
Virtualization Security Issues
and Mitigations in Cloud Computing

S. Rama Krishna and B. Padmaja Rani

Abstract This paper presents various security issues related to hypervisor in cloud.
This paper also brings issues possible with a malicious virtual machine running
over hypervisor such as exploiting more resources than allocated by VM, stealing
sensitive data by bypassing isolation of VM through side channel attacks, allowing
attacks to compromise hypervisor. In this paper, we also bring security measures or
requirements to be taken and architectures that are needed by hypervisor to handle
various security concerns.

Keywords Security ⋅ Hypervisors ⋅ Cloud computing

1 Introduction

Several enterprises believed cloud to be a platform to fulfil their requirements such
as increased scalability, availability, and upfront setup cost, etc. Though web2.0,
Internet, distributed computing are technologies that enable cloud computing, in
reality virtualization is the key technology to extract the exact sense of utilization
maximization of resources. Sharing the resources is possible with virtualization is
called to be multi-tenancy. Where the physical resources are virtualized and pro-
vided for multiple users to share them. Hypervisor looks at resolving issues of
provisioning, de provisioning of virtual machines, their migration and isolated use
to share a common physical space by multiple tenants (Fig. 1).

Security is the major concern in the cloud because several users share their data
in cloud without noticing their co tenants in the same physical space. In this case

S. Rama Krishna (✉)
Department of Computer Science & Engineering, VRS & YRN College
of Engineering & Technology, Chirala 523155, India
e-mail: ccvy.ram@gmail.com

B. Padmaja Rani
Department of Computer Science & Engineering, JNTUCEH, Hyderabad, India
e-mail: padmaja_jntuh@yahoo.co

© Springer Science+Business Media Singapore 2017
S.C. Satapathy et al. (eds.), Proceedings of the First International Conference
on Computational Intelligence and Informatics, Advances in Intelligent Systems
and Computing 507, DOI 10.1007/978-981-10-2471-9_12

117



hypervisor should ensure a strong VM isolation mechanism because if a VM is
vulnerable with its compromised security cause danger to the remaining who share
the common spaces. Even denial of service attack is also possible with the com-
promised VM in hypervisor where the vulnerable VM gets hold of shared resource
and cause data leakage also. If the shared resources were hijacked, then co-tenant
VMS may be slowed down also.

Remaining of this paper is organized as: Sect. 2 brings Side Channel attacks in
Hypervisor. Section 3 brings performance-based attacks that cause target machine
slow down. In Sect. 4 security measures needed to protect hypervisor are men-
tioned. Section 5 presents VM Isolation security issues and counter measures.
Section 6 contains conclusions of the derived paper.

2 Side Channel Attacks and Defences

Side channel attack creates opportunity for a co-resident VM to gain access data of
other VM without their intervention. It creates a bypassing method to access data.
CPU cache, memory, power consumption and network used in extraction of data in
side channel attack. Software happenings will be traced by observing behaviour in
hardware [1]. Yu et al. [2] takes CPU cache response time to check whether target
VM co-resident or not. Cache behaviour is analysed using linear regression of the
values collected by load pre-process with cubic spline and load predictor. A mali-
cious VM occupies a major part of CPU cache then targets co-resident by simple
data request to it. Then it executes load measuring program over malicious VM for
measuring access time of cache. Literature [2] observes and proves that higher
cache access time implies more activities by co-resident. The experiment proposal
also verified with three VMS sharing resource. Vulnerable VM not only analyses
CPU cache access time, but also can get data of the target machine. Literature [3]
describe data hijacking of co-resident VM by infecting malware into the software.

Fig. 1 To show the
functionality of virtual
machine

118 S. Rama Krishna and B. Padmaja Rani



This attack targets at obtaining information from the target VM without its notice
covertly and it will not leave any trace. For doing this the attacker uses memory
bus. Vulnerable VM locks memory bus by sending 1 for issuing atomic CPU
instruction, memory latency will increase with execution of CPU atomic instruc-
tion. If the memory bus released latency will decrease and it transfers bit 0. Sim-
ilarly, it also build other side channels.

For exploiting cache contention for manipulating latency times [3], this attack
also calculates bandwidth by finding the length of overlapped execution time of
malicious VM with target VM. This attack can be defended by making some
changes to the scheduler in the hypervisor. To successfully defend, the scheduler
can try to limit the overlapping execution times of any two VMS on the system
while maintaining an acceptable level of performance. The scheduler should still
maintain fairness because it does not know which VM is malicious. In order to
maintain an acceptable level of performance, the scheduler should limit the fre-
quency of VM switching which reduces performance [3]. System performance may
decrease due to limiting of the overlapped execution time. Pumping noise to the
side channel proposed to prevent attack due to which error rate increases and
bandwidth reduced. Created noise due to random atomic memory access defends
the side channel attack that happens over memory bus contention.

Literature [1, 4] proposes other methods for defending side channel attacks such
as Xenpump. This method limits effectiveness in timing channels. Bandwidth of the
timing channel is limited by adding some random latencies by Xenpump. Hence
confusion is created to vulnerable VM that receives channel bandwidth. That
unpredictability created in the receiver VM in the generated latency information is
because of VM or hypervisor. This proposed model also decreases the system
performance. Literature [1] presents another kind of side channel attack called as a
Cache-based side channel attack that uses the prime trigger probing method for
attack. Like the previous case attacker VM occupies the cache by accessing many
lines and records. Then triggering is done while target VM is running a message is
encoded by accessing parts of cache. Once target VM finishes its job VM used for
probing starts accessing the cache, where each line used to access cache causes
cache miss. It has a higher access time when compared with the base line.

A diagram is shown (Fig. 2) to describe Prime trigger probing.

Fig. 2 Prime trigger probe
method

Virtualization Security Issues and Mitigations in Cloud Computing 119



Flushing is done between time of switching of target VM and probing VM to
defend this attack, but this method creates additional overhead of 15 % [1].

3 Performance-Based Attacks and Defences

An attack is called performance-based attack if the target VM slows down because
of resource hijacking by attacker VM. Literature [5] mentioned an attack which
cheats scheduler to achieve 98 % of CPU usage over a physical machine.
Credit-based scheduling is done in Xen hypervisor which uses token bucket
scheduling. Every VM is allowed to get a credit at most 300 to store. VMs which
are running will be debited its credits by one on every scheduler tick. An attacker
VM blindfolds the scheduler enter before scheduler tics when a co-resident VM is
in execution at scheduler which will not reflect in change of credits of attacker VM.
The scheduler works in two modes, a one boost mode and a non-boost mode. In
boost mode hypervisor could not differentiate among VMS waking by deliberately
yielding and scheduler executed VMS. In the other mode attacker will never be
debited his CPU credits. This problem can be eliminated in two ways. By using a
high-precision clock and randomized scheduler ticks. In the first method the
scheduler uses a clock with high precision and measures CPU usage even when VM
yields or it is idle. Other method clock ticks at random intervals 10 or 30 ms. The
Amazon EC2 instance will be allowed to access from 40 to 85 % of cap. An
attacker VM shares resources, and calculates CPU usage if it is 85 % no more
co-resident available in location otherwise there exist a co-resident [5] (Fig. 3).

I/O based attacks were discussed in literature [6]. Specially designed I/O
workloads are deployed over shared queues of I/O for reducing the performance of
target VM. First scheduling characteristics of hypervisor observed and extracted
from targeted VM by attacking. Using this information I/O resources are hijacked
and hence resulting in slow down of target I/O performance and access. Using

Fig. 3 Randomized schedule
tick rate prevents a VM from
being preempted

120 S. Rama Krishna and B. Padmaja Rani



multiple disks to store data and accessing and the random schedule ticker can
protect from I/O performance reducing attacks [5].

4 Hypervisor Security Issues and Defences

Along with side channel attacks there is one more attack possible called as virtual
machine escape is an attempt of VM compromising hypervisor. Hypervisor is a
layer that provides separate VMS for isolated tenants. This section presents security
issues associated with VMM (Virtual Machine Manager) and VM (Virtual
Machine).

A. VMM Security

In order to say that hypervisor is secured it should have a trusted VM. Still there are
several security concerns with VMM.

(1) VMM Vulnerabilities:

Literature [7] mentioned, six major security vulnerabilities of VMM and emu-
lators using auditing of the source code, fuzzing techniques. Further vulnerabilities
were presented in [8] issues including VMware, Xen and other Softwares.

(2) VM-Based Rootkits:

As traditional Rootkit kernel is available in OS kernel, VM-based Rootkits are
available in VMM. Kernel rootkit detector could not identify these VM-based
rootkits. VMware and Virtual PC were used to develop these Proof of concept
VM-based rootkits. They were used to observe the stealthiness of environment by
considering parameters such as installation time, boot time and memory footprints
[9]. Literature [10] mentioned Blue pill a VM-based rootkit. It can be installed
dynamically without rebooting the system on the fly. Blue Pill leverages nested
virtualization features in AMD svm. While a hypervisor is running Blue pill enable
itself VMM layer. Kernel Guard [11] uses VMM policies to monitor kernel memory
access for root kit attack protection. It blocks dynamic code and prevents root kit
attack.

(3) VMM Transparency:

VMM detectability is one more major concern. In order to protect from VM
detection threats it is obvious to host potential hostile codes like honepots. Liter-
ature [12] states that VMM transparency is not feasible because of discrepancies in
between physical machine and VM. Several clues like time sources, hardware
abstraction, and overhead were left to make VM detection possible. Four essentials
for detecting VMM were mentioned in literature [13]. In same literature they
mentioned an experiment which is run for detecting remotely different VMM types.
Remote verifier can detect P IV architecture and VMM type (Xen, Linux,

Virtualization Security Issues and Mitigations in Cloud Computing 121



VMware). VMM version and type can be revealed, so this may be an attack
possible over VM transparency.

(4) Platform Integrity:

Users of the cloud has to blindly believe in trust of VMM because there is pos-
sibility of co tenants modifying data. VMM should ensure the trust for each VM
that is in execution in each layer of software stack. Literature [14] proposes a model
called Terra. Terra is a model built as a prototype for trusted VMM. For every
application it assigns a different VM. Integrity of data can be ensured by deploying
each application with an optimized OS. Literature [15] suggests Trusted Platform
Module (TPM) which is a Trusted Computing Group specified security definition.
Trusted Computing Group extends in accommodating virtualization techniques.
vTPM embedded in TPM and can run on over external co-processor and VM. TPM
1.2 extends command set for accommodating vTPM, which enables TPM to access
every VM. Hypervisor deserves tools to measure integrity of VM that is running.
HIMA is proposed in literature [16] which is based on hypervisor agent. Isolating
measurement agent and target is desired for tool to measure integrity. HIMA makes
sure that VMS that pass integrity check only run on VMM. So it ensures healthy
program in execution.

(5) Hypervisor Control Flow Integrity:

Literature [17] proposed a method for providing hypervisor control flow integrity
called as hypersafe. Literature [18] suggested Trusted Platform Module
(TPM) based on hardware to provide secure attestation, crypto graphic hashes,
signatures and secure storage. Second method ensures load time integrity where as
the first provides run time integrity which is very crucial. For implementing run
time integrity checking Hyper safe uses two techniques. Those are restricted pointer
indexing method and non-bypassable memory lock down method. Unauthorized
page writes are prevented by locking down memory pages. The designed unlocking
process ensures no modification is done to code or data of hypervisor. Malicious
code injection for flow control in hypervisor can be prevented using memory page
locking system. Literature [17] figures out Hypersafe implementation as an
extension in Xen hypervisor. A new layer is created for indirecting all operators in
restricted pointer indexing method in Hypersafe. This works as previous technique
and control flow targets are pre-computed and stored in a table. This approach
provides call target and return target to follow control flow graphs. Without any
change to existing hypervisor this method can be added as an extension to compiler
[17]. Use of protected hooks is suggested for monitoring untrusted VM execution to
get control over applications running on it in Lares [19] framework. Applications
running over untrusted VM will be monitored by VMI and security policies when
control is transferred to security VM by hooks. Customized OS may not support
Lares framework because change is needed on the guest OS on the fly.
A state-based control flow comprising static and dynamic control flow provides
kernel integrity [20]. Static control flow checking uses hashing whereas dynamic

122 S. Rama Krishna and B. Padmaja Rani



control flow checking uses control flow graphs generated of source code. Wei et al.
Addressed risks in managing security of virtual images such as publishers risk,
retriever risk and repository administrator risk. The suggested solutions for access
control of images and filtering and scanning images proved the better result than
treating images independently. But filters may not give 100 % accurate results;
virus scanning may not guarantee identifying malware in vmimage [21].

(6) Hypervisor Integrity Checking:

Hypersentry is a method suggested in Literature [22] for providing hypervisor
security. Hypervisor is added with this new software component Hyper sentry to
ensure integrity and stealth protection. For isolation of hypervisor with TPM
Hypersentry uses existing hardware and also provides software integrity. Scrubbing
is an attack used to remove evidence of attack without detection of higher software
layer. Hypersentry acts as stealth and out-of-band channels were used to trigger
this. Intelligent platform management interface (IMPI), Baseboard Management
controller and System Management Mode (SMM) are used as out-of-band channels.
IMPI is implemented in hardware of the hypervisor and functions independently to
the CPU and other softwares of the system. BMC is a component installed over
mother board for providing interface among hardware management component to
remote verifier. SMM is triggered by IMPI call for providing secure environment
and prevents manipulations over software which is running on machine. Interaction
among these components is given in Fig. 4.

A verifiable, non-interruptible and deterministic measurement is provided in
Hypersentry. It saves CPU current state after checking it thoroughly restores it.
Hypersentry also provides integrity, authentication and attestation as output.

(7) Return Oriented Programming Attack on Hypervisors:

Return oriented programming (ROP) is one more attack mentioned in Literature
[23] over Xen hypervisor which is very successful attack. It uses existing code for
attack. Turing language was created by sequence chaining which ends in return
statement. This is an extension of DEP (Data Execution Prevention) which is
security measure implemented in most of systems today. ROP attack modifies
hypervisor data which are used for control level of VM privilege level. An attacker
can modify their VM level from normal level to privileged. Literature [24] suggests
a defence method for ROP problem. In this solution stack is analysed continuously
looking for possibilities in occurrence of ROP attack and quarantined for the use of

Fig. 4 HyperSentry
architecture [22]

Virtualization Security Issues and Mitigations in Cloud Computing 123



further investigations. As ROP requires many address that range in program this
key feature is used to search ROP attacks using libraries.

(8) Modifying Non-control Data:

Literature [25] attempts to bring forward attacks over non-control data in hyper-
visor. There is a possibility of vulnerability in three different types of non-control
data: privilege-level data, resource utilization and security policy data. An attacker
uses this privilege-level data for escalation of VM privilege level. Resource uti-
lization data helps attacker in gaining access to shared physical resources. Using
security policy data attacker can attempt for side channel attacks for stealing sen-
sitive data from target VM. Hypervisor version number helps in execution of attack
over non-control data attack. Memory offsets are calculated with the help of version
number of hypervisor for modifying non-control data. Writing in non-controlled
data memory locations have to be limited by hardware can prevent attacks.
Hypersafe [25] can be used in preventing these attacks by using non-bypassable
memory lockdown.

(9) VM Rollback Attack:

Literature [26] mentions VM rollback attack. It assumes hypervisor is compromised
already. This compromised hypervisor tries to execute VM from its older snapshot
without owner’s awareness. This attack damages target VM’s execution history and
undo security patches and updates make it vulnerable target VM. This lets attacker
to bypass security system (Fig. 5).

By roll back VM state that attacks an attacker gets a chance to execute brute
force password attack. Actually this will occur as when there is brute force attack
occurred target VM raises security alert but compromised hypervisor brings its
previous snapshot by roll back and allowing brute force attack to be possible. Using
suspend/resume function we can prevent this roll back attack. But it makes
developing solution more complex because it cannot distinguish between normal
suspend/resume and an attack of roll back. One more requirement is this solution
should not create burden for users. By securely logging all rollback actions and

Fig. 5 Demonstrates this
attack

124 S. Rama Krishna and B. Padmaja Rani



auditing them can prevent roll back attack. Even TPM can be used in protection of
log integrity. VM boot, VM suspend, VM resume and VM resume are four hyper
calls used in logging information. Isolating and encrypting the VM’S memory in
hypervisor helps in protecting memory hence creates solution to the rollback attack.
This solution also prevents hypervisor to modify or read memory pages [26].

B. VM Security
Virtual Machine gives opportunity to interact with hardware in a multi-tenant
and shared mode over VMM. VMS running like this should be secured and
they should make sure proper security measures need to be taken. Introspection
and Secure resource allocation are issues related to VM security.

(1) Introspection: VM Introspection is a process to track data flow inside
guest VMS; it has many challenges. Moonsols livecloudkd is one such
implementation presented in Literature [27]. It debugs a guest OS running
over Hypervisor by allowing KD and windbg to inspect Windows Virtual
Machine delivered from Microsoft Hyper-V R2 hypervisor. VIX is a tool
suite presented in Literature [28] used for introspection of Xen. It tracks
guest VMS Process by mapping domU’s virtual memory to Dom0’s
memory address in VMM.

(2) Secure resource allocation: complete isolation of VMS in hypervisor will
reduce performance and efficiency in resource utilization hence it may not
be a deserved solution. Efficiency in utilizing resources with security is
needed. So literature [29] suggested resource sharing in Hypervisor through
shype [30]. It uses MAC-based policy for security to share resources
without compromise in security with minimized overhead.

5 VM Isolation Techniques

This section brings four different approaches used in isolation of VM. Literature
[31] suggests security Turtles an architecture based on nested virtualization for
protection of guest VM.

Even though attacks possible in Level 1 Hypervisor for VMS running Level 2,
Level 0 Hypervisor is the highest privileged which protects.

(1) Lifetime kernel code integrity of Level 1 hypervisor.
(2) Code-data integrity in QEMU-KVM daemons.
(3) Data integrity in Level 2 execution of Guest VM.
(4) Guest VMS running in Level 2 need to be aware that weather there is any

violations in above 3 requirements.

Secure Turtles believe that outside attacks are not possible over hypervisor of
Level 0. Literature [32] eliminates hypervisor almost and proposed a new approach.
Minimizing code base area will reduce vulnerabilities in virtualization software also

Virtualization Security Issues and Mitigations in Cloud Computing 125



reduces its functionality. Multi-tenancy is a needed requirement to be provided in
cloud for provisioning resources to customers on demand leveraging economies. In
this literature they propose a solution temporary Hypervisor; a temporary hyper-
visor that runs at initialization. It is consists of pre-allocated hardware resources
(process cores, memory, etc.). It sets virtualized I/O to avoid indirection for
bringing the VM a more direct interaction with hardware.

Provisioning each VM with individual I/O devices is not much practical so
virtualized I/O devices are encouraged to be used. Once virtual I/O devices are
allocated, hard will make sure isolation in between virtual machines without
hypervisor. Literature [33] describes a mandatory access control policy
(MAC) which allows VMS to share resources like disk, networks, etc., this also
supports multiple hypervisors to share these resources. Bind time authorization is
used to obtain high performance and Chinese wall is also included. Chinese wall
assigns every VM a type. It will not allow to run two VMS concurrently that there
is conflict with type. Hence it prevents attacker VM not to use covert channels for
accessing target VM sensitive data. Type-enforcement is done to specify access of
VMS to resources. Literature [34] suggests a multilevel set of security. There are
two different types of hypervisors known as pure isolation and shared hypervisor. In
hypervisor with pure isolation partitioning is done in machine and it will not allow
resource sharing except memory and CPU. Hypervisor with sharing will allow file
sharing. There will be two partitions low level and high level. Low level is allowed
to read/ write in same level of security where as higher security partition has read
only permission to access security data of low level partition. One-way network
implementation is done. Secure shared file store is suggested in another imple-
mentation. Hypervisor uses cross-ring call for access control to sub system. It also
implemented as separate partition which uses message passing mechanism.

6 Conclusion

Virtualization enable cloud computing facilitated several guest VMS to share
common physical hardware. Hypervisor is the key component in virtualization.
Hence it must resist attack effectively by isolating VMS. But in reality it is vul-
nerable and exposed to several security flaws such as VM escape. It is said to be the
most serious among several attacks said above. An escaped VM will compromise
several co-resident VMS. Several architectural and design changes are needed in
Hypervisor for potential resistance of VM escape attack. Side channel attacks hijack
system resources and steal sensitive data of co-resident VMS. Some solutions were
discussed in mitigation of side channel attacks as adding noise, etc. Hypervisor
security enables security to the cloud environment which results in trust building
and enterprises motivation of migration to cloud.

126 S. Rama Krishna and B. Padmaja Rani



References

1. M. Godfrey and M. Zulkernine, “A Server-Side Solution to Cache-Based Side-Channel
Attacks in the Cloud,” Proc. Of 6th IEEE International Conference on Cloud Computing,
2013, pp. 163–170.

2. S. Yu, X. Gui, J. Lin, X. Zhang, and J. Wang, “Detecting vms Co-residency in the Cloud:
Using Cache-based Side Channel Attacks,” Elektronika Ir Elektrotechnika, 19(5), 2013,
pp. 73–78.

3. F. Liu, L. Ren, and H. Bai, “Mitigating Cross-VM Side Channel Attack on Multiple Tenants
Cloud Platform,” Journal of Computers, 9(4), 2014, pp. 1005–1013.

4. J. Wu, L. Ding, Y. Lin, N. Min-Allah, and Y. Wang, “xenpump: A New Method to Mitigate
Timing Channel in Cloud Computing,” Proc. Of 5th IEEE International Conference On Cloud
Computing, 2012, pp. 678–685.

5. F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram, “Scheduler Vulnerabilities and
Coordinated Attacks in Cloud Computing,” Journal of Computer Security, 21(4), 2013,
pp. 533–559.

6. Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. Huang, “Understanding the Effects of
Hypervisor I/O Scheduling for Virtual Machine Performance Interference,” Proc. Of 4th IEEE
International Conference on Cloud Computing Technology and Science (cloudcom 2012),
2012, pp. 34–41.

7. T. Ormandy, “An Empirical Study into the Security Exposure to Hosts of Hostile Virtualized
Environments,” in cansecwest, 2007.

8. The MITRE Corporation, “Common Vulnerability and Exposures (CVE),” http://cve.mitre.
org/, Mar. 2011.

9. S. King and P. Chen, “Subvirt: implementing malware with virtual machines,” in IEEE
Symposium on Security and Privacy, May 2006.

10. J. Rutkowska, “Subverting Vista kernel for fun and profit,” 2006.
11. J. Rhee, R. Riley, D. Xu and X. Jiang “Defeating dynamic data kernel Root-kit attacks via

VMM based guest transparent monitoring”. In proceedings of ARES 2009, conference 2009,
To appear.

12. T. Garfinkel, et al., “Compatibility is not transparency: Vmm detection myths and realities,”
in hotos, 2007.

13. J. Franklin, et al., “Remote detection of virtual machine monitors with fuzzy benchmarking,”
SIGOPS Oper. Syst. Rev., April 2008.

14. T. Garfinkel, et al., “Terra: a virtual machine-based platform for trusted computing,” in SOSP,
2003.

15. Trusted Computing Group, http://www.trustedcomputinggroup.org/, June 2011.
16. A. Azab, et al., “Hima: A hypervisor-based integrity measurement agent,” in ACSAC, dec.

2009.
17. Z. Wang and X. Jiang, “hypersafe: A Lightweight Approach to Provide Lifetime Hypervisor

Control-Flow Integrity,” Proc. Of IEEE Symposium on Security and Privacy, 2010, pp. 380–
395.

18. M. Kim, H. Ju, Y. Kim, J. Park, and Y. Park, “Design and Implementation of Mobile Trusted
Module for Trusted Mobile Computing,” IEEE Transactions on Consumer Electronics, 56(1),
2010, pp. 134–140.`.

19. B.D. Payne, Macaroni, M. Sharif and W. Lee.” Lares: an architecture for secure active
monitoring using virtualization.” Security and privacy IEEE Symposium ON, 0:233–347.

20. N.L. Petroni, Jr and M. Hicks, “ automated detection of persistent kernel control flow attacks”.
In CCS’07: proceedings of the 14th ACM conference on Computer and communications
security, pages 103–115, New York NY, USA 2007, ACM.

21. Jinpeg Wei, Xiaolan Zhang, Glenn Ammons, Vasantha Bala, Peng nns, “Managing security
of virtual machine images in a cloud environment”, in CCW’09 proceedings, Chicago,
Illinios, USA, ACM 978-1-60558-78-4/09/11.

Virtualization Security Issues and Mitigations in Cloud Computing 127

http://cve.mitre.org/
http://cve.mitre.org/
http://www.trustedcomputinggroup.org/


22. A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky, “hypersentry: Enabling
Stealthy In-context measurement of Hypervisor Integrity,” Proc. Of 17th ACM Conference on
Computer and Communications Security, 2010, pp. 38–49.

23. B. Ding, Y. Wu, Y. He, S. Tian, B. Guan, and G. Wu, “Return- Oriented Programming Attack
on the Xen Hypervisor,” Proc. Of 7th International Conference on Availability, Reliability
and Security, 2012, pp. 479–484.

24. X. Jia, R. Wang, J. Jiang, S. Zhang, and P. Liu, “Defending Return-oriented Programming
Based on Virtualization Techniques,” Security and Communication Networks, 6(10), 2013,
pp. 1236–1249.

25. B. Ding, Y. He, Y. Wu, and J. Yu, “Systemic Threats to Hypervisor Non-control Data,”
Information Security, 7(4), 2013, pp. 349–354.

26. Y. Xia, Y. Liu, H. Chen, and B. Zang, “Defending against VM Rollback Attack,” Proc. Of
2nd International Workshop on Dependability of Clouds, Data Centers and Virtual Machine
Technology (DCDV 2012), 2012.

27. Moonsols, “livecloudkd,” http://www.moonsols.com/2010/08/12/livecloudkd/, Aug. 2011.
28. B. Hay and K. Nance, “Forensics examination of volatile system data using virtual

introspection,” SIGOPS Oper. Syst. Rev., April 2008.
29. R. Sailer, et al., “Building a mac-based security architecture for the xen open-source

hypervisor,” in ACSAC, 2005.
30. S. Berger, et al., “vtpm: virtualizing the trusted platform module,” in USENIX Security

Symposium, 2006.
31. F. Liu, L. Ren, and H. Bai, “Secure-Turtles: Building a Secure Execution Environment for

Guest vms on Turtles System,” Journal of Computers, 9(3), 2014, pp. 741–749.
32. J. Szefer, E. Keller, R. Lee, and J. Rexford, “Eliminating the Hypervisor Attack Surface for a

More Secure Cloud,” Proc. Of 18th ACM Conference on Computer and Communications
Security, 2011, pp. 401–412.

33. R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. Griffin, and L. Van Doorn,
“Building a MAC-based Security Architecture for the Xen Open-source Hypervisor,” Proc. Of
21st Annual Computer Security Applications Conference (ACSAC 2005), 2005, pp. 276–285.

34. P. Karger, “Multi-level Security Requirements for Hypervisors,” Proc. Of 21st Annual
Computer Security Applications Conference (ACSAC 2005), 2005, pp. 267–275.

128 S. Rama Krishna and B. Padmaja Rani

http://www.moonsols.com/2010/08/12/livecloudkd/

	12 Virtualization Security Issues and Mitigations in Cloud Computing
	Abstract
	1 Introduction
	2 Side Channel Attacks and Defences
	3 Performance-Based Attacks and Defences
	4 Hypervisor Security Issues and Defences
	5 VM Isolation Techniques
	6 Conclusion
	References


