate stick boundary conditions on the particle surfaces is a
difficult problem [15]. Furthermore it is problematic that

(i) Lnm({x j }) is long-ranged in terms of distances between particles
(ii) H.I. have a many-body character, a pair expansion is only possible at low

concentrations.
(iii) H.I. have quite different near-field behavior. There are divergent lubrication

terms.

The linear relationship (37) can be rewritten as

vn =
N∑

m=1

¯̄HnmFm (59)
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where each quantity ¯̄Hnm is a 3 × 3 matrix. In particular, we can discriminate the
following cases:

(1) no H.I. Hnm = 1 δnm
ξ

(2) Oseen-tensor In the Oseen approximation [17], ¯̄Hnn = 1

ξ

¯̄Hnm = ¯̄H(rn − rm︸ ︷︷ ︸
r

) for n �= m (60)

with the Oseen tensor

¯̄H(r) = 1

8πηs
(1 + r̂ ⊗ r̂)

1

r
, r̂ = r

r
(61)

This is the leading far field term for two particles at large distance r. The symbol ⊗
denotes the dyadic product or tensor product.

(3) Rotne-Prager-tensor
In this approximation (as formoredetails, see e.g. [17]), the next leading correction

is included.

Hnn = 1

ξ
, Hnm = ¯̄HRP(rn − rm) (62)

with
¯̄HRP(r) = D0

kBT

(
3

4

RH

r
[1 + r̂ ⊗ r̂ ] + 1

2

R3
H

r3
[1 − 3r̂ ⊗ r̂ ]

)
(63)

Higher order expansions of higher order than 1
r3 are possible. These include also

terms of sphere rotation. Finally the triplet contribution can be estimated.
The DDFT can be generalized to hydrodynamic interactions. The first study was

done in Refs. [92, 94] and subsequent investigations [18, 29–32, 90] have extended
and detailed the theoretical derivation. Again the starting point is the Smoluchowski
equation which we now write in the form

∂w(rN , t)

∂t
=

N∑
i, j=1

∇i · ¯̄Hi j (rN ) ·
[
∇ j + ∇ j

Utot(rN , t)

kBT

]
w(rN , t) (64)

We use the two particle approximation

¯̄Hi j (rN ) ≈ D0

kBT

⎛
⎝1δi j + δi j

∑
i �= j

ω11(ri − re) + (1 − δi j )ω12(ri − re)

⎞
⎠ (65)

on the level of the Rotne-Prager expression
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ω11(r) = 0 (66)

ω12(r) = 3

8

σH

r
(1 + r̂ ⊗ r̂) + 1

16
(
σH

r
)3(1 − 3r̂ ⊗ r̂) + O((

σH

r
)7) (67)

where σH is the hydrodynamic diameter.
Integrating Smoluchowski equation [6] then yields [92]

kBT

D0

∂ρ(r, t)
∂t

= ∇r ·
[
ρ(r, t)∇r

δF [ρ]
δρ(r, t)

+
∫

dr′ ρ(2)(r, r′, t)ω11(r − r′) · ∇r
δF [ρ]
δρ(r, t)

+
∫

dr′ ρ(2)(r, r′, t)ω12(r − r′) · ∇r
δF [ρ]
δρ(r, t)

]
(68)

A possible closure is via the Ornstein-Zernike equation

ρ(2)(r, r′, t) = (1 + c(2)(r, r′))ρ(r, t)ρ(r′, t)

+ ρ(r′, t)
∫

dr′′((ρ(2)(r, r′′, t) − ρ(r, t)ρ(r′′, t))c(2)(r′′, r′)) (69)

with

c(2)(r, r′) = −β
δ2Fexc[ρ]

δρ(r, t)δρ(r′, t)
(70)

In an easier attempt, one can approximate

ρ(2)(r, r′, t) ≈ ρ(r, t)ρ(r ′, t)g(|r − r′|, ρ̄) (71)

where ρ̄ is a suitable averaged density and g(r, ρ̄) is a pair distribution function in the
equilibrium bulk fluid. The latter function g(r, ρ̄) can be obtained by integral equa-
tion theories (such as the hypernetted-chain theory) as derived within equilibrium
statistical mechanics [39].

An example involves hard sphere colloids of diameter σ moving in a time-
dependent oscillating radial-symmetric trapping potential Vext(r, t). The potential
reads as

Vext(r, t) = V1r
4 + V2 cos(ωt)r

2 (72)

and corresponds to a shape which switches between stable and unstable situations
at the origin r = 0 but is globally stable. The amplitudes are V1 = 10kBT/4096σ4,
V2 = kBT/σ2 and the external switching frequency isω = 4πD0/σ

2. As a result, the
density profile is picking up the external frequency ω and exhibits a breathing mode,
i.e. it is periodically expanding and compressed again by the external potential (72).
Time-dependent density profiles ρ(r, t) are presented in Fig. 4 in the steady breathing
state.
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Fig. 4 Steady-state DDFT (solid curves) and BD (noisy curves) results for the time-dependent
density profile ρ(r, t). In Fig. a and b hydrodynamic interactions are taken into account while in
(c) and (d) they are neglected. a, c correspond to the expanding half period and b and d to the
compressing half period, respectively. The profiles correspond to the following time sequence:
t0 = 2.5τB , t1 = 2.6τB , t2 = 2.7τB , t3 = 2.75τB in (a) and (c), and t3 = 2.75τB , t4 = 2.85τB ,
t5 = 2.9τB and t6 = 3.0τB , τB = σ2/D0. From Ref. [92]

Figure4a, b show results for hydrodynamic interactions included on the Rotne-
Prager level. DDFT data are in very good agreement with Brownian dynamics
computer simulations which include hydrodynamic interactions on the same Rotne-
Prager level. On the other hand, in Fig. 4c, d, hydrodynamic interactions are ignored.
The density profiles are qualitatively different to that shown in Fig. 4a, b but again
DDFT data are in agreement with Brownian dynamics computer simulations. This
demonstrates that DDFT is a reliable microscopic theory both if hydrodynamic inter-
actions are included or ignored.

7 Rod-Like Particles

7.1 Statistical Mechanics of Rod-Like Particles

Density functional theory can readily be extended to rod-like particles which possess
an additional orientational degree of freedom described by a unit vector û [3, 13, 28].
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Fig. 5 Sketch of the
center-of-mass position Ri
and the orientational unit
vector ûi for the i th particle
both for a rod-like and
plate-like particle

rod i
orientation vector

center-of-mass coordinate

û

R

i

i

Ri

ûi

platelet i

A configuration of N particles is now fully specified by the set of positions of
the center of masses and the corresponding orientations {Ri , ûi , i = 1, . . . , N }, see
Fig. 5.

Examples for anisotropic particles include

(1) molecular dipolar fluids (e.g. H2O molecule)
(2) rod-like colloids (e.g. tobacco-mosaic viruses)
(3) molecular fluids without dipole moment (apolar), (e.g. H2 molecule)
(4) plate-like objects (clays)

The canonical partition function for rod-like particles now reads [27]

Z = 1

h6N N !
∫
V

d3R1 ...

∫
V

d3RN

∫
R3

d3 p1 ...

∫
R3

d3 pN

×
∫
S2

d2u1 ...

∫
S2

d2uN

∫
R3

d3L1 ...

∫
R3

d3LN e−βH (73)

with the total Hamilton function

H =
N∑
i=1

{
p2i
2m

+ 1

2
Li (

¯̄Θ)−1Li

}
+ 1

2

N∑
i, j=1

v(Ri − R j , ûi , û j )

+
N∑
i=1

Vext(Ri , ûi ) (74)

which comprises the kinetic energy, the pair interaction energy and the external
energy. Here ¯̄Θ is the inertia tensor and S2 the unit-sphere in 3d. Moreover pi and
Li denote the translational and angular momenta.

Again the central quantity is the one-particle density ρ(1)
0 (r, û) which is defined

as



274 H. Löwen

ρ(1)
0 (r, û) :=

〈
N∑
i=1

δ(r − Ri )δ(û − ûi )

〉
(75)

with 〈. . .〉 denoting a canonical average. Integrating the orientations over the unit
sphere S2 results in the density of the center-of-masses

ρ0(r) = 1

4π

∫
S2

d2u ρ(1)
0 (r, û) (76)

On the other hand, the globally averaged orientational order is gained by integrating
over the center-of-mass coordinates and given by

f (û) = 1

V

∫
V

d3r ρ(1)
0 (r, û) (77)

7.2 Density Functional Theory

Again density functional theory tells us that there exists a unique grand canonical
free energy functional Ω(T,μ, [ρ(1)]) (functional of the one-particle density) which
becomesminimal for the equilibrium density ρ(1)

0 (r, û) and then equals the real grand
canonical free energy, i.e.

δΩ(T,μ, [ρ(1)])
δρ(1)(r, û)

∣∣∣∣
ρ(1)=ρ(1)

0 (r,û)

= 0 (78)

Here, the functional can be decomposed as follows

Ω(T,μ, [ρ(1)]) = kBT
∫

d3r
∫

d2u ρ(1)(r, û)[ln(Λ3ρ(1)(r, û)) − 1]

+
∫

d3rd2u (Vext(r, û) − μ)ρ(1)(r, û) + Fexc(T, [ρ(1)]) (79)

The first term on the right hand side of Eq. (79) is the functional Fid[ρ(1)] for ideal
rotators. The excess partFexc(T, [ρ(1)]) is in general unknown and requires approx-
imative treatments.

For hard spherocylinders, Fexc(T, [ρ(1)]) can be approximated by a smoothed
density approximation (SMA) [86] yielding several stable liquid-crystalline phases,
namely: isotropic, nematic, smectic-A and ABC crystalline. A modified weighted
density approximation (MWDA) was subsequently proposed [34] which improves
upon the SMA by exhibiting stable plastic crystalline and AAA crystals as well.
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An important recent progress was achieved by generalizing Rosenfeld’s funda-
mental measure theory from hard spheres to hard objects with any shape [40]. For
spherocylinders the functional wasworked out explicitly and recentlymore data have
been obtained for hard particles of different shape, such as dumbbells [74], rounded
cubes [75] and polyhedra [73]. This functional could be exploited also for attractions
by employing a perturbation theory for the attractive parts in the potential. Finally, a
mean-field density functional for rods with soft segments was proposed and studied
[93].

7.3 Brownian Dynamics of Rod-Like Particles and DDFT

In order to derive a dynamical density functional theory (DDFT) for rod-like particles
one can start from theSmoluchowski equation for the full probability density distribu-
tionw(r1, . . . , rN ;u1, . . . ,uN , t) of N rods with their corresponding center-of-mass
positions rN = (r1, . . . , rN ) and orientations ûN = (û1, . . . , ûN ) which reads [16]

∂w

∂t
= ÔSw (80)

where the Smoluchowski operator is now given by

ÔS =
N∑
i=1

[
∇ri · ¯̄D(ûi ) ·

(
∇ri + 1

kBT
∇ri U (rN , ûN , t)

)

+Dr R̂i ·
(
R̂i + 1

kBT
R̂iU (rN , ûN , t)

)]
(81)

where U (rN , ûN , t) is the total potential energy. Here the rotation operator R̂i is
defined as R̂i = ûi × ∇ûi and the anisotropic translational diffusion tensor is given
by

¯̄D(ûi ) = D�ûi ⊗ ûi + D⊥(1 − ûi ⊗ ûi ) (82)

The two diffusion constants D� and D⊥, parallel and perpendicular to the orientations
reflect the fact that the translational diffusion is anisotropic. For hard spherocylinders
there are valid approximations for D� and D⊥ [56].

Following the idea of Archer and Evans [7] one can integrate the Smoluchowski
equation by now applying N

∫
d3r2 · · · ∫ d3rN

∫
d2u1 · · · ∫ 2

d un on both sides of
Eq. (80). This results in [93]:
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∂ρ(r, û, t)

∂t
= ∇r · ¯̄D(û) ·

[
∇rρ(r, û, t) + 1

kBT
ρ(r, û, t) · ∇rVext(r, û, t) − F(r, û, t)

kBT

]

+ Dr R̂ ·
[
R̂ρ(r, û, t) + 1

kBT
ρ(r, û, t)∇rVext(r, û, t) − 1

kBT
T(r, û, t)

]

(83)

with an average force

F(r, û, t) = −
∫

d3r ′
∫

d2u′ ρ(2)(r, r′, û, û′, t)∇rv(r − r′, û, û′) (84)

and average torque

T(r, û, t) = −
∫

d3r ′
∫

d2u′ ρ(2)(r, r′, û, û′, t)R̂v(r − r′, û, û′) (85)

The two-particle density which is in general unknown can be approximated in equi-
librium by using

F(r, û, t) = ρ0(r, û)∇r
δFexc(T, [ρ0])

δρ0(r, û)
(86)

respectively

T(r, û, t) = ρ0(r, û)R̂
δFexc[ρ]
δρ0(r, û)

(87)

Similar as in the isotropic (spherical) case we now employ the “adiabatic” approxi-
mation. We assume that the pair correlations in nonequilibrium are the same as those
for an equilibrium system with the same one-body density profile (established by a
suitable Vext(r, û, t)). The resulting dynamical equation for the time-dependent one
particle density ρ(r, û, t) is then given by [93]:

kBT
∂ρ(r, û, t)

∂t
= ∇r · ¯̄D(û) ·

[
ρ(r, û, t)∇r

δF [ρ(r, û, t)]
δρ(r, û, t)

]

+ Dr R̂

[
ρ(r, û, t)R̂

δF [ρ(r, û, t)]
δρ(r, û, t)

]
(88)

with the equilibrium Helmholtz free energy density functional

F [ρ] = kBT
∫

d3r
∫

dû ρ(r, û)
[
ln(Λ3ρ(r, û)) − 1

]

+ Fexc(T, [ρ]) +
∫

d3r
∫

dû ρ(r, û)Vext(r, û, t) (89)

This sets the frame for dynamical density functional theory (DDFT) for rods.
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As for a special application of DDFT to dynamics in the confined isotropic phase
we refer to [93]where themean-field approximation for the functionalwas employed.
More recent work has used the Rosenfeld functional for hard spherocylinders [40]
for driven nematic phases [37, 38].

As a final remark the DDFT can also derived for anisotropic particles of arbitrary
shape which have no rotational symmetry. The corresponding Brownian dynamics of
biaxial particles ismuchmore complicated [26, 47, 63]. Themost general framework
to describe BD correctly and the corresponding derivation of DDFT based on the
Smoluchowski equation was recently proposed in Ref. [112].

8 Recent Developments

8.1 Derivation of the Phase Field Crystal (PFC)
Model from DDFT

A less detailed approach which can be derived from DDFT of freezing is the so-
called phase-field-crystal (PFC) model, for a recent review, see [22]. The dynamics
of the PFC model can be systematically derived by a gradient expansion [109].
Though more approximative than DDFT, it is numerically much more efficient to
obtain results on larger length and time scales and is thereby a standard tool to obtain
results on the dynamics of freezing and melting in material science. As an example,
the diffusion of vacancies in the two-dimensional crystal has been explored both by
DDFT and PFC [108].

More recently, the PFC model was also derived within similar approximations
for liquid crystals both in two [59, 113, 114] and three [111] spatial dimensions.
The resulting PFC model keeps both the translational density and the orientational
ordering as conserved and non-conserved order parameters and describes different
coupling terms in the free energy functional which are allowed by phenomenological
symmetry considerations. As an additional benefit from the derivation based on
DDFT, the corresponding prefactors (or coupling parameters) can be expressed as
moments over microscopic correlation functions. The PFC model for liquid crystals
was used to calculate the bulk phase diagram [2] and surface free energies between
coexisting phases [87].

8.2 More Recent Applications of DDFT

There is a variety of problems to which DDFT of Brownian particles was applied
recently, beyond to what was discussed previously in the context of crystallization.
One important problem is colloids in an external shear field such they are advected
with the solvent flow. A suitable generalization of DDFT is not straightforward but
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again the Smoluchowski equation can be used as a starting point [14, 49, 89, 91]. A
similar problem is that ofmicrorheologywhere a particle is driven through a colloidal
background and its response is recorded [4]. Very good data have been achieved for
diffusion in hard sphere fluids even at high packing fractions [102], for the dynamics
of binary mixtures [10, 41, 64], for set-ups describing nonlinear feedback control of
colloids [51] and for the collapse of a colloidal monolayer as governed by attractive
interactions [12].

Furthermore we mention that the growth of quasicrystals has become an interest-
ing general problem as there is a competition between local and long-range ordering.
Recent experiments have revealed quite complex growth scenarios [79] which were
modelled by DDFT-like approaches [1, 8].

Finally it is very challenging to construct a DDFT for molecular dynamics which
is not overdamped as realized for example in atoms and granulates. In particular the
work of Marconi and Melchionna has worked out the conditions under which DDFT
can be applied to such classical systems and has proposed modifications leading
towards a kinetic density functional theory [68–72].

8.3 DDFT for Active Brownian Particles

Active particles are self-propelled by their own intrinsic motor. In fact, apart from
swimming bacteria, there are artificial microswimmers made by colloidal particles
[19, 21, 23, 65, 95]. Ignoring hydrodynamic interactions, these swimmers can simply
be modeled by rod-like particles which are driven by a constant force along their
orientations; the force corresponds to an effective drift velocity andmimics the actual
propulsionmechanism.On top of the intrinsic propulsion, the particles feel Brownian
noise of the solvent. The corresponding motion is intrinsically a nonequilibrium one
and even the dynamics of a single Brownian swimmer was solved only recently [35,
42, 105].

Starting from the Smoluchowski equation with an appropriate intrinsic drift term,
a DDFT can be derived using the same adiabatic approximation (55) as in the passive
case. The resulting equation of motion for the one-particle density then [110] has an
extra term on the right-hand side of Eq. (88), namely

− F0∇ ¯̄D(û)ρ(r, û, t)û (90)

where F0 denotes the internal driving force which gives rise to the propulsion [36].
This represents a microscopic theory for concentrated “active” matter. For swimmers
in a two-dimensional channel, the time-dependent density profiles were found to
be in agreement with Brownian dynamics computer simulations [110] even if a
crude Onsager-like density functional approximation [84] was used. Qualitatively,
the transient formation of hedgehog-like clusters near the channel boundaries was
reproduced by the DDFT. Recently the DDFT was generalized towards three spatial
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dimensions for swimmers of arbitrary shapewith complicated hydrodynamic friction
tensors [112]. The most general DDFT framework for microswimmers can be found
in Ref. [77].

Finally the DDFT for active Brownian particles can be reduced to a PFC theory
as briefly discussed in the previous paragraph. This theory has been evaluated and
a new state of a traveling crystal was found [76] where the whole system moves
collectively in one direction.

8.4 Modern Derivation of DDFT Using Projection Operator
Techniques and Extended DDFT (EDDFT)

In this book chapter we have derived DDFT from the Smoluchowski equation. An
alternate route which provides new physical insight can be performed using the
Mori-Zwanzig (sometimes called Mori-Zwanzig-Forster) projection operator tech-
nique. In this approach, one splits all observables into quickly relaxing and slowly
relaxing ones. All degrees of freedom which are fast are integrated out leaving only
equations of motion for the slow variables. If one assumes that the one-particle den-
sity itself is the only slowly varying variable in the system, a consequent application
of the projection operator technique [24] yields the standard DDFT equation. This
highlights the role of the adiabatic approximation in both derivation routes: if one
assumes adiabaticity in the traditional derivation of DDFT using the Smoluchowski
equation, then by assumption the one-particle density is indeed the only slowvariable,
completely consistent with the alternate derivation put forward in Ref. [24].

The great advantage of the Mori-Zwanzig technique is that it provides a con-
sistent framework to derive systematically equations of motion of arbitrary slow
order parameter fields which possess a microscopic expression. Therefore it starts in
principle on the full microscopic level and unravels the physical spirit of the under-
lying approximations by splitting the variables into slow and fast ones. This basic
idea of an “extended DDFT” (EDDFT) was proposed by Wittkowski and coworkers
[115] and was evaluated explicitly for the case where the concentration fields and the
internal energy density are slow variables. If the entropy density itself is considered
to be a relevant slow variable, the situation is more subtle [116] since the entropy
density does not have a corresponding microscopic expression. This problem can be
solved by invoking linear irreversible thermodynamics which yields a microscopic
expression for the entropy density in terms of the other microscopic variables [116].
As a side remark, in the original EDDFT approach [115, 116] one considers func-
tionals for the free energy. Alternatively one can consider and motivate dynamical
equations for the particle number density and internal energy density or entropy
density from functionals for the internal energy [100] or entropy [5].

Let us now discuss briefly the basic idea of EDDFT introduced by Wittkowski
and coworkers [115, 116], which allows for a compact notation of the equations of
motion. We assume a set of slow conserved order parameters fields summarized in
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the vector field a(r, t) and only dissipative currents. In equilibrium, there exists a
generalized free energy functional F of these order parameter fields such that one
can define the thermodynamic conjugates as

a�

i (r, t) = δF [a1, . . . , an]
δ ai (r, t)

(91)

We can then define generalized thermodynamic forces as

a�

i = −∇ra
�

i . (92)

Within linear irreversible thermodynamics there exists a dissipation functionalR of
the thermodynamic forces such that one can define the generalized currents as

J(i) = δR

δ a�

i

. (93)

The final equation of motion for the slow order parameters is then given by the
continuity equation

ȧi (r, t) + ∇r ·J(i)(r, t) = 0 . (94)

In this EDDFT framework, for any choice of the slow variables the dissipation
functional yields consistent equations of motion. Obviously, the traditional DDFT
is a special case where the particle number density is the only slow variable and the
dissipation functional is given by [116]

R =
∫

R3
d3r r(r, t) (95)

with

r(r, t) = 1

2

1

ξ
ρ(r, t)

(∇rρ
�(r, t)

)2
. (96)

It is important to note that the equilibrium situation is characterized by a vanishing
current such that the equilibrium condition corresponds to the variational problem

δR

δ a�

i

= J(i) = 0 . (97)

A nonequilibrium steady state is characterized by a constant (time and space inde-
pendent) current as given by the equation

δR

δ a�

i

= J(i) = const . (98)
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Also this steady-state condition can be viewed as a variational problem where the
constant is a suitable Lagrange multiplier for a constraint. This shows the relevance
of the variational calculus even in the nonequilibrium steady state.

Another approach towards a generalization of DDFT which is more special than
the EDDFT framework outlined above, was proposed by Schmidt and Brader in Ref.
[101]. Here the density alone was considered as relevant variable and a phenomeno-
logically augmented dissipation functional was considered which is different to that
of Eq. (96) and was called a “power functional”. The resulting additional terms in
the dynamical equations as compared to standard DDFT imply that the adiabaticity
condition of standard DDFT is broken within the power functional theory. We are
therefore now at the beginning to understand the relevance of nonadiabatic terms
in DDFT. Still a full microscopic justification and a precise and systematic test of
nonadiabatic terms against exact Brownian dynamics computer simulations needs to
be performed.

9 Conclusions

In conclusion, density functional theory can be extended towards dynamics, so-called
dynamical density functional theory, to tackle various nonequilibrium phenomena
for Brownian dynamics. This was demonstrated for colloidal crystal growth on pat-
terned substrates, for colloids in an oscillating trap and for the collective behavior
of “active” Brownian particles. In general, dynamical density functional theory is
in good agreement with the simulations but despite of recent progress going sys-
tematically beyond the underlying adiabaticity assumption remains a challenge for
the future. Another fascinating challenge is to include inertia effects systematically
arising from undamped Newtonian dynamics which occurs for example in molec-
ular liquid crystals or in a complex plasma [45]. This would require to generalize
the EDDFT framework towards non-dissipative currents. Therefore the future will
see more applications of DDFT to a bunch of different problems. To mention just a
few, these could involve the dynamics of mixtures (for a recent DFT application see
[78]), the description of the dynamics of injection of particles where corresponding
source terms have to be added to the equations of motion [62], and the dynamics of
colloids driven over energy barriers [48].
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Introduction to the Variational Monte Carlo
Method in Quantum Chemistry and Physics

Brenda Rubenstein

1 Overview of Quantum Monte Carlo Methods

Variational Monte Carlo is but one member of a much broader class of algorithms
known as quantum Monte Carlo methods. Over the past fifty or so years, an ever
growing list of QMC algorithms have been developed to solve a wide variety of
problems in physics and chemistry. This list includes (among many others):

1. DiffusionMonte Carlo for ground state, continuum systems of bosons or fermi-
ons [1–5], which was famously used to study the ground state homogenous elec-
tron gas, later employed to parameterize density functionals [6];

2. Path Integral Monte Carlo for finite temperature, continuum systems of bosons
or fermions in equilibrium [7–9], which is commonly used to study the properties
of superfluids and plasmas [7, 10];

3. Auxiliary Field Quantum Monte Carlo for ground state or finite temperature,
continuum and lattice systems of bosons or fermions in equilibrium [11–14],
whichwasoriginally developed to explore latticemodels in nuclear and condensed
matter physics, but has more recently been generalized to chemical and solid state
systems [15–17];

4. DiagrammaticQuantumMonteCarlo for either equilibriumornon-equilibrium
fermion lattice models [18–21], which has most recently been applied to the
Kondo problem [22, 23];
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5. Full Configuration Interaction Quantum Monte Carlo for ground state and
finite temperature continuum systems of fermions in equilibrium [24–26], which
has been applied to a variety of chemical, and most recently, solid state systems
[27–29].

As this brief list suggests, there are nearly as many QMC methods as problems to
solve and workers in the field, which serves as a testament to QMC’s utility and
overall impact in the physical sciences.

What unites QMC methods is that they all harness the power of the Monte Carlo
algorithm used throughout classical physics [30] to solve quantum many body prob-
lems. In general, solving quantum many body problems involves being able to accu-
rately predict the properties of large quantum systems consisting of many interacting
particles. Highly accurate deterministic approaches for solving these problems com-
monly scale exponentially (as in Full Configuration Interaction/Exact Diagonaliza-
tion [31, 32]) orwith a large power (as inCoupledCluster or higher order perturbation
theories [33]) as a function of system size, severely restricting their applicability to
minimal models consisting of only a few particles. Less accurate mean field meth-
ods such as Density Functional Theory [34, 35] or Dynamical Mean Field Theory
[36] come with a significantly reduced cost, but are far less accurate, particularly
when particles are strongly interacting. Thus, current deterministic approaches tend
to either be accurate, but too expensive or approximate, but cheap. QMC methods
are particularly attractive because they lie in between these two extremes: by making
careful use of stochasticity, they are capable of solving large quantum many body
problems with a high level of accuracy while scaling less than O(N 4). Thus, QMC
algorithms are often the methods of choice when reliable simulations of practical
systems are desired.

To harness QMC’s benefits, however, physicists make a Faustian bargain: for
QMC’s speed and accuracy, one must tolerate the randomness that lies at the heart
of all MC methods. Because of its stochasticity, all properties within QMC are mea-
sured by taking averages over samples, often called “walkers” in the Monte Carlo
community. These averages are inherently accompanied by a statistical error bar
that scales as 1/

√
N , where N denotes the number of samples. In contrast, the error

bar that accompanies most deterministic methods scales either as an exponential
or as 1/N p, where p is typically some small integer power. Consider, for exam-
ple, Simpson’s rule, used to evaluate integrals over a region using a set of N grid
points. For smooth integrands, the Simpson’s rule error bar scales as N−4/d , where
d is the dimensionality of the region of interest. For d < 8, Simpson’s rule is thus
much more efficient than MC methods [37, 38]. This example illustrates a thread
that runs through all MC simulations: the power of MC simulations is only fully
harnessed when studying high dimensional spaces, for which MC errors bars out-
compete those from deterministic methods. Nevertheless, even when MC methods
are most efficient, 1/

√
N scaling can be quite costly and one must always deal with

some level of uncertainty. This uncertainty can be disquieting for those accustomed
to performing electronic structure calculations that typically go unaccompanied by
error bars. However, these error bars often provide information about the quality and
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reproducibility of the simulations being performed that cannot be readily provided
by other computational techniques. The 1/

√
N scaling of MC’s error bars is also

becoming less of an issue given the trend toward increasingly parallel computers.
Unlike other techniques, Monte Carlo methods are trivially parallelizable: in MC,
samples can be generated completely independently of one another, which makes it
possible to simply assign different samples to different processors. MC techniques
are thus also primed tomake optimal use of the computing architectures of the future.

Variational Monte Carlo fits into this larger QMC picture by serving as another
means by which to reduce statistical errors in QMC. As will be discussed in detail
below, while VMC can itself provide highly accurate estimates of quantum observ-
ables such as a system’s ground state energy, VMC is typically used in tandem with
other QMC methods (the most popular tandem is VMC with Diffusion Monte Carlo
[4, 39]). Many, so-called projector QMCmethods, including Diffusion Monte Carlo
(DMC) and Auxiliary Field QuantumMonte Carlo (AFQMC), determine a system’s
ground state energy by projecting out a ground state wave function from some initial
guess and then using that initial guess to direct the random sampling toward the
most important regions of parameter space [4, 13]. Ultimately, the better the initial
guess is, the smaller the prefactor in front of the unavoidable 1/

√
N error scaling

will be. VMC is a method capable of sampling ground state1 wave functions and
can thus be used to substantially reduce error bars by providing reliable trial wave
functions which other methods can then refine. In the remainder of this chapter, I
will first describe how VMC works in its simplest incarnations. I will then discuss
the improvements that have been made to this basic algorithm over the last twenty
or so years which have made it a robust tool in quantum chemistry and physics.
In Sect. 5, I will outline several example applications of VMC from the chemical
physics literature. Lastly, I will comment on fruitful directions future VMC research
can take.

2 Variational Monte Carlo: A Basic Introduction

The Variational Monte Carlo algorithm is a combination of two key ingredients: the
variational principle from quantum mechanics and Monte Carlo sampling.

2.1 The Variational Principle

According to the variational principle, the energy computed from any normalized
wave function that satisfies the appropriate boundary conditions is always greater than
or equal to the ground state energy of the system, where the equality only comes

1Recent work has shown that VMC, with some modifications, can also be applied to excited state
wave functions (see Sect. 6.2 and [40–50]).
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into play when the normalized wave function is the ground state wave function [32].
More specifically, if one considers the normalized wave function |ΨN 〉, for which

〈ΨN |ΨN 〉 = 1, (1)

then

〈ΨN |Ĥ |ΨN 〉 ≥ E0, (2)

where Ĥ is the system Hamiltonian and E0 is the ground state energy. The proof of
this principle is straightforward. If Eα denotes the eigenvalue corresponding to the
eigenfunction |Ψα〉 of Ĥ , then, using the resolution of the identity,

〈ΨN |Ĥ |ΨN 〉 =
∑
αβ

〈ΨN |Ψα〉〈Ψα|Ĥ |Ψβ〉〈Ψβ |ΨN 〉

=
∑

α

Eα|〈Ψα|ΨN 〉|2. (3)

Since Eα ≥ E0, it follows that

〈ΨN |Ĥ |ΨN 〉 =
∑

α

Eα|〈Ψα|ΨN 〉|2

≥
∑

α

E0|〈Ψα|ΨN 〉|2

= E0

∑
α

|〈Ψα|ΨN 〉|2 = E0. (4)

What the variational theorem implies is that a strategy forfinding an approximation
to the ground state energy of a system is to start with a normalized wave function and
vary its parameters until it yields the minimum possible energy. In general, the wave
function will be a function of a large number of parameters and its expectation values
will be evaluated over a high-dimensional space. Finding the minimum possible
energy will therefore require an extremely efficient way to vary the parameters while
also continually re-evaluating the energy. This is where the Monte Carlo aspect of
VMC comes into play.

2.2 The Metropolis Monte Carlo Method

In order to find an approximation to the ground state energy using the variational
principle, Eq. 2 will have to be re-evaluated a large number of times for a variety of



Introduction to the Variational Monte Carlo Method … 289

wave functions. For a general wave function in the first quantized framework, this
equation can be rewritten as

Ev = 〈Ψ |Ĥ |Ψ 〉
〈Ψ |Ψ 〉 =

∫
dRΨ ∗(R)ĤΨ (R)∫
dRΨ ∗(R)Ψ (R)

. (5)

Here, R denotes the 3N -dimensional vector of electron coordinates and Ev repre-
sents the current approximation to the variational energy. As discussed in Sect. 1, if
N is small, the above integral can readily be evaluated using deterministic quadra-
ture methods. However, for practical applications, the magnitude of N very quickly
exhausts such methods. The primary alternative is to use the Monte Carlo method.

The goal of all Monte Carlo algorithms is to efficiently evaluate integrals of the
form2

I =
∫ b

a
dx f (x) (6)

using random numbers. The simplest Monte Carlo method that can accomplish this
is the direct sampling technique. This technique exploits the fact that any integral
can be rewritten as

I = (b − a)〈 f (x)〉, (7)

where 〈 f (x)〉 is the unweighted average of f (x) over the interval [a, b]. As such,
I can be evaluated by randomly sampling points over the interval [a, b], evaluating
f (x) at those points, and averaging over all f (x) values to obtain 〈 f (x)〉. For a
small number of samples, this procedure yields only a rough estimate of I , but as
the number of points sampled approaches infinity, direct sampling becomes exact.
How many samples it takes for direct sampling to converge is highly dependent
on the form of f (x). However, for most functions, sampling a uniform distribution
over the interval is highly inefficient: because the uniform distribution contains no
information about f (x), at many of the points sampled, the value of f (x) will be
negligible and thus minimally contribute to the average. This is particularly true as
the dimensionality of the system increases. What is therefore needed is a way to
prioritize sampling toward the values of x that will significantly contribute to the
average.

The primary way of achieving this is through importance sampling. Note that
Eq.6 can always be rewritten as

I =
∫ b

a
dxw(x)

f (x)

w(x)
, (8)

2Here, I have chosen a simple one-dimensional integral to illustrate the basic ideas behind MC.
Nevertheless, MC is most advantageous in many dimensions, as previously discussed.
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where w(x) is some probability distribution. If w(x) is uniform, Eq.8 maps onto
Eq.7. However, in importance sampling, w(x) is purposefully constructed so as to
favor points that will maximally contribute to the integral and minimize the variance
[38, 51]. Once a form for w(x) is chosen, Eq.8 can then be evaluated by choosing
points distributed according to w(x) and then averaging over all values of f (x)

w(x)
.

What Metropolis et al. showed in their landmark 1953 paper was that any proba-
bility distribution, w(x), may be sampled by constructing a Markov chain that obeys
the detailed balance condition [52]. A Markov chain is a trajectory of successive
states, x1, x2, x3, . . . , xN , in which the probability of transitioning from state xk−1

to xk is given by a probability, P(xk |xk−1), that only depends on the previous state,
xk−1 [53, 54]. P(xk |xk−1) is termed the transition probability (or matrix) and must
satisfy the basic requirements that

P(xk |xk−1) ≥ 0 (9)

and

∑
xk−1

P(xk |xk−1) = 1, (10)

meaning that the system must evolve and that the total probability of transitioning to
a given final state from any initial state must be 1. In order to calculate an integral
like that in Eq.8, a Markov chain of states x that can be used to evaluate f (x)

w(x)

must be constructed so that its equilibrium distribution is w(x). To construct such a
Markov chain, an initial state, xi , is typically selected and then the transition matrix
is repeatedly sampled to obtain the next states in the chain. In order to sample the
distribution w(x), the transition probability must satisfy the stationarity condition

∑
i

P(x f |xi )w(xi ) =
∑

i

P(xi |x f )w(x f ) = w(x f ) (11)

for all final states, x f . This condition requires that, if we start with some distribution
w(x), after repeated sampling of the transition probability, we continue to sample
this distribution. Another practical requirement for efficient sampling is ergodicity:
given any initial distribution, the Markov chain should evolve to the final, desired
distribution in a finite number of steps. Even with these conditions, a wide range
of transition probabilities may be selected. In the Metropolis method, the transition
probability is constructed so that it satisfies the detailed balance condition

P(x f |xi )w(xi ) = P(xi |x f )w(x f ) (12)

for any states i, f . This condition requires that the rate of flow from xi is the same
as the rate of flow from x f . If the transition probability is defined as the product of
a trial probability, α, and an acceptance probability, acc,
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P(x f |xi ) = α(x f |xi )acc(x f |xi ), (13)

then Eq.12 may be rewritten as

α(x f |xi )acc(x f |xi )w(xi ) = α(xi |x f )acc(xi |x f )w(x f ). (14)

This can be rearranged to yield

acc(x f |xi )

acc(xi |x f )
= α(xi |x f )w(x f )

α(x f |xi )w(xi )
. (15)

Metropolis et al. found that the optimal choice for the acceptance probability is

acc(x f |xi ) = min{1, α(xi |x f )w(x f )

α(x f |xi )w(xi )
}. (16)

In other words, when a transition from xi to x f is attempted, if

α(xi |x f )w(x f )

α(x f |xi )w(xi )
< 1, (17)

it will be accepted with probability

α(xi |x f )w(x f )

α(x f |xi )w(xi )
; (18)

otherwise, it will be accepted with a probability of 1. As will be discussed in the
next section, w(x) often has a normalization constant that cannot be explicitly eval-
uated. The beauty of Eq.16 is that it does not depend on this normalization constant
since it cancels out in the above expression. This enables the sampling of complex
probability distribution functions, such as partition functions in statistical mechanics,
that would not otherwise be able to be sampled. In Eq.16, the probability distribu-
tion to be sampled is determined by the problem. The trial probability, however, can
assume a wide variety of forms, some of which are more efficient than others as mea-
sured by simulation autocorrelation times. Even though Metropolis et al. employed
a symmetric3 α in their seminal paper, it has since been shown by Hastings that
using a nonsymmetric α can significantly improve algorithmic efficiency [55]. In
the context of VMC calculations of electronic systems, a very efficient choice of α
was presented by Umrigar [56]. Optimal selection can help minimize the number of
samples that must be taken to evaluate the integral of interest and thus substantially
reduce simulation time.

3Ifα is symmetric,α(x f |xi ) = α(xi |x f ) and these quantities cancel in Eq.16. Ifα is nonsymmetric,
α(x f |xi ) �= α(xi |x f ).
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2.3 Putting the Two Together: Variational Monte Carlo

In the simplest version of Variational Monte Carlo, the Metropolis algorithm is used
to evaluate the variational energy of a predeterminedwave functionwhose variational
energy is too difficult or time-consuming to evaluate using alternative means based
upon Eq.5. How to accomplish this becomes clearer after rewriting Eq.5

EV =
∫

dRΨ ∗(R)ĤΨ (R)∫
dRΨ ∗(R)Ψ (R)

=
∫

dR|Ψ (R)|2Ψ −1(R)ĤΨ (R)∫
dR|Ψ (R)|2

=
∫

dRw(R)EL(R), (19)

where EL is the local energy

EL = Ψ −1(R)ĤΨ (R) (20)

and w(R) is the probability distribution that must be sampled

w(R) = |Ψ (R)|2∫
dR′|Ψ (R′)|2 . (21)

EL(R) is the multidimensional equivalent of f (x)

w(x)
in Eq.8 and w(R) is akin to w(x).

At this point, the astute reader may recognize that Eq.21 cannot be evaluated as it
is written. Doing so would require knowing the value of

∫
dR′|Ψ (R′)|2, a quantity

just as, if not more, difficult to determine than the variational energy itself in most
situations. Fortunately, this quantity cancels out of the expression for the acceptance
probability, just like the partition function does in classical Monte Carlo simulations.
Substituting Eq.21 into Eq.16, one obtains

acc(Rf |Ri) = min{1,
α(Ri|Rf)

|Ψ (Rf )|2∫
dR′|Ψ (R′)|2

α(Rf |Ri)
|Ψ (Ri)|2∫

dR′|Ψ (R′)|2
} (22)

= min{1, α(Ri|Rf)|Ψ (Rf)|2
α(Rf |Ri)|Ψ (Ri)|2 } (23)

for the acceptance probability. Thus, in VMC, the variational energy can be evaluated
by starting with some random configuration of particles at positions, Ri, displacing
these particles to a new set of positions, Rf , according to the transition probability,
α(Ri|Rf), and determining whether to accept or reject these new coordinates based
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upon Eq.23. If the new coordinates are accepted, the particles are moved to Rf ; if
they are rejected, they remain at Ri. The process is then continued iteratively. As
long as the transition probability is ergodic (meaning that it makes it possible for
the particles to visit any set of coordinates in their configuration space in a finite
number of Monte Carlo steps), this Markov process will converge to the equilibrium
distribution,w(R). The simplest type of trial particlemove that samples the transition
probability distribution is the “box” move, in which a maximum box dimension, Δ,
is selected at the beginning of the simulation, and during each iteration, the new
particle positions, Rf , are generated as

Rf = ξΔ + Ri, (24)

where ξ is a 3N -dimensional vector (N is the number of particles) of random num-
bers uniformly distributed between −1 and 1. Typically, the box size is varied until
roughly 50% of the trial moves are accepted to optimize efficiency. As the particles
are evolved, the local energy (Eq.20) is computed based upon the current particle
positions. An estimate of the variational energy of the wave function is obtained by
averaging over these local energy values

Evar = 1

M

M∑
i=1

EL(Ri). (25)

In the above, M denotes the number of samples taken. It should be noted that the
consecutive samples generated using the above algorithm are generally serially cor-
related, meaning that they are not statistically independent. One must therefore use a
blocking algorithm [54, 57] or more sophisticated sampling schemes [58] to reduce
correlation.

Aside from being used to sample real-space wave functions, VMC has proven
to be an invaluable tool for condensed matter physicists interested in sampling the
second-quantizedwave functions of particular relevance in the study of latticemodels
[59–63]. In this context, VMC is used to sample spin configurations as opposed to
particle positions. As such, instead of moving particles from place to place, at each
iteration, one or more spins are sampled (in the case of discrete spinmodels, the spins
are flipped; in the case of continuous spins, new spin values are sampled from a spin
probability distribution). A recent application of VMCmethods to second-quantized
wave functions will be described in Sect. 6.3.

Up to this point in the discussion, it has been implied that researchers typically
use VMC to calculate the variational energy of wave functions they have already
identified as being able to approximate the true ground state.WhileVMC is useful for
this purpose, in practice, researchers typically have limited knowledge of the ground
state wave function for a given system and therefore equally limited knowledge of
wave function forms that may approximate it. Fortunately, VMC is capable of not
only evaluating the variational energy of a givenwave function, but of identifying and
parameterizing wave functions that may yield the overall lowest variational energies.
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3 VMCWave Functions

Before discussing how VMC can be used to parameterize wave functions, a few
words should be said about the trial wave function forms most often used in varia-
tional Monte Carlo calculations. In real-space VMC calculations, N -electron wave
functions are typically represented as Slater-Jastrow wave functions [4, 39, 64–66]

|Ψ0(R)〉 = eĴ (α0,R)|Φ0(R)〉, (26)

where Ĵ (α0,R) denotes the Jastrow factor and |Φ0(R)〉 is either a single- or multi-
determinant wave function. In its most general form, |Φ0(R)〉 may be expressed as
a sum over orthogonal configuration state functions (CSFs)

|Φ0(R)〉 =
NC SF∑

i

ci |CI (R)〉. (27)

The CSFs, |CI (R)〉, may in turn be rewritten as short sums over products of spin-up
and spin-down Slater determinants

|CI (R)〉 =
∑

k

dI,k |D↑
k 〉|D↓

k 〉. (28)

Per usual in quantum chemistry, the spin-up and spin-down Slater determinants are
composed of a set of N↑ and N↓ orthonormal orbitals

|D↑
k 〉 = âk1↑âk2↑...âkN ↑|0〉 (29)

and

|D↓
k 〉 = âk1↓âk2↓...âkN ↓|0〉. (30)

In the above, |0〉 denotes the vacuum state and âkσ is the fermion operator that
creates an electron with spin σ in spatial orbital |φ0

k〉. The spatial orbitals are linear
combinations of Nbas Slater or Gaussian basis functions |Ξμ〉

|φ0
k〉 =

Nbas∑
μ

λ0
k,μ|Ξμ〉, (31)

where λ0
k,μ are the linear coefficients. The orbitals used in the Slater determinants are

typically taken from Hartree-Fock, Density Functional Theory, or, most commonly,
Multiconfigurational Self Consistent Field calculations. The simplest Jastrow factors
may be written as a sum over electron-electron interactions
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J (α) =
∑
σi ,σ j

∑
i j

Uσi ,σ j (ri j ,α). (32)

Here, U represents a spin-dependent functional form for the electron-electron inter-
actions and ri j denotes the distance between electron i and electron j .

Slater-Jastrow wave functions of the form proposed above are highly compact
approximations to the true ground statewave function that can be rapidlymanipulated
within quantumMonte Carlo calculations. It is well-known that themultideterminant
expansions that make up the Slater part of the wave function can successfully capture
the non-dynamical correlation arising from the degeneracy of different system states
[32]. Nevertheless, the Slater part is highly inefficient at capturing analytical features
of the wave function such as electron-electron cusps. Indeed, it can sometimes take
millions of determinants to recover these features if Gaussian or other basis func-
tions that do not explicitly take cusp conditions into account are employed.4 Jastrow
factors make up for what multideterminant expansions lack by containing terms that
explicitly enforce electron-electron cusp conditions [67].Multiplying Slater determi-
nants by Jastrow factors can therefore dramatically reduce the size of wave function
expansions from millions to thousands of determinants, significantly decreasing the
cost of QMC simulations. Using Slater-Jastrow wave functions to represent VMC
trial wave functions has likewise become the norm within the VMC community.5

Based on Eqs. 26–32, Slater-Jastrow wave functions may be viewed as functions
of the Jastrow parameters, α, the configuration state function coefficients, ci , and
the orbital coefficients, λk,μ. It is these parameters that are optimized when VMC is
used to optimize wave functions.

4 Wave Function Optimization

In modern-day simulation, VMC is most often employed to optimize wave functions
for later use as trial wave functions in projector quantumMonte Carlo methods, such
as the Diffusion and Auxiliary Field Quantum Monte Carlo techniques [4, 13]. In
this flavor of VMC, a specific form of the wave function is proposed (see Sect. 3), but
the constants, p, used to parameterize that wave function form are left undetermined.
VMC is then used to determine the set of parameters that optimize a selected cost
function.

4This issue is eliminated and only a single determinant is necessary for capturing electron-electron
cusps if Slater basis functions, which are tailored to satisfy cusp conditions, are used instead.
5Other, more powerful wave function ansatzes that include more explicit forms of correlation,
including Antisymmetric Geminal Power (AGP) wave functions [68–70], Pfaffians [71, 72], and
Matrix Product States [73], are currently being explored by a number of groups. Because these wave
functions take on significantly different forms than the wave functions discussed in this chapter, I
will not discuss their variational optimization here.
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4.1 Choosing the Cost Function

The most obvious cost function is the variational energy. Nevertheless, most
researchers have historically chosen to minimize the variance of the energy [74–
78]

σ2
E (p) =

∫
Ψ 2

T (p)[EL(p) − EV (p)]2dR∫
Ψ 2

T (p)dR
. (33)

There are twokey reasons for this choice. Firstly, the variance of the energy has a strict
lower bound of zero [74, 79]. This is in stark contrast with the variational energy,
whose lower bound is unknown before calculations are performed. Perhaps, even
more importantly, early attempts to minimize the variational energy were plagued by
numerical instabilities [80]. When a finite number of walkers were used to perform
the minimization, one configuration tended to dominate the rest, causing the mini-
mization to converge to a poor set of parameter values. While these considerations
are still pertinent, with the advent of the linear method—a highly efficient, highly
robust minimization technique—by Umrigar et al. (see Sect. 5 for details), attention
has returned to minimizing the variational energy itself. This is because

• Minimizing the variational energy typically yields wave functions that minimize
the energy produced by projector quantum Monte Carlo methods.

• Energyminimizedwave functions yieldmore accurate values for other observables
than variance minimized wave functions [81, 82].

In what follows, I therefore describe the simplest (although not necessarily the most
practical) way to minimize the variational energy.

4.2 Minimizing the Variational Energy

Upon first thought, onemight imagine that the easiest way tominimize the variational
energy would be to start with a set of constants, p, that parameterizes the wave
function and then to continually vary those constants and recalculate the variational
energy until a set of constants that minimize the energy is obtained. The fundamental
problemwith this idea is that the variational energies estimated byVMCalways come
with a finite statistical error. It is therefore often practically difficult to determine
which VMC energy is truly the lowest without resorting to infinite sample sizes.

The way to overcome this deficit is to use correlated sampling [58, 83]. In this
approach, energy differences are calculated as a function of each set of parameters
instead of the total energy. Energy differences are, in general, much less noisy than
total energy evaluations because they enable statistical fluctuations to cancel. Theway
this noise cancellation is achieved in VMC is by generating a set of configurations
distributed according to some initial guess at the wave function and then evaluating
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the variational energy of each new set of parameters as a function of these same
configurations. More specifically, Eq.19 may be rewritten as

EV =
∫

dR|Ψ (R)|2EL(R)∫
dR|Ψ (R)|2

=
∫

dR|ΨT (R,p0)|2w(R,p)EL(p)∫
dR|ΨT (R,p0)|2w(R,p)

, (34)

where

w(R,p) = |ΨT (R,p)|2
|ΨT (R,p0)|2 (35)

is a reweighting factor. As such, one can compute the variational energy for a given
set of parameters, p, by starting with an initial set of parameters, p0, sampling a
set of configurations from |ΨT (R,p0)|2, and then accumulating w(R,p)EL(p) and
w(R,p) as a function of those configurations. Thus, one can use the same set of
configurations to determine the energy for many different sets of parameters and the
statistical fluctuations that would have arisen from using different configurations are
eliminated. The one caveat to using Eq.34 is thatw(R,p)must remain of order unity.
If it becomes either too large or too small, only a few points will dominate the sums
that must be accumulated, leading to large errors. Thus, one must ensure that the
functions ΨT (R,p) and ΨT (R,p0) are not too different from one another. In modern
day simulations, this is typically achieved by starting with some ΨT (R,p0), finding
a set of parameters, p1, that minimizes the energy as a function of the original ΨT ,
replacing ΨT (R,p0) with ΨT (R,p1), and then starting over again. Usually three or
four iterations of sampling parameters and replacing leads to convergence.

While the conceptually simplest way to determine the optimal set of parameters
would be to start with p0 and vary each of the parameters sequentially until the energy
minimum is found, this process becomes prohibitively expensive as the number of
dimensions grows. Researchers therefore avoid this bottleneck by combining corre-
lated sampling with standard minimization techniques, such as the steepest descent,
conjugate gradient, or Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms [84].
To illustrate how this synthesis works, consider combining correlated sampling with
the method of steepest descent. According to the method of steepest descent, if there
exists a multivariable function, F(x), defined and differentiable at the point a, then
the function decreases fastest away from the point a along the negative of its gradient
at a, −∇F(a). Thus, if one starts at a point xn , one can arrive at a lower point, xn+1,
by subtracting a multiple of the gradient from xn

xn+1 = xn − γn∇F(xn), (36)
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where γn denotes the size of the step taken along the gradient. This process may be
iterated until xn hopefully converges (under certain conditions, the steepest descent
algorithm is guaranteed to converge, but may not in the most general case) [84]. In
order to combine the method of steepest descent with correlated sampling [85], one
must start with a set of parameters, p0, and perturb it by γk along each dimension, k,
of K total dimensions, such that

pk = {p1, p2, . . . , pk + γk, . . . , pK }. (37)

The variational energy from each set of parameters, Evar,k , may then be determined
using Eq.34 and substituted into the finite difference formula

∇E(p0) ≡ ∂Ep

∂γk

∼= Ek − E0

γk
(38)

to estimate the gradient. The gradient may in turn be inserted into Eq.36 to obtain
the next set of parameters

p1 = p0 − γ∇E(p0), (39)

and the process is iterated until the lowest energy is attained. A more accurate way
of obtaining the gradient is to explicitly differentiate the energy with respect to the
parameters [58]

∂〈Ĥ(p)〉
∂p

= 〈 ∂

∂p
ln|ΨT (p)|2EL(p)〉 − 〈 ∂

∂p
ln|ΨT (p)|2〉〈EL(p)〉 (40)

and to use this in place of the finite difference value. Needless to say, this estimate of
the gradient depends upon being able to obtain the average of a number of different
quantities with small error bars, which can be costly, depending upon the number
of parameters that need to be varied. Using more robust and efficient minimiza-
tion techniques such as the Newton or BFGS methods may accelerate this process
substantially [76, 78, 86–90].

5 A Selection of State-of-the-Art VMC Algorithms

5.1 The Linear Method

While it is possible to use the steepest descent minimization technique presented in
Sect. 4.2 to optimizewave functions, this technique requiresmanymoreminimization
steps, and therefore, significantly more computation than competing minimization
techniques. After years of debate, the technique that is now viewed as both the most
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efficient and robust method for optimizing wave functions is the linear method of
Umrigar and coworkers [64, 65, 91]. The basic idea behind this method is that, if a
wave function can be expanded linearly in terms of its parameters, it is possible to
determine those parameters after each minimization step by solving a simple linear
eigenvalue equation. More specifically, consider a normalized wave function

|Ψ̄ (p)〉 = |Ψ (p)〉√〈Ψ (p)|Ψ (p)〉 , (41)

where p denotes its parameters. For wave functions of the form discussed in Sect. 3,
for example, p = {c,α,λ}, the set of all configuration state function coefficients,
nonlinear Jastrow parameters, and orbital coefficients. Such a wave function can
always be expanded to first order in its parameters p around its current parameters
p0

|Ψ̄lin(p)〉 = |Ψ0〉 +
Nopt∑

i

Δpi |Ψ̄i 〉. (42)

Here, |Ψ0〉 = |Ψ̄0〉 = |Ψ̄ (p0)〉 and |Ψ̄i 〉 are the derivatives of |Ψ̄ (p)〉 with respect to
the Nopt parameters made orthogonal to |Ψ0〉

|Ψ̄i 〉 =
(

∂|Ψ̄ (p)〉
∂ pi

)
p=p0

= |Ψi 〉 − S0i |Ψ0〉, (43)

with S0i = 〈Ψ0|Ψi 〉.6 Minimizing the energy evaluated in terms of the linearized
wave function

Elin(p) = 〈Ψ̄lin(p)|Ĥ |Ψ̄lin(p)〉
〈Ψ̄lin(p)|Ψ̄lin(p)〉 . (44)

with respect to the parameters then leads to the generalized eigenvalue equation

H̄ · Δp = ElinS̄ · Δp. (45)

In the above, H̄ represents the Hamiltonian matrix with matrix elements H̄i j =
〈Ψ̄i |Ĥ |Ψ̄ j 〉 evaluated in the Nopt + 1-dimensional basis of the normalized wave
function and its derivatives. Similarly, S̄ denotes the overlap matrix with matrix
elements S̄i j = 〈Ψ̄i |Ψ̄ j 〉 evaluated in the same Nopt + 1-dimensional space (S̄00 = 1
and S̄i0 = S̄0i = 0). Δp is the Nopt + 1-dimensional vector of parameter variations

6If the parameters are linear, the generalized eigenvalue equation can be solved without orthogo-
nalizing the derivatives with respect to |Ψ0〉. Orthogonalization as in Eq.43 is only necessary if the
parameters are nonlinear.
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with Δp0 = 1. The parameter variations that correspond to the lowest eigenvalue
solution of Eq.45 are the parameter variations that lead to the minimum energy.

What these equations thus imply is that, if awave function is linear in its parameters
or otherwise can be well approximated by a linear expansion, the parameterization
thatminimizes the energy can be determined by iteratively computing the normalized
wave function and its derivatives, forming the matrices H̄ and S̄, solving Eq.45 for
the lowest eigenvalue Δps, and updating the starting parameters p′

0 = p0 + Δp.
Following the correlated sampling approach described in Sect. 4.2, the H̄ and S̄
matrices may be evaluated in practice by averaging over configurations sampled
from the |Ψ0|2 distribution such that

H̄i j = 〈 Ψ̄i Ĥ Ψ̄ j

Ψ0Ψ0
〉Ψ 2

0
, (46)

and

S̄i j = 〈 Ψ̄i Ψ̄ j

Ψ0Ψ0
〉Ψ 2

0
. (47)

For a discussion of improved versions of these estimators, please see [64–66, 91].
Thus far, this discussion has focused on wave functions that may readily be lin-

earized with respect to their parameters. Wave functions containing Jastrow factors
and orbital coefficients, however, are typically highly nonlinear with respect to their
parameters. The breakthrough made by Umrigar and coworkers that has made the
linear method widely applicable is the realization that, by carefully exploiting the
normalization of the wave function, one can still apply the linear method to highly
nonlinear wave functions [64, 65]. Consider the wave function normalized such that

|Ψ̃ (p)〉 = N (p)|Ψ (p)〉, (48)

where N (p) depends only on nonlinear parameters, and as before, |Ψ̃ (p0)〉 =
|Ψ (p0)〉 = |Ψ0〉. The derivatives of |Ψ̃ ′(p)〉 with respect to the parameters are then

|Ψ̃i 〉 = |Ψi 〉 + Ni |Ψ0〉, (49)

where

Ni =
(

∂N (p)

∂ pi

)
p=p0

. (50)

Ni = 0 for linear parameters. |Ψ̃ 〉 may linearized just like |Ψ̄ 〉 yielding

|Ψ̃ 〉lin = |Ψ0〉 +
Nopt∑

i

Δ p̃i |Ψ̃i 〉. (51)
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Umrigar and coworkers then cleverly argue that, since |Ψ̃ 〉 and |Ψ̄ 〉 are optimized in
the same variational space, they must be proportional to each other, implying that

Δp̃ = Δp̄

1 − ∑Nopt

i NiΔ p̄i

. (52)

Thus, if one solves the generalized eigenvalue equation for the Δp̄, one can obtain
the Δp̃ by rescaling. It has been found that the fastest, most stable optimization is
achieved if the Ni are determined by imposing the condition that all of the derivatives
|Ψ̃i 〉 are orthogonal to a linear combination of |Ψ0〉 and |Ψlin〉 such that

〈ξ Ψ0

||Ψ0|| + (1 − ξ)
Ψlin

||Ψlin|| |Ψ̃i 〉 = 0. (53)

If this condition is enforced, the Ni may be expressed as

Ni = −ξDS0i + (1 − ξ)(S0i + ∑nonlin
j Si jΔp j )

ξD + (1 − ξ)(1 + ∑nonlin
j S0 jΔp j

, (54)

where ξ can vary between 0 and 1 and

D =
√√√√1 + 2

nonlin∑
j

S0 jΔp j +
nonlin∑

j,k

S jkΔp jΔpk . (55)

The sums are only over nonlinear parameters. Umrigar and coworkers typically
suggest setting ξ = 1/2 so that finite parameter changes are made until the energy
minimum is reached. In order to ensure that the algorithm is stable when the MC
sample size is small or the original wave function parameterization is poor, a positive
constant, adiag , is often added to all of the diagonal entries of Hi j except for the first:

H ′
i j = Hi j + adiagδi j (1 − δi0), (56)

where δ denotes the Kroenecker delta. The optimal value of adiag is typically com-
puted on-the-fly by guessing several values of adiag , each an order of magnitude
larger than the last, using those adiags to determine the optimal parameterization of
the wave function and the energies that stem from those wave functions, and then
interpolating which value of adiag yields the optimal energy.

The linear algorithm as just described is now widely adopted to optimize wave
functions to be later used as trial wave functions in Diffusion Monte Carlo calcu-
lations [92, 93]. The highly accurate variational wave functions it yields have been
crucial for reducing the fixed node errors in DMC calculations and have paved the
way toward achieving chemical accuracy using quantum Monte Carlo techniques
(see Sect. 6.1).
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5.2 Stochastic Reconfiguration

A second modern VMC algorithm that has been widely used to study lattice models
[94–97] and more recently applied to chemical problems [98–100] is the stochastic
reconfiguration with Hessian acceleration algorithm of Sorella and coworkers [96,
97, 101]. Like the linear method, the stochastic reconfiguration with Hessian acceler-
ationmethod expands thewave functionwith respect to its variational parameters and
then minimizes the energy based upon this expansion. What differs between these
methods is the exact form of the expansion and how many orders of the expansion
are kept. In the stochastic reconfiguration method, an operator

Ok(R) = ∂pk Ψp(R)

Ψp(R)
(57)

is defined for each of the k variational parameters pk in the wave function Ψ (R,p)

[96, 101]. These operators are motivated by operators, such as density-density terms,
which often appear in the Jastrow factor as simple exponentials, exp(

∑
k pk(Ok −

〈Ok〉)), where 〈Ok〉 denotes the average of the operator commonly subtracted from
the operator itself in order to reduce fluctuations [14, 15]. Of course, operators corre-
sponding to the Slater portion of thewave function do not enter into thewave function
as exponentials. Nevertheless, even for non-exponential operators, the approximation
can be made that

|Ψ (p + γ)〉 ≈ e
∑

k γk (Ok−〈Ok 〉)|Ψ (p)〉 (58)

if the changes in the variational parameters, γ, are sufficiently small. Expanding this
expression for the wave function to second order in γ, one obtains

|Ψ (p + γ)〉 ≈
⎡
⎣1 +

∑
k

γk(Ok − 〈Ok〉) + β

2

∑
k,k′

γkγk′ (Ok − 〈Ok〉)(Ok′ − 〈Ok′ 〉)
⎤
⎦ |Ψ (p)〉.

(59)
Here, β is a constant. In the case of Jastrow terms, this expansion is valid to second
order if β = 1. However, for general operators, this expansion is only valid to first
order for small parameters. In the general case, the quadratic terms are therefore
highly approximate, but become negligible, and consequently, irrelevant, as the min-
imum is approached. Based upon this idea, the stochastic reconfiguration method
uses the value of β as a knob that can be used to improve the efficiency of the algo-
rithm. Substituting Eq.59 into the formula for the expectation value of the energy,
the energy can be systematically expanded in powers of the parameters

ΔE = −
∑

k

pk fk + 1

2

∑
k,k ′

γkγk ′ [Sh + (1 + β)G]k,k ′
, (60)
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where
Sk,k ′

h = 〈[Ok, [H, Ok ′ ]]〉, (61)

Gk,k ′ = 2〈(H − E p)(Ok − 〈Ok〉)(Ok ′ − 〈Ok ′ 〉)〉, (62)

and

fk = −∂pk E p = −2〈(H − E p)Ok〉. (63)

The optimal wave function parameters may then be obtained by iteratively minimiz-
ingEq.60with respect toγ and thenupdating the parameters such that pk

′ = pk + γk ,
where the prime denotes the new set of parameters. Minimizing Eq.60 yields

γ = B−1f (64)

with

B = Sh + (1 + β)G. (65)

It can only be guaranteed that each iteration is reducing the energy when B is positive
definite. To ensure that this is the case, a multiple of the overlap matrix, S, is typically
added to B

B ′ = B + μS, (66)

with

Sk,k ′ = 〈(Ok − 〈Ok〉)(Ok ′ − 〈Ok ′ 〉)〉. (67)

In practice, this minimization is performed under the constraint that

ΔΨ = (|Ψ (p + γ)〉 − |Ψ (p)〉)/|Ψ (p)〉 ≤ r, (68)

where r is a sufficiently small control parameter to ensure that the energy is reduced
at each step during the minimization. The quantities in Eqs. 61–63 may be computed
using correlated sampling techniques. Namely, configurations may be sampled from
the square of the initial wave function and, during each step, Sh , f , and G may be
obtained by averaging over these configurations.

When β = 1 and the wave function is linear in all of its parameters, this technique
may be mapped onto the standard Newton method [86, 89]. It has been shown that
selecting a β �= 1, however, results in substantially faster convergence to the optimal
parameters [96, 101]. While stochastic reconfiguration without Hessian acceleration
[97] often converges exceedingly slowly to the optimal parameters, often taking hun-
dreds to thousands of iterations, if it even converges, the stochastic reconfiguration
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with Hessian acceleration algorithm just described can converge in just a few iter-
ations. Moreover, unlike Newton’s method, both stochastic reconfiguration and the
linear method do not necessitate the cumbersome calculation of the second deriva-
tive of the wave function with respect to the variational parameters. The stochastic
reconfiguration technique is thus an alternative, yet highly efficient technique for the
optimization of the most general wave function forms.

6 Applications of Variational Monte Carlo Methods
in Physics and Chemistry

Variational Monte Carlo algorithms are now widely used throughout physics and
chemistry. In the following subsections, I highlight recent uses of VMC to determine
the electronic structure of a wide variety of compounds, explore the excited states of
photoactive molecules, and shed light on the ground state of the Hubbard model in
different parameter regimes.

6.1 Quantum Chemistry

One of the long-standing goals of the quantum Monte Carlo community has been
to determine the atomization energies of a wide variety of atoms and molecules to
within chemical accuracy, defined as 1 kcal/mol. For years, achieving this goal has
been stymied by the fermion sign problem—the appearance of negative probabilities
that can result in insurmountable levels of noise when projector quantum Monte
Carlo methods7 are applied to fermions [4]. One approximate way to avoid the sign
problem is to restrict the configurations sampled in projector quantum Monte Carlo
algorithms to lie within a nodal surface determined by a trial wave function, as is
done when the fixed node [4] or constrained path approximations [102] are applied.
The more accurate the trial wave function that provides these constraints, the more
accurate these approximate algorithms become. Indeed, these algorithms are exact in
the limit that the trial wave function becomes the exact ground state wave function.
One path toward surmounting the fermion sign problem has therefore been to try to
improve VMC techniques to the point where the wave functions they produce are
so accurate that they can eliminate any approximations associated with constraining
algorithms.

7Such “projector” quantumMonte Carlo methods include DiffusionMonte Carlo, Green’s Function
Monte Carlo, and Auxiliary Field Quantum Monte Caro. Variational Monte Carlo methods are not
projector quantum Monte Carlo methods and do not suffer from the sign problem. Nevertheless,
projector quantum Monte Carlo algorithms are designed to converge to the ground state, while no
such promise can be made for variational algorithms.
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In recent years, this goal has nearly been achieved owing in large part to the suc-
cess of the linear method. As discussed above, the linear method represents the first
highly efficient, highly robust method for optimizing all wave function parameters.
Before the advent of this method, researchers frequently attempted to break the 1
kcal/mol level of accuracy barrier, but failed because of the inadequacies of their
trial wave functions [103, 104]. More specifically, Grossman was one of the first
researchers to calculate the mean absolute deviation (MAD) of the Gaussian-1 (G1)
test set [105, 106] atomization energies produced using Diffusion Monte Carlo from
those obtained via experiment [103]. Using a Slater-Jastrow wave function with a
single determinant whose orbitals were directly taken from quantum chemistry cal-
culations that employed pseudopotentials, he was able to obtain a MAD from the
experimental values of 2.9 kcal/mol with a maximum deviation from experiment of
14 kcal/mol over the 55 molecules in the test set. A MAD from the experimental
values of 3.2 kcal/mol was obtained by Nemec and coworkers [104] on the G2 test
set [107]. Using the linear method to optimize both Jastrow and Slater (orbital and
determinantal) parameters, however, Petruzielo and coworkers were able to reduce
the G2 MAD from experiment to 2.1 kcal/mol [92]. By moving from a single deter-
minant to a complete active space trial wave function, Petruzielo reduced his MAD
over the G2 set to 1.2 kcal/mol, within striking distance of chemical accuracy. These
results suggest that, to achieve chemical accuracy, it is crucial that all wave func-
tion parameters are optimized at the same time. Equally important is the use of
multideterminant trial wave functions. Grossman, Petruzielo, Morales, and cowork-
ers have all shown that the more determinants included in the Slater portion of the
wave function, the more accurate the trial wave function is at reproducing the nodal
features needed to constrain projector quantum Monte Carlo calculations [92, 103,
108]. The most recent research has therefore turned toward finding improved ways
of efficiently representing and manipulating multideterminant expansions in quan-
tum Monte Carlo calculations [108–110] and mitigating/eliminating the remaining
pseudopotential errors in such calculations.

Emboldened by this success, many researchers are now beginning to apply quan-
tumMonte Carlo methods to complex solids, including magnetic materials and high-
temperature superconductors, for which the combined speed and accuracy of quan-
tum Monte Carlo methods may answer a number of questions left unresolved by
conventional methods [111–113].

6.2 Excited States

Another recent application of quantum Monte Carlo techniques made possible by
robust variational Monte Carlo methods has been to excited states [40–49]. Excited
states are of physical and chemical interest because they play a central role in deter-
mining the spectra of excited state absorption experiments and the band gaps of solid
state materials. Typically, projector and variational quantumMonte Carlo techniques
are designed to determine the electronic ground state of a system (or the lowest energy
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excited state of a given symmetry). However, these methods can be targeted toward
arbitrary excited states by employing variational techniques with alternative forms
for their cost functions.

One of the early variants of this idea was to use state-averaged trial wave functions
in Diffusion Monte Carlo calculations [40, 41]. In this method, which follows from
the state-averaged multi-configurational self consistent field method, instead of min-
imizing the energy evaluated with respect to the single ground state wave function,
the state-averaged energy

ES A =
∑
i∈A

wi
〈Ψi |Ĥ |Ψi 〉
〈Ψi |Ψi 〉 , (69)

is minimized, where i denotes the different states in the active space and wi denotes
each state’s weight (

∑
i wi = 1). A generalized variational theorem applies to this

minimization so long as the state wave functions are kept orthogonal. Using this
method, one obtains wave functions whose orbitals represent a compromise among
all of the states included in the averaging. This method has been applied to the study
of a variety of photoactive molecules including ethene [41], formaldimine [40],
formaldehyde [40], green fluorescent protein [42], and oxirane [44]. These stud-
ies have shown that QMC calculations can help troubleshoot excited state energies
provided by alternative methods such as time-dependent density functional theory.

Amuchmore recently proposed cost function for targeting arbitrary excited states
is

C(Ψ ) = 〈Ψ |(ω − Ĥ)|Ψ 〉
〈Ψ |(ω − Ĥ)(ω − Ĥ)|Ψ 〉 , (70)

where C(Ψ ) represents the cost function and ω is an energy shift whose value is
chosen to lie directly below the eigenvalue of the eigenstate whose energy is being
targeted [50]. By optimizing this cost function, a wave function is obtained whose
variational energy lies immediately above ω. This cost function may be sampled via
correlated sampling. Using the resolution of the identity, Eq.70 may be re-expressed
as

C(Ψ ) =
∑

m〈Ψ |m〉〈m|(ω − Ĥ)|Ψ 〉∑
m〈Ψ |(ω − Ĥ)|m〉〈m|(ω − Ĥ)|Ψ 〉 , (71)

which can in turn be written in a form hospitable to quantum Monte Carlo methods

CMC(Ψ ) =
∑

m∈ξ Wm∑
m∈ξ W 2

m

, (72)
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with

Wm ≡ 〈m|(ω − Ĥ)|Ψ 〉
〈m|Ψ 〉 . (73)

Thus, the proposed cost function can be evaluated by sampling the elements ξ from
|〈m|Ψ 〉|2 and then evaluating Wm . This algorithm has been used to determine the
excited state energies ofC2,CH2, andH6 and has yielded resultswith greater accuracy
than those obtained using many standard methods, such as Equation of Motion-
Coupled Cluster Singles and Doubles (EOM-CCSD) [50].

6.3 The Hubbard Model

The Hubbard Model, a model long studied by condensed matter physicists because
it is thought by some to illustrate the same physics that is responsible for high-
temperature superconductivity, has been the subject of many variational and pro-
jector quantum Monte Carlo explorations over the years [60–63, 102, 114]. Most
VMC studies of the Hubbard model have focused on minimizing the energy of dif-
ferent proposed wave function forms, including Gutzwiller and modified Gutzwiller
wave functions, to determine which terms in these wave functions best reproduce
the model’s physics [60–63]. Most projector quantum Monte Carlo studies have
performed Diffusion or Auxiliary Field Quantum Monte Carlo calculations starting
with relatively simple single-determinant wave functions [102, 115, 116]. Based
upon the successes realized solving quantum chemistry problems using multideter-
minant Slater-Jastrow wave functions, Chang and coworkers have recently put forth
a way to produce and use variationally-optimized multideterminant Slater-Jastrow
wave functions as trial wave functions in Auxiliary Field Quantum Monte Carlo
simulations of the Hubbard model [117]. Prior to their work, Jastrow factors only
saw widespread application in real-space QMC methods, as described above. What
they showed is that Jastrow factors can also be applied to wave functions constructed
in Fock space by using the Hubbard-Stratonovich Transformation [118] to decou-
ple the quadratic operators that often appear in Jastrow factors. In specific, they
showed that they could apply a modified Gutzwiller projector onto a single deter-
minant wave function by decoupling the terms in that Gutzwiller projector using
the Hubbard-Stratonovich Transformation and then employing random sampling to
obtain compact representations of the multideterminant expansion that stems from
that projection. Even without variationally-optimizing the multideterminant expan-
sions they obtained, they were able to reduce the constrained path approximation
bias in the energies they computed for a variety of 2D Hubbard models by nearly an
order ofmagnitude over the biases produced using just a Slater determinant trial wave
function [117]. Variationally-optimizing their multideterminant expansions, they can
reduce this bias nearly to zero, yielding highly accurate, almost approximation-free
results for the Hubbard model.
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7 Summary and Outlook

Variational Monte Carlo algorithms are a powerful set of algorithms that exploit ran-
dom sampling in order to determine the lowest energy that can possibly be obtained
given a specific wave function form. VMC methods constitute a cheap, relatively
inexpensive way to estimate the ground state energy of a system without having to
contend with the fermion sign problem that plagues more sophisticated projector
quantumMonte Carlo methods. By giving scientists the ability to craft and test wave
functions term by term by hand, VMC methods also enable researchers to get a
sense of which interactions most affect the ground state physics of a given system.
As discussed in this review, recent advances in VMC algorithms have brought the
long-sought goal of achieving chemical accuracy using quantumMonte Carlo meth-
ods on molecules in reach and have substantially improved the predictive capability
of QMC methods applied to the Hubbard model and strongly correlated materials.
Recent steps have also been taken to extend ground state VMC methods to arbitrary
excited states, which opens up a full range of opportunities to apply projector meth-
ods to excited states for the first time.Modern VMCmethods are therefore paving the
way toward using cheap, yet highly accurate quantumMonte Carlomethods on prob-
lems that have previously been inaccessible to more expensive quantum chemistry
techniques.

Going forward, the successes realized developing VMC algorithms to optimize
real space wave functions may be built upon by developing similarly robust meth-
ods for handling second-quantized wave functions and such complex wave function
forms as matrix and tensor product states. Combining VMC optimization techniques
with such powerful wave function ansatzeswill provide the tools necessary to explore
large, strongly-correlatedmolecules andmaterials using quantumMonteCarlometh-
ods in the future.
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Appendix: Calculus of Variations

Jianzhong Wu

This appendix provides a very brief, first-line introduction to calculus of variations,
an extension of multivariable calculus that was first introduced by Leonhard Euler
in 1733. The background material is expected to be sufficient for those who are
mainly interested in application rather than mathematical development of variational
methods for molecular modeling. To get a more comprehensive understanding of this
fascinating subject, the reader is referred to standard texts of mathematical physics
such as:

1. MathematicalMethods of Physics, J.Mathews andR.L.Walker,Addison-Wesley,
1970.

2. Calculus of Variations, I. M. Gelfand and S. V. Fomin, Dover Books on Mathe-
matics, 2000.

3. Variational Methods in Mathematical Physics, P. Blanchard and E. Brüning,
Springer- Verlag, 1992.

A.1 Functional

A functional is an extension of what we mean by a multivariable function. When we
write a multivariable function f (z), where z is an n-dimensional variable, we mean
that for each set of numbers z = (z1, z2, . . . , zn), there is a number f (z) associated
with it. Simple examples of multivariable functions are f (z) = z2 = ∑n

i=1 z
2
i or

f (z) = a · z, where a is an n-dimensional vector.
When we write a functional, F[y], we mean that for each smooth (differentiable)
function y(x), there is a number F[y] related to it. In other words, a functional maps
a function into a number, or a functional is a function of functions. The integral
F[y] = ∫ 1

0 y(x)dx provides a simple example of functionals. For each smooth
function y(x), its integration from 0 to 1 yields a number. While the “input” of a
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(a) (b)

Fig. A.1 While the input for a multidimensional function is a vector, the input for a functional
is a smooth function y(x). a An n-dimensional vector z contains a set of numbers affiliated with
its dimensionality; b A one-dimensional function y(x) may be understood as a vector of infinite
dimensionality

multivariable function is an n-dimensional vector, the “input” for a functional is a
function. By comparing the similarity between a function and a vector, we see that a
functional is a function of infinite dimensionality. Schematically, Fig.A.1 illustrates
the difference between the inputs for a multi-dimensional function and a functional.

A.2 Variational Problem

To illustrate how a functional can be used to solve a realistic problem, consider the
time required for a ball to fall along some frictionless path with two ends fixed at
positions A and B, as indicated in Fig.A.2. For simplicity, assume that the path is
two-dimensional and that it can be described by a smooth function y = y(x). Let
t denote the time required for the ball to go from A to B along a frictionless path.
What path y(x) should be chosen to make t a minimum?

Fig. A.2 Calculus of
variations can be used to
identify a frictionless path
that yields the shortest
traveling time for a ball
falling from point A to B
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For convenience, we put point A at the origin of a coordinate system and measure
y downward. At any instant, the ball speed is

v = ds

dt
, (A.1)

where v denotes the magnitude of speed, s represents the length along the path, and
t is time. Rearrangement of Eq. (A.1) gives

dt = ds

v
, (A.2)

and thus the total traveling time is

t =
∫ B

A

ds

v
. (A.3)

The differential length of the path ds is

ds =
√
1 + y′2dx, (A.4)

where y′ = dy/dx represents the slope of the path. Because the ball starts at point A,
conservation of energy requires that at any vertical distance y, the loss of potential
energy per unit mass at y is equal to the gain in the kinetic energy per unit mass, i.e.,

gy = v2/2 (A.5)

where g stands for the gravity constant. Substituting Eqs. (A.4) and (A.5) into
Eq. (A.3) gives

t =
∫ x f

0

√
1 + y′2

2gy
dx . (A.6)

Equation (A.6) indicates that the total time t can be found if we know y as a function
of x . For any path with ends fixed at A(0, 0) and B(x f , y f ), there is a corresponding
time for the ball to travel from A to B. Therefore, the total traveling time is a functional
of path y(x), that is, t = F[y(x)].

The essential problem in calculus of variations is functional minimization,1 i.e.,
to find a function that minimizes a given functional. In the above example, we want
to know the path y(x)with two ends fixed at A and B that gives the minimum descent
time. To answer this question, we need to knowhow a functional responds to a change
in its “input”, where the “input” is not an ordinary variable, but a function.

1Functional maximization can be concerted to minimization by trivially adding a negative sign.
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A.3 Functional Derivative

To obtain the unknown function that minimizes a functional, we use functional dif-
ferentiation as discussed below. It is not much different from the partial derivative
used in finding the minimum of a multidimensional function.

The variation of a functional with respect to its “input” is described by a functional
derivative:

δF[y(x)]
δy(x ′)

≡ lim
ε→0

F[y(x) + εδ(x − x ′)] − F[y(x)]
ε

= lim
ε→0

F[y + εδ] − F[y]
εδ

δ

= dF[y]
dy

δ(x − x ′)

(A.7)

where ε is a real number, and δ(x − x ′) stands for the Dirac delta function. As shown
in Fig.A.3, the Dirac function δ(x − x0) represents a generalized probability density
that is normalized and has a value of infinite at x = x0. According to Eq. (A.7), the
functional derivative δF[y(x)]/δy(x ′) can be understood as the change in functional
F[y(x)] with respect to a change in the input function y(x) at the point x = x ′.
Because the functional derivative is in general dependent on x ′, δF[y(x)]/δy(x ′) is
a function of x ′.

The functional derivative defined above can be similarly applied to a function.
Suppose f (y) is a function of y, its functional derivative with respect to y is

δ f (y)

δy(x ′)
= f ′(y)δ(x − x ′). (A.8)

In a special case f (y) = y, we have

δy(x)

δy(x ′)
= δ(x − x ′). (A.9)

Equation (A.9) says that the functional derivative of a function with respect to itself
is a Dirac delta function.

Fig. A.3 One-dimensional
Dirac function δ(x − x0)
represents a probability
density that is everywhere
zero except at x = x0 where
it is infinite (∞)
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Functional derivative may be considered as a natural extension of a partial deriva-
tive of a multivariable function to infinite dimensionality. To see this, consider again
a multivariable function f (z), where z stands for an n-dimensional vector. Partial
derivative ∂ f/∂zi describes the change in f (z)with respect to an infinitesimal change
in the i th dimension of z while keeping all other dimensions unchanged, i.e.,

d f =
n∑
j=1

∂ f

∂zi
δi j dzi = ∂ f

∂zi
dzi . (A.10)

where δi j stands for the Kronecker delta function, i.e., δi j = 1 for i = j and zero
otherwise. Similarly, the change of a functional with respect to its “input” (function)
at a point x ′ can be written as

δF =
∫

dx
dF

dy
δ(x − x ′)δy = dF

dy
δy

∣∣∣∣
x ′

. (A.11)

Comparing Eqs. (A.10) and (A.11), we see that the variable x can be understood as
a continuous index of function y(x), similar to ias an index of vector z.

As all partial derivatives of a multi-dimensional function vanish at the minimum
point, a functional F[y] reaches an minimum when

δF[y(x)]
δy(x ′)

= 0 (A.12)

for all values of x ′.

A.4 Chain Rules of Functional Derivative

A functional derivative obeys chain rules similar to those for a partial derivative. For
example, the chain rule of a partial derivative of a multivariable function f (z) can
be written as

∂ f {g(z)}
∂zi

=
n∑
j=1

∂ f

∂g j

∂g j

∂zi
, (A.13)

where g(z) is an n-dimensional function of vector z. The analogous chain rule for a
functional derivative is

δF{G[y(x)]}
δy(x ′)

=
∫

dx ′′ δF

δG(x ′′)
δG(x ′′)
δy(x ′)

, (A.14)

where the summation of discrete indices in Eq. (A.13) is replaced by an integral over
the continuous indices. In particular, if F[y(x)] = y(x), we have
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δ(x − x ′) =
∫

dx ′′ δy(x)

δG(x ′′)
δG(x ′′)
δy(x ′)

. (A.15)

Equation (A.15) represents a general relation between the reciprocals of functional
derivatives.

It can be shown that the functional derivative of a function is commutable with a
normal derivative, i.e.,

δ(d f/dx)

δy
= d

dx

(
δ f

δy

)
(A.16)

where both f and g are functions of x . In a special case, the functional derivative of
y′(x) is

δ

δy(x ′)

[
dy(x)

dx

]
= d

dx

[
δy(x)

δy(x ′)

]
= dδ(x − x ′)

dx
. (A.17)

A.5 Higher-Order Functional Derivatives and Functional
Taylor Expansion

Higher-order functional derivatives can be defined similar to the higher-order partial
derivatives. In general, the mth-order functional derivative of F[y(x)] is

δ(m)F[y(x)]
δy(x1)δy(x2) · · · δy(xm)

= d(m)F[y]
dy(m)

δ(x − x1)δ(x − x2) · · · δ(x − xm) (A.18)

These functional derivatives are used in the functional Taylor expansion. In parallel
to a Taylor expansion of a multivariable function, f (z),

f (z + �z) = f (z) +
n∑

i=1

∂ f

∂zi
�zi + 1

2

n∑
i=1

n∑
j=1

∂ f

∂zi

∂ f

∂z j
�zi�z j + · · · . , (A.19)

we can apply the Taylor expansion to a functional

F[y + �y] = F[y] +
∫

dx
δF

δy(x)
�y(x) + 1

2!
∫ ∫

dxdx ′ δ2F

δy(x)δy(x ′)�y(x)�y(x ′) + · · ·
(A.20)

Again, the difference between themultivariable and the functional Taylor expansions
lies only on in the summation of the indices, i.e., the summation of integers and the
integration of a continuous variable.
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A.6 Functional Integration

Functional integration provides a general procedure to evaluate the change in func-
tional at different input functions. It can also be used to calculate a functional from
its derivative.

For a given function y(x), F[λy(x)] represents a function of real variable λ. By
the chain rule, the derivative of F[λy(x)] with respect to λ gives

dF[λy(x)]
dλ

= dF[λy(x)]
d(λy)

∂(λy)

∂λ
=

∫
dx ′ δF[λy(x)]

δ(λy(x ′))
y(x ′). (A.21)

The second equality in Eq. (A.21) can be verified by substituting the functional deriv-
ative by its definition (i.e., Eq. (A.7)). Equation (A.21) holds true when we replace
y(x) with �y(x) ≡ y(x) − y0(x):

dF[y0(x) + λ�y(x)]
dλ

=
∫

dx ′ δF[λy(x)]
δ(λy(x ′))

�y(x ′). (A.22)

where y0(x) is an arbitrary input function. Integrating the two sides of Eq. (A.22)
with respect to λ from 0 to 1 gives

F[y] = F[y0] +
∫ 1

0
dλ

∫
dx ′ δF[λy(x)]

δ(λy(x ′))
�y(x ′). (A.23)

Equation (A.23) indicates that the change of a functional with its input function is
related to the integration of the functional derivative and a coupling parameter λ

linking the input functions.

A.7 Functional of a Multidimensional Function

It is straightforward to extend the functional derivative, the functional Taylor expan-
sion, and the functional integral when the input is a multidimensional function, i.e.,
y = y(x) where x is a multidimensional vector. Following a procedure similar to
that discussed for the one-dimensional case, we have a functional derivative

δF[y(x)]
δy(x′) = dF[y]

dy
δ(x − x′) (A.24)

where δ(x − x′) stands for a multidimensional Dirac delta function. The functional
Taylor expansion of F[y(x)] is

F[y + �y] = F[y] +
∫

dx
δF

δy(x)
�y(x) + 1

2!
∫ ∫

dxdx′ δ2F

δy(x)δy(x′)�y(x)�y(x′) + · · ·,
(A.25)
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and a functional integral is

F[y] = F[y0] +
∫ 1

0
dλ

∫
dx′δF[λy(x)]

δ(λy(x′)) �y(x′). (A.26)

A.8 An Illustrative Example

Now we return to the example shown in Fig.A.2. We want to find the functional
derivative of

t[y(x)] =
∫ x f

0

√
1 + y′2

2gy
dx . (A.27)

and the path y(x) that yields the shortest descent time from A to B.
For short notation, let

f (y, y′) =
√
1 + y′2

2gy
. (A.28)

f (y, y′) can be understood as a normal two-dimensional function because y and y′
are literately independent. Following the rules of ordinary calculus, we have

d f

dy
=

(
∂ f

∂y

)
y′

+
(

∂ f

∂y′

)
y

dy′

dy
. (A.29)

The functional derivative t[y(x)] is thus given by

δt[y(x)]
δy(x ′)

=
∫ x f

0

d f

dy
δ(x − x ′)dx

=
∫ x f

0

[(
∂ f

∂y

)
y′

+
(

∂ f

∂y′

)
y

dy′

dy

]
δ(x − x ′)dx

=
(

∂ f

∂y

)
x=x ′

+
∫ x f

0

(
∂ f

∂y′

)
y

δy′

δy
dx

=
(

∂ f

∂y

)
x=x ′

+
∫ x f

0

(
∂ f

∂y′

)
y

dδ(x − x ′)

=
(

∂ f

∂y

)
x=x ′

− d

dx

(
∂ f

∂y′

)
x=x ′

(A.30)

where 0 < x ′ < x f . The last equality is obtained by integrating by parts. The path
of shortest descent satisfies

δt[y(x)]
δy(x ′)

= 0. (A.31)
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From Eq. (A.29), we have

(
∂ f

∂y

)
− d

dx

(
∂ f

∂y′

)
= 0. (A.32)

Equation (A.31) is known as the Euler-Lagrange equation. Solution to this ordinary
differential equation gives the path of shortest descent.

Equation (A.31) can be solved most conveniently by using an indirect method.
First, we notice that

d f

dx
= ∂ f

∂y′
dy′

dx
+ y′ ∂ f

∂y
(A.33)

d

dx

[
y′ ∂ f

∂y′

]
= ∂ f

∂y′
dy′

dx
+ y′ d

dx

[
∂ f

∂y′

]
(A.34)

Subtracting Eq. (A.32) by Eq. (A.33), and utilizing Eq. (A.31), we find

d

dx

[
f − y′ ∂ f

∂y′

]
= y′

[
∂ f

∂y
− d

dx

(
∂ f

∂y′

)]
= 0. (A.35)

Thus

f − y′ ∂ f
∂y′ = k (A.36)

where k is a constant. From f = √
(1 + y′2)/(2gy), we find

∂ f

∂y′ = 1√
2gy

y′√
1 + y′2 = f

y′

1 + y′2 (A.37)

and

f − y′ ∂ f
∂y′ = f (1 − y′2

1 + y′2 ) = f

1 + y′2 =
√

1

2gy(1 + y′2)
= k. (A.38)

Rearranging Eq. (A.37) gives

y(1 + y′2) = 2a, (A.39)

where a = gk2. Without loss of generality, we may assume y′ = tan(θ/2) where θ

is a parameter. Then we have from Eq. (A.38)

y = 2a

1 + y′2 = 2a sin2(θ/2) = a(1 − cos θ) (A.40)
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and
dx

dθ
= 1

y′
dy

dθ
= a tan(θ/2) sin θ = a(1 − cos θ) (A.41)

Integrating Eq. (A.40) with respect to θ equation, subject to the boundary condition
x = 0 at θ = 0, yields

x = a(θ − sin θ) . (A.42)

From Eqs. (A.39) and (A.41), we obtain the parametric equation for path y(x) that
yields shortest time for the ball to descend from A to B:

{
x = a(θ − sin θ)

y = a(1 − cos θ)
(A.43)

Parameters a and θ f can be found by the condition that this path must end at point
B(x f , y f ): {

x f = a(θ f − sin θ f )

y f = a(1 − cos θ f )
. (A.44)
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