
225© Springer Science+Business Media Singapore 2017
H. Yamaue (ed.), Innovation of Diagnosis and Treatment for Pancreatic Cancer, 
DOI 10.1007/978-981-10-2486-3_16

Y. Zhu • A. Paniccia • B.H. Edil • R.D. Schulick (*) 
Department of Surgery, University of Colorado Anschutz Medical Campus,  
Aurora, CO 80045, USA
e-mail: richard.schulick@ucdenver.edu

16Development of Cancer Vaccine 
and Targeted Immune Checkpoint 
Therapies

Yuwen Zhu, Alessandro Paniccia, Barish H. Edil, 
and Richard D. Schulick

16.1  Introduction

The immune system’s natural capacity to detect and destroy abnormal cells may 
prevent the development of many cancers [1, 2]. However, cancer cells are capable 
of evading detection and destruction by the immune system. They create a hetero-
geneous environment to favor or facilitate their progression, the so-called tumor 
microenvironment (TME) [3–5]. Besides tumor cells, the TME comprises many 
different stromal cells. These include vascular or lymphatic endothelial cells, sup-
porting pericytes, fibroblasts, and infiltrating immune cells. These nonimmune stro-
mal cells provide support to tumor cells, with growth factors and cytokines, and 
promote angiogenesis, tissue invasion, and metastasis [6]. In addition, the stroma 
provides a chemoresistant barrier to the tumor, preventing chemotherapeutics from 
reaching their targets [7].

The major immune cells at TME include myeloid-derived suppressor cells 
(MDSCs), tumor-associated macrophages (TAMs), dendritic cells (DCs), natural 
killer (NK) cells, and T and B lymphocytes [8, 9]. Generally, immune cells can 
exert both tumor suppressive and promoting effects [10]. T lymphocytes have a 
paramount role in tumor-specific cellular adaptive immunity. The main compo-
nents of this population are CD8+ cytotoxic T lymphocytes (CTLs), CD4+ helper 
T cells, and regulatory T cells (Treg). CD8+ CTLs are the major cell type that can 
directly kill cancer cells, and their presence is associated with prolonged survival. 
However, most CD8+ T cells at tumor sites exhibit dysfunctional or exhausted 
phenotypes and are reluctant to proliferate [11]. The presence of Th1 and Th2 
lymphocytes in the tumor microenvironment appears to have opposite prognostic 
significance in the setting of tumor progression [12]. DCs are important for 
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antigen presentation and T cell activation during antitumor immunity. However, 
the immunosuppressive TME always turns DCs into a suppressive or regulatory 
DC phenotype [13]. Treg cells, which are positive for CD4+, CD25+, and Foxp3, 
are enriched in the tumor microenvironment [14]. Treg cells effectively suppress 
the adaptive immune response, and their presence in the tumor microenvironment 
leads to decreased anticancer immunity and often correlates with poor prognosis 
[14]. TAMs are polarized macrophages with a protumoral phenotype; they sup-
press antitumor T cell responses, and promote tumor angiogenesis and metastasis 
[15]. MDSCs are mobilized during tumorigenesis, and infiltrate developing 
tumors where they promote tumor vascularization and disrupt major mechanisms 
of immunosurveillance by T cells, DCs, and NK cells [16, 17]. Neutrophils can 
play both tumor-promoting and tumoricidal functions, depending on their differ-
entiation status and the presence of TGF-β [18]. The role of B cells in tumor 
immunity remains unclear: some reports showed that B cell depletion promotes 
antitumor immune responses while some studies found that activated B cells 
increase T cell activation and suppress tumor growth [19].

16.2  A Unique Immunosuppressive Microenvironment 
of Pancreatic Cancer

Pancreatic cancers present an enormous challenge, as they are insensitive to tradi-
tional therapies. One prime contributing factor is the uniquely abundant tumor stromal 
content present in the microenvironment of pancreatic cancer [20–22]. The epithelial 
and stromal compartments interact and communicate to enhance the aggressive nature 
of this disease, ultimately culminating in an extremely effective immunosuppressive 
network [23]. Pancreatic cancer cells release various factors that stimulate the forma-
tion of stroma. Stromal cells, in turn, release mutagenic substances that stimulate 
tumor growth, invasion, and resistance to therapy. Structurally, the presence of an 
enormous number of stromal cells forms a physical shield, preventing immune cells 
from reaching and attacking cancer cells [24, 25]. Furthermore, pancreatic cancer 
cells utilize multiple pathways to create an immunosuppressive microenvironment 
and evade immune cell attack. Several cytokines appear to be dysregulated and con-
tribute to cancer progression in pancreatic ductal adenocarcinoma (PDAC). In particu-
lar, higher levels of circulating interleukin-6 (IL-6) are identified in patients with 
PDAC and appear to promote cancer progression through enhancement of pro-tumor-
igenic Stat3 signaling [26, 27]. Furthermore, members of the IL-1 family (e.g., IL-α, 
IL-ß, and IL-1 receptor antagonist (IL-1ra)) seem to play a role in PDAC development 
[28, 29]. Immunosuppressive cytokine IL-10 is upregulated in PDAC, which leads to 
a reduction in effector cell function in the PDAC microenvironment and indicates a 
worse prognosis [30]. Finally, pancreatic cancer is a non-immunogenic cancer type 
with low frequency of mutations [31]. As a result, the frequency of tumor-specific T 
cells at cancer sites is relatively low, and intraepithelial CD8+ T cells infiltration is 
very rare in PDAC [23]. This poses a great challenge to active immunotherapies, such 
as cancer vaccines and immune checkpoint inhibitors, which would rely on the exist-
ing anticancer immunity in cancer patients. Therefore, a better understanding of the 
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complex interactions between the cancer cells and their associated stromal cells could 
be key to the development of new therapeutic options for patients [32].

16.3  Principles for Cancer Immunotherapy

The immune system is capable of detecting carcinogenesis though the extent and 
efficiency of anticancer effect are generally not strong enough to eradicate estab-
lished cancer [1]. Therefore, the strategies of cancer immunotherapy are to launch a 
strong anticancer response by mobilizing endogenous anticancer immunity or by 
infusing immune effector cells to combat cancer. Based on the reliance of the exist-
ing immune system, the approaches of immunotherapy can be classified into two 
types: passive and active (Table 16.1) [51]. Passive immunotherapy comprises anti-
bodies and immune cells that are made outside of the body and are subsequently 

Table 16.1 Major immunotherapeutic approaches in pancreatic cancer

Type of 
immunotherapy

Passive 
or 
active Example Advantages Disadvantage References

Adaptive 
cellular 
therapy

TIL Passive N/A Limited TILs 
for in vitro 
expansion

A personalized 
approach and 
costly

N/A

CAR- T Passive Mesothelin Can be 
produced in 
large scale

*A costly 
personalized 
approach
*Tumor-specific 
targets yet to be 
found
*Target limited 
tumor antigens

[33]

Cancer 
vaccine

Peptide Active MUC-1, survivin, 
telomerase, Ras 
mutant, VEGFR2

Low cost, high 
specificity

*Derived from 
weak antigen 
(TAA)
*Neoantigen yet 
to be identified
* Target limited 
tumor epitopes

[34]

DC-based A good inducer 
of tumor- 
specific T cells

[35–38]

Whole 
Cell

GVAX, 
Algenpantucel-L

*Easy to 
manufacture
*Multiple and 
unknown tumor 
antigens 
targeted.

Trigger weak 
anticancer 
immunity

[39–48]

Checkpoint inhibitor Active CTLA-4, PD-1 *Target a broad 
spectrum of 
tumor antigens
*Does not need 
the knowledge 
of antigen 
identity

The anticancer 
effect relies on 
the 
immunogenicity 
of cancer

[49, 50]

16 Development of Cancer Vaccine and Targeted Immune Checkpoint Therapies



228

inoculated into cancer patients, in an attempt to target and destroy cancer cells. It 
includes but it is not limited to antibody and adaptive cellular therapy (ACT) [52]. 
On the other end of the spectrum, active immunotherapy interventions aim to trigger 
or amplify anticancer immunity by mobilizing the host immune system and include 
at least cancer vaccines and immune checkpoint inhibitors.

The following sections will summarize current major immunotherapy develop-
ment in research and clinical trials, and their progresses in pancreatic cancer 
therapy.

16.3.1  Adaptive Cellular Therapy

Adaptive cellular therapy (ACT) is a procedure that aims to first expand T cells 
in vitro and then re-infuse the expanded T cell pool back into patients for cancer 
treatment [53]. Compared to peripheral blood of cancer patients, tumor infiltrated 
lymphocytes (TILs) are enriched in tumor-specific T cells and can be easily 
expanded in vitro by tumor cells with the presence of growth factors like interleu-
kin- 2 [54, 55]. This practice can generate tumor-reactive T cells with a broad range 
of tumor reactivity, without the knowledge of tumor antigen identities. With the 
improvement of culturing technology, the degree of expansion and quality control 
has been greatly enhanced. Isolating and expanding TILs for ACT is a very effica-
cious treatment strategy in melanoma [56]. However, the number of TILs that can 
be successfully recovered from the vast majority of solid tumors is very limited, 
especially for those cancers with few TILs. In addition, the majority of TILs display 
exhausted or dysfunctional phenotypes, which might cause the poor persistence of 
expansion tumor-specific T cell clones upon intravenous infusion [57, 58]. 
Therefore, the current approach of expanding TILs for ACT is mainly practiced in 
melanoma patients.

Genetically, engineering of lymphocytes is a new approach that aims to eliminate 
the obstacle posed by many tumors with a limited number of tumor-reactive T cells 
for ACT [52, 59, 60]. This strategy involves transducing immune cells with genes that 
redirect T cells to recognize cancer cells. The specificity of T cells can be redirected 
by the incorporation of genes encoding either conventional alpha-beta TCRs or chi-
meric antigen receptors (CARs) [61]. In this case, T cells from patient blood can be 
directly used as a source for ACT. CARs are constructed by linking the variable 
regions of the antibody heavy and light chains to intracellular signaling chains, such 
as CD3-zeta. The new generation of CARs is also composed of costimulatory domains 
of CD28 and/or CD137 to promote T cell expansion [62]. Because CARs are derived 
from antibodies, recognition of tumor-associated antigens (TAAs) by CARs is strong 
and is not restricted by major histocompatibility complex (MHC) [62].

However, a major hurdle for CAR-T therapy in human cancer is the identifica-
tion requirement of appropriate tumor antigens that are exclusively expressed on the 
cancer cells, but not normal self-tissues. Most of the currently identified tumor- 
specific antigens are self-antigens that are normally expressed in early fetal devel-
opment and that are aberrantly expressed during malignancy [63]. Examples include 
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NY-ESO1 and the MAGE family antigens. The phenomenon known as “off-tumor, 
on-target,” where CAR-T cells recognize non-cancer cells expressing the tumor 
antigen, is responsible for severe immune-mediated toxicities that have limited the 
applicability of this treatment strategy [64, 65]. Therefore, careful monitoring and 
screening of targets for CAR-T therapy is extremely important. As a result, current 
successes of CAR-T therapy in clinic are mainly limited to certain types of lym-
phoma/leukemia [66]. Testing the feasibility of this approach can only be carried 
out in clinical trials, as preclinical models have proven to be insufficiently predictive 
of both efficacy and toxicity in humans. Whole-genome sequencing of cancer cells 
is generating abundant information about specific mutations in tumor cells, which 
may lead to the identification of tumor-specific antigens, also called neoantigens 
[67]. Innovative ways of generating antigen receptors that recognize these, includ-
ing CARs that directly recognize intracellular molecules presented by MHC, may 
generate T cells with even greater specificities for tumor cells. It is worth noting that 
another potential obstacle for ACT is that the majority of the inoculated T cells die 
before reaching the cancer site, which can be a challenging obstacle for patients 
with solid cancers [68]. Therefore, selection of T cell subsets with better capacity 
for survival and proliferation is a critical step in ACT, and methods to selectively 
enrich central memory and stem cell memory T cell subsets from human lympho-
cytes may enable more effective anticancer responses in humans, similar to those 
observed in mouse models [68–70]. Although the range of CARs currently available 
is sufficient to cover most types of malignancy, tumor cells can lose the expression 
of TAAs to evade immune attack during ACT [60]. Therefore, using several CAR 
genes that target multiple TAAs simultaneously may be needed for future ACT to 
better accommodate the heterogeneity in human cancers.

Animal models of pancreatic cancer have shown encouraging results with the 
use of ACT [71, 72], and clinical trials using CAR engineered T cells for pancreatic 
cancer are currently ongoing in many cancer centers (NCT01897415, NCT02465983) 
[33]. The recently completed PDAC genomic analysis by Bailey et al. led to a 
deeper understanding of the molecular evolution of PDAC and to the identification 
of a specific immunogenic PDAC subtype [73]. This new and long awaited informa-
tion may open the way to new and more accurate therapeutic targets for ACT.

16.3.2  Cancer Vaccines

Vaccine is an active therapeutic approach aiming to mobilize the immune system to 
generate or amplify tumor-specific immune response to combat cancer [74]. The 
primary mechanism for therapeutic cancer vaccines is to increase the presentation 
of tumor-associated antigens (TAAs) to the immune system, so as to mount a potent 
immune response against tumors. Cancer vaccines attempt to copy the achieve-
ments made in vaccinations against pathogens though more work is necessary to 
bring it to fruition. Based on the formats utilized, cancer vaccine can be classified 
into three major categories: protein/peptide vaccines, whole cell vaccines, and DNA 
vaccines [51].
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16.3.2.1  Peptide Vaccines
Protein/peptide vaccines attempt to immunize patients with a peptide or a protein 
derived from cancer antigens in the formation of adjuvant or cellular vehicles. This 
strategy requires the identification of tumor-specific antigens or TAAs that are only 
expressed on cancer cells or overexpressed on cancer cells.

Peptide vaccine therapy for PDAC has been conducted in clinic for many years 
[34]. The most commonly used antigens in trials include telomerase, Wilms tumor 
gene, KIP20A, survivin, mutated Ras protein, mucin MUC1 protein, and vascular 
endothelial growth factor receptor 2 (VEGFR2). Though overall cancer vaccine is 
well tolerated, the outcomes of these vaccine trials have been disappointing with 
many lessons learned [34]. First, the presence of suppressive mechanisms at the 
cancer sites must be conquered. Immunoconditioning can eliminate some of these 
immunosuppressive mechanisms, but at the same time it also dampens endogenous 
anticancer immunity that is needed for cancer vaccines. Examples of cells respon-
sible for this suppressive mechanism include Treg cells, MDSCs, as well as the signal 
generated through the interaction between PD1 and PD-L1 at the cancer site [75, 
76]. Second, the antigen/peptides used in trials are mainly tumor-associated anti-
gens (TAAs), which may be well tolerated and thus incapable of triggering antican-
cer immunity strong enough to destroy PDAC [77]. Emerging data in clinical 
immunotherapy suggest that the recognition and response to neoantigens, which 
arise as a consequence of tumor-specific mutation, is the major player, and neoanti-
gen loads correlate with overall response rates to therapy [67]. Recent technological 
advancements have made it possible to dissect the immune response to patient- 
specific neoantigens [78]. It remains to be seen whether a neoantigen-based vaccine 
is capable of triggering potent anticancer immunity for cancer therapy.

16.3.2.2  Whole Cell-based Vaccines
Whole cell vaccines are conceptually easy to understand as this strategy, as the 
name indicates, proposes to utilize the whole tumor cell to elicit a specific antican-
cer immune response [79]. The tumor cell can be either autologous (i.e., patient- 
specific tumor cell) or allogenic (i.e., established human tumor cell line). The 
rationale for this approach is that cancer cells express the entire spectrum of tumor 
antigens (i.e., for that specific tumor in that specific patient) as well as specific epi-
topes for CD8+ and CD4+ T cells that can be presented to the patient’s immune 
system [80]. This approach is considered polyvalent (as it presents a wide range of 
tumor antigens to the immune system) and therefore, at least in theory, it is less 
susceptible to tumor immune evasion as seen in peptide-based vaccine (i.e., where 
mutation of TAAs under selective pressure leads to loss of the immune target). In 
addition, this approach is applicable to cancers even without the knowledge of anti-
gen identity [80]. In the autologous approach, tumor cells are required to be isolated 
from the patient, irradiated, combined with an immunostimulating agent and ulti-
mately infused back into the patient [79]. Therefore, this technique is limited by the 
availability of sufficient tumor sample that at times can be difficult to obtain, espe-
cially in certain cancer types. In this case, allogenic cell lines offer a valid alterna-
tive, as they are readily available and can be produced on a large scale [81].
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GVAX is an allogenic irradiated whole cell vaccine composed of two irradiated 
cancer cell lines (PANC 6.03 and PANC 10.05) engineered to express granulocyte 
macrophage-colony stimulating factor (GM-CSF) [39, 40]. GM-CSF is a potent 
cytokine that functions to promote the growth of granulocytes and monocytes and 
also to attract dendritic cells for better antigen presentation. GVAX alone or in com-
bination with other therapies has been investigated in multiple phase I and II studies 
[41–43]. A phase I trial of GVAX in 14 patients with resectable pancreatic cancer 
showed a mean disease-free survival (DFS) of 13 months, with three patients 
disease- free from 25 to 30 months [44]. Though a following phase II trial of GVAX 
in combination with cyclophosphamide (CY) in patients with metastatic pancreatic 
cancer failed to show improvement of overall survival (OS), a higher rate of induced 
mesothelin-specific T cell responses could correlate with longer progression-free 
survival (PFS) and OS [41]. Similarly, a phase II study of patients with resected 
PDAC using GVAX plus chemoradiation displayed median DFS of 17.3 and median 
survival of 24.8 months. This demonstrated an association between mesothelin- 
specific T cell induction and improved overall survival [42]. GVAX also has been 
tested in combination with Live-Attenuated Listeria monocytogenes (CRS-207), in 
an attempt to use the ability of Listeria to stimulate both innate and adaptive immu-
nity to ultimately boost the overall response to the cancer vaccine [45, 46]. In a 
recent phase II trial, the authors showed a 2-month improvement in overall survival 
in patients treated with GVAX–cyclophosphamide and CRS-207, compared with 
GVAX–cyclophosphamide (median 6 months vs. 4 months; HR 0.60; P = 0.02) 
[46]. Based on that, it is anticipated that a larger study of the GVAX/CRS-207 com-
bination on patient survival will launch soon.

Algenpantucel-L is another major whole cell cancer vaccine being developed 
for PDAC [47]. It is composed of two human pancreatic cancer cells expressing the 
enzyme alpha-1, 3-galactosyl transferase (αGT) [48]. Humans lack a functional 
αGT gene and are not tolerant to αGT; therefore, αGT-labeled tumor cells could 
lead to enhanced antitumor response, as has been demonstrated in mouse tumor 
models [82, 83, 84]. In an open labeled, phase II trial of algenpantucel-L with 
gemcitabine and 5-fluorouracil (FU) for patients with resected PDAC, 12-month 
DFS of 62% and OS of 86% were achieved as compared to historical controls 
(45% and 65%, respectively) [48]. Another positive sign was that patients with 
algenpantucel-L therapy experienced minimal side effects, mainly consisting of 
injection site pain and induration. Based upon these encouraging results, a phase 
III study in patients with surgically resected PDAC was launched in 2010 
[NCT01072981]. Another ongoing phase III trial (ClinicalTrials.gov: 
NCT01836432) involving Algenpantucel-L in PDAC is to combine with 
FOLFIRINOX or gemcitabine/nab-paclitaxel, and results of the trial are expected 
to be released in June 2017.

16.3.2.3  DC and DNA Vaccine
Similar to peptide vaccine, DC and DNA vaccines require the knowledge of TAAs 
or neoantigens. Genetic vaccine consists of a DNA-based vaccine that aims to intro-
duce genetic material into a live host [85]. This allows the chosen gene products to 
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be expressed and ultimately triggers a specific immune reaction to the gene-derived 
antigen. The advantage of a genetic vaccine is that it allows the expression of anti-
gens that resemble native viral epitopes more closely than live-attenuated or killed 
vaccines that often alter the protein structure and antigenicity [85]. DCs are one of 
the most effective APCs which function to process and present antigens on MHC 
molecules to trigger T cell responses [86]. DC vaccines use DCs as a vehicle for 
peptide/DNA vaccine, and this strategy has the potential of bridging the gap between 
innate and adaptive immunity [87]. This approach requires isolation of patient’s DC 
that are eventually pulsed with peptides, and finally injected back to the patient.  
A successful example of peptide vaccines is Sipuleucel-T, the first FDA-approved 
drug for the treatment of hormone refractory prostate cancer, which is capable of 
extending the overall survival of cancer patients [88].

Early clinical trials of PDAC patients demonstrated that DC vaccine is well toler-
ated and capable of inducing detectable antigen-specific immune response in patient 
blood though no clear clinical benefit is observed [35]. In a phase I/II study, Lepisto 
and colleagues evaluated the use of an MUC1 peptide pulsed autologous DC vac-
cine as adjuvant therapy in patients with resectable pancreatic and biliary tumor 
[36]. In this study, patients were followed for over 4 years and 4 out of the 12 
enrolled patients (10 had pancreatic cancer) were alive and without any evidence of 
recurrence. Other TAAs, such as CEA and hTERT, were used for early clinical trials 
of DC vaccine, with only minor objective clinical responses reported [37, 38]. 
Because neoantigens are more immunogenic and trigger a more potent immune 
response in cancer patients, the future development of DC vaccine for PDAC will 
likely utilize neoantigen-based DC vaccine.

16.3.3  Immune Checkpoint Inhibitors

T cell response is largely controlled by an array of cellular surface signaling mole-
cules, also known as cosignaling molecules [89]. Modulating these cosignaling path-
ways increases anticancer immunity, either through the amplification of costimulatory 
pathways or blockade of negative signals, also known as immune checkpoints [90]. 
The major immune checkpoints under clinical investigation include at least CTLA-4, 
PD-1, TIM-3, LAG3, and TIGIT [91, 92]. Many of the ligands for immune check-
points are upregulated at cancer sites and contribute to the induction of tumor-specific 
T cell exhaustion/dysfunction at cancer sites [91, 93]. Using monoclonal antibodies or 
fusion proteins are the main strategy to block or amplify cosignaling pathways. The 
immunomodulation strategy strives to promote or liberate internal anticancer immu-
nity in a patient with an established cancer [94]. One of the advantages of this thera-
peutic strategy is that immunomodulation does not require the knowledge of specific 
cancer antigens but rather focuses on the manipulation of known leukocyte receptors. 
These provide several potential therapeutic targets that are characterized by a broad 
spectrum of antigen diversity that could ultimately avoid the mechanism of cancer 
immune evasion, caused by mutation of cancer-specific antigens [95].

Targeting immune checkpoints has been a major breakthrough in cancer treat-
ment in recent years [96]. CTLA-4 is transiently expressed on the T cell surface 
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upon activation and attenuates ongoing T cell response by competing ligands B7-1 
(CD80) and B7-2 (CD86) with the costimulatory receptor CD28 [97, 98]. In addi-
tion, CTLA-4 also transduces a suppressive signal to T cell via the recruitment of 
phosphatases SHP-2 and PP2A [90]. Ipilimumab, an anti-CTLA-4 mAb, is the first 
FDA-approved immunotherapy drug to treat patients with late-stage melanoma [99, 
100]. Administration of ipilimumab activates T cells systemically, leading to exten-
sive antitumor immunity and therefore a survival benefit in 10–15% of patients with 
advanced metastatic melanoma. Furthermore, this antitumor response significantly 
increases overall patient survival in advanced melanoma cases [99]. However, anti-
tumor activity is frequently accompanied by significant immune-related adverse 
events. PD-1 is another inducible immune checkpoint on T cells that suppresses T 
cell response upon interaction with its two ligands, PD-L1 (B7-H1) and PD-L2 (B7- 
DC) [36, 101]. The PD-1 pathway is heavily involved in the immunosuppressive 
cancer microenvironment: PD-1 is highly expressed in TILs while the ligand PD-L1 
is found on tumor cells, tumor-associated DCs, macrophages, and fibroblasts [94, 
102]. Targeting the PD-1 pathway has elicited durable antitumor responses and 
long-term remissions in patients with a broad spectrum of cancers. The objective 
response rates varies in different cancer types, with bladder cancer, melanoma, mis-
match repair-deficient colorectal cancer and certain hematopoietic malignancies 
among the most responsive cancer types [102]. Compared to CTLA-4 blockade, the 
antitumor efficacy of PD-1 blockade is higher, and the side effect is significantly 
milder and manageable [49, 103–105]. Currently, PD-1/PD-L1 mAbs have been 
approved by FDA to treat late-stage melanoma, non-small cell lung cancer, and 
kidney cancer [102]. It is anticipated that PD-1 mAb will be approved for treating 
more cancer types and become the frontline therapy for future cancer treatment.

Ipilimumab alone, or in combination with peptide vaccine, did not have any clin-
ical benefit in treating PDAC patients. In a phase II trial of 27 patients with advanced 
PDAC, single-agent ipilimumab failed to detect any responder by response evalua-
tion criteria in solid tumors [50]. However, a significant delayed response in one 
subject of this trial suggests that this immunotherapeutic approach to PDAC 
deserves further exploration [50]. With tremendous success in many cancer types, 
early trials of anti-PD-1 mAb alone showed no effect in treating patients with 
advanced PDAC, though the number of patients in the study was small [49]. PD-1 
mAb alone is ineffective in treating cancers with few neoantigen loads [49]. PDAC 
happens to be a low immunogenic cancer [31]. It is not surprising that targeting 
immune checkpoints alone is incapable of launching an effective anticancer immu-
nity in PDAC patients. Therefore, additional procedures are needed to increase the 
number of TILs surrounding PDAC cancers, so as to prime PDAC for immune 
checkpoint therapy [106].

16.3.4  Combined Therapy

The low immunogenicity and unique stromal structure of PDAC cancer poses a 
great challenge for immunotherapy [22]. The disappointing outcomes in clinical 
trials using single-agent immunotherapy propel the launch of combinatory 
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approaches. Combination therapy targets more than one aspect and can be classified 
as the combination of two different arms of immunotherapeutic approaches, or the 
combination of immunotherapy with traditional therapy (chemotherapy or 
radiotherapy).

Examples of combinatory approaches that combine two different arms of immu-
notherapy could include the combination of cancer vaccine with immune check-
point blockade or the simultaneous use of both active and passive immune therapy. 
Immune checkpoint inhibitors alone are not effective in the treatment of PDAC, 
much due to the lack of tumor-infiltrating T cells at tumor sites [23]. Cancer vaccine 
is known to be a very efficient method of expanding tumor-reactive T cells, while 
blockade of immune checkpoints will further promote antitumor immune responses 
at tumor sites. In fact, several preclinical studies exist that demonstrate the synergis-
tic role of cancer vaccine therapy, which is responsible for stimulation of the 
immune system, and the use of immune checkpoint blockade, which allows for the 
unopposed effector function of cytotoxic T cells [107–109]. Consistently, clinical 
examination of resected PDAC tumors demonstrated that vaccine therapy can alter 
the immunosuppressive cancer microenvironment [106]. The majority of PDAC 
patients receiving GVAX vaccine had vaccine-induced intratumoral tertiary lym-
phoid aggregates in resected tumors, accompanied with increased intratumoral Teff/
Treg ratios [106]. As such, a phase Ib, open-label randomized study demonstrated the 
feasibility and safety of an approach based on the combination of Ipilimumab with 
GVAX in patients with previously treated PDAC [47]. One of the most interesting 
aspects of this study was the difference in 12-month OS: 27% vs. 7% and the median 
OS: 5.7 vs. 3.6 months (HR = 0.51; P = 0.072), respectively, for combination ther-
apy vs. monotherapy (i.e., Ipilimumab alone).

Given that PD-1/PD-L1 blockade is safer and more effective than CTLA-4 
blockade in the treatment of many cancers, it is interesting to see how the combina-
tion of GVAX with PD-1/PD-L1 blockade performs in the treatment of PDAC 
[104]. Interestingly, PD-L1 expression was observed in all these lymphoid aggre-
gates in GVAX-treated PDAC patients [106]. Currently, a phase I/II study with 
GVAX and anti-PD-1 mAb (nivolumab) has started to recruit patients with PDAC 
(NCT02451982). Similarly, a randomized phase II trial of GVAX and CRS-207 
with or without nivolumab has also launched (NCT02243371).

Combinational therapy involving PD-1/PD-L1 blockade has also been investi-
gated with chemotherapy or radiotherapy in PDAC [110]. These approaches are 
based on the observation that chemotherapy or radiotherapy can kill cancer cells to 
increase the supply of tumor antigens for presentation, so as to promote tumor- 
reactive immune responses [111–113]. In addition, many conventional cancer treat-
ments in chemotherapy and radiotherapy have immune potentiating mechanisms of 
action, such as the elimination of immunosuppressive cells, including Treg and 
MDSC (Zitvogel L, JCI 2008). A phase I trial (NCT02303990) of pembrolizumab 
(anti-PD-1 mAb) with the combination of hypofractionated radiotherapy has started 
to treat patients with metastatic pancreatic cancer. In another phase I study of PDAC 
(NCT02546531), PD-1 blockade (pembrolizumab) is proposed to be combined with 
gemcitabine and defactinib, an inhibitor of focal adhesion kinase (FAK), which 
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promotes stromal fibrosis. Because immune effector cells are also sensitive to che-
motherapy and radiotherapy, early phase clinical investigations into optimizing 
dose and schedule in patients are necessary.

16.4  Perspective

Despite recent advancements in PDAC treatment modalities, modest success has been 
achieved and the curative goal remains unmet. Surgical resection remains to be the 
only potential cure for early-stage PDAC. Immunotherapy emerges as a promising 
treatment for metastatic PDAC, with the potential of targeting disseminated disease as 
well as preventing cancer recurrence. With the technological advancement in genome 
sequencing, neoantigens in PDAC will be identified as better targets for vaccine ther-
apy or ACT. Together with further interrogation of the PDAC microenvironment, it is 
promising that more PDAC immunosuppressive mechanisms, by which PDAC evades 
immune attack, will be revealed for future immune interventions.

Early clinical trials in immunotherapy also demonstrated that the complexity of 
the PDAC microenvironment and the formidable immunosuppressive nature of this 
cancer might require a combination of different therapeutic strategies [110]. These 
therapies need to be able to simultaneously target the stroma-cell population, where 
the tumor cells locate, as well as the cytotoxic T lymphocytes (manipulating differ-
ent immune checkpoint inhibitors) or directly the tumor cells (traditional chemo-
therapeutic, vaccination, ACT). For instance, besides cancer vaccine, other 
therapeutic approaches, including chemotherapy, radiotherapy, and ACT may prime 
PDAC to become susceptible for immune checkpoint inhibitor therapy. Moving for-
ward, the focus of modern clinical immunotherapy will be to identify the most effi-
cacious, synergistic therapy that is able to obtain the maximum antitumor activity 
with the least systemic toxicity. Finally, it is imperative to identify reliable biomark-
ers to predict tumor susceptibility to immunotherapy in clinic, to identify those 
patients that are more likely to benefit from this unique therapeutic approach.
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