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“Herhangi bir kişinin, yaşadıkҫa mutlu,
bahtiyar olması iҫin gerekli olan şey,
kendisi iҫin değil, kendisinden sonra
gelecekler iҫin ҫalışmaktır.”

Any individual shall not work
themselves but the future generations into
success, in order to gain happiness in their
own life.

M.K. Atatürk (Yücel Dergisi, 02/1935)



Preface

Engineers may have different aims and abilities; however, they have a common
task: modeling and solving a physical system. In reality, the systems are complex
and can only be modeled by nonlinear and coupled equations. Nowadays, even
laptops are capable of solving such equations numerically. Therefore, an engineer
can model and solve such problems numerically, just by using a laptop.

The underlying work balances between two extremes: being a programmer
without duty and being a theoretician without any useful results. The first one, let
me call them a pro, is able to write an efficient code but pro lacks the knowledge
of the governing equations. The second one, let me call them a theo, believes in the
lengthy and complicated equations. Theo claims that the humanity cannot com-
prehend the utmost importance of the theory, but theo never performs a useful
calculation. An engineer ought to be the fusion of pro and theo; trying to model and
compute the reality.

This work aims for one single target: modeling and computing various engi-
neering applications. The theory leading to nonlinear and coupled equations will be
discussed and applied by simulating continuum mechanics problems. Open-source
packages are utilized for creating a computational reality, where complex engi-
neering problems are solved. Learning by doing is the key concept in this book;
theory and practice are served on a silver platter!

Theory and the collection of engineering applications have been realized over
the years with the aid of colleagues:1 Wolfgang H. Müller, Christina Völlmecke,
Andreas Brandmair, Holger Worrack, Arion Juritza, Guido Harneit, Bärbel Minx,
Tabea Wilk, Paul Lofink, Felix Reich, Cheng-Chieh Wu, Robert Kersting, Wolfram
Martens, Heino Henke, Ingo Müller, Dimitri V. Georgievskii, Maria Kashtalyan,
Hans Walter, Wolfgang A. Wall, Volker Gravemeier, Ata Muğan, Holm Altenbach;
with assistance of students: Jörg Christian Reiher, G. Gabin Noubissi M., Andre
Klunker, Aditya Desai, Fanny Roziere, Wilhelm Hübner, Matthias Steinbach, Elias
Büchner, Philipp Diercks, Vyacheslav Boyko, Mario Kierstein; and with support of

1No specific order has been used by noting the names.
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invaluable friends: Çağri Döner, Ata Iyiyazici, Çağri Üzüm. Special gratitude is
owed to Richard Murray, Chaitanya Raj Goyal, and Mark Searle for perusing
different parts of the book and providing amendments to the text.

Moreover, I have been recharged by the motivation and love of my family,
namely, Elisabeth Kindler-Abali, G. Ipek Abali, Lale Abalı, and A. Ertan Abalı.

Tons of thanks go to everyone helped me for putting science to work!

Berlin, Germany Bilen Emek Abali
May 2016
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Acronyms

A possibly incomplete list of symbols used in the book is given in the following. It
has been a great effort to attain a unique use of every introduced symbol. There are
no standards or rules, how to choose a symbol for a physical variable, however,
conventions have led to many of the choices below.

Latin Symbols

Symbol SI units Description

Ai
Wb/m ¼̂ H A/m ¼̂ T m ¼̂
¼̂ V s/m ¼̂ J/(A m)

Magnetic or vector potential

Bi
T ¼̂ Wb/m2¼̂ V s/m2¼̂
¼̂ N/(A m) ¼̂ kg/(s2 A)

Magnetic flux (area) density

Bij – Left CAUCHY–GREEN deformation tensor

c
J/(kg K) Specific heat capacity

m/s2 Speed of light in vacuum

Cijkl Pa ¼̂ N/m2 Stiffness tensor

Cij – Right CAUCHY–GREEN deformation tensor

da m2 Infinitesimal area element in current frame

dA m2 Infinitesimal area element in reference frame

dv m3 Infinitesimal volume element in current frame

dV m3 Infinitesimal volume element in reference frame

Di C/m2 Charge potential (electric displacement)

dij m/(m s) Symmetric part of velocity gradient

e J/kg Specific (per mass) total energy

eij m/m EULER–ALMANSI strain tensor

Ei N/C ¼̂ V/m ¼̂ kg m/(s3 A) Electric field
(continued)
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(continued)

Symbol SI units Description

Eij m/m GREEN–LAGRANGE strain tensor

f Pa2 Flow potential

fi N/kg Specific supply of linear momentum,
volumetric or body force

f Lor:i N/kg Specific LORENTZ force

Fi W/m2 Flux of total energy

Fij m/m Deformation gradient

gij – Metric tensor

Gi K/m Temperature gradient

h W/(m2 K) Convective heat transfer coefficient

Hi A/m Current potential (magnetic field strength)

J – JACOBI determinant (of deformation gradient)

Ji A/m2¼̂ C/(s m2) Electric current (area) density

Jfr:i A/m2¼̂ C/(s m2) Free electric current (area) density

Mi A/m Magnetic polarization (magnetization)

ni – Plane normal in current frame

Ni – Plane normal in reference frame

p N/m2¼̂ Pa Pressure

Pi C/m2 Electric polarization (polarization)

Pij
Pa ¼̂ N/m2 Nominal, engineering, PIOLA,

or first PIOLA–KIRCHHOFF stress

qi W/m2 Flux of internal energy or heat flux in current frame

Qi W/m2 Flux of internal energy or heat flux in reference
frame

r W/kg Specific supply of internal energy, internal heating,
or radiant heating

Re – REYNOLD’s number

s W/kg Specific supply of total energy

Sij Pa ¼̂ N/m2 Second PIOLA–KIRCHHOFF stress

T K Absolute temperature

u J/kg Specific internal energy

ui m Displacement

vi m/s Velocity of massive particles

vei m/s Velocity of charged particles

w J/m3 Stored energy density

wi m/s Domain velocity

xi m Coordinates in a Cartesian system

z C/kg Specific (electric) charge

zi m Coordinates in an arbitrary system
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Greek Symbols

Symbol SI units Description

aij 1/K Coefficient of thermal expansion

bij Pa ¼̂ N/m2 Back stress

c Not always used as the same variable

Ci
jk 1/m CHRISTOFFEL symbols

C W/m3¼̂ J/(s m3) Production of internal energy

C – Gamma function

dij – KRONECKER delta

d – Variation symbol

�ijk – LEVI-CIVITA symbol

e0
F/m ¼̂ C/(V m) ¼̂
¼̂ A s/(V m)

Vacuum permittivity

eel:ij F/m Materials dielectric permittivity

eel:ij – Materials relative permittivity

f Not always used as the same variable

g J/(K kg) Specific entropy

h Not always used as the same variable

i Not used at all

j W/(m K) Thermal conductivity

k
Pa ¼̂ N/m2 LAME constant for solids

Pa s ¼̂ N s/m2 Volume viscosity for fluids

Λ• 1/(Pa s) Plastic multiplier

l
Pa ¼̂ N/m2 LAME constant for solids

Pa s ¼̂ N s/m2 Shear viscosity for fluids

l0 H/m ¼̂ T m/A ¼̂ V s/(A m) Vacuum permeability

lmag:
ij H/m Materials magnetic permeability

�lmag: – Materials relative permeability

m – POISSON’s ratio

n Not used at all

p V/K Thermoelectric coupling coefficient

p – Number pi

q kg/m3 Mass density in current frame

q0 kg/m3 Mass density in reference frame

rij N/m2 CAUCHY’s stress

1 S/m ¼̂ 1/(X m) ¼̂ A/(V m) Electrical conductivity

R W/(K m3) Entropy production

sq; sT s Time-delay parameters for heat flux
(continued)
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Script and Calligraphic Symbols

(continued)

Symbol SI units Description

t Not used at all

/ V ¼̂ J/C Electric or scalar potential

Ui W/(K m2) Entropy flux

vel: – Electric susceptibility

vmag: – Magnetic susceptibility

w J/kg Specific free energy

x m/s Characteristic velocity

Symbol SI units Description

Di C/m2 Free charge potential

i N/C Electromotive intensity, objective electric field

Fa Thermodynamic fluxes

Hi A/m Free current potential

Ka Thermodynamic forces

i A/m Objective magnetic polarization

i A/m2 Material electric current (area) density
fr.
i

A/m2 Free (material) electric current (area) density

J/m3 LAGRANGEAN density

J s Action

xiv Acronyms



Introduction

The author and the reader are simply denoted by “we” henceforth. In this book we
will exploit the standard tensor calculus notation and rules of continuum mechanics
in order to understand, describe, model, and compute engineering problems. Some
hints and key explanations belonging to the tensor notation are given in the first
sections, however, we skip a brief tensor calculus chapter and start directly with
mechanics in Chap. 1, proceed with thermodynamics in Chap. 2, and finish with
electromagnetism in Chap. 3.

The book consists of 20 sections gathered in the three chapters. We follow a
bottom-up approach, therefore, we suggest to experience the sections in the written
order. In each section we discuss and model another type of an engineering system,
and compute its primitive variables by solving the corresponding field equations.
A field equation is a differential equation, solution of which results in the primitive
variable as a function in space and time. Different systems may have different
primitive variables:

• A solid structure like a bridge, building, or a vehicle deforms under a
mechanical loading. The sought-after primitive variable is displacement.

• A fluid flows in a pipe due to the pressure difference applied on both ends of the
pipe. In this case velocity and pressure are the primitive variables.

• A laser welding on a steel plate produces heat leading to a temperature increase.
Temperature is the primitive variable. If we also want to compute the defor-
mation caused by the temperature distribution, then temperature and displace-
ment are both primitive variables. The field equations for the primitive variables
are coupled and nonlinear.

• A conductor creates electric and magnetic fields. Electric and magnetic poten-
tials are the primitive variables to be computed. By conducting an electric
current, a wire heats up leading to a temperature increase followed by a
deformation. Then we need to compute in addition to the electric and magnetic
potentials, displacement and temperature as primitive variables satisfying the
coupled and nonlinear field equations.

xv



Even many more engineering examples are theoretically discussed and numer-
ically computed in the present book. We will analyze mechanical, fluid dynamical,
thermodynamical, and electrodynamical systems. All is established by using the
method known as continuum mechanics. The strength of the continuum mechanics
is its abstraction in obtaining governing equations. For many different systems we
can obtain field equations by following a general receipt in three steps:

• First we write a balance equation for each primitive variable.
• Second, we select adequate constitutive or material equations.
• Third, we insert the constitutive equations into the balance equations for

acquiring the field equations. These are the governing equations of the under-
lying engineering system and their solutions result in the primitive variables that
we search for.

This approach seems to be complicated at first, honestly, it is the simplest
method enabling to cover so many different subjects in one book. The continuum
mechanical framework is the strength of the computational reality created in this
present book.

An engineering system is described by the primitive variables satisfying field
equations. Different primitive variables like displacement, temperature, electric and
magnetic potentials result in a multiphysics problem. The field equations of mul-
tiphysics problems are coupled and nonlinear, in other words, difficult to solve. In
order to compute the coupled, nonlinear system of partial differential equations in
space and time, we will exploit a novel collection of open-source packages
developed under the FEniCS project [1] and start exploring FEniCS by reading
Appendix A.1 on p. 293. All codes in this book are written in Python and tested in
FEniCS version 1.6.0.2

Every section starts with a theoretical treatise leading to the necessary governing
equations. We attain in each section a so-called weak form that is used in a code to
solve an example on a simple geometry, like a beam, cube, or rectangle. The weak
form is valid for any geometry, so the code can be used for other geometries, too.
Indeed, in many real-life engineering problems the geometry is much more
complicated than just a box. In such a case the complicated geometry can be made
ready by preprocessing with the open-source program Salome. We have
explained step-by-step how to transfer the complicated geometry into FEniCS in
Appendix A.3 on p. 297 by using Salome version 7.5 and Gmsh version 2.8.3

Chapter 1 deals with mechanics for a continuum body. We start with deformable
solids and observe linear and nonlinear elastostatics followed by hyperelasticity. By
incorporating time we start elastodynamics in rheology and proceed with plasticity.
Solid mechanics uses a LAGRANGEan frame, which is beneficial for material systems.
Then we move on to open systems like a fluid flowing in a pipe described in an
EULERian frame. Linear and nonlinear fluids are discussed and computed. We crown

2See release notes for newer versions in [1].
3See [2, 3].
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this chapter by using both frames simultaneously for computing a fluid-structure
interaction like a spoon stirring a coffee.

Chapter 2 amends the computational reality by involving thermodynamics. The
applied thermodynamics aims at modeling the temperature distribution in a con-
tinuum body. We apply thermodynamics differently in macroscopic and micro-
scopic length scales. The theoretical thermodynamics answers the question of how
to select the constitutive equations. We introduce and use in every following section
a methodology allowing a formal derivation of the appropriate constitutive equa-
tions. This method is presented in viscous fluids and utilized in viscoelastic and
plastic solids.

Chapter 3 embodies electromagnetism in the computational reality. Electric
current producing heat is discussed. Polarized materials are introduced by motivating
MAXWELL’s equations from balance laws. The coupling effects are discussed, for
example, for the thermoelectric coupling in conductors the governing equations are
deduced from the balance equations with the constitutive equations derived using
thermodynamics. Deformation, temperature distribution, and electromagnetic
potentials are solved monolithically. We further develop the approach for incorpo-
rating polarized materials in electrodynamics and acquire thermodynamically con-
sistent constitutive equations for piezoelectricity as well as magnetohydrodynamics.

A range of applications is presented by using continuum mechanics for obtaining
governing equations, by exploiting thermodynamics for deriving the constitutive
equations, and by utilizing FEniCS project to compute engineering examples by
solving nonlinear and coupled equations monolithically. Information contained in
this book may be difficult to grasp and internalize at once, even for an expert in
engineering. For the purpose of a deeper understanding, every step in the formu-
lations is shown, as well as every line of code in the computations. Moreover, the
reader is encouraged to try to accomplish the challenging tasks at the end of each
section, since Albert Einstein convinced the author by his saying:

“Learning is experience. Everything else is just information.”

References

1. FEniCS project: Development of tools for automated scientific computing, 2001–2016. http://
fenicsproject.org (2016)

2. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre-and
post-processing facilities. International Journal for Numerical Methods in Engineering 79(11),
1309–1331 (2009)

3. Salome: The Open Source Integration Platform for Numerical Simulation, 1993–2016. http://
salome-platform.org (2016)
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Chapter 1
Mechanics

For a new engineering design, we have to perform various analyses. Many of these
analyses belong to mechanics. As a consequence of a static or dynamic loading,
deformation and stress occur in the continuum body. If the stress lies below the
yield limit, the deformation is recoverable upon unloading. This behavior is called
an elastic response. This elastic response is instantaneous, i.e., rate of loading does
not matter. In order to bring in the effect of the loading rate, we need a viscoelastic
response. This behavior is modeled by changing the constitutive (material) equation.
The deformation is still recovered upon unloading. In case of remaining deformation
after unloading, we need a constitutive equation modeling a plastic behavior. In all
of the aforementioned phenomena, we ignore any change in temperature, thus the
process is isothermal.

In this chapter we will discuss mechanical systems and compute the motion of
particles belonging to a continuum body.We start with the linear elasticity in Sect. 1.1
and setup the three necessary steps for obtaining the so-called weak form. First, the
necessarybalance equations are derived. Second, thematerial equations are employed
to close the system of equations. Third, the variational formulation is utilized to
obtain the weak form. These three steps are going to be used in the whole book
without being mentioned further. In Sect. 1.2 we present the solid body mechanics
in a Lagrangean frame1 and solve a problem with geometric nonlinearities. In
Sect. 1.3 we introduce an abstraction of the method and discuss the real variational
formulation, moreover, we employ and solve a problemwithmaterial nonlinearities.
All of these computations belong to elastostatics. By including time rate in the
equations, we start off with dynamics in Sect. 1.4. Examples of linear and fractional
rheology are presented in Sects. 1.4 and 1.5, respectively. In Sect. 1.6 the plastic
deformation is addressed, where the material starts flowing beyond the yield stress.
We change the understanding of motion from a solid body to fluid by introducing a

1It is named after Joseph-Louis Lagrange.

© Springer Nature Singapore Pte Ltd 2017
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2 1 Mechanics

Eulerian frame2 in Sect. 1.7 and present the computation of flows of linear fluids.
We discuss the linearization of coupled field equations by examining a fluid flow
problem of a nonlinear fluid in Sect. 1.8. An amazing feature of the simultaneous
use of theLagrangean andEulerian frames results in the fluid-structure interaction
presented in Sect. 1.9.

1.1 Linear Elastostatics

Adesign has to hold under known loading conditions. Suppose that wewant to verify
a design by using a simulation. The structure in the design can be a part of a vehicle
(car, plane, train) or a part of a bridge construction. This structure is designed to
hold on “forever.” In other words, the design shall avoid any plastic deformation
such that the deformation will be recovered upon unloading. For example, a truck
crossing a bridge applies a loading such that the structure deforms. After the truck has
crossed the bridge—after unloading—the bridge turns back to its designed shape, any
deformation is recovered. In short, the structure shall be loaded below the yield limit.
For most of the engineeringmaterials, this limit is known as the yield stress measured
with a one-axial tensile test. In the simulation we will obtain the so-called Cauchy

stress3 tensor, σi j , which has 9 components in a three-dimensional continuum,

σi j =
⎛
⎝

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎠ . (1.1)

Unfortunately, in a tensile test we determine a single value for the yield stress that
sets the upper limit for our engineering design. Below this value only elastic (but
not plastic) deformation occurs. For example, the engineering steel, AISI 1006 (cold
drawn), possesses a yield stress4 of σyield = 285MPa (MPa =̂ N/mm2). The 9 com-
ponents from the simulation shall be reduced to a scalar value in order to compare
with σyield obtained from the one-axial test. We use the vonMises equivalent stress,
σeq., for this purpose5

σeq. =
(3
2
σ|i j |σ|i j |

)1/2
, σ|i j | = σi j − 1

3
σkkδi j , (1.2)

which has to be lower than the allowed upper limit. If we would design a lightweight
structure—in a plane or race car design—then the allowed limit might be chosen

2The frame is named after Leonhard Euler.
3The stress is named after Augustin-Louis Cauchy.
4See [12] for materials data.
5
Kronecker delta, δi j , is simply the identity matrix having 1 on its diagonal and zero as the
non-diagonal components. It is named after Leopold Kronecker.



1.1 Linear Elastostatics 3

near to the yield stress. In other words, the equivalent stress has to be lower than the
yield stress, σeq. < σyield. Often the allowed limit is lower than the yield stress. The
allowed stress is found by dividing the yield stress by a safety factor. This factor is
proposed by “know-how” and it depends on the specific construction.

Throughout the book we will use a standard indicial notation. In order to explain
the notation in Eq. (1.2), we write some terms explicitly:

σkk =
3∑

k=1

σkk = σ11 + σ22 + σ33 ,

σ|i j |σ|i j | =
3∑

i=1

3∑
j=1

σ|i j |σ|i j | = σ|11|σ|11| + σ|12|σ|12|+

+σ|13|σ|13| + σ|21|σ|21| + · · · + σ|33|σ|33| .

(1.3)

We are too lazy to write the summation symbols in continuummechanics and hence-
forth we understand a summing up over doubly repeated indices, i.e., we apply
Einstein’s summation convention.6

In this section we want to simulate a simple geometry and answer the following
question: How canwe obtain the stress tensor in elastostatics? For this aim, we briefly
outline the linear elasticity andpresent the variational formulation leading to theweak
form. The general procedure of obtaining the weak form consists of three steps. The
step number one is to choose the appropriate balance equations. The second step
is finding the constitutive or material equations capable of modeling the elasticity.
The third step is to utilize both of them and to employ the variational formulation
leading to the weak form. Out of that weak form, we obtain a numerical solution of
the primitive variable. The primitive variable in elastostatics is the displacement in
three-dimensional continuum that wewant to compute numerically. As the numerical
solution technique, we are going to apply the finite element method. In the end, we
write a code and solve the displacement.

Step I: Balance equations

We aim at the computation of stress in three-dimensional space, which is calculated
from the primitive variable: displacement. Without arguing, i.e., in an axiomatic
manner, we simply assume that the primitive variable exists. We set our goal to com-
pute the primitive variable (displacement), therefore, we need a differential equation,
whichwill be deduced from the balance equations. The displacement, ui (x), in three-
dimensional space is expressed in a Cartesian coordinate system xi = (x , y , z). A
continuum body deforms under a known (given) external mechanical loading force.
The connection between the deformation and the given forces is formulated by using
the balance of linear momentum:

6The summation convention is named after Albert Einstein.



4 1 Mechanics

ρv•
i − ∂σ j i

∂x j
= ρ fi , (1.4)

where the summation convention is utilized over the index “ j .” Velocity, vi , is the
rate7 of displacement, vi = u•

i . Mass density, ρ, is the weight per volume and the
rate of velocity is simply the acceleration. The Cauchy stress tensor, σi j , needs to
be related to the displacement by means of a constitutive or material equation. A
volumetric or body force, ρ fi , is a given quantity. A typical example in mechanics
is the gravitational force. The specific force (per mass), fi , in a coordinate system
directed toward the Earth’s center with the z-axis reads

fi = (
0 0 9.81

)
N/kg . (1.5)

In general, the external loading on the surface of the continuum body deforms the
body much more than the body force. Therefore, the deformation due to the weight
is omitted. The balance of linear momentum reads

ρv•
i − ∂σ j i

∂x j
= 0 , (1.6)

An elastic response is instantaneous. Of course this is a simplification, we know
that an instantaneous motion is impossible. In reality, every particle moves with a
velocity, however, its motion is quicker than we can measure. The easiest way of
visualizing this phenomenon is a tensile test in a hydraulic machine. Suppose we
perform experiments at different loading rates and compare stress-strain plots. For
an elastic material, e.g., for an engineering steel, all results are identical. Although
the loading rates are different, the response is the same. The speed of loading is
limited with the response time of the fluid used in the hydraulic system, which
is greater than the response time of steel. In other words, the elastic response of
steel is instantaneous with respect to the measurement system. Actually, it is only
quicker than our measurement system such that the hydraulic system is not capable
of detecting it. Since we fail to observe the rate of velocities, we simply neglect them,
v•
i = 0, in statics. Now the balance of linear momentum reads

−∂σ j i

∂x j
= 0 ,

−σ j i, j = 0 .

(1.7)

We have introduced a shorthand notation for the space differentiation where again
Einstein’s summation convention is applied,

7Rate means a change in time, given by the derivative in time.
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σ j i, j = σ1i,1 + σ2i,2 + σ3i,3 . (1.8)

For the sake of clarity, we rewrite the three equations:

−σ j1, j = 0 , −σ j2, j = 0 , −σ j3, j = 0 . (1.9)

With three equations we will compute the three components of the primitive variable
in space:

ui =
⎛
⎝
u1(x j )

u2(x j )

u3(x j )

⎞
⎠ , (1.10)

since the deformation is instantaneous we cannot speak of time. In order to solve
ui we need differential equations in or field equations of ui . For obtaining field
equations, we need to discuss the second step and set σi j in relation to ui .

Step II: Constitutive equations

We present a material or constitutive equation connecting Cauchy stress, σi j , with
the primitive variable, ui . Displacement of a particle is intuitive. It is the motion from
the initial position (before loading) to the current position (after loading). Displace-
ment gradient, i.e., neighboring particles having different displacements, creates a
tension in the matter, called stress. We need to relate the stress to displacement gradi-
ent by means of a constitutive equation. For the moment we just state that the stress
tensor is symmetric, σi j = σ j i . The reason behind this assumption will be discussed
later. Since the stress tensor is symmetric we also want to use the symmetric part of
the displacement gradient:

εi j = u(i, j) = ∂u(i

∂x j)
= 1

2

(∂ui
∂x j

+ ∂u j

∂xi

)
= 1

2

(
ui, j + u j,i

)
, (1.11)

which we call the strain tensor. It is also called the kinematic condition. This strain
measure is linear and appropriate for small displacements. Linear elasticity is mod-
eled by the constitutive relation between the stress and strain, referred to asHooke’s
law:8

σi j = Ci jklεkl , (1.12)

with the elasticity or stiffness tensor of rank four (four indices), Ci jkl . In three-
dimensional space four indices make 3 × 3 × 3 × 3 = 81 components for Ci jkl .
In one-dimensional case, for example in a one-axial tensile testing, the relation
simply reads σ11 = Eε11, where the elasticity or Young’s modulus, E , is the

8The law is named after Robert Hooke.
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only component, C1111, of the stiffness tensor. For a three-dimensional structure
we need all components of the stiffness tensor—they shall be determined exper-
imentally. It is quite difficult to construct 81 different experiments for determin-
ing the material parameters. Fortunately, this number gets reduced. The Cauchy

stress tensor is symmetric, σi j = σ j i , and it is related to the symmetric strain
tensor, εi j = ε j i . Therefore, reduction of the number of experiments is possible.
Since σi j = Ci jklεkl = σ j i = C jiklεkl and εkl = (Ci jkl)

−1σi j = εlk = (Ci jlk)
−1σi j it

is obvious that Ci jkl = C jikl and Ci jkl = Ci jlk . In each block of “i j” or “kl” we have
6 independent parameters. Hence, we can rewrite the stiffness tensor of rank four in
a 6 × 6 matrix, known as the Voigt notation:9

CI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.13)

where I and J run from 1 to 6. This matrix is just an ordered list without any
tensorial character. Tensors are objects with the same transformation properties as
the coordinate frame transformations, thus they are reliable for constructing material
relations. When the material response is defined with tensors and it holds in one
coordinate system; then it holds in any coordinate system. Here we have introduced
Voigt notation just for an easier notation of a rank four tensor. In the computation we
use the tensor notation. By employing symmetric stress and strain, we have reduced
the number of different components to 36.

We will reduce the number furthermore by explaining the meaning of linear in
linear elasticity. First we need to give the definition of work. As a consequence of
a loading on the surface of the continuum body, ∂B, there occurs a displacement,
ui , in the unit of length. By multiplying it with the force, Fi , directed toward the
displacement direction gives the work done in the system,

W = Fiui =
∫

∂B

uidFi =
∫

∂B

ui tidA ,

dim (W )=̂J(oule) , dim (ti )=̂N(ewton)/m(eter)2 ,

(1.14)

where the traction vector ti is an area density of the force. Using the Cauchy tetra-
hedron argument, it is possible to change the traction vector to the stress tensor,
ti = n jσ j i , where n j is the plane normal on the surface ∂B directed outward the
body. By using the tetrahedron argument we can transform the surface integral into
a volume integral with the help of Gauss’s law10

9It is named after Woldemar Voigt.
10The law is named after Carl Friedrich Gauß.



1.1 Linear Elastostatics 7

W =
∫

∂B

ui tidA =
∫

∂B

uin jσ j idA =
∫
B

∂(σ j i ui )

∂x j
dV =

=
∫
B

(
∂σ j i

∂x j
ui + σ j i

∂ui
∂x j

)
dV =

∫
B

wdV , dim (w)=̂J/m3 .

(1.15)

The first integrand vanishes owing to the balance of linear momentum, the work or
energy density (energy per volume) reads

w = σ j i ui, j . (1.16)

Any tensor of rank two, thus the displacement gradient can be decomposed into a
symmetric and an antisymmetric part:

u(i, j) = 1

2

(
ui, j + u j,i

)
, u[i, j] = 1

2

(
ui, j − u j,i

)
,

ui, j = u(i, j) + u[i, j] .

(1.17)

Since the Cauchy stress is symmetric, σ j i = σi j , its contraction with the antisym-
metric part of the displacement gradient vanishes

σ j i u[i, j] = 1

2

(
σ j i ui, j − σ j i u j,i

) = 1

2

(
σi j ui, j − σ j i u j,i

) = 0 . (1.18)

This fact allows us to rewrite the energy density,

w = σ j i ui, j = σ j i
(
u(i, j) + u[i, j]

) = σ j i u(i, j) = σ j iεi j ,

dim (σ j iεi j )=̂N/m2 × m/m = N m/m3 = J/m3 .
(1.19)

Suppose we have a monotonic strain, for example in a tensile test, the machine is
steered by the displacement. Then the energy density, w, can be calculated w =∫

σ j idεi j . In a one-dimensional tensile test, this integral is the area underneath the
curve on xy-plot with strain on abscissa and stress on ordinate. Now consider another
tensile test where force is controlled such that the energy density is w∗ = ∫

εi jdσ j i .
This integral is the area underneath the curve on xy-plot with stress on abscissa and
strain on ordinate. When the curve is a straight line, then w = w∗, and the material
response is linear. The linear relation between stress and strain is given by a material
parameter, called modulus. The components of stiffness tensor, moduli, are constant
numbers, they are not functions of strain. SinceCi jkl consists of constants, we obtain

w =
∫

σ j idεi j =
∫

C jikldεi j = C jikl

∫
εkldεi j ,

w∗ =
∫

εi jdσ j i =
∫

εi jd
(
C jiklεkl

)
= C jikl

∫
εi jdεkl = Ckl ji

∫
εkldεi j ,

(1.20)
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hence for linear elastic materials, the energy density is

w = w∗ ⇒ C jikl = Ckl ji . (1.21)

In the Voigt notation, this condition generates a symmetric stiffness matrix:

CI J = CJ I =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

symm. C1313 C1312

C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.22)

The number of different (independent) components, simply the number of material
parameters in the stiffness tensor is reduced to 21 for the case of linear elasticity in
three-dimensions.

Many engineeringmaterials consist of a crystalline structure. This structure brings
additional symmetries, which reduce the number of independent parameters further.
For the case of no symmetries—the full group of anisotropic material—21 different
moduli need to be determined. There are more than thirty different crystal classes
and their symmetries are inspected under group theory calculations.11 For the case
of isotropic material, the number of different material parameters is only two, the
Lame parameters,12 λ, μ. The stiffness matrix of linear elastic isotropic material in
the Voigt notation:

CI J = CJ I =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ + 2μ λ λ 0 0 0
λ + 2μ λ 0 0 0

λ + 2μ 0 0 0
μ 0 0

symm. μ 0
μ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.23)

can also be written in the tensor notation (expressed in Cartesian coordinates)

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk) . (1.24)

Hence the Cauchy stress for linear elastic isotropic materials, like steel, aluminum,
magnesium reads

σi j = Ci jklεkl = λεkkδi j + 2μεi j , (1.25)

11For a clear treatment of all the classes you can refer to the lessons of Bernhard J. Wuensch
in MIT freely available under: http://www.academicearth.org/courses/symmetry-structure-and-
tensor-properties-of-materials
12They are named after Gabriel Lamé.

http://www.academicearth.org/courses/symmetry-structure-and-tensor-properties-of-materials
http://www.academicearth.org/courses/symmetry-structure-and-tensor-properties-of-materials
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where we have used
εklδkl = εkk = ε11 + ε22 + ε33 . (1.26)

The constant parameters, λ and μ, can be expressed in terms of the widely known
engineering parameters:

λ = Eν

(1 + ν)(1 − 2ν)
= 2Gν

(1 − 2ν)
= (E − 2G)G

3G − E
,

μ = E

2(1 + ν)
= G ,

(1.27)

this notation ismoreuseful sinceYoung’smodulus13 E , shearmodulusG,Poisson’s
ratio14 ν can all be determined by appropriate measurements.

Step III: Weak form

The balance of linear momentum in Eq. (1.7) is augmented by the constitutive
(material) Eq. (1.25) for a linear elastic and isotropic material. We sum up the gov-
erning equations for linear elastostatics

−σ j i,j = 0 , σ j i = λεkkδ j i + 2μεj i , εi j = u(i, j) . (1.28)

This field equation needs to be satisfied for all particles within the continuum body,
∀xk ∈ B. Additionally, for particles on boundaries, ∀xk ∈ ∂B, we need to define the
boundary conditions:

ui
∣∣
xk

= ûi , ∀xk ∈ ∂BD ,

n jσ j i

∣∣
xk

= t̂i , ∀xk ∈ ∂BN .
(1.29)

For the so-called Dirichlet boundary condition,15 the displacement on ∂BD is
given, ûi . Analogously, for the so-called Neumann boundary condition,16 the trac-
tion vector on ∂BN is given, t̂i . We have to define the whole boundary by using the
boundary conditions. In this section we assume that the Dirichlet and Neumann

boundaries are disjunct, ∂BD ∩ ∂BN = ∅, and they compile the whole boundary,
∂BD ∪ ∂BN = ∂B. In other words, a particle on the boundary belongs either to a
Dirichlet or to a Neumann condition. This condition is just necessary to under-
stand the example better, it is by no means necessary for the variational formulation

13It is named after Thomas Young.
14It is named for Siméon Denis Poisson.
15It is named after Peter Gustav Lejeune Dirichlet.
16It is named for Carl Gottfried Neumann.



10 1 Mechanics

below. We will complement Eq. (1.28) with Eqs. (1.29) in order to obtain the weak
form necessary for the finite element method. This method is a numerical approxi-
mation to the solution, where the residual equation is weighted by multiplying by a
test function, δui . The variational notation δ will be explored later. For the moment,
δui is an arbitrary function that can be varied. We multiply the residual by the test
function globally (in the whole computational domain, i.e., the continuum body B)
as follows

−
∫
B

σ j i, j δuidV = 0 , (1.30)

in Cartesian coordinates. The volume element,17 dV , is

dV = dx1dx2dx3 . (1.31)

Since the solution on the Dirichlet boundary is known, i.e., the exact values of the
displacement is given on the Dirichlet boundary, we skip the computation of the
displacement on the Dirichlet boundary. Usually, this fact is motivated mathemat-
ically that the test function vanishes on the Dirichlet boundary. The Dirichlet

boundaries are implemented directly such that they are never presented in the vari-
ational formulation. The Neumann boundary condition has to be satisfied, too. We
cannot apply it directly. In order to incorporate the Neumann boundary, we use
integration by parts for tensors: First, we employ the product rule

∫
B

(σ j i δui ), jdV =
∫
B

σ j i, j δuidV +
∫
B

σ j i δui, jdV , (1.32)

secondly, we apply Gauss’s (or Gauss–Ostrogradskiy’s) theorem18

∫
B

(σ j i δui ), jdV =
∮

∂B

n jσ j i δuidA , (1.33)

where
∮
denotes thewhole boundary. This notation is actually not necessary sincewe

impose the integration over the whole boundary by writing the integration domain as
∂B = ∂BD ∪ ∂BN.Wewill mostly omit

∮
and use

∫
instead. The following equation

deduced from above is also called Green’s identity19

−
∫
B

σ j i, j δuidV =
∫
B

σ j i δui, jdV −
∫

∂B

n jσ j i δuidA . (1.34)

17Mathematicians use the notation dx = dx1dx2dx3 for a three-dimensional volume element in
space x = (x1, x2, x3), in order to generalize this to dx = dx1dx2 . . . dxn for an n-dimensional
volume element in space x = (x1, x2, . . . xn). Also for the area element they use ds by referring to
surface element. This notation is also used in the code that we will employ.
18The theorem is named after Carl Friedrich Gauß and Mikhail Vesilyevic Ostrogradskiy.
19It is named after George Green.
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Fig. 1.1 Deformations, scaled 100 times, colors denote the magnitude of the displacement field

On theDirichlet boundarywe know the displacement such that δui
∣∣
∂BD

= 0 results
in

0 = −
∫
B

σ j i, j δuidV =
∫
B

σ j i δui, jdV −
∫

∂BN

n jσ j i δuidA . (1.35)

Now by recalling the boundary condition in Eq. (1.29)2, we obtain

∫
B

σ j i δui, jdV =
∫

∂BN

t̂i δuidA , (1.36)

where the stress tensor is defined by the constitutive equation as given in Eq. (1.25).
The latter integral form is called a weak form since we have reduced the necessary
continuity of displacements by interchanging σ j i, j with σ j i in the formulation. The
weak form can be discretized by using Galerkin’s method,20 where the test func-
tions δui are chosen in the same vector space as the solution function, ui . We apply
Galerkin’s method with linear continuous elements and solve directly by employ-
ing the Gauss elimination method21 (LU for lower/upper decomposition). The code
is written in Python by using Unified Form Language developed under the FEniCS
project. After the code has run, we visualize the displacements with ParaView.22

We use a simple geometry, a rectangular beam of length � clamped on one side and
loaded on the other side. The deformed structure can be depicted in Fig. 1.1 and its
code is given below.

20The method is named after Boris Grigoryevich Galerkin.
21It is named after Carl Friedrich Gauß.
22See [17].
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1 Computational reality 01, elastostatics beam deflection under
mechanical loading2

3 au th o r = ”B. Emek Abal i ”
4 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
5 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
6
7 # imp o r t a l l p a c k a g e s f r om f e n i c s i n t o c a c h e
8 from f e n i c s import
9 # g e ome t r y i s a 3D box , l o o k s l i k e a beam , w i t h 15 x 15x 75

→ e l e m e n t s i n x , y , z
10 x length =500.0 #i n mm
11 y length =100.0 #i n mm
12 z l ength =100.0 #i n mm
13 mesh = BoxMesh ( Point (0 , 0 , 0) , Point ( x length , y length ,

→ z l ength ) , 50 , 10 , 10)
14 # v e c t o r s p a c e w i t h p o l y n o m i a l d e g r e e 1
15 V = VectorFunctionSpace (mesh , P , 1)
16 # e l e m e n t s u r f a c e s , f a c e t s a r e 2D s u r f a c e s f o r 3D c e l l s
17 # o r t h e y a r e 1D l i n e b o u n d a r i e s f o r 2D e l e m e n t s ( c e l l s )
18 # o r t h e y a r e t h e e d g e s o f 1D e l e m e n t s ( c e l l s )
19 c e l l s = Cel lFunct ion ( s i z e t , mesh )
20 f a c e t s = FacetFunction ( s i z e t , mesh )
21 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
22 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
23
24 # s e a r c h f o r doma in s on t h e s u r f a c e f o r c l amp i n g and l o a d i n g
25 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0) && on boundary )
26 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ength ) && on boundary

→ , l ength=xlength )
27 # mark i ng t h e p a r t s o f t h e s u r f a c e
28 f a c e t s . s e t a l l ( 0 )
29 # i n t e g r a t i n g o v e r dA ( 1 ) s h a l l mean a s u r f a c e i n t e g r a l
30 # o v e r t h e domain r i g h t
31 r i gh t . mark ( f a c e t s , 1)
32 # t r a c t i o n v e c t o r
33 t r = Expres s ion ( ( A+ B x [ 1 ] + C x [ 2 ] , 0 . 0 , 0 . 0 ) , A=2.0 , B

→ =0.5 , C=0.5) #i n MPa
34 # a z e r o f o r t h e l e f t c l amp ed i n t h e w a l l
35 nu l l = Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) )
36 # s t a t i n g t h e D i r i c h l e t b ound a r y v a l u e s
37 # th e y w i l l be a p p l i e d a f t e r t h e a s s em b l y
38 bc = [ DirichletBC (V, nu l l , l e f t ) ]
39 # d e f i n i t i o n f o r t h e v a r i a t i o n a l f o r m u l a t i o n
40 u = Tria lFunct ion (V)
41 de l u = TestFunction (V)
42
43 # m a t e r i a l p a r am e t e r s o f an AIS I s t e e l
44 nu = 0.3
45 E = 210000.0 #i n MPa
46 G = E/(2 .0 (1 .0+ nu) )
47 # Lame p a r a m e t e r s
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48 l a = 2 .0 G nu / ( 1 . 0 − 2 . 0 nu )
49 mu = G
50 # K ro n e c k e r d e l t a i n 3D
51 de l ta = Id en t i t y (3)
52 i , j , k = i n d i c e s (3 )
53 # s t r a i n t e n s o r
54 eps = as t en s o r ( 1 . 0 / 2 . 0 ( u [ i ] . dx ( j )+u [ j ] . dx ( i ) ) , ( i , j ) )
55 # Cauchy s t r e s s t e n s o r
56 sigma = as t en s o r ( l a eps [ k , k ] d e l t a [ i , j ]+2.0 mu eps [ i , j ] , ( i

→ , j ) )
57 # V a r i a t i o n a l f o rm
58 a = sigma [ j , i ] d e l u [ i ] . dx ( j ) dV
59 L = t r [ i ] d e l u [ i ] dA(1)
60 di sp = Function (V)
61 s o l v e ( a ==L , disp , bcs=bc )
62 # w r i t e ou t
63 f i l e = F i l e ( / c a l c u l /CR01/ CR01 e l a s t o s t a t i c s . pvd )
64 f i l e << di sp
65 # g e t t h e v a l u e o f d e f l e c t i o n on t h e t i p
66 print t i p d e f l e c t i o n reads , d i sp ( xlength , y l ength /2 . 0 ,

→ z l ength /2 . 0 ) [ 2 ]

To-do

Get a pen and paper and redo the steps for integration by parts for tensors. Try to
rewrite the code in Python and change the loading conditions in order to implement a
tensile loading. Then apply a torque on the tip. Finally, apply a shearing force on the
tip. Now get a technical handbook of mechanics and find for a simple beam, called
a Bernoulli beam, the analytical solution with the beam theory for the case of a
shear loading on the tip. Try to find convenient answers for the following questions:

• Compute the deflection, u3, on the tip, x1 = �, and determine the accuracy of the
numerical solution by comparing it to the analytical solution.

• Try to change the number of elements by increasing and decreasing them; how
does the numerical solution change?

• Is the geometry chosen in the code appropriate for the beam theory? The
Bernoulli beam is slender, what is the ratio of length to thickness for a slender
beam.

• We compute in a three-dimensional continuum; however, the beam theory is only
one-dimensional. Whichmaterial parameter is excluded in the analytical solution?

Moreover, try to implement the following code and obtain the same results:
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1 import numpy
2 def VoigtToTensor (A) :
3 A11 , A12 , A13 , A14 , A15 , A16 = A[ 0 , 0 ] , A[ 0 , 1 ] , A[ 0 , 2 ] , A

→ [ 0 , 3 ] , A[ 0 , 4 ] , A[ 0 , 5 ]
4 A22 , A23 , A24 , A25 , A26 = A[ 1 , 1 ] , A[ 1 , 2 ] , A[ 1 , 3 ] , A[ 1 , 4 ] ,

→ A[ 1 , 5 ]
5 A33 , A34 , A35 , A36 = A[ 2 , 2 ] , A[ 2 , 3 ] , A[ 2 , 4 ] , A[ 2 , 5 ]
6 A44 , A45 , A46 = A[ 3 , 3 ] , A[ 3 , 4 ] , A[ 3 , 5 ]
7 A55 , A56 = A[ 4 , 4 ] , A[ 4 , 5 ]
8 A66 = A[ 5 , 5 ]
9 A21 , A31 , A41 , A51 , A61 = A12 , A13 , A14 , A15 , A16

10 A32 , A42 , A52 , A62 = A23 , A24 , A25 , A26
11 A43 , A53 , A63 = A34 , A35 , A36
12 A54 , A64 = A45 , A46
13 A65 = A56
14 return a s t en s o r ( [ \
15 [ \
16 [ [ A11 , A16 , A15 ] , [ A16 , A12 , A14 ] , [ A15 ,A14 ,A13 ] ] , \
17 [ [ A61 , A66 , A65 ] , [ A66 , A62 , A64 ] , [ A65 ,A64 ,A63 ] ] , \
18 [ [ A51 , A56 , A55 ] , [ A56 , A52 , A54 ] , [ A55 ,A54 ,A53 ] ] \
19 ] , [ \
20 [ [ A61 , A66 , A65 ] , [ A66 , A62 , A64 ] , [ A65 ,A64 ,A63 ] ] , \
21 [ [ A21 , A26 , A25 ] , [ A26 , A22 , A24 ] , [ A25 ,A24 ,A23 ] ] , \
22 [ [ A41 , A46 , A45 ] , [ A46 , A42 , A44 ] , [ A45 ,A44 ,A43 ] ] \
23 ] , [ \
24 [ [ A51 , A56 , A55 ] , [ A56 , A52 , A54 ] , [ A55 ,A54 ,A53 ] ] , \
25 [ [ A41 , A46 , A45 ] , [ A46 , A42 , A44 ] , [ A45 ,A44 ,A43 ] ] , \
26 [ [ A31 , A36 , A35 ] , [ A36 , A32 , A34 ] , [ A35 ,A34 ,A33 ] ] ] \
27 ] )
28
29 C voigt = numpy. array ( [ \
30 [ l a +2. mu, la , la , 0 , 0 , 0 ] , \
31 [ la , l a +2. mu, la , 0 , 0 , 0 ] , \
32 [ la , la , l a +2. mu, 0 , 0 , 0 ] , \
33 [ 0 , 0 , 0 , mu, 0 , 0 ] , \
34 [ 0 , 0 , 0 , 0 , mu, 0 ] , \
35 [ 0 , 0 , 0 , 0 , 0 , mu] ] )
36 C = VoigtToTensor ( C voigt )
37 eps = as t en s o r ( 1 . 0 / 2 . 0 ( u [ i ] . dx ( j )+u [ j ] . dx ( i ) ) , ( i , j ) )
38 sigma = as t en s o r (C[ i , j , k , l ] eps [ k , l ] , ( i , j ) )

Since the stress is coded by using the Voigt notation, we can easily implement an
anisotropic material. Copper is a cubic material with the following parameters in
GPa:

CI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

169.1 122.2 122.2 0 0 0
169.1 122.2 0 0 0

169.1 0 0 0
75.4 0 0

symm. 75.4 0
75.4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.37)
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Try to find out the crystal structure of a cubic material. The above parameters are
valid when the coordinate system is along the material axis. Solve a bending beam
out of a one-crystal copper material with the given material parameters.

1.2 Nonlinear Elastostatics

The linear elastostatics is accurate for small deformations. This assumption has been
incorporated in Sect. 1.1 into “Step II” by using a linear strain measure and a linear
constitutive equation. The first one; the linear strain measure simplification can be
improved by choosing a nonlinear strain measure that is referred to as a geometric
nonlinearity. The latter assumption; the linear constitutive equation can be changed to
a nonlinear material equation that is called amaterial nonlinearity. In this section we
will amend the simulation by generalizing our model for structures with a geometric
nonlinearity. This generalization is necessary for deformations of the same order
as geometric dimensions, in other words, for deformations that we can observe by
a visual inspection. For structures like plates, which have a small size in one of
dimensions, such large deformations occur. For their accurate computation we need
to include the geometric nonlinearity in modeling.

Thegoal is to compute the deformationof eachparticle belonging to the continuum
body. We can visualize the deformation as a change from a body of shape B0 at
initial time, t0, to a body of shape B at current time, t . The (initial) shape B0 is
known such that we can identify the particles with their positions at t0 expressed in
Cartesian coordinates. The initial positions of particles, Xi , are used to define the
motion of particles, i.e., the sought-after displacement is a function of particles and
time, ui (X j , t). The primitive variable is again the displacement field satisfying the
balance of linear momentum in the current continuum body B at t , written in the
global form (∫

B

ρvidv

)•

=
∫

∂B

σ j i n jda +
∫
B

ρ fidv , (1.38)

where ρ, σi j , and fi stand for mass density, Cauchy (symmetric) stress tensor,
and body force, respectively. Caused by the displacement ui , the material particles
(identified by their initial positions) Xi move to their current positions xi . For the
same quantity (position) we use a capital letter Xi at t0 and a small letter xi at t .
Therefore, we obtain

xi = Xi + ui . (1.39)

Next we introduce a concept of invariance. In order to identify or observe a physical
quantity, we need a coordinate system. We simply choose Cartesian coordinates.23

23In analytical mechanics the choice of the coordinate system is of importance. In a particular
coordinate system the analytical solution might be much easier than in another coordinate system.
In numerical mechanics this is very rarely the case, so we simply select Cartesian coordinates.
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The orientation of axes is completely arbitrary. However, the coordinates of a partic-
ular position depend on the chosen axes, in other words, the description of a position
depends on the coordinate system, we call that frame dependence. By using two
coordinate systems, we can express the same position with respect to these two sys-
tems; the numerical values of position coordinates vary in different frames.24 It is
beneficial to use a quantity that is invariant under a frame change. Length is such a
quantity. Suppose we have a deformable structure and a small rubber band of length
dS attached to the system. It can be glued on the surface of the structure such that
the deformation of the structure is mimicked by the rubber band—this idea is used
in strain gauges. We measure the rubber band before the loading, dS, and also after-
wards, ds. Indeed, this measurement is invariant and frame independent, thus, we
have no necessity to introduce a coordinate system for the length measurement itself.

For the numerical treatise we have a (Cartesian) coordinate system, in which we
realize a length measurement. Suppose that we mark two neighboring particles and
draw an arrowbetween them.Before the deformation, at t0, the arrowor vector is dXi .
This vector changes to dxi at t after the deformation. Both vectors, dXi and dxi , are
expressed in the same coordinate system. The length of this vector corresponds to the
length of the rubber band since the rubber band is (infinitesimally) small by having
chosen neighboring elements. In order to express this fact, we use the differential
“d” in front of the length dS at t0 and ds at t . The length can be calculated, either by
means of the vector at the current time

(ds)2 = ∂s

∂xi
dxi

∂s

∂x j
dx j = gi jdxidx j ,

(dS)2 = ∂S

∂xi
dxi

∂S

∂x j
dx j = ci jdxidx j ,

(1.40)

or with respect to the vector at the initial time

(ds)2 = ∂s

∂Xi
dXi

∂s

∂X j
dX j = Ci jdXidX j ,

(dS)2 = ∂S

∂Xi
dXi

∂S

∂X j
dX j = Gi jdXidX j .

(1.41)

The difference between them denotes the length change and is the measure of
stretching,

(dl)2 = (ds)2 − (dS)2 . (1.42)

24There is a small difference between a coordinate system and a frame. A frame is only the observer
in any coordinate system. Of course, in order to define physical quantities, the observer uses a
coordinate system in its frame. We use them together in a sense that we immediately append a
coordinate system to the frame.
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We can express this measure either at the current time

(dl)2 =
(
gi j − ci j

)
dxidx j , (1.43)

or at the initial time

(dl)2 =
(
Ci j − Gi j

)
dXidX j . (1.44)

The deformation tensors, gi j , ci j , Ci j , Gi j , represent the state of the continuum body
with respect to the initial vector, dXi , or with respect to the current vector, dxi .
Between these vectors we find a mapping25 as follows

dxi = ∂xi
∂X j

dX j , Fi j = ∂xi
∂X j

, (1.45)

where Fi j is called the deformation gradient. Analogously, we obtain

dXi = ∂Xi

∂x j
dx j , (F−1)i j = ∂Xi

∂x j
. (1.46)

Obviously, F and F−1 are inverse leading to

Fi j (F−1) jk = ∂xi
∂X j

∂X j

∂xk
= ∂xi

∂xk
= δik . (1.47)

We can comprehend the stretching or deformation in two different manifestations,
as in Eq. (1.43) or in Eq. (1.44). Both have the same information but lead to different
formulations. We demonstrate both in the following.

One possibility is to present the deformation with respect to the current vector,
dxi . One of the marked particles possesses the coordinates, xi , at the present time, t .
Since the marked particles are infinitesimally close to each other, it is not important
which particle’s coordinates we choose. It is important to recall that we choose
the coordinates at the present time. Thus, this manifestation is configured with the
current coordinates such that it is referred to as a current or present frame. The
distance vector after the deformation, dxi , is defined in the current frame. However,
the distance vector before the deformation, dXi , needs to be rewritten. We utilize
Eqs. (1.40) in the current frame,

(ds)2 = dxidxi = δi jdxidx j

⇒ gi j = δi j ,
(1.48)

25This mapping is according to the tensor transformation rules, as we will see it in Sect. 1.4
on p. 34.
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as well as

(dS)2 = dXkdXk = ∂Xk

∂xi
dxi

∂Xk

∂x j
dx j

⇒ ci j = ∂Xk

∂xi

∂Xk

∂x j
= (F−1)ki (F−1)k j .

(1.49)

Therefore, the length measure in Eq. (1.43) becomes

(dl)2 =
(
gi j − ci j

)
dxidx j =

(
δi j − (F−1)ki (F−1)k j

)
dxidx j . (1.50)

In the current frame the displacement gradient reads

ui (xk, t) = xi − Xi (xk, t)
∣∣∣ ∂

∂xk
,

∂ui
∂xk

= δik − (F−1)ik .

(1.51)

We introduce the left Cauchy–Green deformation tensor Bi j and its inverse
(B−1) j i , which is also called Finger–Hencky deformation tensor,26 as follows

Bi j = ∂xi
∂Xk

∂x j

∂Xk
= Fik Fjk = F FT ,

(B−1) j i = ∂Xk

∂xi

∂Xk

∂x j
= (F−1)ki (F−1)k j = F−T F−1 .

(1.52)

Now the Euler–Almansi or Hamel’s strain27 tensor ei j is introduced

(B−1) j i = ∂Xk(xl , t)

∂xi

∂Xk(xl , t)

∂x j
=

= ∂

∂xi

(
xk − uk(xl , t)

)
∂

∂x j

(
xk − uk(xl , t)

)
=

=
(

δki − ∂uk
∂xi

)(
δk j − ∂uk

∂x j

)
= δ j i − ∂u j

∂xi
− ∂ui

∂x j
+ ∂uk

∂xi

∂uk
∂x j

=
= δi j − 2ei j ,

(1.53)

leading to

ei j = u(i, j) − 1

2
uk,i uk, j , (1.54)

26It is named after Augustin Louis Cauchy, George Green, Josef Finger, and Heinrich Hencky.
27It is named after Leonhard Euler, Emilio Almansi, and Georg Karl Wilhelm Hamel.
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that defines the length change in the current frame

(dl)2 = 2ei jdxidx j . (1.55)

TheEuler–lmansi strain, ei j , is defined bymeans of the current displacement vector
and it is non-linear in displacement gradients, ui, j .

The second possible choice relies on the description by means of the initial frame,
where the description is based on the initial coordinates, Xk . This configuration is
also called a Lagrangean frame. Initial coordinates of particles are known such that
we refer to every single particle uniquely by using its coordinates. The configuration
is also called a reference frame.28 Moreover, it is amaterial system since all particles
are included in the formulation. Before and after deformation, the totality of particles
remains the same, i.e., a closed system. Within a closed or material system, no mass
change applies. In the Lagrangean frame all functions have to depend on Xi . The
distance vector, dxi , has to be transformed from the current to the Lagrangean
frame. By employing Eqs. (1.41) we obtain

(ds)2 = dxkdxk = ∂xk
∂Xi

dXi
∂xk
∂X j

dX j ⇒ Ci j = ∂xk
∂Xi

∂xk
∂X j

= Fki Fkj ,

(dS)2 = dXkdXk = δi jdXidX j ⇒ Gi j = δi j .

(1.56)

Hence, the length measure Eq. (1.43) becomes

(dl)2 =
(
Ci j − Gi j

)
dXidX j =

(
Fki Fkj − δi j

)
dXidX j . (1.57)

In the Lagrangean frame the displacement gradient is expressed as

ui (X j , t) = xi (X j , t) − Xi

∣∣∣ ∂

∂Xk
,

∂ui
∂Xk

= Fik − δik .

(1.58)

The deformation tensor in theLagrangean frame is referred to as the rightCauchy–
Green deformation tensor:

Ci j = ∂xk
∂Xi

∂xk
∂X j

= Fki Fkj = FT F . (1.59)

28The simplest choice is to refer to the particles at the initial time, since we know their initial
positions. The Lagrangean frame has no restrictions of using the initial frame as the reference
frame. Positions of particles at any moment can be chosen as the reference frame. In this work we
will use the initial frame as the reference frame.
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Therefore, the so-called Green–Lagrange strain tensor, Ei j , reads

Ci j = ∂xk
∂Xi

∂xk
∂X j

= ∂

∂Xi

(
uk(Xl, t) + Xk

) ∂

∂X j

(
uk(Xl, t) + Xk

)
=

=
(

∂uk
∂Xi

+ δki

)(
∂uk
∂X j

+ δk j

)
= ∂uk

∂Xi

∂uk
∂X j

+ ∂u j

∂Xi
+ ∂ui

∂X j
+ δi j = 2Ei j + δi j ,

Ei j = 1

2
uk,i uk, j + u(i, j) .

(1.60)
The length change is now in the Lagrangean frame

(dl)2 = 2Ei jdXidX j . (1.61)

Strain tensor is quadratic in displacement gradients, uk,i . Therefore, large displace-
ments can be calculated more accurately than with the linear strain tensor used in
Sect. 1.1.

Wehave seen twodifferent configurations to setup the sameproblem. In the current
frame we have obtained a strain by means of displacement derivatives with respect to
xi . In the initial, reference, or Lagrangean frame, however, strain is displacement
gradients in Xi . In both configurations the shorthand comma notation is used with
different meanings. The factors 2 in front of the strains have no particular meaning.

Although both formulations are correct, the Lagrangean frame is used in solid
mechanics owing to its simplicity. The current frame uses the present positions of
particles to define the functions; however, before calculating displacements, ui , we
lack the knowledge of the current positions of particles, xi . Hence, the initial frame
is more beneficial, especially for material systems. We can always switch between
different strain measures by using

Ei j = 1

2

(
Ci j − δi j

) = 1

2

(
Fki Fkj − δi j

)
, (1.62)

such that

Ei j (F−1) jm(F−1)il = 1

2

(
δklδkm − (F−1)im(F−1)il

) = 1

2

(
δlm − (B−1)lm

)
,

Ei j (F−1) jm(F−1)il = elm ,

(1.63)
or equivalently,

Enk = elm Fmk Fln . (1.64)

In this section we use the Lagrangean frame with the Green–Lagrange strain
tensor and solve a deformable solid body in its initial frame.

We define a continuum body at initial time, B0 = B(t0), with the coordinates
expressed in a Cartesian coordinate system, Xi , and want to find its deformed shape
B at t in the Lagrangean frame, i.e., we search for the displacement field, ui (X j , t).
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In the Lagrangean frame we use the Green–Lagrange strain tensor, Ei j . The
balance equations are given in the current frame; we will transform them from the
current to the initial frame in the following. We postpone the derivation of these
identities29 to Sect. 1.4 on p. 34 and transform the volume and area elements in the
current frame, dv, da, as follows

dv = det
( ∂xi
∂X j

)
dV = JdV ,

n jda =
( ∂x j

∂Xk

)−1
J NkdA = J (F−1)k j NkdA ,

(1.65)

where dV and dA are the volume and area elements in the initial frame. Plane normal
in the current frame, ni , and plane normal in the reference frame, Ni , are both of
length 1, but they point to different directions.30 The Jacobi determinant,31 J , is the
volume contraction; if the initial mass density ρ0 is given, the current mass density
can be determined by ρ = ρ0/J , which is the balance of mass in the initial frame.
We postpone its derivation to Sect. 1.4 on p. 34, by using ρ = ρ0 J we will satisfy the
mass balance in the initial frame. The balance of momentum is given in the current
frame (∫

B

ρvidv

)•

=
∫

∂B

σ j i n jda +
∫
B

ρ fidv , (1.66)

so we transform it from the current to the initial frame by inserting the transformation
of volume and area elements

( ∫
B0

ρvi JdV

)•

=
∫

∂B0

σ j i (F−1)k j J NkdA +
∫
B0

ρ fi JdV . (1.67)

The numerical values of velocities vi as functions in the current frame (xk, t) are
equivalent to the numerical values of vi as functions in the initial frame (Xk, t). For
the sake of a simplified notation we define a so-called nominal stress:32

Pki = (F−1)k jσ j i J , (1.68)

29An identity is just an equation being true for any chosen arguments, here the left side is equal to
the right side in every coordinates.
30Plane normals have no units, they just show the directions. Hence, it is also useful to write
nida = dai or analogously NidA = dAi .
31It is named after Carl Gustav Jacob Jacobi.
32There are many names for this stress in the literature: Piola’s stress named after Gabrio Piola,
the first Piola–Kirchhoff stress, named after Gabrio Piola and Gustav Robert Kirchhoff, nominal
stress, and engineering stress are the most prominent names. Some textbooks distinguish between
nominal and Piola’s stresses and use Piola’s stress as the transpose of the nominal stress as
introduced as in this book.
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which is not symmetric, while the deformation gradient, Fi j , does not have to be
symmetric. However, the strain tensor is symmetric such that it is difficult to relate
the nominal stress to the strain tensor.33 This inconvenience can be rectified by
introducing the second Piola–Kirchhoff stress tensor:

Skl = (F−1)li Pki = (F−1)k j (F−1)liσ j i J , (1.69)

which is obviously symmetric. The St.Venant–Kirchhoff constitutivemodel34 for
isotropic, linear elasticmaterials gives a tensor-linear relation between the symmetric
stress and the symmetric strain

Si j = Ci jkl Ekl , Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk ,

Si j = λEkkδi j + 2μEi j .
(1.70)

The Lame parameters, λ, μ, have the same values as in Sect. 1.1. The linear con-
stitutive equation is the reason, why the formulation is limited to applications with
small strains—we will amend the formulation for material nonlinearities in Sect. 1.3
on p. 26. The strain measure is itself nonlinear, so the model is valid under large
deformations, in other words, geometric nonlinearities are captured accurately.

Now we use the balance of mass, ρ0 = Jρ, in Eq. (1.67)2 and obtain the balance
of linear momentum in the initial frame:

(∫
B0

ρ0vidV

)•

=
∫

∂B0

Pki NkdA +
∫
B0

ρ0 fidV ,

∫
B0

ρ0v
•
idV =

∫
∂B0

Pki NkdA +
∫
B0

ρ0 fidV ,

(1.71)

where we have used the fact that the initial mass density as well as the initial vol-
ume element remains constant in time, ρ•

0 = 0, (dV )• = 0. After utilizing Gauss’s
theorem we acquire the local form

∫
B0

ρ0v
•
idV =

∫
B0

∂Pki
∂Xk

dV +
∫
B0

ρ0 fidV ,

ρ0v
•
i = ∂Pki

∂Xk
+ ρ0 fi ,

ρ0v
•
i − ∂Pki

∂Xk
− ρ0 fi = 0 .

(1.72)

33Although we skip a discussion about the objectivity, the transformation properties of the strain
and nominal stress are different. It is easier to construct constitutive equations between terms with
equal transformation properties.
34It is named after Adhémar Jean Claude Barré de Saint-Venant and Gustav Robert Kirchhoff.
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The rate of velocity, v•
i , is ignored in statics as aforementioned in Sect. 1.1.Moreover,

we neglect the effect of gravity and obtain the balance of linear momentum in the
Lagrangean frame:

−∂Pki
∂Xk

= 0 , (1.73)

where this equation is also called the equilibrium condition in statics. Obviously, the
differential equation is of same type as in Eq. (1.28). Once againwe use the simplified
notation

−Pki,k = 0 , (1.74)

where comma denotes a (partial) derivative with respect to X in the Lagrangean
frame. For the variational formulation we multiply by a test function, δui , and obtain
after an integration by parts the weak form:

−
∫
B0

Pki,k δuidV = 0 ,

∫
B0

Pki δui,kdV −
∫

∂BN
0

t̂i δuidA = 0 ,

(1.75)

where the traction vector, t̂i = N j Pji , is given on theNeumann boundaries, denoted
by ∂BN

0 . In order to sum up: the nominal stress reads

Pki = Fi j Sk j , Skj = λEllδk j + 2μEkj ,

Ekj = 1

2

(
Ckj − δk j

)
, Ckj = Fik Fi j , Fi j = ui, j + δi j .

(1.76)

Since the strain tensor is quadratic in ui, j the weak form is nonlinear. Therefore,
we need to linearize and solve the equation. We postpone the theoretical treatise
to Sect. 1.8 on p. 86 and apply the Newton–Raphson linearization method.35 It is
fully automatized in FEniCS and we only need to utilize the code with the following
nonlinear form:

Form =
∫
B0

Pki δui,kdV −
∫

∂BN
0

t̂i δuidA . (1.77)

Consider a thin plate of engineering steel with the dimensions of 100 × 50 × 11mm.
We model the plate as a three-dimensional continuum body. A mechanical loading
is applied by using the traction vector, t̂i , on top of the plate within a circle of 10mm
radius. Itsmagnitude is 200MPa and loads the plate in thickness direction. Therefore,
the deformation is large and can be seen by the naked eye (without any scaling) in
Fig. 1.2. This large deformation results in high equivalent stresses. The code below
is used to compute the deformation with geometric nonlinearities.

35It is named for Isaac Newton and Joseph Raphson.
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geometric nonlinearities
au th o r = ”B. Emek Abal i ”
l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”

#Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,
→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l

from f e n i c s import
x length =100.0 #i n mm
y length =50.0
z l ength =1.0
#o r i g i n i s i n t h e m i d d l e o f t h e p l a t e
mesh = BoxMesh ( Point (0 , 0 , 0 ) , Point ( x length , y length , z l ength ) ,

→ 100 , 50 , 1)
V = VectorFunctionSpace (mesh , P , 1)
c e l l s = Cel lFunct ion ( s i z e t , mesh )
f a c e t s = FacetFunction ( s i z e t , mesh )
dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
top = CompiledSubDomain ( pow(x [0] −X,2 )+pow(x [1] −Y, 2 )<pow

→ ( 10 . 0 , 2 ) && near ( x [ 2 ] , l ) && on boundary ,X=xlength /4 . ,
→ Y=ylength /3 . , l=z l ength )

f a c e t s . s e t a l l ( 0 )
top . mark ( f a c e t s , 1)
t r = Constant ( ( 0 . 0 , 0 . 0 , 2 0 0 . 0 ) ) # MPa
nu l l = Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) )
bc1=DirichletBC (V, nu l l , l e f t )
bc2=DirichletBC (V, nu l l , r i gh t )
bc = [ bc1 , bc2 ]
# d e f i n i t i o n f o r t h e v a r i a t i o n a l f o r m u l a t i o n f o r a n o n l i n e a r

→ f o rm
du = Tria lFunct ion (V) # I n c r e m e n t a l d i s p l a c e m e n t
de l u = TestFunction (V) # Te s t f u n c t i o n
u = Function (V) # D i s p l a c e m e n t
# m a t e r i a l p a r am e t e r s o f a s t a i n l e s s s t e e l
nu = 0.3
E = 210000.0 #i n MPa
G = E/(2 .0 (1 .0+ nu) )
# Lame p a r a m e t e r s ( lambda h a s a n o t h e r mean ing i n python ,
# b e t t e r i t i s no t o v e r w r i t t e n )
lambada = 2.0 G nu / (1 . 0 − 2 . 0 nu)
mu = G
de l ta = Id en t i t y (3)
# i n d e x n o t a t i o n
i , j , k , l = i n d i c e s (4 )
# d e f o r m a t i o n g r a d i e n t
F = as t en s o r (u [ i ] . dx ( j ) + de l ta [ i , j ] , ( i , j ) )

Computational reality 02, plate deformation  with 1
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21
22
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25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 J = det (F)
46 # r i g h t Cauchy −Green d e f o r m a t i o n t e n s o r
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50 # s e c o n d P i o l a −K i r c h h o f f s t r e s s t e n s o r
51 S = as t en s o r ( lambada E[ l , l ] d e l t a [ k , j ] + 2 .0 mu E[ k , j ] , ( k ,

→ j ) )
52 # nom in a l s t r e s s
53 P = as t en s o r (F [ i , j ] S [ j , k ] , (k , i ) )
54
55 Form = P[ k , i ] d e l u [ i ] . dx (k ) dV − t r [ i ] d e l u [ i ] dA(1)
56 Gain = de r i v a t i v e (Form , u , du )
57 s o l v e (Form== 0 , u , bc , J=Gain , \
58 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” : ” lu ”

→ , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
59 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ” quadrature degree ”
→ : 2} )

60
61 # w r i t e ou t
62 pwd= / c a l c u l /CR02/
63 f i l e = Fi l e (pwd+ no n l i n e l a s t o s t a t i c s d e f o rma t i o n s . pvd )
64 f i l e << u
65 # Cauchy s t r e s s t e n s o r
66 sigma = as t en s o r ( 1 . / J F [ j , k ] P [ k , i ] , ( j , i ) )
67 s igma dev = as t en s o r ( sigma [ i , j ] −1.0/3.0 sigma [ k , k ] d e l t a [ i , j

→ ] , ( i , j ) )
68 eqS t r e s s = as t en s o r ( ( 3 . 0 / 2 . 0 s igma dev [ i , j ] s igma dev [ i , j ] )

→ 0 . 5 , ( ) )
69 # now we have d i s p l a c e m e n t s , u , s o we can c a l c u l a t e
70 # th e e q u i v a l e n t s t r e s s by p r o j e c t i n g
71 eqS = p ro j e c t ( eqStres s , FunctionSpace (mesh , P , 1) )
72 f i l e = Fi l e (pwd+ no n l i n e l a s t o s t a t i c s e q S t r e s s . pvd )
73 f i l e << eqS

47 C = as t en s o r (F [ i , k ] F [ i , j ] , (k , j ) )
48 # Green −La g r an g e s t r a i n t e n s o r
49 E = as t en s o r ( 1 . / 2 . ( C[ k , j ] − de l ta [ k , j ] ) , (k , j ) )

Fig. 1.2 Color indicates the
magnitude of displacement
field. The deformation is
shown without scaling,
therefore, the deformation is
as big as the geometric
dimensions
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To-do

We have solved a nonlinear differential equation:

• Which term introduced the nonlinearity?
• Is there an analytical solution for this problem?
• Visualize the equivalent stresses and try to find a steel with such a high yield stress.
How should we change the boundary conditions in order to reduce the equivalent
stress?

1.3 Hyperelastic Materials in Statics

The balance of momentum is used to compute the deformation. By transforming
the balance equation from the current to the reference frame, we have addressed
the geometric nonlinearities and computed large deformations. The used material
or constitutive equation was linear. In order to consider the material nonlinearities,
we need to employ a nonlinear constitutive equation in this section. We may simply
introduce a constitutive equation modeling hyperelasticity and implement it into the
code given in the last section. Instead of doing so, we will present an alternative
method for obtaining the weak form based on energy. This approach is by no means
more or less beneficial than the method utilized in the last section, but it helps to
comprehend the methodology used in the variational formulation better. The energy-
based method sheds light on the real meaning of the variational formulation.

The first notion is energy. Any process evolves by utilizing energy. A box on a
(horizontal, plain) desk will move, if one supplies mechanical energy into the system
by simply pushing the box. We still solve problems in statics, therefore, we need to
visualize a snapshot of the box before and after the motion. Suppose that we have
pushed the box by a mechanical loading; after unloading the box rests in another
position. It fails to recover its initial position, i.e., the process is not reversing back.
The energy we have brought in the system is lost, probably it is dissipated as heat
energy due to the friction. Now we change the system and connect the box with
an elastic spring. As a consequence of loading, the box will move and the spring
gets longer (or shorter). The energy will be stored in the (elastic) spring and upon
unloading the process will reverse back to its initial state (position). We control the
motion by a linear motor andmeasure the energy directly by countingwatts in time.36

The supplied energy is stored in the spring. Mathematically, we can calculate this
energy (density) as already discussed in Sect. 1.1 from the first snapshot to the second
(denoted by 1 and 2)

36W(att) is the unit of power named after James Watt. Power is the rate of energy. The energy used
from the wall is measured in kWh (kilo-Watt-hours).
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w =
∫ 2

1
dw =

∫ 2

1
σ j idεi j . (1.78)

If the material model is linear
σ j i = C jiklεkl , (1.79)

we obtain

w = C jikl

∫ ε

0
ε̄kldε̄i j = C jikl

1

2
εklεi j = 1

2
σ j iεi j , (1.80)

since C jikl = Ckl ji is constant in εkl and we start from a state without strain (zero
strains in the first snapshot). This energy density is per mass, in other words, it is the
energy for a material particle of the continuum body. The whole deformation energy
in the current body, B, reads

W =
∫
B

wdv . (1.81)

If the geometric nonlinearity shall be included then we use Euler–Almansi strain
tensor:

ei j = 1

2

(
δi j − (B−1)i j

)
, (1.82)

instead of the linearized strain tensor, εi j . In this case the energy reads

W =
∫
B

1

2
σmlelmdv . (1.83)

Energy is a scalar, in other words, its value remains the same for the current frame
or for the reference frame. We may calculate the energy in the initial frame

W =
∫
B0

1

2
σmlelm JdV , (1.84)

or even rewrite energy by using Eq. (1.63)3 and obtain

W =
∫
B0

1

2
σmlelm JdV =

∫
B0

1

2
σml Ei j (F−1) jm(F−1)il JdV . (1.85)

Furthermore, by using Eq. (1.69) we acquire

W =
∫
B0

1

2
Sji Ei jdV . (1.86)

Therefore, the stress-strain pair, σ j i , ei j , in the current frame can be exchanged with
the stress-strain pair, Sji , Ei j , in the initial frame. Another way of seeing this relation
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relies on the power, i.e., the rate of energy,

w =
∫ 2

1
dw =

∫ t̄=t

t̄=t0

w•dt̄ =
∫ t̄=t

t̄=t0

σ j i e
•
i jdt̄ , (1.87)

since dw = σ j idei j . In order to discover another conjugate relation, we calculate the
power in the whole continuum body:

W • =
∫
B

σ j i e
•
i jdv =

∫
B0

Sji E
•
i jdV =

∫
B0

Sji

(1
2

(
Fni Fnj − δi j

))•

dV =

=
∫
B0

Sji
1

2

(
F •
ni Fnj + Fni F

•
nj

)
dV ,

(1.88)

since Si j = Sji we obtain

W • =
∫
B0

Sji F
•
ni FnjdV =

∫
B0

Pin F
•
nidV . (1.89)

Hence, the stress-deformation gradient pair, Pi j , Fji , is also conjugate and can be
used instead of Sji , Ei j , or σ j i , ei j . Furthermore, owing to the relation:

w =
∫ 2

1
dw =

∫ 2

1
PjidFi j , (1.90)

we acquire Castigliano’s theorem:37

Pji = ∂w

∂Fi j
. (1.91)

We need to have a constitutive relation in order to obtain Pji . Now we can define
an alternative way by using Eq. (1.91). Instead of defining a relation for Pji , we can
define the energy, w, and then by deriving it with respect to Fi j , we obtain Pji . The
so-called stored energy, w, is a scalar potential field. In other words, only the values
in the states 1 and 2 are of interest. The values between the states are not important.
Moreover, the change from the state 1 to the state 2 can happen in an arbitrary way;
the amount of necessary energy remains the same. This property is the reason why
we are allowed to write its so-called first-integral:

w =
∫ 2

1
dw . (1.92)

37Alberto Castigliano never wrote the equation in this way but he found out the variational method
on a one-dimensional beam by using the relation: force is the energy differentiation with respect
to the displacement. We can extend this theorem and motivate the relation that stress is the energy
differentiation with respect to the strain.
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The same phenomenon is known in the case of the gravitational potential energy,
where the work is done by lowering or altering weights. The total work depends on
the height difference; only the states 1 and 2 are important, not the states in between.
Therefore, the stored energy may depend on the deformation gradient but not on the
velocity.

We employ the neo-Hookean energy density used often for rubber like materials

w(Fi j ) = λ
1

2
ln2(det(Fmn)) + μ

(
Fji Fji

2
− δ j j

2
− ln(det(Fkl))

)
. (1.93)

The Lame parameters, λ, μ, are the material parameters to be determined by the
experiments.As aforementionedwe can recall theweak form inEq. (1.77) (multiplied
by minus one and the gravitational force is incorporated)

Form =
∫
B0

( − Pki δui,k + ρ0 fi δui
)
dV +

∫
∂BN

0

t̂i δuidA . (1.94)

By using Eq. (1.91) and the stored energy in Eq. (1.93) we can setup the problem as
follows

Pji = ∂w

∂Fi j
= λ

2
2 ln(J )

1

J

∂ J

∂Fi j
+ μ

(
Fklδkiδl j − 1

J

∂ J

∂Fi j

)
,

Pji = 1

J

∂ J

∂Fi j
(λ ln(J ) − μ) + μFi j .

(1.95)

The derivative of the determinant can be calculated as follows

J = εi jk F1i F2 j F3k ,

∂ J

∂F1 j
F1 j = 0 ,

∂ J

∂F2 j
F2 j = J ,

∂ J

∂F3 j
F3 j = 0 ,

∂ J

∂Fi j
Fi j = J + 0 + 0 = J ,

(1.96)

since the latter has to hold for arbitrary Fi j we obtain

∂ J

∂Fi j
= (F−1) j i J . (1.97)

Therefore, the nominal stress reads

Pji = (λ ln(J ) − μ)(F−1) j i + μFi j . (1.98)

We can change the code in Sect. 1.2 and get the material nonlinearity modeled with
this neo-Hookean material equation. In the literature, for the neo-Hookean material
equation, the second Piola–Kirchhoff stress is given by
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Sjl = (F−1)li Pji = (λ ln(J ) − μ)(F−1)li (F−1) j i + μ(F−1)li Fi j =
= (λ ln(J ) − μ)(C−1) jl + μδ jl .

(1.99)

The derivative of the stored energy is cumbersome and this can be handled by an
automatizedmethod.Moreover, we can introduce an abstraction to the formulation as
an alternativemethod,which explains the realmeaning of the variational formulation.
This abstraction starts with the definition of the so-called action:

S =
∫

τ

∫
B0

LdV dt +
∫

τ

∫
∂B0

WsdAdt , (1.100)

which is an energy integral over time with a Lagrangean density, L, to be defined
and a potential work on surfaces, Ws, to be given on the boundaries. Since the time
definition is redundant in statics, we reformulate the action

S∗ =
∫
B0

LdV +
∫

∂B0

WsdA . (1.101)

The variational formulation is based on the action definition and can be applied by
using the principle of least action stating that the variation of action:

δS
∗ =

∫
B0

δLdV +
∫

∂B0

δWsdA , (1.102)

vanishes
δS

∗ = 0 , (1.103)

such that the action is minimum by assuming that action is always positive valued.
The principle of least action is based on the formulations made by Pierre Louis
Maupertuis, Leonhard Euler, and Joseph Louis Lagrange. In the way that we use
herein, the variational principle is applied by William Rowan Hamilton and Lord
Rayleigh38 in the mid-19th century.

We aim at calculating the displacement field that is the primitive variable. The
Lagrangean density depends on the primitive variables and their derivatives. For
hyperelasticity in homogeneous materials the Lagrangean density depends on dis-
placement and its first derivative:

L = L(ui , ui, j ) . (1.104)

The potential on the Neumann surfaces depend only on displacement:

Ws = Ws(ui ) . (1.105)

38John William Strutt, 3rd Baron Rayleigh.



1.3 Hyperelastic Materials in Statics 31

Now we can calculate the variation of action in statics:

Form = δS
∗ =

∫
B0

(
∂L

∂ui
δui + ∂L

∂ui, j
δui, j

)
dV +

∫
∂B0

∂Ws

∂ui
δuidA . (1.106)

An integration by parts would lead to the Euler–Lagrange equations leading to
the balance equations. Since we only need to obtain the weak form, we have accom-
plished the variational formulation. The weak form in Eq. (1.106) has to be identical
with the weak form in Eq. (1.94). If we define the Lagrangean density and the
potential as

L = −w + ρ0 fi ui , Ws = t̂i ui , (1.107)

then the weak form reads

Form =
∫
B0

(
ρ0 fi δui − ∂w

∂ui, j
δui, j

)
dV +

∫
∂B0

t̂i δuidA , (1.108)

since the stored energy depends only on the deformation gradient. By using

∂w

∂ui, j
= ∂w

∂Fkl

∂Fkl

∂ui, j
= Plk

∂(uk,l + δkl)

∂ui, j
= Plkδkiδl j = Pji , (1.109)

we can convince ourselves that the chosen L leads to the same weak form as in
Eq. (1.94). The action formulation is quite abstract, however, really useful. We define
the action and the balance of linear momentum comes out with the help of the varia-
tional formulation. It is an ongoing discussion between researchers, which axiom is
less restrictive: postulating an action or postulating a balance equation. An energy-
based method is beneficial for detecting the material response, since measuring an
energy is much easier than measuring a stress. Consider a tensile testing. The force
can be measured by an accelerometer, simultaneously and independently, the dis-
placement can be tracked by an optic sensor. Force times displacement is the energy.
More easier is to measure the energy directly on the motor, since the power supplied
to the motor as well as the standard losses of the motor are known a priori. Basically,
the measurement of energy is quite natural. However, if we want to calculate the
stress from the force we need to know the cross-sectional area. We cannot measure
the area correctly since it is changing throughout the experiment; mostly this change
is neglected. Especially for hyperelastic materials, we have to take account the cross-
sectional change, hence, the energy function, w, is a more accurate observable than
the stress.

We simulate 40 × 100 × 100cm sample of a silicone gel loaded with a line force.
This force has been applied by using a Gaussian distribution39 on yz-plane at y =
500 and along z in the direction of plane normal:

39It is named after Carl Friedrich Gauß.
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t̂i =
(
a exp

(
b(y − 500.0) + c(y − 500.0)2

))
Ni . (1.110)

A sketch of the Gaussian distribution can be seen in Fig. 1.3 by using a = −50,
b = 0, c = −0.001 as in code. The deformation field is shown in Fig. 1.4, consider
the large deformation with respect to the geometric sizes. The computation is real-
ized by using the symbolic differentiation capabilities in FEniCS. We implement the
weak formas inEq. (1.108). The stored energy function is differentiated symbolically.
Thus, one can use the same code even for more complicated energy formulations.
The geometric and material nonlinearities are captured accurately by using the lin-
earization at the partial differential level, again by using the symbolic differentiation.
For modeling the line force accurately we have used a fine meshing leading to a high
number of freedoms. Therefore, an iterative solver with preconditioning has been
used for the computation. The code is given below.

Fig. 1.3 The Gaussian
distribution for t̂i is also
called the bell-curve for
obvious reasons

Fig. 1.4 Deformation as in
reality (scale factor = 1),
colors indicate the magnitude
of the displacement field
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h yp e r e l a s t i c mate r i a l f o r s i l i c o n ge l .
au th o r = ”B. Emek Abal i ”
l i c e n s e = ”GNU LGPL Vers ion 3 . 0 or l a t e r ”

#Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,
→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l

from f e n i c s import
x length =400.0 #[mm]
y length =1000.0 #[mm]
z l ength =1000.0 #[mm]
mesh = BoxMesh ( Point (0 , 0 , 0) , Point ( x length , y length ,

→ z l ength ) , 15 , 45 , 25)
V = VectorFunctionSpace (mesh , P , 1)
c e l l s = Cel lFunct ion ( s i z e t , mesh )
f a c e t s = FacetFunction ( s i z e t , mesh )
dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ength ) && on boundary

→ , l ength=xlength )
bottom = CompiledSubDomain ( near (x [ 1 ] , 0 ) && on boundary )
top = CompiledSubDomain ( near (x [ 1 ] , l ength ) && on boundary ,

→ l ength=ylength )
back = CompiledSubDomain ( near (x [ 2 ] , 0 ) && on boundary )
f r on t= CompiledSubDomain ( near (x [ 2 ] , l ength ) && on boundary ,

→ l ength=z l ength )
f a c e t s . s e t a l l ( 0 )
r i gh t . mark ( f a c e t s , 1)
# l i k e a g e l f i l l e d i n a box
bc1 = DirichletBC (V, ( 0 . 0 , 0 . 0 , 0 . 0 ) , l e f t )
bc2 = DirichletBC (V. sub (1) , ( 0 . 0 ) , top )
bc3 = DirichletBC (V. sub (2) , ( 0 . 0 ) , top )
bc4 = DirichletBC (V. sub (1) , ( 0 . 0 ) , bottom)
bc5 = DirichletBC (V. sub (2) , ( 0 . 0 ) , bottom)
bc6 = DirichletBC (V. sub (1) , ( 0 . 0 ) , back )
bc7 = DirichletBC (V. sub (2) , ( 0 . 0 ) , back )
bc8 = DirichletBC (V. sub (1) , ( 0 . 0 ) , f r on t )
bc9 = DirichletBC (V. sub (2) , ( 0 . 0 ) , f r on t )
bc=[bc1 , bc2 , bc3 , bc4 , bc5 , bc6 , bc7 , bc8 , bc9 ]
# d e f i n i t i o n f o r t h e v a r i a t i o n a l f o r m u l a t i o n
du = Tria lFunct ion (V) # I n c r e m e n t a l d i s p l a c e m e n t
de l u = TestFunction (V) # Te s t f u n c t i o n
u = Function (V) # D i s p l a c e m e n t f r om p r e v i o u s

→ i t e r a t i o n
# m a t e r i a l p a r am e t e r s o f a s i l i c o n e g e l TSE3062
rho 0 = 1 .1E−9 #i n ton /mm3
nu = 0.4
E = 89.0 #i n  MPa
lambada = Constant (E nu/(1.0+nu) /(1.0 −2.0 nu) )

Computational r e a l i t y 03 , example o f a non l i n ear1
2
3
4
5

6
7
8
9

10
11

12
13
14
15
16
17
18

19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44

45 mu = Constant (E/(2 .0 (1 .0+ nu) ) )
46 i , j , k , l = i n d i c e s (4 )

∗
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60 Form = ( rho 0 f [ i ] d e l u [ i ] − d i f f ( s tored , grad u ) [ i , j ] grad (
→ de l u ) [ i , j ] ) dV + t r [ i ] d e l u [ i ] dA(1)

61 Gain = de r i v a t i v e (Form , u , du )
62 s o l v e (Form== 0 , u , bc , J=Gain , \
63 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” : ” cg”

→ , ” p r e c ond i t i on e r” : ” i l u ” , ” r e l a t i v e t o l e r a n c e ” : 1
→ e−3} } , \

64 form compi ler parameters={” cpp opt imize ” : True , ”
→ r ep r e s en t a t i on ” : ” quadrature ” , ” quadrature degree ”
→ : 2} )

65 pwd = / c a l c u l /CR03/
66 f i l e = Fi l e (pwd+ disp lacement . pvd )
67 f i l e << u

de l ta = Id en t i t y (3)

def s to red energy ( g u ) :
F = de l ta + g u
return a s t en s o r ( lambada 1 . 0/2 . 0 ln ( det (F) ) 2 + mu (F [ j ,

→ i ] F [ j , i ] / 2 . 0 − de l ta [ i , i ] / 2 . 0 − ln ( det (F) ) ) , [ ] )

grad u = var i ab l e ( grad (u ) )
s to red = s tored energy ( grad u )
# t r a c t i o n v e c t o r
d i s t r = Expres s ion ( a exp (b (x [1 ] −500.0) + c (x [1 ] −500.0) ( x

→ [ 1 ] −500.0) ) , a=−50.0 ,b=0.0 , c=−0.001)
N = FacetNormal (mesh )
t r = d i s t r N
f = Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) # body f o r c e

47
48
49
50
51

52
53
54
55
56

57
58
59

To-do

We have solved a silicon gel by using a hyperelastic material model. The variational
form has been defined in an abstract manner by using the principle of least action.

• Identify the symbolic differentiation of the stored energy and the symbolic differ-
entiation for linearization in the code.

• We use another solver from Trilinos packages. Conjugate gradients is an iterative
solver used for large problems with symmetric matrix. Is it possible to print out
the number of degrees of freedom in the computation?

• Find the energy function for material models named as Mooney–Rivlin and
Blatz–Ko for rubber materials. Try to apply them into the code.

• Derive the stored energy for the linear model called St. Venant’s law.

1.4 Linear Rheology

Acontinuumbodywith boundary conditions forms a system.Due to the applied force
(input) the response of this system (output) is computed. All aforementionedmaterial
models respond the same under different loading rates. In order to include the effect
of the loading rate we need to use the so-called rheological material models. The
structure responds stiffer upon quicker loading—this phenomenon is called a viscous
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behavior. It can be realized easily on a bicycle pump that is a dashpot filled with a
fluid (air). If we want to pump quicker, the necessary force is higher. In a solid body
this viscous behavior occurs and it can be modeled by incorporating stress rate and
strain rate into the constitutive equation. In this section we will apply such models
and simulate a nanoindentation experiment for a viscoelastic material.

The primitive variable is the displacement field in space and time. In a
Lagrangean frame, space denotes the initial positions of particles, Xi . Time can be
seen as subsequent snapshots: t = [0,Δt, 2Δt, 3Δt, . . . nΔt]. We use the same time
step,Δt . There is no restriction about using a variable time step, in some cases it may
even shorten the computation time by improving the convergence rate. In reality, or
as we try to understand our observations, we do assume that time is continuous by
utilizing an infinitesimal time step, Δt → 0. The time discretization becomes more
accurate by applying a smaller time step. A natural way of discretizing in time reads

v•
i = ∂vi

∂t
= vi − v0

i

t − t0
= vi − v0

i

Δt
,

vi (X, t) = u•
i (X, t) = ∂ui

∂t
= ui − u0i

Δt
,

(1.111)

where this method relies on the (finite) difference schema and is an implicit method,
often called the backwardEulermethod—we refer toAppendixA.5 on p. 304 for the
meaning of implicit. Basically, we exchange the partial derivative with a difference
function.

The balance of linear momentum is defined in the current frame for an arbitrary
coordinate system40 as follows

( ∫
B

ρvidv

)•

=
∫

∂B

σ j ida
j +

∫
B

ρ fidv , (1.112)

where da j = n jda. We have not chosen a coordinate system, yet. The latter equation
holds for any coordinate system since we employ the co- and contravariant notation.
The lower suffix denotes the covariant components and the upper suffix identifies the
contravariant components. The summation convention is between upper and lower
indices. In an arbitrary coordinate system, z, the covariant components, zi , are the
orthogonal projections to the base vectors, whereas the contravariant components,
zi , are the parallel projections to the base vectors.41 The relation of the coordinates

40A cylindrical and a spherical coordinate system are curvilinear orthogonal coordinate systems,
where the base vectors are orthogonal to each other. If the base vectors are not orthogonal then we
use the term oblique. An oblique and curvilinear coordinate system is called an arbitrary coordinate
system. We use coordinate systems fixed in time (they do not move according to the observer).
41For tensor calculus, see [7, 15], or [26].
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in the coordinate system, z, to the coordinates in the Cartesian coordinate system, x,
is given by the metric tensor:

gi j = ∂xk
∂zi

∂xk
∂z j

. (1.113)

We recall that in Cartesian coordinates the parallel/orthogonal projections are iden-
tical, xi = xi , such that we utilize only lower suffix. In the case of an arbitrary coor-
dinate system, the distinction is of importance since zi 
= zi . The covariant (lower
suffix) and the contravariant (upper suffix) can be interchanged by using the metric
tensor,

vi gi j = v j , (1.114)

or its inverse,

gi j = ∂zi

∂xk

∂z j

∂xk
= (g−1)i j , gi j g jk = gik = δik , (1.115)

as follows
vi g

i j = v j . (1.116)

An often used notation for the determinant of metric reads

g = det(gi j ) ,
1

g
= det(gi j ) . (1.117)

The permutation symbol ei jk = ei jk = ±1 if [i jk] is cyclic/anticyclic else zero. For
example, e123 = 1, and e321 = −1, but e112 = 0. The permutation symbol leads to
the Levi-Civita symbol (in three-dimensions):

εi jk = 1

g
ei jk , εi jk = gei jk , εi jkε

i jk = 3! = 6 . (1.118)

Now we introduce an identity for an arbitrary Ai j given in z as follows

εi jk Air A js Akt = det(Amn)εrst . (1.119)

By using the above identity we obtain

dv = εi jkdz(1)
i dz(2)

j dz(3)
k = εi jk

∂zi
∂Zr

dZ (1)r ∂z j
∂Zs

dZ (2)s ∂zk
∂Zt

dZ (3)t =

= det
( ∂zi
∂Z j

)
εrstdZ

(1)rdZ (2)sdZ (3)t = det
( ∂zi
∂Z j

)
dV = JdV .
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The relation dv = JdV is the transformation of the volume element from the current
frame, dv, to the initial frame, dV . Since the volume element denotes the size, the
Jacobian, J , gives the volume contraction. For the sake of clarity, the deformation
gradient in arbitrary coordinates reads

Fi j = ∂zi
∂Z j

, Fi
j = ∂zi

∂Z j
. (1.120)

The deformation gradient is not an objective tensor of rank two, thuswe do not use the
metric tensor for lowering or raising the indices. Similar to the volume element we
can transform the area element, for example for an area showing in the z(1)

i direction

nida = dai = εi jkdz(2)
j dz(3)

k = εi jk
∂z j
∂Zs

dZ (2)s ∂zk
∂Zt

dZ (3)t =

=
(

∂zi
∂Zr

)−1

det
( ∂zm
∂Zn

)
εrstdZ

(2)sdZ (3)t =
= (Fir )

−1 JdAr = (F−1)ri J NrdA .

(1.121)

We have already applied the transformations of volume and area element in Sect. 1.2.
In this sectionwe see that these transformations hold for arbitrary coordinate systems,
indeed, they hold also for the Cartesian coordinate system. By using these identities
we transform the balance equations in the current frame into balance equations in
the initial frame. We start with the balance of mass for a closed or material system,
i.e., throughout the simulation the number of particles are preserved. The total mass
of the continuum body is constant in time. Of course the mass density changes due
to the deformation, however, no particle enters or leaves the continuum body. The
total mass of the continuum body is preserved and its rate (change in time) vanishes
in case of a material system. The balance of mass in the current frame reads for a
material system ( ∫

B

ρdv

)•

= 0 . (1.122)

The mass density varies in time, as well as the volume element in the current frame.
By transforming it from the current to the initial frame, we obtain

∫
B0

(
ρJ

)•
dV = 0 , (1.123)

since the volume element in the beginning fails to vary in time, (dV )• = 0. Its local
solution is a constant in time:

ρJ = const.|t = ρ0 , (1.124)
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where ρ0 denotes themass density in the initial frame—we recall that J is the volume
contraction. Therefore, the balance of mass in the Lagrangean frame is ρJ = ρ0.
The balance of mass in the initial frame is an equation, not a differential equation, we
have one equation less to solve. Only the balance of momentum needs to be solved.
By using ρJ = ρ0 we implicitly satisfy the balance of mass without further ado. In
order to transform the balance of momentum in the current frame:

( ∫
B

ρvidv

)•

=
∫

∂B

σ j ida
j +

∫
B

ρ fidv , (1.125)

into the balance of momentum in the initial frame:
(∫

B0

ρvi JdV

)•

=
∫

∂B0

(F−1)k jσ j i J NkdA +
∫
B0

ρ fi JdV , (1.126)

we use Eqs. (1.120), (1.121). After inserting the balance of mass, ρJ = ρ0, and using
the fact that neither ρ0 nor dV changes in time we acquire

∫
B0

ρ0v
•
idV =

∫
∂B0

(F−1)k jσ j i J NkdA +
∫
B0

ρ0 fidV . (1.127)

As in Eq. (1.68) we use a shorthand notation and introduce the nominal stress:

Pk
i = (F−1)k jσ j i J ,∫

B0

ρ0v
•
idV =

∫
∂B0

Pk
i NkdA +

∫
B0

ρ0 fidV .
(1.128)

We apply Gauss’s law, however, for an arbitrary coordinate system

∫
∂B0

Pk
i NkdA =

∫
B0

Pk
i;kdV , (1.129)

where a semicolon denotes a covariant derivative. A Cartesian coordinate system
possesses orthonormal base vectors and this triad is constant in whole space. In other
words, its metric tensor, δi j , is constant in space, δi j,k = 0. For an arbitrary coordinate
system the base vectors are oblique and the space is curvilinear such that the triad
varies in space. The metric tensor is not a constant in the space, its partial derivative
in space fails to vanish, gi j,k 
= 0. For example, in a cylindrical coordinate system
the lengths of the base vectors remain the same, however, their directions change.

Consider a constant vector field, Ai . In every point of space same length and
direction is a constant vector field. We want to express this constant vector field in
an arbitrary coordinate system. When the coordinate system is curvilinear then in
two different points of space we have different base vectors: metric varies in space.
Although Ai is constant, its coordinates in two points in space are different due to
the varying base vectors. We obtain Ai, j 
= 0 for a constant Ai . This fact makes the
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generalization of the tensor calculation in arbitrary coordinates difficult. It is much
more intuitive and easier to analyze if the coordinates of a constant vector remains
constant in space, i.e., derivative of Ai has to vanish. Thus, we want to have a special
derivative operation in which the change of the triad is considered implicitly. In
other words, since the metric varies in space, the derivative operation shall co-vary
in the same space, gi j;k = 0. This covariant derivative is denoted by a semicolon
instead of a comma and it allows us to generalize a space derivative in Cartesian
coordinates to arbitrary coordinates. We simply exchange partial derivatives with
covariant derivatives. Since the numerical evaluationwill be inCartesian coordinates,
we will not make use of it, however, we give the definition for arbitrary coordinate
systems for the sake of completeness. For a tensor of rank two with mixed, i.e., co-
and contravariant components the covariant derivative reads

A j
i;k = A j

i,k + �
j
nk A

n
i − �m

ik A
j
m , (1.130)

wherewe have introduced theChristoffel symbols,42 giving the curvature of space:

�l
kn = 1

2
glm

(
gmk,n + gmn,k − gkn,m

)
,

�l
kn = �l

nk .

(1.131)

For the sake of clarity, a partial derivative is in z in the current frame and in Z in the
initial frame. In solid mechanics we work in the initial frame such that the comma
notation denotes a partial derivative in Z as follows

(·),i = ∂(·)
∂Zi

. (1.132)

We recall that the chosen arbitrary coordinate system is constant in time. Therefore,
we know the coordinate system at the beginning such that we can calculate the metric
tensor,

gi j = ∂Xk

∂Zi

∂Xk

∂Z j
= Xk,i Xk, j . (1.133)

The notation X denotes to the positions of particles at initial time in the Cartesian
coordinate system, Z are the positions of particles at initial time in the curvilinear
and oblique coordinate system. The numerical values of metric tensor are the same if
calculated by using the current positions, x, in the Cartesian coordinate system and
in the curvilinear and oblique system, z, as follows

42The symbol is named after Elwin Bruno Christoffel.
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gi j = ∂xk
∂zi

∂xk
∂z j

. (1.134)

Both coordinate systems are constant in time. Cartesian coordinates are also constant
in space. Now by applying Gauss’s law we obtain the balance of linear momentum
in Lagrangean frame expressed in arbitrary coordinates:

ρ0v
•
i − Pk

i;k − ρ0 fi = 0 . (1.135)

By using Eq. (1.111) we utilize the time discretization

ρ0
vi − v0

i

Δt
− Pk

i;k − ρ0 fi = 0 ,

ρ0
ui − 2u0i + u00i

ΔtΔt
− Pk

i;k − ρ0 fi = 0 .

(1.136)

This formulation is universal, in other words, the formulation is valid for anymaterial
model. Now we need to use a constitutive equation for rheological materials. In
arbitrary coordinates we rewrite theGreen–Lagrange strain tensor from Eq. (1.60)
by switching from the partial derivatives to the covariant derivatives

Ei j = 1

2
uk;i uk; j + u(i; j) = 1

2
gkluk;i ul; j + u(i; j) . (1.137)

The Green–Lagrange strain tensor is symmetric, Ei j = E ji , moreover, it is an
objective tensor of rank two, thus we can use metric to lower and raise indices. We
want to use the second Piola–Kirchhoff stress tensor from Eq. (1.69):

Skl = (F−1)li Pk
i , Pk

i = Fil S
kl ,

Fil = ∂zi
∂Zl

= ∂(ui + Zi )

∂Zl
= ui,l + (gi j Z

j ),l .
(1.138)

As so far we have employed stress as a tensor function of strain, Si j = Si j (Ekl), so
that stress has a dependency solely on the strain. In rheology, more dependency is
included such that stress may depend on rates of strain and stress. For simplicity, we
include only the first rate of stress and strain. The generic representation of the stress
tensor depends on strain, strain rate, and stress rate, Si j = Si j (Ekl, E •

kl, S
•
kl).

The material response, Si j , which is symmetric, Si j = Sji , can be divided into a
volumetric, S{ik}, and a deviatoric, S|ik|, part

Si j = S{i j} + S|i j | ,

S{i j} = 1

3
Skk gi j , S|i j | = Si j − 1

3
Skk gi j .

(1.139)
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Of course, the same holds true for the symmetric strain tensor of rank two

Ei j = E{i j} + E|i j | ,

E{i j} = 1

3
Ek
k gi j , E|i j | = Ei j − 1

3
Ek
k gi j .

(1.140)

The volumetric and deviatoric parts can be varied independently. This mathematical
fact can be seen by using the stored energy from the last section,

w = 1

2
Si j E

i j = 1

2

(
S{i j} + S|i j |

)(
E {i j} + E |i j |) = 1

2

(
S{i j}E {i j} + S|i j |E |i j |) ,

(1.141)
since the mixed terms vanish, for example

S{i j}E |i j | = 1

3
Skk gi j

(
Ei j − 1

3
El
l g

i j
)

= 1

3
Skk E

i
i − 1

9
Skk E

l
l g

i
i , gii = δii = 3 .

(1.142)
We can easily separate the energy into its volumetric and deviatoric parts

wvol. = 1

2
S{i j}E {i j} , wdev. = 1

2
S|i j |E |i j | ,

w = wvol. + wdev. .

(1.143)

Energy is supposed to be additive in its independent parts, the well-known example is
the separation of energy into kinetic and potential energies in rigid bodies. Since we
have found out that the stored energy is additively decomposed into volumetric and
deviatoric parts, they must be independent, too. In other words, the volumetric part
of the energy can be changed without affecting the deviatoric part. The volumetric
part of the stress and the deviatoric part of the stress can be modeled with different
material models. Moreover, the latter calculation shows that the volumetric part of
the stress depends solely on the volumetric part of the strain and deviatoric part of
the stress on the deviatoric part of the strain. The same shall hold for the strain rate,
too.

For a better understandingwe start withmodeling the simplest linear model where
stress depends only on strain. First we choose a linear model for the volumetric part
of stress depending on the volumetric part of the strain tensor:

S{i j} = aE{i j} = a

3
Ek
k gi j . (1.144)

Secondly, we choose a linear model for the deviatoric part:

S|i j | = bE|i j | = bEi j − b

3
Ek
k gi j . (1.145)
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Therefore, we obtain the following linear equation:

Si j = S{i j} + S|i j | = a + b

3
Ek
k gi j + bEi j . (1.146)

The latter becomes the St. Venant–Kirchhoff material model for isotropic mate-
rials by renaming (a + b)/3 = λ and b = μ. This method of employing material
models for the deviatoric and volumetric parts separately makes a straight-forward
generalization of constructing material equations in rheology.

We want to obtain a viscoelastic material model for the simulation in this section.
For the volumetric part we choose again a linear elastic model:

S{i j} = λEk
k gi j . (1.147)

This model is often visualized as a linear spring. For the deviatoric part we employ
the so-called Zenermodel.43 It is motivated as a parallel connection of a spring with
a spring-dashpot in series. The spring is of stiffness E1 and the spring-dashpot E2, μ,
where the dashpot responds to the rate of displacements, thus, brings in a time lag to
response of material—the viscous behavior. The Zener model is a common linear
rheologicalmodel. The deviatoric part reads by obtaining a differential equation from
the spring parallel to spring-dashpot system

S|i j | + μ

E2
S•

|i j | = E1E|i j | + μ(E1 + E2)

E2
E •

|i j | . (1.148)

We have completed the definition of the stress tensor. The material parameters, E1,
E2, μ, λ, shall be determined upon experiments.

In order to acquire the variational form we use Eq. (1.136)2. For the compu-
tation we choose a fixed (in time) Cartesian coordinate system, gi j = δi j , in the
Lagrangean frame. Moreover, we simplify the computation by choosing linearized
strains,

εi j = u(i, j) . (1.149)

After utilizing the implicit time discretization as well as the linearized strains
we obtain

∂S|i j |
∂t

= S|i j | − S0|i j |
Δt

,

S|i j |
(
1 + μ

E2Δt

)
= μ

E2Δt
S0|i j | + E1ε|i j | + μ(E1 + E2)

E2

ε|i j | − ε0|i j |
Δt

,

S|i j | = μ

E2Δt + μ
S0|i j | +

E1E2Δt

E2Δt + μ
ε|i j | + μ(E1 + E2)

E2Δt + μ
(ε|i j | − ε0|i j |) .

(1.150)

43It is named after Clarence Melvin Zener.
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By including the volumetric part

Si j = S{i j} + S|i j | , (1.151)

the constitutive relation reads

Si j = λεkkδi j + μ

E2Δt + μ
S0|i j | + E1E2Δt

E2Δt + μ
ε|i j | + μ(E1 + E2)

E2Δt + μ

(
ε|i j | − ε0|i j |

)
.

(1.152)

We implement this constitutive equation. After discretizing in time, we apply an
integration by parts, and obtain the weak form in Cartesian coordinates:

Form =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + Pki δui,k − ρ0 fi δui

)
dV−

−
∫

∂BN
0

t̂i δuidA ,

(1.153)

where Pki = Fi j Sk j and Fi j = δi j + ui, j .
We simulate a nanoindentation experiment with fictitious material parameters.

The geometry is a small cube which is clamped at its bottom and a tiny needle
presses down on the top surface. It is a point loading and we model it as pressing
within a small circle. By measuring the force and position of the needle, the mate-
rial parameters can be determined. Therefore, a nanoindentation device is used for
determination ofmaterial parameters. Especially formicro-mechanics such an exper-
imental possibility is of interest since for a tensile testing in micrometer length-scale,
samples might be difficult to produce.

Consider a small box in 20μm in each dimensions and a really sharp diamond
needle, which is indenting to the sample and deforms a tiny shape in it. The material
response is viscoelastic and the output is a force regarding the indentation depth.
We apply some refinement techniques to get an accurate solution on point loading,
see Figs. 1.5, 1.6, and 1.7. Owing to the high number of elements, the code uses

Fig. 1.5 The mesh of the 20 × 20 × 20μm sample with a local dense refinement for a better
loading. The amplitude of the loading evolves in time by means of the indentation height
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Fig. 1.6 Magnitude of the displacement field is shown for a nanoindentation experiment of 20 ×
20 × 20μm cubical viscoelastic material at 0.7s. Left: Whole sample. Right: Detailed view with
deformation scaled 10 times

Fig. 1.7 The force to
indentation depth from the
simulation is often collected
as the output of a typical
nanoindentation experiment
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an iterative solver with a preconditioner. A nanoindentation machine is applying
a force until a specific indented depth is arrived and then the machine holds this
particular force and measures the deformation under constant stress.44 The viscous
part is responsible for this behavior and upon unloading the material gets back to
its initial deformation. This process can be investigated in Fig. 1.7 as the force over
indentation depth. In reality the contact area between the indenter and the sample
changes, A = 24.5u2max., holds for a Berkovich indenter. The unloading at the end
happens quicker than the material response. Hence the curve does not goes back to
the zero displacement (initial) state. After reaching the zero force, the simulation
goes on for a couple of time steps in order to visualize how the deformed body tries
to attain the initial state. When we wait long enough, depending on the material
parameters, then the curve reaches the origin. This is indeed the visco-elasticity. The
term elasticity means exactly that phenomenon: upon unloading, sooner or later, the
body reaches its initial state. The code is given below in two parts. The first part
below creates the geometry and mesh.

44This phenomenon is called creep in the nanoindentation test, however, creep is a plastic defor-
mation under constant stress such that we omit to use this term in this section.
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1 ””” Computational r e a l i t y 04 , mesh generat i on f o r a
→ nanoindentat ion s imluat i on . ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU LGPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 xL=20.0 #m i c r o me t e r
8 yL=20.0
9 zL=20.0

10 # o r i g i n i s on t h e m i d d l e o f t o p s u r f a c e
11 mesh = BoxMesh ( Point (−xL/2 , −yL/2 , −zL ) , Point (xL/2 , yL/2 , 0)

→ , 30 ,30 ,30)
12 cen te r=Point (0 , 0 , 0 )
13 def r e f i n e i n t e r v a l ( rad ius , mesh ) :
14 markers = MeshFunction( ” bool ” , mesh , 3)
15 markers . s e t a l l ( Fal s e )
16 # Mark c e l l s f o r r e f i n e m e n t
17 for c e l l in c e l l s (mesh ) :
18 i f c e l l . midpoint ( ) . d i s tance ( cen te r ) < rad iu s :
19 markers [ c e l l . index ( ) ] = True
20 # R e f i n e mesh
21 mesh = r e f i n e (mesh , markers )
22 print DOFs : , mesh . num vert i ces ( ) 3
23 return mesh
24
25 num ref inements = 2
26 r e f i n e r a d i u s 1 = 2 .0
27 r e f i n e r a d i u s 2 = 0 .5
28 r e f i n e r a d i u s 3 = 0 .1
29 r e f i n e r a d i u s 4 = 0.05
30 for i in range ( num ref inements ) :
31 mesh=r e f i n e i n t e r v a l ( r e f i n e r ad i u s 1 , mesh)
32 mesh=r e f i n e i n t e r v a l ( r e f i n e r ad i u s 2 , mesh)
33 mesh=r e f i n e i n t e r v a l ( r e f i n e r ad i u s 3 , mesh)
34 mesh=r e f i n e i n t e r v a l ( r e f i n e r ad i u s 4 , mesh)
35 p lo t (mesh , t i t l e =(”Mesh %d” % ( i + 1) ) )
36
37 print mesh
38 pwd= / c a l c u l /CR04/
39 mesh f i l e = F i l e (pwd+ mesh . xml )
40 mesh f i l e << mesh

After generating an adequate mesh with necessary refinements around the needle of
the indent, the computation is done by using the code below.
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1 ””” Computational r e a l i t y 04 , s imu lat i on o f an nanoindentat ion
→ modeled with a Zener model . ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 s e t l o g l e v e l (ERROR)
8 pwd= / c a l c u l /CR04/
9 mesh = Mesh (pwd+ mesh . xml )

10 mesh . order ( )
11 D = mesh . topology ( ) . dim ( )
12 xL=20.0 #m i c r o me t e r
13 yL=20.0
14 zL=20.0
15
16 V = VectorFunctionSpace (mesh , P , 1)
17 T = TensorFunctionSpace (mesh , P , 1)
18
19 l e f t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=−xL

→ /2)
20 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=xL

→ /2)
21 back = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=−yL

→ /2)
22 f r on t= CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=yL

→ /2)
23 bottom = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=−

→ zL )
24 top = CompiledSubDomain ( x [ 2 ] == 0.0 && x [ 0 ] x [0]+ x [ 1 ] x [ 1 ] <=

→ r r , r=0)
25
26 c e l l s = Cel lFunct ion ( s i z e t , mesh )
27 f a c e t s = FacetFunction ( s i z e t , mesh )
28 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
29 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
30
31 f a c e t s . s e t a l l ( 0 )
32
33 nanoindent = Expres s ion ( ( 0 . 0 , 0 . 0 , −Amp ) ,Amp=1.)
34
35 bc = [ DirichletBC (V, ( 0 . , 0 . , 0 . ) , bottom ) ]
36 f g r = Constant ( ( 0 . , 0 . , 0 . ) )
37
38 du = Tria lFunct ion (V)
39 delu = TestFunction (V)
40 u00 = Function (V)
41 u0 = Function (V)
42 u = Function (V)
43 S=Function (T)
44 S0=Function (T)
45
46 print i n i t i a l i z i n g , time in ms
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t = 0 .0
tend = 3000.0
dt = 100.

i n i t = Expres s ion ( ( 0 , 0 , 0 ) )
u . i n t e r p o l a t e ( i n i t )
u0 . a s s i gn (u)
u00 . a s s i gn ( u0 )

print i n i t i a l i z i n g , space
rho0 = 9000.0E−15 #kg / m i k r ome t e r ˆ3
lambada = 90.0 # mN/ m ik r ome t e r ˆ2 (=GPa )
E1 , E2 = 200 .0 , 200.0 # mN/ m ik r ome t e r ˆ2 (=GPa )
mu = 2.0E5 #mN ms / m i k r ome t e r ˆ2 (=N s /mmˆ2 )

i , j , k , r = i n d i c e s (4 )
de l ta = Id en t i t y (3)

F = as t en s o r ( de l ta [ i , j ]+u [ i ] . dx ( j ) , [ i , j ] )

eps= as t en s o r ( 1 . 0 / 2 . 0 ( u [ i ] . dx (k )+u [ k ] . dx ( i ) ) , [ i , k ] )
eps0= as t en s o r ( 1 . 0 / 2 . 0 ( u0 [ i ] . dx (k )+u0 [ k ] . dx ( i ) ) , [ i , k ] )

eps dev= as t en s o r ( eps [ i , j ]− eps [ k , k ] 1 . 0 / 3 . 0 de l ta [ i , j ] , [ i , j
→ ] )

eps0 dev= as t en s o r ( eps0 [ i , j ]− eps0 [ k , k ] 1 . 0 / 3 . 0 de l ta [ i , j ] , [
→ i , j ] )

devS0= as t en s o r (S0 [ i , j ]−S0 [ k , k ] 1 . 0 / 3 . 0 de l ta [ i , j ] , [ i , j ] )

S = as t en s o r ( lambada eps [ j , j ] d e l t a [ i , k ] + mu/(E2 dt+mu)
→ devS0 [ i , k ] \

+ E1 E2 dt /(E2 dt+mu) eps dev [ i , k ] + mu (E1+E2) /(E2 dt+mu) (
→ eps dev [ i , k]− eps0 dev [ i , k ] ) , [ i , k ] )

N = FacetNormal (mesh )

Form = ( rho0/dt /dt (u−2. u0+u00 ) [ i ] delu [ i ] + F [ i , k ] S [ r , k ]
→ delu [ i ] . dx ( r ) − \

rho0 f g r [ i ] delu [ i ] ) dV − nanoindent [ i ] delu [ i ] dA(1)

nz = as t en s o r ( [ 0 . 0 , 0 . 0 , 1 . 0 ] )
f o r ceZ = as t en s o r (F [ i , k ] S [ r , k ] nz [ r ] , [ i , ] )

Gain = de r i v a t i v e (Form , u , du )

f i l e u = F i l e (pwd+ disp lacement . pvd )

# f i l e l i s t = f i l e ( l i s t 4 . xml , w )
u max = 0.1
A = 24.5 u max 2
rad iu s = sq r t (A/ p i )
top . r =rad iu s
top . mark ( f a c e t s , 1)
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59
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64
65
66
67
68
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71

72
73
74
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77
78
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81
82
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85
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88
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95
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pylab . rc ( t ex t , usetex=True )
pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e =30 )
pylab . rc ( l egend , f o n t s i z e =30)
pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)

#py l ab . i o n ( )
f i g = pylab . f i g u r e (1 , f i g s i z e =(12 ,8) )
f i g . c l f ( )
pylab . s ubp l o t s ad j u s t ( bottom=0.18)
pylab . s ubp l o t s ad j u s t ( l e f t =0.16)
pylab . x l ab e l ( r i nden tat i on depth u {\mathrm{max}} in \mu m

→ )
pylab . y l ab e l ( r f o r c e f ( t ) in mN )
pylab . g r id (True )

t i c ( )
while t<tend :

t += dt
print time : , t , indent : , u max , in , toc ( ) ,

→ s econds
t i c ( )
i f t <1000. : nanoindent .Amp = 0.002 t /A
i f t>=1000. and t <=1500.: nanoindent .Amp = 2./A
i f t >1500. : nanoindent .Amp = (2. −0.002 ( t −1500.) ) /A
i f t >=2500.: nanoindent .Amp = 0 .

s o l v e (Form== 0 , u , bc , J=Gain , \
s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”cg” , ” p r e cond i t i on e r” : ”hypre amg” , ”
→ r e l a t i v e t o l e r a n c e ” : 1E−2, ” ab s o l u t e t o l e r an c e
→ ” : 1E−5, ”maximum iterations” : 30} } , \

form compi l er parameters={” cpp opt imize ” : True , ”
→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

f i l e u << (u , t )
t ime va lu e s . append ( t )
u max = abs (u ( ( 0 , 0 , 0 ) ) [ 2 ] )
# i f u max < 0 . 0 2 : u max =0 .02
u max values . append (u max )
fZ = p ro j e c t ( forceZ ,V)
fZvalue = abs ( fZ ( ( 0 , 0 , 0 ) ) [ 2 ] ) A
f o r c eZ va l u e s . append ( fZvalue )
#p r i n t t i m e v a l u e s , u m a x v a l u e s , f o r c e Z v a l u e s
S0 . a s s i gn ( p ro j e c t (S ,T) )
u00 . a s s i gn (u0 )
u0 . a s s i gn (u)

t ime va lu e s = [ 0 . 0 ]
u max values = [ 0 . 0 ]
f o r c eZ va l u e s = [ 0 . 0 ]
import matp lo t l i b as mpl
mpl . use ( Agg )
import matp lo t l i b . pyp lot as pylab
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143 # f i l e l i s t . w r i t e ( ” t im e =\”% s \” u ( 0 , 0 , 0 ) =\”% s \” f o r c e
→ ( 0 , 0 , 0 ) =\”% s \” \n” % ( t , u max , f Z v a l u e ) )

144 pylab . p l o t ( u max values , f o r ceZ va lue s , ro− )
145 pylab . s a v e f i g (pwd+ CR04 nanoindent . pdf )
146
147 # f i l e l i s t . c l o s e ( )

To-do

We have included time into our computational reality, i.e., from statics we have
“upgraded” it to dynamics. For linear rheology there exists many different material
models:

• Find couple of different rheological constitutive equationswith their corresponding
spring/dashpot models.

• Try to draw the Zener model and obtain Eq. (1.148).
• Rewrite the code for a one-axial tensile testing, plot stress-strain hysteresis plot,
and vary the material parameters in order to investigate their effects.

• Try to determine all units, especially for mass density and time. Recall that the
numerical computation fails to have a unit system. All units need to be consistent
with each other, no matter which system we are using.

1.5 Fractional Rheological Materials

In linear rheology stress depends on strain, strain rate, and stress rate. The first rate
of stress is defined

σ•
i j = d1σi j

dt1
, (1.154)

in a fixed Cartesian coordinate system, where the number “1” denoting the first rate
is superfluous and normally omitted. The second rate of stress reads

σ••
i j = d2σi j

dt2
. (1.155)
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Integers are used for time derivatives.Wehave an intuition for derivatives via integers.
However, formally, we can define fractional time derivatives:

dασi j

dtα
, (1.156)

where α is a positive real number. As we have seen in the last section, we can build
rheological models by using the volumetric and deviatoric part of stress and strain.
For simplicity we assume that the material is isochoric, i.e., volume preserving such
that εkk = 0. Then the material equation containing first rates becomes

σi j + c1
dσi j

dt
= c2εi j + c3

dεi j
dt

. (1.157)

In this section we ignore material and geometric nonlinearities. Technically, we
approximate Fi j ≈ δi j , thus J ≈ 1, hence σi j ≈ Si j . Furthermore, we use εi j = u(i, j)

instead of Ei j . Since real numbers can be used instead of integers in fractional time
derivatives, we can generalize the latter constitutive equation as follows

σi j + cα
1
dασi j

dtα
= c2εi j + cγ

3

dγεi j

dtγ
, (1.158)

where α and γ are positive real numbers. We can rewrite the latter equation:

σi j + τα
0
dασi j

dtα
= Ge

(
εi j + τα

0
dαεi j

dtα

)
+ G0τ

β
0

dβεi j

dtβ
, (1.159)

with α and β denoting the fractional differentiation. The material parameters are
τ0, Ge, G0. Different well-known material models can be deduced from the latter
constitutive equation by choosing specificα and β values.We can chooseα = β = 0
and acquire the linear elastic material equation

σi j = (
Ge + G0

2

)
εi j , (1.160)

for an isochoric material. We can choose α = 0, β = 1 and it reduces to the linear
viscoelastic material equation

σi j = Geεi j + G0τ0

2

dεi j
dt

. (1.161)
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Another choice is α = 1 and β = 0 and in this case we obtain the linear rheological
model called the Zener model in the last section

σi j + τ0
dσi j

dt
= (Ge + G0)εi j + Geτ0

dεi j
dt

. (1.162)

Obviously Eq. (1.159) is a general linear material equation. The values of material
parameters, viz., G0, Ge, τ0, α, β, can be determined by means of experiments.45

The process of repeated differentiation and integration is represented by the nota-
tion:

dn

dtn
and

∫
...

∫
dt1....dtn . (1.163)

For an extended version of these operators we choose n as a positive real number.
Actually, the idea is a very old one to employ real numbers instead of integers for

a derivative. In a letter46 dated September 30, 1695, Guillaume François Antoine de
L’Hôpital wrote to GottfriedWilhelm Leibniz asking him about a particular notation
he had used in his publications for the nth-derivative of the linear function f (x) = x
and dn f/dxn . L’Hôpital posed the question to Leibniz, what the result would be
if n = 0.5. Leibniz’s response: “An apparent paradox, from which one day useful
consequences will be drawn.” In these words fractional calculus was born.

There are different definitions for a fractional derivative. Mathematicians prefer
to use the Riemann-Louville definition47 of the fractional derivative, however, we
will use theGrunwald-Letnikov definition48 as it is easier to implement in numer-
ical calculations. The two definitions are equivalent.49 The Grunwald-Letnikov
definition of the fractional derivative reads

dα f

dtα
= lim

h→0

1

hα

t/h∑
m=0

(−1)m
Γ |(α+1)

m! Γ |(α−m+1)
f |(t−mh) , (1.164)

where h is the time step and the so-called gamma function is

Γ

∣∣∣
x

= Γ (x) =
∫ ∞

0
exp(−t)t (x−1)dt . (1.165)

45See [9] for such experiments.
46This historical note is taken from [11].
47It is named after Georg Friedrich Bernhard Riemann and Joseph Liouville.
48It is named for Anton Karl Grünwald and Alexey Vasilievich Letnikov.
49See [18] for these definitions and their equivalence.
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The fractional derivative utilizes a time step, h, which we can exchange with Δt for
the time discretization in our computation, as exactly we have done it for the first
and second derivatives in the last section. For the left hand side of the constitutive
Eq. (1.159) we apply the fractional derivative

σi j + τα
0

t/Δt∑
m=0

1

Δtα
(−1)m

Γ |(α+1)

m! Γ |(α−m+1)
σi j

∣∣
(t−mΔt) =

= σi j + τα
0 σi j

Δtα
+ τα

0

t/Δt∑
m=1

1

Δtα
(−1)m

Γ |(α+1)

m! Γ |(α−m+1)
σi j

∣∣
(t−mΔt) =

= σi j

(
1 + τα

0

Δtα

)
+ τα

0

t/Δt∑
m=1

1

Δtα
(−1)m

Γ |(α+1)

m! Γ |(α−m+1)
σi j

∣∣
(t−mΔt) .

(1.166)

By using the latter we express the stress tensor:

σi j = 1

1 + τα
0 /Δtα

(
− τα

0

t/Δt∑
m=1

1

Δtα
(−1)m

Γ |(α+1)

m! Γ |(α−m+1)
σi j

∣∣
(t−mΔt) +

+Ge

(
εi j + τα

0
dαεi j

dtα

)
+ G0τ

β
0

dβεi j

dtβ

)
,

(1.167)

where

daεi j
dta

= 1

Δta

t/Δt∑
m=0

(−1)m
Γ |(a+1)

m! Γ |(a−m+1)
εi j

∣∣
(t−mΔt) , a = α,β . (1.168)

The weak form remains the same, we recall that we have simplified the problem
by neglecting the geometric nonlinearities (large deformations), Fi j ≈ δi j , J ≈ 1,
σi j ≈ Si j , εi j = u(i, j) instead of Ei j . In this constellation the form reads

Form =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + σ j i δui, j − ρ0 fi δui

)
dV−

−
∫

∂BN
0

t̂i δuidA .

(1.169)
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Fig. 1.8 Hysteresis plot of polycarbonate under shear loading for different loading rates

Consider a polycarbonate50 typically used for CDs, DVDs, BluRays, and also in
Nokia N9’s case, IPhone 5c’s case, or Samsung Galaxy III’s battery cover. It is a
transparent, hard, and impact resistant thermoplastic polymer with the following
materials data:

α = 0.844 , β = 0.844 − 0.364 , τ0 = 214 700 s ,

G0 = 2.152 · 102 Pa , Ge = 1.185 · 104 Pa , ρ0 = 1200 kg/m3 .
(1.170)

We shear a simple 2D geometry out of Makrolon M2200 sinusoidally and plot the
hysteresis plot for twodifferent loading rates. The rate-dependencyof thematerial can
be observed in Fig. 1.8. This behavior is due to the viscous character since the model
includes a strain rate and stress rate dependency. The rate dependency is applied
by fractional time rates. The hysteresis curve in Fig. 1.8 is typical for a viscoelastic
response subject to a cyclic loading. The enclosed area denotes the dissipated energy
due to the viscous behavior. Under a slower loading rate, the material possesses more
time to respond viscously and dissipates more energy. If the loading rate is so high
that the response time is larger than a complete cycle’s period, then the material
shows an elastic behavior.

In order to comprehend the effect of the fractional time rate, we apply a har-
monic loading for many cycles, see Fig. 1.9. In the case of integer rates we obtain a
steady-state in the hysteresis plot after couple of cycles. The integer rate dependency

50Makrolon M2200 is a commercial polycarbonate manufactured by Bayer, for the material para-
meters with 5% multi-wall carbon nanotubes from Baytubes, see [10].
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Fig. 1.9 Hysteresis plot of polycarbonate under shear loading for the loading rate 0.1Hz and 10
cycles

represents a limited memory of the material. In other words, the deformation in his-
tory affects the stress and this history is implemented by using a rate dependency.51

For a viscoelastic model with first rates of stress and strain, we have a short memory
in the material such that after one or two cycles we expect the steady-state. For a
second rate model, more history is involved such that we may expect after four or
five cycles. These are all rough estimations in other to explain the effect of a frac-
tional time rate. In the definition of the fractional time rate we incorporate the whole
history. Owing to the gamma function the effects diminish exponentially, concretely
the parameter τ0 is controlling how many seconds of history is involved in. The used
material has a huge τ0 parameter with respect to the total simulation time. Therefore,
the steady-state does not occur even in the first 10 cycles. Therefore, the fractional
time rate facilitates a history dependency by using a material parameter. In a model
with integer time rates, the materials dependence on history is limited by the highest
number of the time rate. For computation we use an efficient implementation of the
gamma function from SciPy packages. A simple two-dimensional rectangle is used
as the geometry, where right and left boundaries are handled as periodic boundaries.
This boundary condition has the physical interpretation of a material much wider
than the geometry used in the computation. The following code has been used for
simulations.

51Mathematically, we should expand in time by using a Taylor expansion up to nth integer rate.
Then the history is involved in for a limited interval of time given by nth derivative.
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1 ””” Computational r e a l i t y 05 , l i n e a r rheo logy with f r a c t i o n a l
→ time r a t e s ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import s c i py
8 from s c i py . s p e c i a l import gamma
9 from s c i py . misc import f a c t o r i a l

10 import numpy as np
11 s e t l o g l e v e l (ERROR)
12 pwd= / c a l c u l /CR05/
13
14 x length =0.100 #[m]
15 y length =0.025 #[m]
16 mesh = RectangleMesh ( Point (0 , 0 ) , Point ( x length , y length ) , 20 , 5 )
17
18 class PeriodicBoundary (SubDomain ) :
19 def i n s i d e ( s e l f , x , on boundary ) :
20 return near ( x [ 0 ] , 0 ) and on boundary
21 def map( s e l f , y , x ) :
22 #t h i s maps r i g h t s i d e x [ 0 ] = x l e n g t h t o t h e l e f t
23 x [ 0 ] = y [0] − x length
24 x [ 1 ] = y [ 1 ]
25
26 PeriodicBC = PeriodicBoundary ( )
27
28 Space = VectorFunctionSpace (mesh , P ,1 , cons tra ined domain=

→ PeriodicBC )
29 TensorSpace = TensorFunctionSpace (mesh , P ,1 ,

→ constra ined domain=PeriodicBC )
30
31 delu = TestFunction ( Space )
32 du = Tria lFunct ion ( Space )
33 u = Function ( Space )
34 u0 = Function ( Space )
35 u00 = Function ( Space )
36
37 print i n i t i a l i z i n g , time
38 t s t a r t =0.0
39 t end = 10.0
40
41 # a c l a s s i n d o l f i n s a v e s t h e d a t a ( b i n a r y ) i n t im e
42 s t r e s s h i s t o r y = TimeSeries (mesh . mpi comm ( ) , pwd+ h i s t /

→ s t r e s sH i s t )
43 s t r a i n h i s t o r y = TimeSeries (mesh . mpi comm ( ) , pwd+ h i s t /

→ s t r a i nH i s t )
44 s t r e s s h i s t o r y . parameters [ ” c l e a r o n w r i t e ” ] = Fal se
45 s t r a i n h i s t o r y . parameters [ ” c l e a r o n w r i t e ” ] = Fal se
46
47 #s e t t i n g i n i t i a l c o n d i t i o n s
48 i n i t i a l c o n d = Expres s ion ( ( 0 , 0 ) )
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49 u0 . i n t e r p o l a t e ( i n i t i a l c o n d )
50 u00 . a s s i gn ( u0 )
51
52 #D e f i n i n g b ound a r y c o n d i t i o n s
53 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
54 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
55 bottom = CompiledSubDomain ( near (x [ 1 ] , 0 ) && on boundary )
56 top = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=

→ y length )
57
58 c e l l s = Cel lFunct ion ( s i z e t , mesh )
59 f a c e t s = FacetFunction ( s i z e t , mesh )
60 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
61 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
62
63 f a c e t s . s e t a l l ( 0 )
64 # a c y c l i c s h e a r on top
65 shear = Expres s ion ( ( 0 .0001 s i n ( 2 . p i f time ) , 0 . 0 ) , f =0,

→ time=0)
66 bc1 = DirichletBC ( Space , shear , top )
67 bc2 = DirichletBC ( Space , ( 0 . 0 , 0 . 0 ) , bottom)
68 bc = [ bc1 , bc2 ]
69
70 def f r a c t i o n a l ( index , arg , t , h , power ) :
71 m=index+1
72 temp=as t en s o r ( [ [ 0 . , 0 . ] , [ 0 . , 0 . ] ] )
73 while m <= t/h :
74 h i s t=int ( t /h−m)
75 t en sor=Function ( TensorSpace )
76 arg . r e t r i e v e ( t en sor . v ec to r ( ) , h i s t )
77 temp += as t en s o r (( −1.) m gamma( power+1.)\
78 /gamma(power−m+1.)/ f a c t o r i a l (m) ten so r [ i , j ] \
79 /(h power ) , [ i , j ] )
80 m += 1
81 return temp
82
83 f i l e u = F i l e (pwd+ disp lacements . pvd )
84
85 #P l o t t i n g s t r e s s v / s s t r a i n c u r v e s
86 import matp lo t l i b as mpl
87 mpl . use ( Agg )
88 import matp lo t l i b . pyp lot as pylab
89 pylab . rc ( t ex t , usetex=True )
90 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e =30 )
91 pylab . rc ( l egend , f o n t s i z e =30)
92 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
93
94 def compute ( f req , l oop s ) :
95 t=t s t a r t
96 dt = 0.005/ f r e q
97 #S e t t i n g up th e p a r am e t e r s i n kg , s , N , m, Pa
98 alpha = 0.844
99 beta = 0.844 −0.364
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100 tau0 = 214700.
101 G0 = 2.152E2
102 Ge = 1.185E4
103 rho0 = 1200. #[ kg /m3 ]
104 # i n d e x n o t a t i o n
105 i , j , k , l = i n d i c e s (4 )
106 de l ta= Id en t i t y (2)
107 ep s i l on= as t en s o r ( 1 . 0 / 2 . 0 ( u [ i ] . dx ( j )+u [ j ] . dx ( i ) ) , ( i , j ) )
108 ep s i l on 0= as t en s o r ( 1 . 0 / 2 . 0 ( u0 [ i ] . dx( j )+u0 [ j ] . dx ( i ) ) , ( i ,

→ j ) )
109
110 sigma = as t en s o r ( 1 .0/(1 .0+ tau0 alpha/dt alpha ) ( \
111 − tau0 alpha f r a c t i o n a l (1 , s t r e s s h i s t o r y , t , dt , alpha )

→ [ i , j ] \
112 + Ge ( ep s i l on [ i , j ] \
113 + tau0 alpha f r a c t i o n a l (0 , s t r a i n h i s t o r y , t , dt , alpha )

→ [ i , j ] ) \
114 + G0 tau0 beta f r a c t i o n a l (0 , s t r a i n h i s t o r y , t , dt , beta

→ ) [ i , j ] ) \
115 , ( i , j ) )
116 f= Constant ( ( 0 . 0 , 0 . 0 ) )
117
118 Form = ( rho0 (u [ i ] −2. u0 [ i ]+u00 [ i ] ) /( dt dt ) delu [ i ] \
119 + sigma [ j , i ] delu [ i ] . dx ( j ) \
120 − rho0 f [ i ] delu [ i ] ) dx
121 Gain = de r i v a t i v e (Form , u , du )
122
123 s t r e s s e s = [ ]
124 s t r a i n s = [ ]
125 temp array= [ ]
126 time= [ ]
127 s t r e s s h i s t o r y . c l e a r ( )
128 s t r a i n h i s t o r y . c l e a r ( )
129 u . i n t e r p o l a t e ( i n i t i a l c o n d )
130 u0 . a s s i gn (u)
131 u00 . a s s i gn (u0 )
132 shear . f = f r eq
133 tend=loops / f r e q
134
135 while t<=tend :
136 shear . time = t
137 #p r i n t t im e : , t
138 s o l v e (Form== 0 , u , bc , J=Gain , \
139 s o lv e r paramete r s ={” newton so lver ” : { ”

→ l i n e a r s o l v e r ” : ” lu ” , ” r e l a t i v e t o l e r a n c e ”
→ : 1e−4} } , \

140 f orm compi l er parameters={” cpp opt imize ” : True , ”
→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

141 i f t u <<(u , t )
142 i f t u <<(u , t )
143 u00 . a s s i gn (u0 )
144 u0 . a s s i gn (u )
145 a c tu a l S t r e s s = p ro j e c t ( sigma , TensorSpace )

== 0.25/ f r e q : f i l e
== 0.75/ f r e q : f i l e
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146 s t r e s s h i s t o r y . s t o r e ( a c tu a l S t r e s s . v ec to r ( ) , t )
147 a c tu a l S t r a i n = p ro j e c t ( ep s i l on , TensorSpace )
148 s t r a i n h i s t o r y . s t o r e ( a c tu a l S t r a i n . v ec tor ( ) , t )
149 P=(x length /2 . , y l ength )
150 sigma12 = ac tu a l S t r e s s (P) [ 1 ]
151 ep s i l on12 = u(P) [ 0 ] / y length
152 s t r e s s e s . append ( sigma12 ) #i n Pa
153 s t r a i n s . append ( ep s i l on12 100 . ) #i n %
154 t = t + dt
155
156 return s t r e s s e s , s t r a i n s
157
158
159 f i g = pylab . f i g u r e (1 , f i g s i z e =(12 ,8) )
160 pylab . s ubp l o t s ad j u s t ( bottom=0.15)
161 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
162 pylab . x l ab e l ( r s t r a i n \ va r ep s i l on {xy} in \% )
163 pylab . y l ab e l ( r s t r e s s \ s igma {xy} in Pa )
164 pylab . g r id (True )
165
166 t i c ( )
167 f r e q = 0 .2
168 s t r e s s e s , s t r a i n s = compute ( f req , 1 )
169 #np . s a v e ( 0 1 H z s t r e s s . npy , s t r e s s e s )
170 #np . s a v e ( 0 1 H z s t r a i n . npy , s t r a i n s )
171 # s t r e s s e s =np . l o a d ( 0 1 H z s t r e s s . npy )
172 #s t r a i n s =np . l o a d ( 0 1 H z s t r a i n . npy )
173 pylab . p l o t ( s t r a i n s , s t r e s s e s , c o l o r= red , marker= o , markers i ze

→ =5, l a b e l= %(0) . 1 f Hz %{ 0 : f r e q })
174 pylab . s a v e f i g (pwd+ CompReal05 hysteres is1 . pdf )
175 print i t took , toc ( ) , s econds
176 t i c ( )
177 f r e q =0.3
178 s t r e s s e s , s t r a i n s = compute ( f req , 1 )
179 pylab . p l o t ( s t r a i n s , s t r e s s e s , c o l o r= blue , marker= s ,

→ markers i ze =5, l a b e l= %(0) . 1 f Hz %{ 0 : f r e q })
180 pylab . l egend ( l o c= best )
181 pylab . s a v e f i g (pwd+ CompReal05 hysteres is1 . pdf )
182 print i t took , toc ( ) , s econds
183
184 pylab . c l a ( )
185 pylab . c l f ( )
186 f i g = pylab . f i g u r e (2 , f i g s i z e =(12 ,8) )
187 pylab . s ubp l o t s ad j u s t ( bottom=0.15)
188 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
189 pylab . x l ab e l ( r s t r a i n \ va r ep s i l on {xy} in \% )
190 pylab . y l ab e l ( r s t r e s s \ s igma {xy} in Pa )
191 pylab . g r id (True )
192 t i c ( )
193 f r e q = 0 .2
194 s t r e s s e s , s t r a i n s = compute ( f req , 10 )
195 pylab . p l o t ( s t r a i n s , s t r e s s e s , r− )
196 pylab . s a v e f i g (pwd+ CompReal05 hysteres is2 . pdf )
197 print i t took , toc ( ) , s econds
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To-do

In order to obtain a better understanding, vary the parameters α, β and compare the
stress-strain hysteresis:

• Try first to guess the stress-strain plot for α = β = 0 and then apply.
• What is the proper name of the rheological model in case of setting α = 0, β = 1?
In this model, would the strain affect the hysteresis curve?

• Try to explain the case of α = 0, β = 2.
• What is the effect of setting α 
= 0 ?

In order to gain a perception of the implemented periodic boundary condition, try
to redo the simulation by removing this condition and using a free surface condition
on the boundary. Then double or triple the length in x-direction for eliminating the
boundary effects and compare the solution to the one with the periodic boundary
condition.

1.6 Associated Plasticity

Particles in their initial positions, Xi , move and displace as a consequence of a
mechanical loading. This displacement, ui , for every particle, Xi , at the current time,
t , is a function in space and time, ui = ui (X j , t). We compute the displacement
with the balance of linear momentum augmented by the constitutive equation. The
balance of linear momentum possesses stress. The constitutive equation relates stress
to displacements over strains. This connection is a mathematical equation, every
stress value is related to a unique strain value. For example zero stress is related
to zero strain. If we compute a loading and unloading scenario—stress increases
and then decreases—the particles move under loading and move back to their initial
positions after unloading. Before loading, at zero stress, no deformation occurs (zero
strain). After loading and unloading, at zero stress, zero strain has to occur again. In
other words, the process is reversible and the displacements are recoverable.

In the so-called elastic behavior, the displacement vanishes after unloading. The
process is reversible and for several cases it is admissible. For engineering materials
like steel, copper, magnesium, and aluminum, the admissible strains are less than
0.2% = 0.002. Above this threshold a plastic deformation starts occurring such
that after unloading some of the displacements remain in the continuum body. The
process is not reversible; some of displacements are recovered, not all. During this
plastic deformation the material behavior changes, too. We need different material
models for elasticity and plasticity. Hence, we need to distinguish between elastic
and plastic regimes.
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We start with elasticity. As discussed in Sect. 1.4, stress tensor consists of volu-
metric and deviatoric parts. We can motivate this decomposition for small strains by
using another argumentation. Consider a cubic body expressed in Cartesian coordi-
nates with its origin in one corner. Lengths of its sizes are simply identical to unit
vectors of the coordinate system. The volume reads

V = X1X2X3 = 1 . (1.171)

Suppose that its length changes due to a mechanical loading. The displacement, u1,
u2, u3 along X1, X2, X3, respectively, can be used to calculate the volumetric change:

V + ΔV = (X1 + u1)(X2 + u2)(X3 + u3) =
= X1X2X3 + X1X2u3 + X1u2X3 + X1u2u3 + u1X2X3 + u1u2X3 + u1u2u3 .

(1.172)
Bymultiplying the latter by V/X1X2X3 = 1 and then neglecting the nonlinear terms,
viz.,

u2u3
X2X3

= ε22ε33 ≤ 0.0022 ≈ 0 ,
u1u2
X1X2

= ε11ε22 ≤ 0.0022 ≈ 0 ,

u1u2u3
X1X2X3

= ε11ε22ε33 ≤ 0.0023 ≈ 0 ,
(1.173)

since small strains (smaller than 0.002) occur in the elastic regime, we obtain

V + ΔV = V + u3
X3

V + u2
X2

V + u1
X1

V

ΔV

V
= u3

X3
+ u2

X2
+ u1

X1
= εkk .

(1.174)

We can use a simplified notation:

εkk = 3e , (1.175)

where the parameter e is simply the measure of the volumetric change (dilation) in
Cartesian coordinates. The deviatoric strains are responsible for a distortion without
dilation

ε|i j | = εi j − eδi j . (1.176)

EmployingHooke’s law for isotropicmaterials,we obtain the linear relation between
the symmetric Cauchy stress and symmetric strain

σi j = c1eδi j + c2ε|i j | = λδi jεkk + 2μεi j . (1.177)
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This tensor equation of rank two has to hold in its lower ranks, too. We can reduce
the rank by contracting indices, for a Cartesian coordinate system we multiply by
the Kronecker delta52

δi jσi j = σi i = λδi i3e + 2μεi i = λ9e + 2μ3e , (1.178)

and introduce a simplified notation:

σi i = 3s ⇒ s = (3λ + 2μ)e . (1.179)

Another bulk quantity, s, for stress has been used, the deviatoric part reads

σ|i j | = σi j − sδi j . (1.180)

Finally, we observe a simple relation

σi j = λδi jεkk + 2μεi j ,

σ|i j | + sδi j = λδi j3e + 2μ
(
ε|i j | + eδi j

)
,

σ|i j | + (3λ + 2μ)eδi j = λδi j3e + 2μeδi j + 2με|i j | ,

σ|i j | = 2με|i j | .

(1.181)

In other words, under the assumption of small strains, deviatoric and volumetric parts
can be (additively) decomposed and related to each other separately. Indeed, we have
seen this decomposition already by using the energy concept, however, herein we
present the same result without using the notion of energy. The assumption of small
strains in the elastic regime is adequate for engineeringmaterials like steel, aluminum,
magnesium, and copper.

By excessing the yield stress, σY, body starts to flow with the velocity, vi =
vi (X j , t), of particles Xi . Since velocity is the rate of displacement, we obtain

∂v(i

∂X j)
= ∂2u(i

∂X j)∂t
= ∂2u(i

∂t∂X j)
= ∂εi j

∂t
= ε•

i j , (1.182)

where ε•
i j is the strain rate. The strain rate or equally the symmetric part of velocity

gradient causes a viscous flow. If a yield condition is fulfilled such velocities occur.
Hence this type of deformation is elasto-plastic and the flow of continuum body can
be expressed by strain rate. In a simple tensile test, a loading above the yield stress
causes a plastic deformation,which remains in the body after unloading. Thus,we can
simply measure the elastic and plastic elongations. By dividing the elastic and plastic

52We lower the rank by contracting indices. In order to contract two indices we multiply by the
metric tensor. Kronecker delta is also the metric tensor in Cartesian coordinates.
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elongations by the length of the beam, we obtain elastic and plastic strains.53 In order
to model the plastic behavior we need the strain rate or symmetric velocity gradients.
According to the von Mises yield criterion, the second invariant54 of deviatoric part
of the stress tensor should be greater than an experimentally determined quantity.
We know from a tensile test that the material starts deforming plastically above the
yield stress, σY. This scalar value is representing the threshold of the plasticity. In a
tensile test the stress tensor attains the yield stress in one component as the material
starts yielding

σi j =
⎛
⎝

σY 0 0
0 0 0
0 0 0

⎞
⎠ . (1.183)

Sincewewant to use the von Mises yield criterion,we calculate the second invariant

σ|i j | = σi j − sδi j =
⎛
⎝

2
3σY 0 0
0 − 1

3σY 0
0 0 − 1

3σY

⎞
⎠ , (1.184)

and relate it to the yield stress

σ|i j |σ|i j | = 6

9
σ2
Y ,

σY =
√
3

2
σ|i j |σ|i j | ,

(1.185)

which is the yield criterion. The value of σY is specific to the material. For any
deformation we can calculate

σeq =
√
3

2
σ|i j |σ|i j | , (1.186)

and compare it to the yield stress obtained from the tensile test. When the plasticity
starts, σeq = σY, the yield criterion is fulfilled.

As a consequence of mechanical loading, a deformation occurs. Upon unloading,
plastic part of the deformation remains in the body whereas the elastic part is recov-
ered. Since we express the deformation by using the strain tensor, a simple approach
of modeling such a behavior reads

εi j = eεi j + pεi j , (1.187)

53This consideration has been used in [20, 22], therefore, the associated plasticity is also called
Prandtl–Reuss plasticity, see [15,Chap.11]. ThePrandtl–Reuss plasticity is named for Ludwig
Prandtl and András Reuß (Endre Reuss).
54There are three invariants in three-dimensional space of the stress tensor. The first invariant of
stress is the bulk quantity s = σi i , the second invariant is σi jσi j and the third invariant is, σi jσ jkσki .
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where eεi j denotes the elastic part of the strain tensor and pεi j the plastic part. This
additive decomposition of strain tensor is a phenomenological fact. For many engi-
neering materials with small deformations and small strains the approach gives accu-
rate results. For the elastic part of strains we have applied Hooke’s law:

σi j = Ci jkl
eεi j = Ci jkl

(
εkl − pεkl

)
. (1.188)

The plasticity is given by strain rate. Hence, the latter equation is rewritten

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl

)
, (1.189)

since the stiffness tensor is constant in time. We need a constitutive relation for pε•
i j .

In a former sectionwe have utilized a scalar function, stored energy, in order to define
the stress as in Eq. (1.91). Stored energy has a first integral, i.e., it is a potential. The
same concept is used for plasticity and we assume that a flow potential f exists,
leading to

pε•
i j = Λ• ∂ f

∂σi j
, (1.190)

where we need a (positive) multiplier Λ• since the plastic strain cannot be expressed
with a first integral. In other words, the evolution of plastic strain is important, we
cannot use the start and end states for calculating plastic strain. Therefore, a flow
potential, f , fails to define the plastic strain and we need a multiplier. Both will
be defined in the following by using the yield criterion. This approach is called
associated plasticity in the literature.

1.6.1 Isotropic Hardening

We start by defining the flow potential, f . For many engineering materials, the von
Mises yield criterion is used in order to generate a function resulting in 0 in the case
of plasticity

f = 1

3
σ2
eq − 1

3
k2 ,

f = 1

2
σ|i j |σ|i j | − 1

3
k2 .

(1.191)

The value of k changeswith respect to the plastic deformation. Consider a tensile test,
the value of k = σY in the elastic regime. Obviously, the flow potential is negative,
f < 0. The axial force increases such that the equivalent stress approaches the yield
stress and f goes to zero. At the moment, when the yield criterion is fulfilled, f
vanishes and plasticity starts. If the force increases further, we would have a positive
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f if the value of k remains as k = σY. However, the value of k increases as the
plasticity is occurring such that f = 0 as long as a plastic deformation is performed.
The flow potential is zero in the plastic regime and negative in the elastic regime:

f ≤ 0 , f ≤
{

= 0 plastic regime

< 0 elastic regime
. (1.192)

Of course, we need to model k depending on the plastic deformation. For simplicity,
consider a linear function in the plastic strain:

k = σY + h pεeq , (1.193)

where pεeq denotes the equivalent plastic strain. This approach55 is obviously the
simplest case. Many engineering materials show such a simple hardening behavior.
An explanation of this behavior is based on arising dislocations in case of plastic
yielding, where the high density of dislocations slows down the plastic flow. From
a phenomenological point of view, we observe in a tensile experiment a behavior as
in Eq. (1.193) and model it by determining the material constants σY and h without
considering a microscopic reasoning. Since we determine the parameters from a
tensile test we need to use the von Mises equivalent stress and strain.

For example an AISI steel 1010 has the initial yield stress σY = 305MPa. This
value remains constant. For the elastic regime the flow potential is below zero, f <

0, since the equivalent stress is smaller than k = σY. When the loading causes an
equivalent stress higher than σY, the value of k increases such that f = 0 during the
plasticity.56 As we have seen in Eq. (1.193), k depends on the plastic strain and is
independent on the stress. The flow potential depends on k and stress,

f = f (k,σi j ) . (1.194)

During plastic deformation f = 0, moreover, f remains zero:

f • = 0 ,

f • = ∂ f

∂σi j
σ•
i j + ∂ f

∂k
k• = 0 .

(1.195)

55See [16].
56This approach gives the so-called Karush–Kuhn–Tucker conditions:

Λ• ≥ 0 , f ≤ 0 , Λ• f = 0 ,

since in the elastic regime f < 0 and Λ• = 0 whereas in the plastic regime f = 0 and Λ• > 0. We
will not make much use of these relations, they are mostly used in conditional optimization.
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By using Eq. (1.191) we obtain

∂ f

∂σi j
= ∂ f

∂σ|kl|
∂σ|kl|
∂σi j

= σ|kl|
(
δkiδl j − 1

3
δklδniδnj

) = σ|i j | − 1

3
δi jσ|kk| = σ|i j | ,

(1.196)
as well as

∂ f

∂k
= −2

3
k , (1.197)

thus the condition in Eq. (1.195) results in

f • = 0 = σ|i j |σ•
i j − 2

3
kk• . (1.198)

The latter can be rewritten in terms of the rate of k as follows

k• = 3σ|i j |σ•
i j

2k
. (1.199)

By combining the latter with the rate of k obtained from the linear isotropic hardening
model in Eq. (1.193),

k• = h pε•
eq , (1.200)

we acquire the so-called evolution equation for plastic equivalent strain:

k• = h pε•
eq = 3σ|i j |σ•

i j

2k
,

pε•
eq = 3σ|i j |σ•

i j

2kh
.

(1.201)

The evolution equation describes the change of plastic equivalent strain. The plastic
strain accumulates in the continuum body due to the evolution equation

pεeq =
∫

pε•
eqdt . (1.202)

The plastic strain lacks a first integral, we cannot write
∫
d pεeq. Therefore, we need

an evolution equation also for the three-dimensional case. In order to obtain pε•
i j we

start by inserting Eq. (1.189)

pε•
eq = 3σ|i j |Ci jkl

(
ε•
kl − pε•

kl

)

2kh
, (1.203)
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and continue by utilizing Eq. (1.190) with Eq. (1.196)

pε•
i j = Λ• ∂ f

∂σi j
= Λ•σ|i j | ,

pε•
eq = 3σ|i j |Ci jkl

(
ε•
kl − Λ•σ|kl|

)

2kh
.

(1.204)

During plasticity, f = 0, we postulate that the power calculated by the equivalent
stress and strain equals to the power calculated by the three-dimensional stress and
strain states:

σeq
pε•
eq = σi j

pε•
i j . (1.205)

The plastic flow of a solid is equal to a viscous flow of a fluid. In a viscous flow
the shear deformation results in an incompressible flow without volumetric change.
This phenomenon occurs in the plastic flow, too

pεkk = 0 ⇒ pε•
kk = 0 , (1.206)

thus, there is only a deviatoric (traceless) plastic strain rate, pε•
|i j | = pε•

i j . The afore-
mentioned postulate leads to

σeq
pε•
eq = σ|i j | pε•

|i j | ,

σeq =
√
3

2
σ|i j |σ|i j | ⇒ pε•

eq =
√
2

3
pε•

|i j | pε•
|i j | .

(1.207)

Now, the postulate can be rewritten

pε•
eq = 1

σeq
σ|i j | pε•

|i j | . (1.208)

Moreover, during plasticity, from Eq. (1.191) we acquire

f = 0 ⇒ k =
√
2

3
σ|i j |σ|i j | = σeq . (1.209)

By using the latter and Eq. (1.204)1 we obtain

pε•
eq = 1

k
σ|i j | pε•

|i j | = 1

k
σ|i j |Λ•σ|i j | = 1

k
Λ• 2

3
k2 = 2

3
Λ•k . (1.210)

Finally, we can explicitly define Λ• by combining Eq. (1.204)2 with the latter
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Λ• = 9σ|i j |Ci jkl
(
ε•
kl − Λ•σ|kl|

)
4k2h

,

Λ•
(
1 + 9

4k2h
σ|i j |Ci jklσ|kl|

)
= 9

4k2h
σ|i j |Ci jklε

•
kl ,

Λ• = σ|i j |Ci jklε
•
kl

4
9k

2h + σ|i j |Ci jklσ|kl|
.

(1.211)

We have reached the material model of the plastic multiplier in case of the linear
hardening. We recall Eq. (1.204)1:

pε•
i j = Λ•σ|i j | , (1.212)

such that the evolution of the plastic strain can be computed bymeans of the additional
parameter, h, from the used linear hardeningmodel. This parameter shall be obtained
by a tensile testing. We aim at defining a constitutive equation for stress, which reads

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl

) =
(
Ci jmn − Ci jklσ|kl|

σ|op|Copmn
4
9k

2h + σ|i j |Ci jklσ|kl|

)
ε•
mn . (1.213)

In order to allow plasticity to occur above the yield stress, we can define a conditional
parameter:

〈γ〉 =
{
1 if k ≥ σY

0 otherwise
, (1.214)

where the conditional parameter is written with Macaulay brackets57 〈·〉. This
parameter is used as follows

σ•
i j =

(
Ci jmn − 〈γ〉 Ci jklσ|kl|σ|op|Copmn

4
9k

2h + σ|i j |Ci jklσ|kl|

)
ε•
mn . (1.215)

Formally, the parameter γ can be computed after having computed the displacement
field (and thus stress). This approach is computationally costly, therefore, we will
employ it regarding the displacement field from the last time step. By choosing
appropriately small time steps, the computation will be accurate.

From the point of algorithmic ease theMacaulay brackets can be implemented
in an unusual way:

He(a) = 1

|a|
(a + |a|

2

)
=

{
1 if a > 0

0 otherwise
. (1.216)

57They are named for William Herrick Macaulay.
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This step-function is known as the Heaviside function.58 Especially in signal
processing and system control and dynamics, by using the time instead of a, Heav-
iside function is used frequently. We can use the same idea for the Macaulay

brackets and implement it in this way:

〈γ〉 = He(k − σY) = 1

|k − σY|
(k − σY + |k − σY|

2

)
. (1.217)

In the code below we use a boolean query for obtaining 〈γ〉, it is quicker than the
Heaviside function.

Since we apply the displacement field from the last time step for obtaining 〈γ〉, the
behavior of plastic flow is characterized with a time lag, which converges to reality
by choosing small time steps. During plasticity the deformation is partly elastic
and partly plastic. The plastic deformation is a viscous flow and we can imagine
this phenomenon as a consequence of the velocity gradient. Elastic deformation is
modeled by using the displacement gradient (strain). Displacement and velocity are
coupled; but they are independent.59 Therefore, elasticity and plasticity are coupled
and independent phenomena.

1.6.2 Kinematic Hardening

In the associated plasticity an isotropic hardening rule has some limitations. The
yield stress, k, increases in all directions (isotropic), hence, it can only be used for a
monotonic loading. For the case of a cyclic loading the Bauschinger effect60 can
be modeled by amending the hardening rule. The so-called kinematic hardening uses
a back stress, βi j , which results in a dependence on loading in the hardening model.
Instead of the aforementioned flow potential with linear isotropic hardening:

f = 1

2
σ|i j |σ|i j | − 1

3
(σY + h pεeq)

2 , (1.218)

58It is named after Oliver Heaviside.
59Formally, a sinusoidal displacement, u = a sin(bt), and thus the velocity, v = a b cos(bt), are
independent,

∫
u vdt = 0, since sinus and cosinus are orthogonal. This independence means that a

variation in one does not change the other. A velocity in the current time causes a displacement in a
future time, therefore, they are affecting each other in the subsequent times, however, independent
at the current time.
60This effect has been discussed in [4] for the first time and therefore it is named after Johann
Bauschinger.
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we use a flow potential61 in this form:

f = 1

2
(σ|i j | − βi j )(σ|i j | − βi j ) − 1

3
σ2
Y . (1.219)

We aim at modeling the back stress, βi j , in an adequate way. By starting with zero
back stress, we can model the back stress by using an evolution equation for its rate,
β•
i j . We search for a model of the rate of back stress. The simplest model62 is a linear

relation:

β•
i j = c pε•

i j , (1.220)

where the material parameter c has to be determined instead of h in isotropic harden-
ing. Starting from the latter relation for back stress, a theoretical treatise63 results in

β•
i j = (σi j − βi j )Γ

• , Γ • ≥ 0 , (1.221)

where we have introduced Γ •, which has to be obtained in a way that Eq. (1.220)
holds. We redo the same steps as in isotropic hardening. The flow potential in
Eq. (1.219) is a function of stress and back stress, f = f (σi j ,βi j ). While a plas-
tic yielding is occurring,

f • = 0 = ∂ f

∂σi j
σ•
i j + ∂ f

∂βi j
β•
i j = (

σ|i j | − βi j
)
σ•

|i j | −
(
σ|i j | − βi j

)
β•
i j , (1.222)

we obtain the following relation by using Eq. (1.221):

(
σ|i j | − βi j

)
σ•

|i j | = (
σ|i j | − βi j

)
β•
i j ,(

σ|i j | − βi j
)
σ•

|i j | = (
σ|i j | − βi j

)(
σi j − βi j

)
Γ • ,

Γ • =
(
σ|i j | − βi j

)
σ•

|i j |(
σ|i j | − βi j

)(
σi j − βi j

) .

(1.223)

Equation (1.220) states a traceless (deviatoric) back stress, βi j = β|i j |, since pε•
i i = 0.

Moreover, during plasticity, f = 0, we insert Eq. (1.219) into the latter and find

Γ • =
(
σ|i j | − βi j

)
σ•
i j(

σ|i j | − βi j
)(

σ|i j | − βi j
) =

(
σ|i j | − βi j

)
σ•
i j

2
3σ

2
Y

. (1.224)

61See [13].
62See [19].
63See [23].
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The starting assumption with the flow potential for kinematic hardening,

pε•
i j = Λ• ∂ f

∂σi j
= Λ•

(
σ|i j | − βi j

)
, (1.225)

allows us to obtain from Eq. (1.220) with Eq. (1.221) the evolution of back stress:

β•
i j = cΛ•

(
σ|i j | − βi j

) = (
σ|i j | − βi j

)
Γ • , (1.226)

for arbitrary σi j and βi j values. Hence, it reads

cΛ• = Γ • , Λ• =
(
σ|i j | − βi j

)
σ•
i j

2
3cσ

2
Y

. (1.227)

In order to eliminate the rate of stress, we use again Hooke’s law,

Λ• =
(
σ|i j | − βi j

)
Ci jkl

(
ε•
kl − pε•

kl

)
2
3cσ

2
Y

, pε•
kl = Λ•

(
σ|kl| − βkl

)
, (1.228)

and acquire

Λ•

(
1 +

(
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

)
2
3cσ

2
Y

)
=

(
σ|i j | − βi j

)
Ci jklε

•
kl

2
3cσ

2
Y

,

Λ• =
(
σ|i j | − βi j

)
Ci jklε

•
kl

2
3cσ

2
Y + (

σ|i j | − βi j
)
Ci jkl

(
σ|kl| − βkl

) .

(1.229)

Often c = 2/3h is chosen for a better correspondence to the isotropic hardening. In
this case we obtain the constitutive equation for kinematic hardening:

σ•
i j = Ci jmn

(
ε•
mn − pε•

mn

) = Ci jmn
(
ε•
mn − Λ•(σ|mn| − βmn)

)
, (1.230)

by using the conditional parameter 〈γ〉 from Eq. (1.217) the constitutive equation can
be rewritten

σ•
i j =

(
Ci jmn − 〈γ〉 Ci jkl

(
σ|kl| − βkl

)(
σ|op| − βop

)
Copmn

4
9σ

2
Yh + (

σ|i j | − βi j
)
Ci jkl

(
σ|kl| − βkl

)
)

ε•
mn . (1.231)

The latter equation is the counterpart of Eq. (1.215) with the isotropic hardening. For
the case of the isotropic hardening the yield stress, k, evolves with the plastic strain;
whereas for the case of the kinematic hardening, the back stress, βi j , evolves with
the plastic strain.
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In order to implement the constitutive equation, time discretization is used in the
Lagrangean frame

σ•
i j = ∂σi j

∂t
= σi j − σ0

i j

Δt
,

σi j = σ0
i j + Δtσ•

i j .

(1.232)

By considering linearized strains for small deformation the variational form becomes

Form =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + σ j i δui, j − ρ0 fi δui

)
dV

−
∫

∂BN
0

t̂i δuidA ,

(1.233)

where stress in Eq. (1.232) is complemented with Eq. (1.215) or Eq. (1.231). Unfor-
tunately, we need to know σi j in Eq. (1.215) or Eq. (1.231) for computing the current
stress, σi j . The correct way of programming relies on an iterative schema,64 which is
computationally costly. Therefore, we use the value of stress from the last time step
and approximate the rate of stress, for example, for kinematic hardening we acquire

σ•
i j =

(
Ci jmn − 〈γ〉 Ci jkl

(
σ0

|kl| − β0
kl

)(
σ0

|op| − β0
op

)
Copmn

4
9σ

2
Yh + (

σ0
|i j | − β0

i j

)
Ci jkl

(
σ0

|kl| − β0
kl

)
)

ε•
mn ,

βi j = β0
i j + Δtβ•

i j , β•
i j = (σ0

|kl| − β0
kl)σ

•
kl

2
3σ

2
Y

(
σ0

|i j | − β0
i j

)
.

(1.234)

For small time increments the numerical solution is accurate and the computational
time is reasonable.

Consider a one-axial tensile testing where a quadratic beam is under a mechanical
loading. The machine is controlled by displacement. Suppose that a cyclic loading
is set. We give below the code for the kinematic hardening and the hysteresis plot
can be seen in Fig. 1.10. The computation is in three-dimensions as seen in Fig. 1.11.
Hooke’s law incorporates the transverse strain, although the loading is only axial.
The plasticity model affects the material behavior only during the plasticity, which is
decided by using two conditions: f = 0 and f • = 0. Both of them are computed with
a boolean query in each time step. The second condition enables an elastic response
as a consequence of unloading. The code is given below.

64See [24, Chap.3].
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Fig. 1.10 Hysteresis plot for a tensile test simulation of plasticity with kinematic hardening

Fig. 1.11 Deformation is presented by using a scale factor of 50. TopAfter 1/4 cycle. Bottom After
3/4 cycle. The initial geometry is outlined
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1 ””” Computational r e a l i t y 06 , p l a s t i c i t y ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 x length =100. #[mm]

10 y length =10. #[mm]
11 z l ength =10. #[mm]
12 mesh = BoxMesh ( Point (0 , 0 , 0) , Point ( xlength , y length ,

→ z l ength ) , 10 , 3 , 3)
13 Coef f = FunctionSpace (mesh , P ,1)
14 Space = VectorFunctionSpace (mesh , P ,1)
15 Tensor = TensorFunctionSpace (mesh , P ,1)
16 delu = TestFunction ( Space )
17 du = Tria lFunct ion ( Space )
18 u = Function ( Space )
19 u0 = Function ( Space )
20 u00 = Function ( Space )
21
22 c e l l s = Cel lFunct ion ( s i z e t , mesh )
23 f a c e t s = FacetFunction ( s i z e t , mesh )
24 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
25 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
26
27 print i n i t i a l i z i n g , time
28 t =0.0
29 t end = 10.0
30 dt = 0.05
31
32 #D e f i n i n g b ounda r y c o n d i t i o n s
33 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
34 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
35
36 boundar i es = FacetFunction ( u int ,mesh )
37 boundar i es . s e t a l l ( 0 )
38 # a c y c l i c d i s p l a c e m e n t on t h e r i g h t end
39 d i s p l = Expres s ion ( ( 0 . 5 s i n ( 2 . p i f time ) , 0 . 0 , 0 . 0 ) , f

→ =0.1 , time=0)
40 bc1 = DirichletBC ( Space , d i sp l , r i gh t )
41 bc2 = DirichletBC ( Space , ( 0 . 0 , 0 . 0 , 0 . 0 ) , l e f t )
42 bc = [ bc1 , bc2 ]
43
44 #S e t t i n g up th e m a t e r i a l p a r a m e t e r s i n tonne , s e c o nd s , Newton

→ , m i l i m e t e r
45 rho0 = 8 .3E−9 #t on n e /mmˆ3
46 nu , E = 0 . 3 , 200000.0 # [ − ] , [ MPa ]
47 h=0.01 E
48 lambada=E nu/(1.0+nu) /(1.0 −2.0 nu)
49 mu=E/(2.0+2.0 nu )
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50 #Y=Fu n c t i o n ( C o e f f )
51 sigmaY=Constant ( 300 . 0 ) # [ MPa ]
52 # i n d e x n o t a t i o n
53 i , j , k , l ,m, n , o , p = i n d i c e s (8 )
54 de l ta= Id en t i t y (3)
55 eps= as t en s o r ( 1 . 0 / 2 . 0 ( u [ i ] . dx ( j )+u [ j ] . dx ( i ) ) , ( i , j ) )
56 eps0= as t en s o r ( 1 . 0 / 2 . 0 ( u0 [ i ] . dx ( j )+u0 [ j ] . dx ( i ) ) , ( i , j ) )
57 epsDot=as t en s o r ( ( eps [ i , j ]− eps0 [ i , j ] ) /dt , ( i , j ) )
58 gamma=Function ( Coef f )
59
60 C = as t en s o r ( lambada de l ta [ i , j ] d e l t a [ k , l ] \
61 +mu de l ta [ i , k ] d e l ta [ j , l ]+mu de l ta [ i , l ] d e l t a [ j , k ] , ( i , j , k , l ) )
62
63 sigma0 = Function ( Tensor )
64 dev s igma0 = as t en s o r ( sigma0 [ i , j ] −1./3 . sigma0 [ k , k ] d e l t a [ i ,

→ j ] , ( i , j ) )
65 beta0=Function ( Tensor )
66
67 sigmaDot = as t en s o r ( (C[ i , j ,m, n]−gamma C[ i , j , k , l ] (

→ dev s igma0 [ k , l ] \
68 −beta0 [ k , l ] ) ( dev s igma0 [ o , p]−beta0 [ o , p ] ) C[ o , p ,m, n ] / ( 4 . / 9 .

→ sigmaY 2 h\
69 +(dev s igma0 [ i , j ]−beta0 [ i , j ] ) C[ i , j , k , l ] ( dev s igma0 [ k , l ] \
70 −beta0 [ k , l ] ) ) ) epsDot [m, n ] , ( i , j ) )
71
72 sigma = as t en s o r ( sigma0 [ i , j ]+dt sigmaDot [ i , j ] , ( i , j ) )
73 dev s igma = as t en s o r ( sigma [ i , j ] −1./3 . sigma [ k , k ] d e l t a [ i , j

→ ] , ( i , j ) )
74
75 betaDot = as t en s o r ( gamma ( dev s igma0 [ k , l ]−beta0 [ k , l ] )

→ sigmaDot [ k , l ] \
76 / (2 . 0 /3 . 0 sigmaY 2) ( dev s igma0 [ i , j ]−beta0 [ i , j ] ) , ( i , j ) )
77
78 beta=as t en s o r ( beta0 [ i , j ]+dt betaDot [ i , j ] , ( i , j ) )
79
80 f= Constant ( ( 0 . , 0 . , 0 . ) )
81
82 Form = ( rho0 (u [ i ] −2. u0 [ i ]+u00 [ i ] ) /( dt dt ) delu [ i ] \
83 + sigma [ j , i ] delu [ i ] . dx ( j ) \
84 − rho0 f [ i ] delu [ i ] ) dV
85 Gain = de r i v a t i v e (Form , u , du )
86
87 #P l o t t i n g s t r e s s v s . s t r a i n c u r v e s
88 import matp lo t l i b as mpl
89 mpl . use ( Agg )
90 import matp lo t l i b . pyp lot as pylab
91 pylab . rc ( t ex t , usetex=True )
92 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e =30 )
93 pylab . rc ( l egend , f o n t s i z e =30)
94 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
95
96 #py l ab . i o n ( )
97 f i g = pylab . f i g u r e (1 , f i g s i z e =(12 ,8) )
98 f i g . c l f ( )
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99 pylab . s ubp l o t s ad j u s t ( bottom=0.18)
100 pylab . s ubp l o t s ad j u s t ( l e f t =0.16)
101 pylab . x l ab e l ( r s t r a i n \ va r ep s i l on {xx} )
102 pylab . y l ab e l ( r s t r e s s \ s igma {xx} in MPa )
103 pylab . g r id (True )
104
105 s t r e s s p l o t = [ ]
106 s t r a i n p l o t = [ ]
107 temp array= [ ]
108 time= [ ]
109 u i n i t = Expres s ion ( ( 0 . 0 , 0 . 0 , 0 . 0 ) )
110 u0 . i n t e r p o l a t e ( u i n i t )
111 u00 . a s s i gn ( u0 )
112 f i l e u = F i l e ( / c a l c u l /CR06/ d i sp lacements . pvd )
113
114 while t <= t end :
115 d i s p l . time = t
116 print time : , t
117 s o l v e (Form== 0 , u , bc , J=Gain , \
118 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
119 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

120
121 s igma = p ro j e c t ( sigma , Tensor , s o l v e r t yp e=”mumps” ,\
122 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

123 s t r a i n p l o t . append (u ( xlength , y l ength /2 . , z l ength /2 . ) [ 0 ] /
→ x length )

124 s t r e s s p l o t . append ( s igma ( x length /2 . , y l ength /2 . , z l ength
→ /2 . ) [ 0 ] )

125 f i l e u << (u , t )
126 sigma0 . a s s i gn ( s igma )
127 beta = p ro j e c t ( beta , Tensor , s o l v e r t yp e=”mumps” ,\
128 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

129 beta0 . a s s i gn ( beta )
130 f l ow = p ro j e c t ( 1 . / 2 . ( dev s igma0 [ i , j ]−beta0 [ i , j ] ) (

→ dev s igma0 [ i , j ]−beta0 [ i , j ] ) −1./3. sigmaY 2 , Coef f
→ )

131 f l ow boo l = f l ow . v ec tor ( ) . array ( ) >= 0 .
132 d i r e c t i o n = p ro j e c t ( ( dev s igma0 [ i , j ]−beta0 [ i , j ] ) epsDot [

→ i , j ] , Coef f , s o l v e r t yp e=”mumps” ,\
133 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

134 d i r e c t i o n bo o l =1./2 . ( numpy . s i gn ( d i r e c t i o n . v ec tor ( ) .
→ array ( ) ) +1.)

135 gamma . v ec tor ( ) [ : ] = numpy . array ( f l ow boo l d i r e c t i on boo l ,
→ dtype=int )

136
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137 u00 . a s s i gn (u0 )
138 u0 . a s s i gn (u)
139 t = t + dt
140
141 pylab . p l o t ( s t r a i n p l o t , s t r e s s p l o t , c o l o r= red , marker= o

→ , markers i ze =5)
142 #py l ab . draw ( )
143
144 pylab . s a v e f i g ( / c a l c u l /CR06/ CompRea l06 p l a s t t en s i l e . pdf

→ )

To-do

We have implemented the kinematic hardening law such that the stress-strain hys-
teresis curve is enclosed in a cyclic loading.

• Try to implement the isotropic hardening and compare the hysteresis curves.
• What is the so-calledBauschinger effect?Which hardening law ismore realistic?
• Depends the plasticity modeling on the loading rate? How is the response of the
material subject to a quicker loading?

1.7 Linear Viscous Fluids

Under a mechanical loading, material deforms. A plastic solid and a viscous fluid
perform a similar behavior under mechanical loading. Categorizing a material as
solid or fluid is challenging. A solid is understood as a body keeping its shape under
gravitational forces; the molecular bounds are strong. Therefore, the Lagrangean
frame works well, where particles are associated by their reference positions. In
plasticity, above the yield stress thematerial starts flowing if the applied force exceeds
the intramolecular force. In case of a fluid, themolecular bound is soweak that it takes
the shape of the container under gravitational forces. Basically, it flows under any
mechanical loading.65 We can visualize a channel, through which the fluid flows. In
a Lagrangean frame we may identify the particles by their positions at a reference
time to be seen as X in Fig. 1.12. The velocity of a fluid particle can be measured at a
position in space expressed in x. At two different instants of time, at the same spatial
position, x, we measure the velocity of two different fluid particles, see Fig. 1.12.
The spatial position, x, is occupied by a material particle. At a time instant we can

65We simply ignore the surface stress, which holds a drop together.



1.7 Linear Viscous Fluids 77

Fig. 1.12 Two snapshots at different time instants are drawn for a fluid flowing in a channel. In
both drawings the same spatial position is indicated in the red, x, and green, X , coordinate systems.
The coordinates in the Eulerian frame, x, are identical, since it is the same spatial position. The
coordinates in the Lagrangean frame, X , varies denoting that different particles occupy the same
spatial position at different instants of time

identify a material particle for each spatial position; however, the position denotes a
point in space, not a particle. A Eulerian frame is the collection of spatial positions
indicating points in the physical (ordinary) space independent on the underlying
material. This frame is used for fluid flow problems.

In (solid or fluid) mechanics we solve the balance equations of mass and (linear)
momentum:

∂ρ

∂t
+ ∂

∂xi

(
ρvi

) = 0 ,

∂ρvi

∂t
+ ∂

∂x j

(
ρviv j − σ j i

) − ρ fi = 0 ,

(1.235)

in a Eulerian frame for every material particle occupying a spatial position xi .
Their derivation will be discussed in the next section. These balance equations will
be solved at the current (present) time at every xi in � called a domain or a control
volume. Since we will solve them simultaneously, we may subtract the first from the
second and obtain

∂ρ

∂t
+ ∂

∂xi

(
ρvi

) = 0 ,

ρ
∂vi

∂t
+ ρv j

∂vi

∂x j
− ∂σ j i

∂x j
− ρ fi = 0 .

(1.236)

Now, we employ the time rate with finite difference method:

1

Δt
(ρ − ρ0) + vi

∂ρ

∂xi
+ ρ

∂vi

∂xi
= 0 ,

ρ

Δt
(vi − v0

i ) + ρv j
∂vi

∂x j
− ∂σ j i

∂x j
− ρ fi = 0 .

(1.237)
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By satisfying both of the equations we can calculate ρ and vi in �. We may think as
the first equation resulting in the mass density, ρ, and the second equation leading
to the velocity, vi . By multiplying both equations by appropriate test functions, we
bring them into scalar quantities and integrate these scalars over the domain, �. The
first equation can be multiplied by δρ and the second one by δvi . If they are of the
same unit, we can sum them up. Unfortunately, they fail to be in the same unit after
multiplication with δρ and δvi . There are several ways to bring them to the same unit.
The prominent way is to choose a dimensionless form by introducing a characteristic
length, �, a characteristic time, τ , and a characteristic velocity, ω = �/τ . By using
these characteristic quantities we can obtain dimensionless space, time, and velocity
as follows

x̄i = xi
�

, t̄ = t

τ
, v̄i = vi

ω
. (1.238)

Hence the balance equations can be rewritten as

1

τΔt̄
(ρ − ρ0) + ωv̄i

1

�

∂ρ

∂ x̄i
+ ρ

ω

�

∂v̄i

∂ x̄i
= 0 ,

ρ

τΔt̄
ω(v̄i − v̄0

i ) + ρ
ω2

�
v̄ j

∂v̄i

∂ x̄ j
− 1

�

∂σ j i

∂ x̄ j
− ρ fi = 0 .

(1.239)

By multiplying the balance of mass by τ/ρ and the balance of linear momentum by
τ/(ρω), we obtain two dimensionless balance equations:

1

Δt̄

(
1 − ρ0

ρ

)
+ 1

ρ
v̄i

∂ρ

∂ x̄i
+ ∂v̄i

∂ x̄i
= 0 ,

1

Δt̄
(v̄i − v̄0

i ) + v̄ j
∂v̄i

∂ x̄ j
− τ

ω�ρ

∂σ j i

∂ x̄ j
− τ

ω
fi = 0 .

(1.240)

which can be weighted by dimensionless test functions and summed up within the
domain

∫
�

(( 1

Δt̄

(
1 − ρ0

ρ

)
+ 1

ρ
v̄i

∂ρ

∂ x̄i
+ ∂v̄i

∂ x̄i

)
δρ̄+

+
( 1

Δt̄
(v̄i − v̄0

i ) + v̄ j
∂v̄i

∂ x̄ j
− τ

ω�ρ

∂σ j i

∂ x̄ j
− τ

ω
fi
)

δv̄i

)
dv = 0 .

(1.241)

We search for themass density, ρ = ρ(xi , t), and the velocity, vi = vi (x j , t), in space,
xi , and time, t . Indeed, we first need to define a constitutive equation for the Cauchy
stress, σi j , in order to close the integral form. Thereafter, we can solve the integral
form numerically.
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The simplest constitutive equation for a viscous fluid is called Navier–Stokes’s
equation:66

σ j i =
(

− p + λ
∂vk

∂xk

)
δ j i + 2μ

∂v( j

∂xi)
, (1.242)

where p denotes pressure, λ and μ are the material parameters (constants). For
materials like water this linear constitutive equation provides accurate results. It is
a linear model since it models a linear relation between the symmetric part of the
velocity gradient, ∂v(i/∂x j), and the Cauchy stress tensor, σi j . By defining stress
we have introduced a quantity called hydrostatic pressure, p. This pressure p shall
be given by a constitutive equation, too. For a viscous fluid it is difficult to find an
adequate equation of p. There is a way of circumventing this problem, at least for
incompressible flows, which is often the case in water. The incompressibility is easy
to measure. We can fill a bicycle pump with water and try to change the volume of
the water by holding the outlet closed and compressing the pump. By increasing the
pressure we should be compressing thewater in the pump and decreasing the volume.
Supposewe have increased the pressure to a specific value and the volume contraction
is negligible. Then up to this specific pressure, the fluid flow is incompressible. For
an incompressible fluid flow the mass density remains unchanged, ρ = ρ0. Initially,
if the material is homogeneous, ρ,i = 0, i.e., same mass density within the domain,
then we have a constant value of the mass density throughout the simulation. For an
incompressible fluid flow, the balance of mass reads

∂vi

∂xi
= 0 . (1.243)

The mechanical pressure:67

−1

3
σi i = p −

(
λ + 2

3
μ
)∂vi

∂xi
, (1.244)

applied on the fluid equals to the hydrostatic pressure, p, for an incompressible fluid
flow.

In the case of an incompressible fluid flow, the mass density is known. Therefore,
we can use the balance of mass for calculating the pressure, p, which is unknown.
In order to emphasize that the pressure is now a primitive variable instead of mass
density, we rewrite the integral form with δ p̄ instead of δρ̄ (both are dimensionless)

66The constitutive equation is named for Claude Louis Marie Henri Navier and George Gabriel
Stokes.
67Positive stress attains a lengthening, whereas pressure shortens the structure. Hence, the mechan-
ical pressure is a minus trace of stress tensor.
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∫
�

(
v̄i,i δ p̄ +

( (v̄i − v̄0
i )

Δt̄
+ v̄ j v̄i, j + τ

ω�ρ
p, jδ j i − λ

1

ω�ρ
v̄k,k jδ j i−

− 2μ

ω�ρ
v̄( j,i) j − τ

ω
fi
)

δv̄i

)
dv = 0 ,

(1.245)

where we have introduced, for the sake of simplicity, the following notation:

∂(·)
∂ x̄i

= (·),i . (1.246)

We can now introduce dimensionless pressure, stress, and body forces:

p̄ = 1

ω2ρ
p = τ

ω�ρ
p , σ̄i j = τ

ω�ρ
σi j , f̄i = τ

ω
fi , (1.247)

as well as the so-called Reynolds number:68

Re = ω�ρ

2μ
. (1.248)

The list of unknowns, { p̄, v̄1, v̄2, v̄3}, are the primitive variables in this section.Weuse
Galerkin type finite elements, in other words, the primitive and their test functions
are of the same class.69 A term like v̄( j,i)k δv̄l necessitates at least C2 because of the
second derivative in the primitive variable. We can shift one derivative to the test
function and lower the necessary differentiability, so the continuity requirement of
the integral form is weaken such that we acquire aweak form. By integrating by parts
and using Gauss’s law on the aforementioned term

−
∫

�

v̄( j,i)k δv̄ldv =
∫

�

v̄( j,i) δv̄l,kdv −
∫

∂�

v̄( j,i) δv̄lnkda , (1.249)

we attain the weak form for the linear viscous fluid flow problem:

Form =
∫

�

(
v̄i,i δ p̄ + (v̄i − v̄0

i )

Δt̄
δv̄i + v̄ j v̄i, j δv̄i + p̄,i δv̄i + λ

2μRe
v̄k,k δv̄i,i+

+ 1

Re
v̄( j,i) δv̄i, j − f̄i δv̄i

)
dv −

∫
∂�

( λ

2μ

1

Re
v̄k,k δv̄i ni + 1

Re
v̄( j,i) δv̄i n j

)
da .

(1.250)
After inserting the constitutive equation and introducing a dimensionless number,
a = 2μ/λ, the weak form becomes

68It is named after Osborne Reynolds.
69A function of the class Ck has a continuous kth derivative. Since we use linear finite elements
(polynomial order one) the first derivative exists, only C1 can be represented in one finite element.
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Fig. 1.13 Drawing of a
two-dimensional channel
filled with a viscous fluid in
the Eulerian frame

Form =
∫

�

(
v̄i,i δ p̄ + (v̄i − v̄0

i )

Δt̄
δv̄i + v̄ j v̄i, j δv̄i + p̄,i δv̄i + 1

aRe
v̄k,k δv̄i,i+

+ 1

Re
v̄( j,i) δv̄i, j − f̄i δv̄i

)
dv −

∫
∂�

(
σ̄ j i + p̄δ j i

)
δv̄i n jda .

(1.251)
Consider a channel filled with water (linear viscous fluid) in the Eulerian frame
expressed in Cartesian coordinates as drawn in Fig. 1.13. We simulate in two dimen-
sions, where on left and right ends, water may cross the boundaries of �. On top
and bottom, walls omit a leakage. Moreover, water adheres to the walls such that
particles possess the same velocity as the walls. We simulate for fixed walls:

vi = v̄i = 0 on ∂�top ∪ ∂�down . (1.252)

This condition is a Dirichlet condition for velocity, satisfied for all times. Hence,
the boundary integral in the weak form vanishes at the top and bottom boundaries.
At the beginning, water rests under the normal atmospheric pressure:

p(x, t = 0) = 1 bar =̂ 105 Pa , p̄(x̄, t = 0) = 100 ,

vi (x, t = 0) = 0m/s , v̄i (x̄, t = 0) = 0 .
(1.253)

It shall be recalled that we have not defined the characteristic length and time, how-
ever, we will choose them such that ω2ρ = 103 Pa. Moreover, the ratio of volume to
shear viscosity, a = 2μ/λ, is a dimensionless number. Since water is nearly incom-
pressible, it is difficult to measure the volume viscosity λ. For numerical reasons we
need a value of a; we choose it to be a = 0.1. The mechanical pressure is varied on
the right and left ends such that pin on left becomes greater than pout on right. Then
water flows from left to right. Thus, the mechanical pressure:

−1

3
σ̄kk = pin on ∂�left ,

−1

3
σ̄kk = pout on ∂�right ,

(1.254)

is directed inward the domain on the left and right boundaries
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t̂i = −ni pin on ∂�left ,

t̂i = −ni pout on ∂�right .
(1.255)

We apply Neumann conditions for velocity by defining t̂i = n j σ̄ j i on right and left
boundaries.As a special case for incompressible fluid flows,we obtain the hydrostatic
pressure on the boundaries

p̄ = −1

3
σ̄kk = pin on ∂�left ,

p̄ = −1

3
σ̄kk = pout on ∂�right .

(1.256)

Hence, for the pressure, p̄, we apply Dirichlet conditions on the left and right
boundaries. After applying the boundary conditions, boundary terms in the weak
form read

−
∫

∂�∗

(
t̂i + p̄ni

)
δv̄ida , (1.257)

with ∂�∗ = ∂�left ∪ ∂�right. From Eqs. (1.255), (1.256) it is obvious that the bound-
ary terms vanish. Therefore, for an incompressible fluid flow we implement the
mechanical pressure via hydrostatic pressure and the boundary integrals vanish. We
have attained the weak form to be implemented:

Form =
∫

�

(
v̄i,i δ p̄ + (v̄i − v̄0

i )

Δt̄
δv̄i + v̄ j v̄i, j δv̄i + p̄,i δv̄i + 1

aRe
v̄k,k δv̄i,i+

+ 1

Re
v̄( j,i) δv̄i, j − f̄i δv̄i

)
dv ,

(1.258)
which is nonlinear in primitive variables. Thus, we use again theNewton–Raphson
linearization by a symbolic differentiation. The pressure difference induces a flow
within the channel. We start from an equilibrium (no pressure difference) and apply a
pressure difference linear in time up to the time t̄ = 0.5. Then the pressure difference
is held constantly. After a while under the constant pressure difference, a steady-state
of the flow is reached. In Fig. 1.14 the solutions at two different time instants for the
Reynolds number Re = 100 can be seen.

The channel is of dimensions 5 × 1 in x̄ . Its real length depends on the char-
acteristic length �, which is the thickness of the channel. The chosen Reynolds

number, Re = 100, for the flow of water70 having μ = 1001.6 · 10−6 Ns/m2 and
ρ = 998.21kg/m3 results in

70See [29, p. 32] at 20 ◦C.
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Fig. 1.14 Normalized
pressure distribution as
colors and velocity
distribution as arrows at
t̄ = 2.0 on the upper and at
t̄ = 10.0 on the lower
visualization. At t̄ = 1.0 the
pressure 105 on left is
achieved and held, where
p̄ = 100 corresponds to
p = 1bar

Re = ω�ρ

2μ
= �2ρ

τ2μ
,

�2

τ
= 2 · 10−4 m2 . (1.259)

Since we have chosen p̄ such that

ω2ρ = �2

τ 2
ρ = 103 Pa ,

�2

τ
= τ

ρ
103 , (1.260)

we obtain

τ

ρ
103 = 2 · 10−4 , τ = 2ρ10−7 = 2 · 10−4 s ,

� = 2 · 10−4 m , ω = �

τ
= 1m/s .

(1.261)

Since the characteristic length is chosen as the width of the channel, we have simu-
lated a channel of 1 × 0.2mm for a total time of 2ms. For a longer simulation in a
bigger channel, we need to change the Reynolds number. The code is given below.
The primitive variables are solved monolithically by using a mixed function space.
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1 ””” Computational r e a l i t y 07 , l i n e a r f l u i d f low ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 x length = 5.0

10 y length = 1.0
11 mesh=RectangleMesh ( Point (0.0 , − y length /2 . 0 ) , Point ( x length ,

→ y length /2 . 0 ) ,100 ,20)
12 V = VectorFunctionSpace (mesh , P , 1) #f o r v e l o c i t y
13 P = FunctionSpace (mesh , P , 1) #f o r p r e s s u r e
14 Space = MixedFunctionSpace ( [P,V] )
15
16 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
17 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
18 bottom = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=−

→ y length /2 . 0 )
19 top = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=+

→ y length /2 . 0 )
20
21 f a c e t s = FacetFunction ( s i z e t ,mesh )
22 c e l l s = Cel lFunct ion ( s i z e t ,mesh )
23 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
24 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
25 n = FacetNormal (mesh )
26
27 f a c e t s . s e t a l l ( 0 )
28 l e f t . mark ( f a c e t s , 1)
29 r i gh t . mark ( f a c e t s , 2)
30
31 #s e t t i n g t h e D i r i c h l e t c o n d i t i o n s
32 v no s l i p = Constant ( ( 0 . 0 , 0 . 0 ) )
33 p in = Expres s ion ( 100.0+10.0 t , t=0)
34 p out = Constant ( 100.0 )
35 tL = −p in n
36 tR = −p out n
37 p bc1=DirichletBC ( Space . sub (0) , p in , l e f t )
38 p bc2=DirichletBC ( Space . sub (0) , p out , r i gh t )
39 v bc1=DirichletBC ( Space . sub (1) , v nos l i p , bottom)
40 v bc2=DirichletBC ( Space . sub (1) , v nos l i p , top )
41 v bc3=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , l e f t )
42 v bc4=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , r i gh t )
43
44 bc=[p bc1 , p bc2 , v bc1 , v bc2 , v bc3 , v bc4 ]
45 f = Expres s ion ( ( 0 . 0 , 0 . 0 ) )
46 # m a t e r i a l c o n s t a n t s
47 a = 0 .1
48 Re = 100.
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49 i , j , k , l = i n d i c e s (4 )
50 t = 0 .0
51 t b c = 0 .5
52 t end = 10.0
53 dt = 0.05
54
55 t e s t = TestFunction ( Space )
56 du = Tria lFunct ion ( Space )
57 u0 = Function ( Space ) # s o l u t i o n f r om t h e l a s t t im e s l i c e
58 u = Function ( Space ) # c u r r e n t s o l u t i o n
59 u i n i t = Expres s ion ( ( p0 , 0 . 0 , 0 . 0 ) , p0=100.0)
60 u0 . i n t e r p o l a t e ( u i n i t )
61 u . i n t e r p o l a t e ( u i n i t )
62 # s p l i t ( ) s e t s p o i n t e r t o t h e memory a d d r e s s ,
63 # s o i t i s a d i r e c t a c c e s s , no d e e p copy
64 p0 , v0 = s p l i t ( u0 )
65 p , v = s p l i t (u)
66 del p , d e l v = s p l i t ( t e s t )
67 Form = (v [ i ] . dx ( i ) d e l p + (v−v0 ) [ i ] / dt de l v [ i ] \
68 + v [ j ] v [ i ] . dx ( j ) d e l v [ i ] + p . dx ( i ) d e l v [ i ] \
69 + 1.0/( a Re) v [ k ] . dx (k ) de l v [ i ] . dx ( i ) \
70 + 1.0/Re sym( grad (v ) ) [ j , i ] d e l v [ i ] . dx ( j ) \
71 − f [ i ] d e l v [ i ] ) dv
72
73 Gain = de r i v a t i v e (Form , u , du )
74 f i l e p = F i l e ( / c a l c u l /CR07/ pres . pvd )
75 f i l e v = F i l e ( / c a l c u l /CR07/ ve l o . pvd )
76 # t ime l o o p
77 t i c ( )
78 while t<= t end :
79 t = t + dt
80 i f t<t b c : p in . t = t
81 else : p in . t = t bc
82 print time : , t
83 s o l v e (Form== 0 , u , bc , J=Gain , \
84 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ” lu ” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
85 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

86
87 f i l e p << (u . s p l i t ( ) [ 0 ] , t )
88 f i l e v << (u . s p l i t ( ) [ 1 ] , t )
89 u0 . a s s i gn (u)
90
91 print the t o t a l s imu lat i on time in seconds : , toc ( )

To-do

A linear viscous fluid flowing in a channel is implemented.

• Show the nonlinear terms in Eq. (1.258).
• Inspect the code above and change the boundary conditions such that the fluid may
enter and leave with a vertical velocity. Explain the changes in the pressure and
velocity distributions.
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• Vary the value of a and report if there is a significant change in the solution.
• Try to change the Reynolds number for solving a fluid flow in a bigger channel
of 1 × 0.2m. Is the code working for this Re?

• Do the same calculations without normalizing and obtain the weak form in the
unit of power:

Form =
∫

�

(
vi,i δp + ρ

Δt
(vi − v0

i ) δvi + ρv jvi, j δvi + p,i δvi+

+λvk,k δvi,i + 2μv( j,i) δvi, j − ρ fi δvi
)
dv .

Try to implement the latter form into the code and observe a simulation.
• Explain the type of flow for Re → ∞. See [8, 14], and [21, Sect. 4.8] for various
methods trying to prevent the numerical problems occurring in simulations with
a high Reynolds number.

1.8 Nonlinear Viscous Fluids

For suspensions and polymermelts, a linear constitutive equation fails to be adequate.
Especially polymer melts are often called Bingham–Ilyushin fluids71 showing a
nonlinear viscous behavior. In this section we will introduce a nonlinear constitu-
tive equation modeling such a behavior. Moreover, we discuss the linearization in
the partial differentiation’s level as utilized in the former sections and handle the
linearization manually.

Consider a two-dimensional domain, �, where xi = (x1, x2) label the spatial
positions on�, which is expressed in the Cartesian coordinate system. The goal is to
compute the velocity and pressure fields for every coordinates, x, in�. The domain is
fixed, i.e., the coordinates xi are constant in time. The fixed domain can be a channel
with walls on top and bottom; with open boundaries on right and left. Material enters
and leaves the domain—it is an open system. The mass is a conserved quantity,72

hence the change of the mass within the domain can be tracked by measuring the
change across the (fixed) boundaries of the domain

( ∫
�

ρdv
)• = −

∫
∂�

ρnivida . (1.262)

71They are named after Eugene Cook Bingham and Alexey Antonovich Il’yushin.
72A conserved quantity lacks a production term, it cannot vanish or be produced out of nothing.
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The right hand side corresponds to the convective termmodeling the particles entering
the domain. Since the plane normal, ni , points outward the domain, a minus sign in
front of the convective term denotes an increase of the mass. Analogously, the linear
momentum is a conserved quantity; its balance equation lacks a production term.
For an open system with the fixed domain, the balance of linear momentum reads

( ∫
�

ρvidv
)• = −

∫
∂�

ρvi n jv jda +
∫

∂�

tida +
∫

�

ρ fidv . (1.263)

Besides the convective term, −ρvi n jv j , a non-convective term, ti , may also increase
the linear momentum. Without any particles entering or leaving the system, the non-
convective term affects the linear momentum. For example, the mechanical pressure
on the boundarymay increase the linear momentumwithin the domain. TheCauchy
tetrahedron argument:73

ti = n jσ j i , (1.264)

leads to theCauchy stress tensor, σ j i . For the formulations in this section, we ignore
the body forces, fi = 0. We obtain two residuals by subtracting the right hand side
from the left hand side, after applying Gauss’s law, they read

Rρ =
∫

�

(
∂ρ

∂t
+ x •

i

∂ρ

∂xi

)
dv +

∫
�

ρ(dv)• +
∫

�

∂

∂xi
(ρvi )dv = 0 ,

Rv =
∫

�

(
∂ρvi

∂t
+ x •

j

∂ρvi

∂x j

)
dv +

∫
�

ρvi (dv)• +
∫

�

∂

∂x j
(ρviv j − σ j i )dv = 0 .

(1.265)
Since the domain is fixed, these relations hold

x •
i = 0 , (dv)• = 0 . (1.266)

The spatial position, xi , has no dependence on the underlying material. The domain
itself might have a velocity, too. In this section we consider a fixed domain leading
to the latter relations. Then the residuals read

Rρ =
∫

�

(
∂ρ

∂t
+ ∂

∂xi
(ρvi )

)
dv = 0 ,

Rv =
∫

�

(
∂ρvi

∂t
+ ∂

∂x j

(
ρviv j − σ j i

))
dv = 0 .

(1.267)

By using the first residual in the second, we obtain

73It is formulated by Augustin-Louis Cauchy. For a detailed explanation see [28, Sect. 203].
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Rρ =
∫

�

(
∂ρ

∂t
+ ∂ρvi

∂xi

)
dv = 0 ,

Rv =
∫

�

(
ρ
∂vi

∂t
+ ρv j

∂vi

∂x j
− ∂σ j i

∂x j

)
dv = 0 .

(1.268)

Moreover, we apply the incompressibility assumption:

∂ρ

∂t
= 0 ,

∂ρ

∂xi
= 0 , (1.269)

such that

Rρ =
∫

�

∂vi

∂xi
dv ,

Rv =
∫

�

(
ρ
∂vi

∂t
+ ρv j

∂vi

∂x j
− ∂σ j i

∂x j

)
dv .

(1.270)

The residuals vanish for the correct choice of primitive variables, {p, vi }, therefore,
we can multiply or weight them by arbitrary test functions, {δp, δvi }, respectively.
After multiplication by the test functions, we check the units and find out that both
are in the unit of power such that we can sum them up and get the variational form:

Form =
∫

�

∂vi

∂xi
δpdv +

∫
�

(
ρ
∂vi

∂t
+ ρv j

∂vi

∂x j
− ∂σ j i

∂x j

)
δvidv . (1.271)

The flux of linear momentum is given by the Cauchy stress tensor, σ j i . This tensor
is of rank two and it is symmetric for non-polar materials, σ j i = σi j . For viscous
fluids, the Cauchy stress is a function of the symmetric velocity gradient:

σi j = σi j
(
di j

)
, di j = ∂v(i

∂x j)
= 1

2

( ∂vi

∂x j
+ ∂v j

∂xi

)
. (1.272)

This functional dependency can be analyzed mathematically in order to attain the
generic functional form of a tensor depending on another tensor. Representing the-
orems of tensors deal with such functional relations. For an isotropic material, the
generic representation of a tensor of rank two, σi j , depending on one (symmetric)
variable, di j , reads74

σ j i = aδ j i + bd ji + cd jkdki , (1.273)

where a, b, c are scalar functions of the so-called invariants of di j and are given as
follows

74For a detailed derivation see [25].
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a = a(I, I I, I I I ) , b = b(I, I I, I I I ) , c = c(I, I I, I I I ) ,

I = dii , I I = 1

2
di j di j , I I I = 1

3
di j d jkdki .

(1.274)

The rank two of the tensor limits the number of invariants to three, I , I I , I I I , in
three-dimensional space according to theHamilton–Cayley theorem.75 The stress,
σi j , is quadratic in its argument, di j . If we assume c = 0 then the stress is linear in
its argument. By choosing

a = −p + λI , b = 2μ , c = 0 , (1.275)

where p denotes pressure, λ is the volume viscosity, and μ indicates the shear vis-
cosity; the stress definition results in Navier–Stokes’s equation. In this definition
a, b, c are constants in the invariants (p depends on space and time).

Analogously we can employ a more complicated material model. For example,
we adopt a sigmoid model:76

a = −p + λI , b = 2μ + 2k

π
√
I I

arctan

(√
I I

B

)
, c = 0 . (1.276)

The new term with arctan() brings in an effect that we all experience at breakfast—
the fight against honey! Honey is a viscous material and it flows down the knife.
If we move the knife quickly, the same material behaves differently and “sticks” to
the knife. By a higher velocity gradient, which we achieve intuitively by rotating the
knife, the viscosity of honey is increased. In otherwords, the viscosity of thematerial,
given by the parameter b, depends on the velocity gradient, b(I I ). Suchmaterials are
called Bingham–Ilyushin fluids. In rheology the prominent constitutive equations
modeling nonlinear viscous fluids are the Carreau model,77 the power-law model,
and the Bingham model.78

The relation between stress and velocity gradient is component-wise. In order to
get a better understanding of the constitutive equation:

σ j i = (−p + λI )δ j i +
(
2μ + 2k

π
√
I I

arctan

(√
I I

B

))
d ji , (1.277)

we consider a simple example. In a shear test on x1x2-plane, the following symmetric
velocity gradient arises with the invariants:

75The theorem is named after Arthur Cayley and William Rowan Hamilton.
76For this model see [30, 31] where the volume viscosity has been ignored due to the incompress-
ibility, however, we include the volume viscosity for a better numerical stability.
77It is named after Pierre Carreau.
78See [21, Sect. 6.2.3] for equations of these models.
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Fig. 1.15 Shear stress
versus shear velocity
gradient. By increasing the
value of B the sigmoid
model transforms into
Navier–Stokes’s equation.
If the value of B converges
zero, there occurs a limit
stress k and a visually
discontinuous change above
the limit stress. Actually, the
function is continuous and
differentiable due to arctan() −6 −4 −2 0 2 4 6
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⎠ , I = 0 , I I = d2

12 , I I I = 0 . (1.278)

Hence, in the shear test, the shear component of stress reads

σ12 =
(
2μ + 2k

π
∣∣d12

∣∣ arctan
(∣∣d12

∣∣
B

))
d12 . (1.279)

For presenting the capabilities of the sigmoidmodel, we plot this relation for realistic
values and vary the parameter B in Fig. 1.15. Owing to the shape of the function in
Fig. 1.15 we have called it a sigmoid model. By setting the parameter B small enough
we obtain a material model with a limit stress. Caused by arctan() the function is
differentiable in the whole domain. Therefore, the sigmoid material model is benefi-
cial, however, it makes the set of equations highly nonlinear. In order to investigate
the nonlinearity further, we generate the weak form. After integrating by parts, using
the finite difference method for time discretization, and observing (·),i = ∂(·)/∂xi ,
the weak form reads

Form =
∫

�

(
vi,i δp + ρ

Δt
(vi − v0

i ) δvi + ρv jvi, j δvi + p,i δvi + λI δvi,i+

+bd ji δvi, j
)
dv −

∫
∂�

(λI δvi ni + bd ji δvi n j )da =

=
∫

�

(
vi,i δp + ρ

Δt
(vi − v0

i ) δvi + ρv jvi, j δvi + p,i δvi + λI δvi,i+

+bd ji δvi, j
)
dv −

∫
∂�

(σ̂ j i + pδ j i )n j δvida .

(1.280)
On boundaries with a given velocity, we apply a Dirichlet condition of velocity
such that the test function of velocity vanishes. On other boundaries we apply a
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Dirichlet condition of pressure. Since for incompressible flows the mechanical
and hydrostatic pressure are equal, the boundary term in the integral form vanishes.
Thus, the weak form to be implemented becomes

Form =
∫

�

(
vi,i δp + ρ

Δt
(vi − v0

i ) δvi + ρv jvi, j δvi + p,i δvi + λI δvi,i+

+
(
2μ + 2k

π
√
I I

arctan
(√

I I

B

))
d ji δvi, j

)
dv .

(1.281)
This weak form is obviously nonlinear, we have to linearize it. We basically perform
an abstract linearization using Newton’s method at the partial differential level.79

The latter form is a functional of primitive variables P = {p, vi } and their variations
(test functions) δP = {δp, δvi };wewrite it as Form= F(P, δP). The form is fulfilled
initially since we know the correct values of P at t0. We can search for the next time
step, t = Δt + t0, by considering the known P . For the subsequent time steps the
same approach holds, since the values from the last time steps are known. We can
describe the algorithm in the following way:

given: P(t) for x ,

find: P(t + Δt) at x ,

satisfying: F(P(t + Δt), δP) = 0 .

(1.282)

We can rewrite the unknowns P(t + Δt) in terms of the known values

P(t + Δt) = P(t) + ΔP(t) , (1.283)

and search for ΔP(t) instead of P(t + Δt). If Δt is sufficiently small, then the
solution is near to the known solution, i.e., ΔP(t) is small. For a small ΔP(t) we
can utilize a Taylor expansion80 around the known values, P(t), up to the order one

F(P + ΔP, δP) = F(P, δP) + ∇PF(P, δP) · ΔP , (1.284)

where we have suppressed the time argument for the sake of a simplified notation.
We neglect the quadratic terms in the Taylor expansion owing to the small ΔP ;
so we have to use small time steps in the simulation, otherwise the solution will not
converge. We have applied a condition that the formulation is of order one in ΔP .
The same condition has to be satisfied for the differentiation operator, ∇P (·), too.
Therefore, we apply the so-called directed or Gateaux derivative:81

79We follow the ideas in [6, Part I, Sect. 2.2.3].
80It is named for Brook Taylor.
81It is named after René Eugène Gâteaux.
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∇PF(P, δP) · ΔP = lim
ε→0

d

dε
F(P + εΔP, δP) , (1.285)

where ε is an arbitrary parameter. This directed derivative is the derivative in P
projected in the direction ΔP . Technically, we first differentiate in ε and then set
the parameter ε equal to zero. Hence, only terms of order one in ΔP remain in the
solution. The higher order terms vanish. By introducing the so-called Jacobian:82

J(P, δP) = ∇PF(P, δP) , (1.286)

we can reformulate the algorithm:

given: P for x ,

find: ΔP at x ,

satisfying: F(P, δP) + J(P, δP) · ΔP = 0 .

(1.287)

This linear function in ΔP can be solved and applied to update the solution:

P := P + ΔP , (1.288)

where “:=” is an assign operator in computational algebra.83 Finally, we obtain the
following algorithm:

while |ΔP | > TOL.

solve ΔP , where F(P, δP) + J(P, δP) · ΔP = 0

P := P + ΔP

(1.289)

The term J · ΔP can be computed automatically.84 We have used the names “Form”
for F(P, δP) and “Gain” for J(P, δP) · ΔP in the codes, where “Gain” has been
computed automatically. In this section we will obtain it manually by calculating the
directed derivative.

For the form in Eq. (1.281) we obtain F(p + εΔp, vi + εΔvi , δp, δvi ) as follows

82It is named after Carl Gustav Jakob Jacobi.
83An assign operator is not a mathematical equality. The value of the object P is updated as
P + ΔP . The assign operator in computational algebra is also denoted by ← so we may write
P ← P + ΔP . In mathematics, the assign operator := is used in the meaning of a definition, i.e.,
an equality introduced for the first time. We use = for every mathematical equation and := for a
computational assignment of values.
84The symbolic computation of the Jacobian is realized by SyFi in FEniCS project, see [2, 3].
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p → p + εΔp

vi → vi + εΔvi ,

di j = v(i, j) → 1

2
(vi, j + εΔvi, j + v j,i + εΔv j,i ) = 1

2
(vi, j + v j,i )+ (1.290)

+ 1

2
ε(Δvi, j + Δv j,i ) = v(i, j) + εΔv(i, j) ,

I I = 1

2
v(k,l)v(k,l) → 1

2
S , S = (v(k,l)v(k,l) + 2εv(k,l)Δv(k,l) + ε2Δv(k,l)Δv(k,l))

and

F(p, vi , δp, δvi ) → F(p + εΔp, vi + εΔvi , δp, δvi ) =
∫

�

(
(vi + εΔvi ),i δp+

+ρ
(vi + εΔvi − v0

i )

Δt
δvi + (v j + εΔv j )ρ(vi + εΔvi ), j δvi + (p + εΔp),i δvi+

+λ(vk,k + εΔvk,k) δvi,i + 2μ(v(k, j) + εΔv(k, j)) δv j,k+

+2k
√
2

π
√
S
arctan

( √
S√
2B

)(
v(k, j) + εΔv(k, j)

)
δv j,k

)
dv .

(1.291)
We can now calculate “Gain” by using the directed derivative85

Gain = d

dε
F(vi + εΔvi , p + εΔp, δp, δvi )

∣∣∣∣
ε=0

=
∫

Ω

(
Δvi,i δp+

+ ρ

Δt
Δvi δvi + Δv jρ(vi, j + εΔvi, j ) δvi + (v j + εΔv j )ρΔvi, j δvi+

+Δp,i δvi + λΔvk,k δvi,i + 2μΔv(k, j) δv j,k − k
√
2

π S3/2
(
2v(i,l)Δv(i,l)+

+2εΔv(i,l)Δv(i,l)
)
arctan

( √
S√
2B

)(
v(k, j) + εΔv(k, j)

)
δv j,k + 2k

√
2

π S1/2
2B2

2B2 + S
×

×2v(m,n)Δv(m,n) + 2εΔv(m,n)Δv(m,n)

2
√
2BS1/2

(v(k, j) + εΔv(k, j)) δv j,k+

+ 2k
√
2

π S1/2
arctan

(
S1/2√
2B

)
Δv(k, j) δv j,k

)
dv

)∣∣∣∣
ε=0

,

(1.292)

85The derivative of arctan() reads

∂

∂x

(
arctan( f )

)
= 1

1 + f 2
∂ f

∂x
, (1.291)

according to [5, Sect. 21.5.4.3, nr. 473].
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Fig. 1.16 Velocity distribution at t = 10 s for the flow of the HDPE. The color denotes the magni-
tude and the arrows their direction

such that we obtain

Gain =
∫

Ω

(
Δvi,i δp + ρ

Δt
Δvi δvi + Δv jρvi, j δvi + v jρΔvi, j δvi + Δp,i δvi+

+λΔvk,k δvi,i + 2μΔv(k, j) δv j,k − 2k
√
2

π
(
v(m,n)v(m,n)

)3/2 v(i,l)Δv(i,l)×

× arctan

(√
v(m,n)v(m,n)√

2B

)
v(k, j) δv j,k + 4Bkv(m,n)Δv(m,n)

π v(i,l)v(i,l)
(
2B2 + v(p,r)v(p,r)

)×

×v(k, j) δv j,k + 2
√
2k

π
√

v(i,l)v(i,l)
arctan

(√
v(m,n)v(m,n)√

2B

)
Δv(k, j) δv j,k

)
dv .

(1.293)
We want to simulate a thick polymer melt. A high-density polyethylene (HDPE) is
a thermoplastic made from petroleum and its material parameters read

ρ = 1450 kg/m3 , μ = 400 000 Pa s , λ = 100 000 Pa s ,

k = 250 Pa , B = 0.00001 s−1 .
(1.294)

We combine two channel flows such that the polymermelt is pressed down to a bigger
channel. The velocity distribution at t = 10 s is visualized in Fig. 1.16. The pressure
distribution in Fig. 1.17 shows some perturbations like a chess board. These perturba-
tions indicate that the converged solution encounters some numerical problems. The
chess board solution of the pressure field is wrong. Especially for incompressible
fluid flows, there are various strategies for rectifying the solution. The most promi-
nent amendment of the solution is to choose different shape functions for the prim-
itive variables. We have chosen the same polynomial degree for elements building
the functional space for velocity and pressure. However, the so-called Ladyzhen-



1.8 Nonlinear Viscous Fluids 95

Fig. 1.17 Pressure distribution at t = 10 s for the flow of the HDPE (high-density polyethylene)

Fig. 1.18 Pressure distribution at t = 10 s for the flow of the HDPE (high-density polyethylene)
calculated by using Taylor–Hood elements

skaya–Babuska–Brezzi (LBB)86 or inf-sup conditions suggest to use a higher
order element for velocity than pressure. This type of elements belong to Taylor–
Hood family87 as introduced in [27]. For example, we can use quadratic elements
for velocity (P2) and linear elements for pressure (P1). With the implementation of
Taylor–Hood elements, the pressure distribution in Fig. 1.18 is achieved. The code
below shows the implementation of the LBB-conditions. Their generalization to the
case of many primitive variables (more than two) seems to be difficult.88

86LBB conditions are named after Olga Aleksandrovna Ladyzhenskaya, Ivo Babuška, and Franco
Brezzi.
87It is named for Cedric Taylor and Paul Hood.
88There are also other approaches to obtain a stable solution method for fluids in finite element
method, see for example [1].
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1 ””” Computational r e a l i t y 08 , non l i n ear f l u i d f l ow ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 s e t l o g l e v e l (ERROR)
8
9 x length = 5.0 # m

10 y length = 1.0 # m
11 mesh =RectangleMesh ( Point (0.0 , − y length /2 . 0 ) , Point ( x length ,

→ y length /2 . 0 ) , 100 ,20)
12 class Cut (SubDomain ) :
13 def i n s i d e ( s e l f , x , on boundary ) :
14 return x [0]< x length /2.0 and (x[1]>+ ylength /4.0 or x

→ [1]<− y length /5 . 0 )
15
16 domain = Cel lFunct ion ( s i z e t , mesh )
17 domain . s e t a l l ( 0 )
18 t o b e cu t = Cut ( )
19 t o b e cu t . mark (domain , 1)
20 mesh = SubMesh(mesh , domain , 0)
21
22 V = VectorFunctionSpace (mesh , P , 2)
23 P = FunctionSpace (mesh , P , 1)
24 Space = MixedFunctionSpace ( [P,V] )
25
26 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
27 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
28 bottom1 = CompiledSubDomain ( x [0]> x l /2 .0 && near ( x [1] , − y l

→ /2 . 0 ) , x l=xlength , y l=y length )
29 bottom2 = CompiledSubDomain ( x [0]< x l /2 .0 && x[1]<− y l /5 .0 , x l=

→ xlength , y l=y length )
30 top1 = CompiledSubDomain ( x [0]> x l /2 .0 && near ( x [ 1 ] , y l /2 . 0 ) ,

→ x l=xlength , y l=y length )
31 top2 = CompiledSubDomain ( x [0]< x l /2 .0 && x [1]> y l /4 .0 , x l=

→ xlength , y l=y length )
32 opening1 = CompiledSubDomain ( near (x [ 0 ] , x l /2 . 0 ) && x[1]<− y l

→ /5.0 , x l=xlength , y l=y length )
33 opening2 = CompiledSubDomain ( near (x [ 0 ] , x l /2 . 0 ) && x [1]> y l

→ /4.0 , x l=xlength , y l=y length )
34
35 f a c e t s = FacetFunction ( s i z e t ,mesh )
36 c e l l s = Cel lFunct ion ( s i z e t ,mesh )
37 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
38 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
39
40 v no s l i p = Constant ( ( 0 . 0 , 0 . 0 ) )
41 pL = Expres s ion ( 100000.0+1000.0 t , t=0)
42 pR = Constant (100000 . 0 )
43 p bc1=DirichletBC ( Space . sub (0) , pL , l e f t )
44 p bc2=DirichletBC ( Space . sub (0) , pR, r i gh t )
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45 p bc3=DirichletBC ( Space . sub (0) , pR, opening1 )
46 p bc4=DirichletBC ( Space . sub (0) , pR, opening2 )
47 v bc1=DirichletBC ( Space . sub (1) , v nos l i p , bottom1 )
48 v bc2=DirichletBC ( Space . sub (1) , v nos l i p , bottom2 )
49 v bc3=DirichletBC ( Space . sub (1) , v nos l i p , top1 )
50 v bc4=DirichletBC ( Space . sub (1) , v nos l i p , top2 )
51 v bc5=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , l e f t )
52 v bc6=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , r i gh t )
53
54 bc=[p bc1 , p bc2 , p bc3 , p bc4 , v bc1 , v bc2 , v bc3 , v bc4 , v bc5 ,

→ v bc6 ]
55 u i n i t = Expres s ion ( ( p0 , 0 . 0 , 0 . 0 ) , p0=100000.0)
56
57 i , j , k , l , m, n =i n d i c e s (6 )
58 t = 0 .0
59 t end = 10.0
60 dt = 0 .1
61
62 t e s t = TestFunction ( Space )
63 du = Tria lFunct ion ( Space )
64 u0 = Function ( Space )
65 u = Function ( Space )
66 u = i n t e r p o l a t e ( u i n i t , Space )
67 u0 . a s s i gn (u)
68 p0 , v0 = s p l i t ( u0 )
69 p , v = s p l i t (u)
70 delp , de lv = s p l i t ( t e s t )
71 dp , dv = s p l i t (du )
72 de l ta = Id en t i t y (2)
73
74 # ap p r o x ima t e v a l u e s o f HDPE me l t , r h o [ kg /mˆ 3 ] , mu [ Pa s ] , k

→ [ Pa ]
75 rho , mu, lambada , k f l u i d , B f l u i d = 1450 . 0 , 400000.0 , 1E6 ,

→ 250 . 0 , 0 .00001
76
77 # i f I I =0 ( wh i ch i s p h y s i c a l l y p o s s i b l e ) Form w i l l be

→ s i n g u l a r ,
78 # t o a v o i d th a t , add a s m a l l e nough number t o a pp r o x im a t e an
79 # a c c u r a t e s o l u t i o n
80 I I = a s t en s o r ( 1 . 0 /2 . 0 sym( grad (v ) ) [m, n ] sym( grad (v ) ) [m, n

→ ]+0.000001 , ( ) )
81 I = a s t en s o r (sym( grad (v ) ) [ k , k ] , ( ) )
82 #s c a l a r i s a t e n s o r o f r a n k z e r o
83
84
85 Form = ( v [ i ] . dx ( i ) delp \
86 + rho/dt ( v−v0 ) [ i ] de lv [ i ] \
87 + rho v [ j ] v [ i ] . dx ( j ) de lv [ i ] \
88 + p . dx ( i ) de lv [ i ] \
89 + lambada I de lv [ i ] . dx ( i ) \
90 + (2 . 0 mu + 2.0 k f l u i d / p i / sq r t ( I I ) \
91 atan ( sq r t ( I I ) / B f l u i d ) ) sym( grad (v ) ) [ j , i ] \
92 delv [ i ] . dx ( j ) \
93 ) dv
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94
95 S=2.0 I I
96 Gain = ( dv [ i ] . dx ( i ) delp \
97 + rho/dt dv [ i ] de lv [ i ] \
98 + dv [ j ] rho v [ i ] . dx ( j ) de lv [ i ] \
99 + v [ j ] rho dv [ i ] . dx ( j ) de lv [ i ] \

100 + dp . dx ( i ) de lv [ i ] \
101 + lambada dv [ k ] . dx (k ) de lv [ i ] . dx ( i ) \
102 + 2.0 mu sym( grad (dv ) ) [ k , j ] de lv [ j ] . dx (k ) \
103 − 2 . 0 k f l u i d 2 . 0 0 . 5/ ( p i S ( 3 . 0/2 . 0 ) ) sym( grad (v ) ) [ i , l

→ ] \
104 sym( grad (dv ) ) [ i , l ] atan (S 0 . 5/ ( 2 . 0 0 . 5 B f l u i d ) ) \
105 sym( grad (v ) ) [ k , j ] de lv [ j ] . dx (k ) \
106 + 4.0 B f l u i d k f l u i d sym( grad (v ) ) [m, n ] sym( grad (dv ) ) [m, n

→ ] \
107 /( p i S ( 2 . 0 B f l u i d 2+S) ) sym( grad (v ) ) [ k , j ] de lv [ j ] . dx ( k

→ ) \
108 + 2.0 k f l u i d 2 . 0 0 . 5 / ( p i S 0 . 5 ) atan (S 0 . 5/ ( 2 . 0 0 . 5

→ B f l u i d ) ) \
109 sym( grad (dv ) ) [ k , j ] de lv [ j ] . dx (k ) ) dv
110
111 #Gain = d e r i v a t i v e ( Form , u , du )
112
113 pwd= / c a l c u l /CR08/
114 f i l e p = F i l e (pwd+ pres su re . pvd )
115 f i l e v = F i l e (pwd+ v e l o c i t y . pvd )
116
117 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−t im e l o o p
118 t i c ( )
119 while t<t end :
120 t += dt
121 print time : , t
122 pL . t = t
123 s o l v e (Form== 0 , u , bc , J=Gain , \
124 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
125 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

126 f i l e p << (u . s p l i t ( ) [ 0 ] , t )
127 f i l e v << (u . s p l i t ( ) [ 1 ] , t )
128 I I = p ro j e c t ( I I , FunctionSpace (mesh , P ,1) , s o l v e r t yp e

→ =”mumps” ,\
129 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

130 sigma = as t en s o r (−p de l ta [ j , i ]+(2 .0 mu+2.0 k f l u i d / p i /
→ s q r t ( I I ) \

131 atan ( sq r t ( I I ) / B f l u i d ) ) sym( grad (v ) ) [ j , i ] , ( j , i ) )
132 s igma =p ro j e c t ( sigma , TensorFunctionSpace (mesh , P ,1) ,

→ s o l v e r t yp e=”mumps” ,\
133 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})
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134 print sigma12 : , s igma ( x length /2 . 0 , y l ength /4 . 0 ) [ 1 ] , Pa
→

135 u0 . a s s i gn (u)
136 print i t took , toc ( ) , s econds

To-do

A nonlinear viscous fluid flowing in two subsequent channels with different heights
is implemented.

• Inspect the code and determine applied boundary conditions.
• Try to change the geometry to an L-shape channel.
• Find a shear viscosity for ketchup or mayonnaise and report if there is a significant
change in the flow profile.

• For a linear viscous fluid like water, we have to wait for the steady-state. If the
simulation is held under the pressure at 10 s, then the steady-state will be achieved
just in one time step. Which term is responsible for this behavior?

1.9 Fluid Structure Interaction

In solid mechanics we have used a Lagrangean frame. For fluid mechanics a
Eulerian frame is more beneficial. If we want to model a deformable solid embed-
ded in a viscous fluid, we need to use the so-called arbitrary Euler–Langrangean
frame.89 In this sectionwewill set the preliminaries and solve an elastic beam embed-
ded in a viscous flow, see Fig. 1.19 on p. 100. The beam itself will be modeled in the
Lagrangean frame whereas the fluid in the Eulerian frame.

The motion of a particle is computed by using the balance of mass and the balance
of linear momentum. Consider a material bodyB0 at time t = 0. Each of its particles
is associated with its corresponding position Xi at any reference frame. The initial
position is known. Therefore, we use Xi as the initial position to identify particles. In
other words, we select the initial frame as the reference frame, where Xi denote par-
ticles. Suppose that we track the motion of many particles inB0 simultaneously. We
can visualize this notion as points marked on the body. A grid connecting these points
leads to a mesh used in the computation. All points change their spatial positions in
case of a deformation. The deviation from the initial position is the displacement,
sui , of a particle, Xi , at time t ,

sui = sui (X, t) . (1.295)

This primitive variable will be computed for each particle of the deformable solid
body. We employ Cartesian coordinates for the Lagrangean frame and write out
the balance of linear momentum:

89In many textbooks the word configuration is used instead of frame.
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Fig. 1.19 Beam in red and
the surrounding water in blue
in two dimensional
continuum

∫
B0

sρ0
su••
i dV =

∫
∂B0

sPki NkdA +
∫
B0

sρ0 fidV , (1.296)

for calculating the displacement, where the balance of mass in the initial frame,
ρ0 = Jρ, has already been implemented into the balance of linear momentum.90 We
have written the balance equation in the Lagrangean frame, where dV and dA refer
to the initial volume and surface elements. The direction of the surface element is
given by Ni of a unit length (length of one). The nominal stress, sPki , is obtained by
the transformation of the surface element from the current to the initial frame91

sPki = sJ ( sF−1)k j
sσ j i , (1.297)

where sσi j is the Cauchy stress.92 The deformation gradient, sFki , and its determi-
nant, sJ , have been defined as follows

sFki = ∂ suk
∂Xi

+ δki , sJ = det( sF) . (1.298)

We need a constitutive relation for sPki in order to obtain a differential equation
in displacements, i.e., the field equation for displacement. Before discussing the
constitutive relation, we bring the global balance Eq. (1.296) into the local form by
using Gauss’s theorem

sρ0
su••
i − ∂ sPki

∂Xk
− sρ0 fi = 0 . (1.299)

90The balance ofmass in the initial frame is not a differential equation, see Sect. 1.4 for its derivation.
91See Sect. 1.2 for the derivation this transformation.
92Especially in materials science, the nominal stress is called the engineering stress and Cauchy’s
stress is called the true stress.
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In order to acquire the field equation for the displacement, sui , we employ the con-
stitutive equation for linear elastic isotropic bodies:

sPki = Fi j Sk j , sSi j = sλ sEkkδi j + 2 sμ sEi j ,

sEi j = 1

2
( sCi j − δi j ) , sCi j = sFki

sFkj ,
(1.300)

where the deformation gradient, sFi j , is used for obtaining the right Cauchy–Green
deformation tensor, sCi j , from which the Green–Lagrange strain tensor, sEi j , has
been derived. Now, Eq. (1.299) can be brought to the weak form after discretizing in
time and employing integration by parts

s

F=
∫
B0

(
sρ0

sui − 2 su0i + su00i
Δt2

δui + sPki
∂ δui
∂Xk

− sρ0 fi δui
)
dV−

−
∫

∂BN
0

t̂i δuidA .

(1.301)

The traction vector, t̂i = sPki Nk = sJ ( sF−1)k j
sσ j i Nk , on the Neumann boundary,

∂BN
0 , is given as the boundary condition. This boundary is the hull of the solid body.

Since B0 is embedded in a fluid, the traction vector is due to the fluid particles
being on the boundary. This interaction will be modeled by using the true stress.
No matter what the underlying material is, the true stress applied from the fluid to
the structure and its reaction from structure to the fluid has to be the same on the
interaction. Therefore,we have n j

sσ j i = n j
fσ j i on boundary. This choice is of utmost

importance and the modeling of interaction is chosen differently in the scientific
literature. Herein, we set the traction vector on the boundary of solid equal to the
traction vector on the boundary of fluid and write t̂i = n j

fσ j i = sJ ( sF−1)k j
fσ j i Nk .93

Defining particles via their initial positions works well for a solid body, as long as
the body is defined as a material system. A material system means that no massive
particles enter or leave the domain, B. The particles may move, however, within the
computational domain the same particles exist throughout the simulation. If the solid
deforms, the domain shall co-deform to prevent a convection across the boundaries.

For fluids the material system fails to be an adequate choice. We measure the
velocity of a fluid particle in a spatial position, xi , and we model fluids as open
systems where fluid enters and leaves a domain, �. This domain of interest is called
a control volume. Within the control volume, �, at every spatial position, xi , the
velocity, fvi , and the mass density, fρ, are the primitive variables to be computed for
fluid particles occupying xi as follows

fvi = fvi (x, t) , fρ = fρ(x, t) . (1.302)

93We skip a lengthy discussion for this fact. Actually, the balance of linear momentum on singular
surfaces suggests this fact. In case of neglecting the surface tension, the traction on the interface—it
is a singular surface without mass—is continuous. In order words, the traction vectors experiencing
solid and fluid are identical.
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In reality mass density and velocity are measured simultaneously in every position
within the control volume.Wecanvisualize amesh in� and suppose that in each node
we are measuring the primitive variables of particles currently occupying nodes at x.
Thesemeasurements have no dependence on the underlying particles. In other words,
we may measure constantly at the same position or we can even move the control
volume such that we measure at different spatial positions at different time instants.
The control volume is the chosen computational domain, �, with a known (given)
velocity,wi = x •

i . The domain velocity,wi , has no connection to the underlying fluid.
It is essential to distinguish between the domain velocity, wi , and the fluid velocity,
vi . The balances of mass and linear momentum for an open and moving domain read

(∫
�

fρdv

)•

= −
∫

∂�

fρ( fvi − wi )nida ,

( ∫
�

fρ fvidv

)•

= −
∫

∂�

fρvi (
fv j − w j )n jda +

∫
∂�

fσ j i n jda +
∫

�

fρ fidv .

(1.303)
These balance equations in the moving Eulerian frame are given at the present or
current time. Therefore, we use the current volume element, dv, and current surface
element, da, with its direction, ni . In order to acquire the local forms of the balance
equations we need to “shift” the time rate into the integral. By using the following
identity for the rate of the volume element in Cartesian coordinates:

dv• = (
dx1dx2dx3

)• = (
dx1dx2dx3

)• dv

dx1dx2dx3
=

=
(dx •

1

dx1
+ dx •

1

dx1
+ dx •

1

dx1

)
dv = ∂wk

∂xk
dv ,

(1.304)

and by employing the product rule we attain

∫
�

(
∂ fρ

∂t
+ ∂ fρ

∂xi
wi + fρ

∂wk

∂xk

)
dv = −

∫
∂�

fρ( fvi − wi )nida ,

∫
�

(
∂ fρ fvi

∂t
+ ∂ fρ fvi

∂x j
w j + fρ fvi

∂wk

∂xk

)
dv = −

∫
∂�

fρvi (
fv j − w j )n jda+

+
∫

∂�

fσ j i n jda +
∫

�

fρ fidv .

(1.305)

Thefirst boundary integrals are called convective terms.The secondboundary integral
in themomentumbalance is anon-convective term.94 For boundary integralswe apply
Gauss’s theorem and obtain the local forms of the balance equations:

94In some textbooks this term is called a diffusive term, however, a diffusion is a motion of mass.
Since a traction on the boundary implies a momentum flow without mass diffusion, we refrain from
naming traction as a diffusive term.
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∂ fρ

∂t
+ ∂ fρ

∂xi
wi + fρ

∂wk

∂xk
+ ∂

∂xi

(
fρ( fvi − wi )

)
= 0 ,

∂ fρ fvi

∂t
+ ∂ fρ fvi

∂x j
w j + fρ fvi

∂wk

∂xk
+ ∂

∂x j

(
fρvi (

fv j − w j ) − fσ j i

)
− fρ fi = 0 .

(1.306)
Formally, we can eliminate all terms includingwi and obtain Eqs. (1.235). Therefore,
we realize that the domain velocity, wi , can be chosen arbitrarily. The underlying
physics will not be affected by the choice of the domain velocity. For computational
reasons we skip the elimination ofwi and solve Eqs. (1.306). In order to complement
the equations, we need a constitutive relation for the true or Cauchy stress tensor
at the current time instant, fσ j i . The simplest relation is the linear material equation
for viscous fluids, i.e., the Navier–Stokes equation:

fσi j = − fpδi j + fτi j , fτi j = fλ
∂ fvk

∂xk
δi j + fμ

(∂ fvi

∂x j
+ ∂ fv j

∂xi

)
. (1.307)

For water this choice is appropriate. The pressure, fp, is unknown and there are two
ways to close the above equations. Either, we find a constitutive equation for pressure
by means of mass density and velocity, or, we assume the mass density as being
constant (an incompressible flow) and solve the pressure distribution by employing
the mass balance. The latter option will be used herein. By using incompressibility,
the weak form in Eq. (1.306)1 reads (in the unit of power)

f

Fp=
∫

�

(
∂ fvi

∂xi
δp + ∂wk

∂xk
δp − ( fvi − wi )

∂ δp

∂xi

)
dv +

∫
∂�N

( fvi − wi ) δpnida .

(1.308)
Moreover, by employing Eq. (1.307)1 into Eq. (1.306)2, by using the incompressibil-
ity, and by implementing the time discretization, we acquire the weak form for the
(fluid) velocity again in the unit of power

f

Fv=
∫

�

(
fρ

fvi − fv0
i

Δt
δvi + fρ

∂ fvi

∂x j
w j δvi + fρ fvi

∂wk

∂xk
δvi+

+ ∂ p

∂xi
δvi − fρvi (

fv j − w j )
∂ δvi

∂x j
+ fτ j i

∂ δvi

∂x j
− fρ fi δvi

)
dv+

+
∫

∂�N

(
fρvi (

fv j − w j ) δvi n j − fτ j i n j δvi
)
da .

(1.309)

For the fluid problem we know the velocity on the interaction boundary. We suppose
that the fluid particles adhere on the structure so that the computed velocity of the
structure is also the velocity of fluid particles being on the interaction boundary.

The domain velocity, wi , can be chosen arbitrarily. It is easier to comprehend, if
we visualize this velocity as the velocity of the underlying mesh. We will compute
wi and deform the mesh, where the computation of fluid motion takes place. From
a computational point of view, the choice of the mesh velocity makes a difference.
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Fig. 1.20 Velocity distribution at t = 0.84s for the water flow due to the embedded beam of steel
moving to the left after 8 cycles with period of 0.1 s. Only the domain of fluid is shown. The colors
indicate the magnitude of the fluid velocity drawn as arrows

The solution of fvi converges more easily if the mesh deforms close to the particles
of fluid. In other words, the simplest (trivial) solution is to set vi ≡ wi . However,
this fails to be the best choice since the mesh deformation has some limitations. The
connectivity of elements shall be conserved. A fluid velocity with vortices95 would
deform the mesh such that the connectivity of the elements gets distorted. In order
to restrict the motion of mesh, we solve a model problem for the mesh velocity:

m

F=
∫

�

a
∂w(i

∂x j)

∂ δwi

∂x j
dv . (1.310)

The mesh velocity is implemented by moving the coordinates of the mesh. The
parameter a in the latter variational form can be visualized as an artificial viscosity
of the mesh. Its value does not affect the velocity of the fluid, since wi can be chosen
arbitrarily. Hence, any value of a allows us to accomplish a computation, this value
can be seen as the artificial viscosity of the mesh.

Consider a beam of steel embedded in water as depicted in Fig. 1.19. The system
stands still at the beginning under normal atmospheric pressure. The bottom of the
beam is moved harmonically with a frequency of 10Hz such that the motion of the
beam accelerates the fluid. After 8 cycles the velocity profile can be seen in Fig. 1.20
where the beam is moving to the left. Basically, we solve first the structure, then the
mesh velocity, and then the fluid pressure and velocity. This cycle is repeated three
times for minimizing the errors obtained by using a sequential solving method. All
the parameters and boundary conditions can be found in the code given below.

95A vortex means a circulation in the fluid.
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1 ””” Computational r e a l i t y 09 , f l u i d s t r u c tu r e i n t e r a c t i o n ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 parameters [ ” a l l ow ex t r ap o l a t i on ”]=True
8 s e t l o g l e v e l (ERROR)
9

10 x length = 10.0 # i n mm
11 y length = 150.0 # i n mm
12 mesh = RectangleMesh ( Point ( 0 . 0 , 0 . 0 ) , Point (31 xlength , 1 . 5

→ y length ) , 31 2 ,15 2)
13 Dim = mesh . topology ( ) . dim ( )
14
15 s t r u c tu r e = CompiledSubDomain (\
16 x [ 0 ] >= 15.0 x l && x [ 0 ] <= 16.0 x l && x [ 1 ] <= yl , x l=xlength

→ , y l=y length )
17
18 i n t e r a c t i o n = CompiledSubDomain (\
19 ( near ( x [ 0 ] , 1 5 . 0 x l ) && x [ 1 ] <= yl ) | | ( near ( x [ 0 ] , 1 6 . 0 x l ) &&

→ x [ 1 ] <= yl ) | | ( x [ 0 ] >= 15.0 x l && x [ 0 ] <= 16.0 x l &&
→ near ( x [ 1 ] , y l ) ) , x l=xlength , y l=y length )

20
21 bottom = CompiledSubDomain ( near (x [ 1 ] , 0 . 0 ) )
22 bounda r i e s a l l = CompiledSubDomain ( on boundary )
23 sub domains = Cel lFunct ion ( s i z e t ,mesh)
24 sub domains . s e t a l l ( 0 )
25 s t r u c tu r e . mark ( sub domains , 1)
26 mesh f = SubMesh(mesh , sub domains , 0)
27 mesh s = SubMesh(mesh , sub domains , 1)
28 #p l o t ( me s h f , i n t e r a c t i v e =True )
29 #p l o t ( me sh s , i n t e r a c t i v e =True )
30
31 # f a c e t s f o r s o l i d : 0 f o r i n t e r i o r , 1 on bottom , 2 on

→ i n t e r a c t i o n
32 f a c e t s s = FacetFunction ( s i z e t , mesh s )
33 f a c e t s s . s e t a l l ( 0 )
34 i n t e r a c t i o n . mark ( f a c e t s s , 2 )
35 bottom . mark ( f a c e t s s , 1 )
36 # f a c e t s f o r f l u i d : 0 f o r i n t e r i o r , 1 on boundary , 2 on

→ i n t e r a c t i o n
37 f a c e t s f = FacetFunction ( s i z e t , mesh f )
38 f a c e t s f . s e t a l l ( 0 )
39 bounda r i e s a l l . mark ( f a c e t s f , 1 )
40 i n t e r a c t i o n . mark ( f a c e t s f , 2 )
41
42 c e l l s s = Cel lFunct ion ( s i z e t , mesh s )
43 c e l l s f = Cel lFunct ion ( s i z e t , mesh f )
44
45 dA = Measure ( ds , domain=mesh s , subdomain data=f a c e t s s )
46 dV = Measure ( dx , domain=mesh s , subdomain data=c e l l s s )
47 da = Measure ( ds , domain=mesh f , subdomain data=f a c e t s f )
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48 dv = Measure ( dx , domain=mesh f , subdomain data=c e l l s f )
49
50 N = FacetNormal ( mesh s )
51 n = FacetNormal ( mesh f )
52
53 S s space = FunctionSpace ( mesh s , P , 1)
54 V s space = VectorFunctionSpace ( mesh s , P , 1)
55 T s space = TensorFunctionSpace ( mesh s , P , 1)
56
57 S f s p ac e = FunctionSpace ( mesh f , P , 1)
58 V f space = VectorFunctionSpace ( mesh f , P , 1)
59 T f space = TensorFunctionSpace ( mesh f , P , 1)
60 SV f space = MixedFunctionSpace ( [ S f space , V f space ] )
61
62 t =0.0 # i n s
63 dt =0.01 # i n s
64 t end =5.0 # i n s
65
66 pwd = / c a l c u l /CR09/
67
68 f i l e u s = F i l e (pwd + u s . pvd )
69 f i l e v f = F i l e (pwd + v f . pvd )
70 f i l e p f = F i l e (pwd + p . pvd )
71
72 u s = Function ( V s space , name= u )
73 v f = Function ( V f space , name= v )
74 p f = Function ( S f space , name= p )
75
76 i , j , k , l ,m = i n d i c e s (5 )
77 de l ta = Id en t i t y (Dim)
78 f= Constant ( ( 0 . 0 , 0 . 0 ) )
79
80 def s s o l v e (u0 , u00 , s igma f , t ) :
81 rho s = 8 .3E−9 #t on n e /mmˆ3
82 nu s = 0 .3
83 E s = 200E3 #i n MPa
84 mu s = E s /(2 . (1 .+ nu s ) )
85 lam s = 2. mu s nu s /(1. −2. nu s )
86 s igma s = p ro j e c t ( s igma f , T s space , s o l v e r t yp e=”mumps”

→ ,\
87 f orm compi l er parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

88 #p l o t ( f a c e t s s , i n t e r a c t i v e =True )
89 d i sp l s bot tom = Expres s ion ( ( A s i n ( 2 . p i nu t ) , 0 . 0 ) ,\
90 A=0.50 , nu=10. , t=t )
91 bc s = [ DirichletBC ( V s space , d i sp l s bot tom , f a c e t s s ,

→ 1) ]
92 u s = Function ( V s space )
93 de l u = TestFunction ( V s space )
94 du = Tria lFunct ion ( V s space )
95
96 F s = as t en s o r ( u s [ k ] . dx ( i ) + de l ta [ k , i ] , ( k , i ) )
97 J s = det ( F s )



1.9 Fluid Structure Interaction 107

98 C s = as t en s o r ( F s [ k , i ] F s [ k , j ] , ( i , j ) )
99 E s = as t en s o r ( 1 . / 2 . ( C s [ i , j ]− de l ta [ i , j ] ) , ( i , j ) )

100 S s = as t en s o r ( lam s E s [ k , k ] d e l t a [ i , j ] + \
101 2 . mu s E s [ i , j ] , ( i , j ) )
102 P s = as t en s o r ( F s [ i , j ] S s [ k , j ] , ( k , i ) )
103
104 t hat = as t en s o r ( J s inv ( F s ) [ k , j ] s igma s [ j , i ] N[ k ] ,

→ ( i , ) )
105
106 Form s = ( rho s ( u s −2. u0 s+u00 s ) [ i ] / ( dt dt ) de l u [ i ]

→ \
107 + P s [ k , i ] d e l u [ i ] . dx (k ) − rho s f [ i ] d e l u [ i ] ) dV

→ \
108 − t hat [ i ] d e l u [ i ] dA(2)
109 Gain s = de r i v a t i v e (Form s , u s , du )
110
111 s o l v e ( Form s == 0 , u s , bc s , J=Gain s , \
112 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
113 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

114
115 v s = p ro j e c t ( ( u s−u0 s ) /dt , V s space , s o l v e r t yp e=”

→ mumps” ,\
116 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

117 #p l o t ( v s , i n t e r a c t i v e =True )
118
119 return u s , v s
120
121 def m solve ( v s ) :
122 # a r t i f i c i a l v i s c o s i t y
123 a = 1 .0E−11 # MPa/ s
124 del w = TestFunction ( V f space )
125 w = Function ( V f space )
126 dw = Tria lFunct ion ( V f space )
127 bc m = [ DirichletBC ( V f space , v s , f a c e t s f , 2 ) ]
128
129 Form m = a sym( grad (w) ) [ i , j ] del w [ i ] . dx ( j ) dv
130 Gain m = de r i v a t i v e (Form m , w, dw)
131
132 s o l v e (Form m== 0 , w, bc m , J=Gain m , \
133 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
134 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

135
136 return w
137
138 def f s o l v e (w, v 0 f ) :
139 r h o f = 998.21E−12 # i n t onn e / mmˆ3
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140 mu f = 1001.6E−12 # i n N s / mmˆ2
141 l am f = 1 .0E−2 # i n N s / mmˆ2
142 bc1 = DirichletBC ( SV f space . sub (0) , Constant ( 0 . 1 ) ,

→ f a c e t s f , 1 )
143 bc2 = DirichletBC ( SV f space . sub (1) ,w, f a c e t s f , 2 )
144 b c f = [ bc1 , bc2 ]
145
146 u f = Function ( SV f space )
147 u0 f = Function ( SV f space )
148 d e l u f = TestFunction ( SV f space )
149 du f = Tr ia lFunct ion ( SV f space )
150
151 p , v f = s p l i t ( u f )
152 del p , d e l v = s p l i t ( d e l u f )
153
154 t au f = as t en s o r ( lam f v f [ k ] . dx (k ) de l ta [ i , j ] \
155 + mu f sym( grad ( v f ) ) [ i , j ] , ( i , j ) )
156
157 Form f p = ( v f [ i ] . dx ( i ) d e l p + w[ i ] . dx ( i ) d e l p \
158 − ( v f−w) [ i ] d e l p . dx ( i ) ) dv + ( v f −w) [ i ] d e l p n [ i ] da

→ (2 )
159 Form f v = ( rho f ( v f−v0 f ) [ i ] / dt de l v [ i ]
160 + rho f v f [ i ] . dx ( j ) w[ j ] d e l v [ i ] + rho f v f [ i ] w[ k ] . dx

→ ( k ) de l v [ i ] \
161 + p . dx ( i ) d e l v [ i ] − r h o f v f [ i ] ( v f−w) [ j ] d e l v [ i ] . dx (

→ j ) \
162 + tau f [ j , i ] d e l v [ i ] . dx ( j ) − r h o f f [ i ] d e l v [ i ] ) dv \
163 + ( rho f v f [ i ] ( v f−w) [ j ] − t au f [ j , i ] ) d e l v [ i ] n [ j ] da

→ (1 )
164
165 Form f = Form f p + Form f v
166 Gain f = de r i v a t i v e ( Form f , u f , du f )
167
168 s o l v e ( Form f == 0 , u f , bc f , J=Gain f , \
169 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
170 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

171
172 p , v f = u f . s p l i t ( deepcopy=True )
173 s i gma f = p ro j e c t (−p de l ta+tau f , T f space , s o l v e r t yp e=

→ ”mumps” ,\
174 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

175
176 return p , v f , s i gma f
177
178
179 u0 s = Function ( V s space )
180 u00 s = Function ( V s space )
181 s i gma f = Function ( T f space )
182 v0 f = Function ( V f space )
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183
184 while t<t end :
185 t += dt
186 print ” time : ” , t
187 # i n n e r l o o p f o r c o n v e r g e n c e be twe e n f l u i d and s t r u c t u r e
188 for i i in range (3 ) :
189 u s , v s = s s o l v e ( u0 s , u00 s , s igma f , t )
190 w = m solve ( v s )
191 p , v f , s i gma f = f s o l v e (w, v 0 f )
192
193 u00 s . a s s i gn ( u0 s )
194 u0 s . a s s i gn ( u s )
195 v0 f . a s s i gn ( v f )
196 for x in mesh f . coord inate s ( ) : x [ : ] += dt w(x ) [ : ]
197 u s . a s s i gn ( u s )
198 f i l e u s << ( u s , t )
199 v f . a s s i gn ( v f )
200 f i l e v f << ( v f , t )
201 p f . a s s i gn (p)
202 f i l e p f << ( p f , t )

To-do

A beam embedded in water has been implemented.

• Change the mesh viscosity and investigate the convergence of the linearization.
• Implement a softer beam, for example out of polyethylene.
• Instead of water we can also implement air as a fluid. In that case, the incompress-
ibility would not hold. Search for a constitutive equation for the pressure. Start by
looking for an equation of state by assuming that air is an ideal gas.
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Chapter 2
Thermodynamics

Thermodynamics includes a theoretical and an applied part. The applied thermo-
dynamics has its roots at the end of 19th century and it is used to calculate the
temperature distribution in a continuum body. This aim is fulfilled by employing
the balance of internal energy. We will study this approach in Sect. 2.1 for macro-
scopic systems and in Sect. 2.2 for microscopic systems. The difference between
macroscopic and microscopic systems relies on the used constitutive equation.

The theoretical thermodynamics has started around 1950s. It has the goal of defin-
ing constitutive (material) equations that close the balance equations. By using ther-
modynamics wewill derive the constitutive equations necessary in the computational
reality. In Chap.1 we have employed many constitutive equations with an ad-hoc
method. In this chapter we will answer the question of how to derive these equations
in a thermodynamically consistent manner. Concretely, in Sect. 2.3 we will analyze
such an approach and derive the Navier–Stokes–Fourier equations for a viscous
fluid. Unfortunately, there are various methods in the literature for the thermodynam-
ically consistent derivation of constitutive equations—we will not discuss the pros
and cons of these different approaches. Herein, we present an engineering approach
suitable for many simple material models. Although the method fails to cover some
processes, it is general enough for determining all of the constitutive equations neces-
sary for the simulated engineering applications in this book. Moreover, the necessary
mathematical knowledge is fairly low. After having studied the method in Sect. 2.3
we will employ it in Sect. 2.4 for viscoelastic materials and in Sect. 2.5 for plastic
deformations. Much use of the method will be made in the next chapter, too.
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2.1 Temperature Distribution in Macromechanics

A conductive material possesses the ability of transferring thermal energy, heat,
without mass transport. In other words, heat travels between particles where particles
remain at their positions. Ifweholdone endof a steel spoon inhotwater, heat conducts
to the other end without any deformation of the spoon itself. Of course there is a
small expansion due to the temperature change in the spoon, however, in this section
we neglect this reversible deformation and assume the body as rigid throughout the
simulation. The balance equations can be introduced in a material or open system.
The local forms of the equations are identical in both systems.

We motivate the governing equations for a solid body by using a material system.
Mass and momentum balances in current frame read

( ∫
B

ρ dv

)•

= 0 ,

( ∫
B

ρvi dv

)•

=
∫

∂B

σ j i n j da +
∫
B

ρ fi dv . (2.1)

From the mass balance we calculate the mass density (or pressure) and from the
momentum balance we acquire the displacement (or velocity). For the temperature
calculation we will use another balance equation. In order to obtain this equation we
start off with the balance of total energy in the current frame:

( ∫
B

ρe dv

)•

=
∫

∂B

Fjn j da +
∫
B

ρs dv , (2.2)

where ρ, e, Fi , and s denote the mass density,1 the specific2 total energy, the energy
flux, and the specific energy supply, respectively. The total energy is a conserved
quantity like mass and momentum; the balance of total energy lacks a production
term. We can decompose total energy density:

ρe = ρu + 1

2
ρv2 , (2.3)

where the first term is the so-called internal energy density with the specific internal
energy, u, and the second term is the kinetic energy density due to the velocity, v.
Now, by inserting the mass balance into the balance of energy as well as into the
balance of momentum, we obtain

∫
B

ρv•
i dv =

∫
∂B

σ j i n j da +
∫
B

ρ fi dv ,

∫
B

ρe• dv =
∫

∂B

Fjn j da +
∫
B

ρs dv .

(2.4)

1Density means per volume.
2Specific means per mass.
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After applying Gauss’s law, we acquire the local forms:

ρv•
i − ∂σ j i

∂x j
− ρ fi = 0 , ρe• − ∂Fj

∂x j
− ρs = 0 . (2.5)

We observe a clear structure in the balance equations. The first terms indicate which
term is balanced. The second terms are divergence of fluxes. The third terms are
supply terms. On the right-hand side the production terms are written—momentum
and total energy are conserved quantities. Equation (2.3) implies that the rate of
specific energy can be rewritten by making use of the momentum balance:

e• =
(
u + 1

2
vivi

)• = u• + v•
ivi ,

ρe• = ρu• + vi

(
∂σ j i

∂x j
+ ρ fi

)
.

(2.6)

By using the latter in the balance of total energy we obtain

ρu• + vi
∂σ j i

∂x j
− ∂Fj

∂x j
+ viρ fi − ρs = 0 ,

ρu• − ∂

∂x j

(
Fj − σ j ivi

) − ρ(s − fivi ) = σ j i
∂vi

∂x j
.

(2.7)

This equation has a structure of a balance equation. The first term denotes that the
internal energy is balanced. The second term is a divergence of the internal energyflux
and the third term is the internal energy supply. These terms are often abbreviated as

−q j = Fj − σ j ivi , r = s − fivi , (2.8)

where the so-called heat flux, qi , and the supply term, r , needs to be defined or given.
The minus sign in front of the heat flux is due to the convention that the heat pumped
into the system has been seen as a positive quantity. The first power generators were
using coal to burn and they did produce mechanical energy. Heat added into the
system as well as the mechanical work taken out of the system were seen as positive
quantities. We keep herein this convention and define the flux term of the internal
energy as −qi . The balance of internal energy reads

ρu• + ∂q j

∂x j
− ρr = σ j i

∂vi

∂x j
, (2.9)

or in global form (after using the balance of mass and Gauss’s law)

( ∫
B

ρu dv

)•

= −
∫

∂B

q jn j da +
∫
B

ρr dv +
∫
B

σ j i
∂vi

∂x j
dv . (2.10)
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Herewe see again the effect of theminus sign in front of the flux term. The heat flux is
defined as the rate of energy transported into the systemacross the boundary. Since the
plane normal is directed outward,we need aminus sign in order to describe a transport
into the system. In other words, the heat fluxes into the body against the direction of
the plane normal, n. Therefore, a minus sign is necessary to heat the system up, if the
heat flux is positive. The second term on the right-hand side is called a radiation term,
r . Actually, the name radiation might be misleading; this is not a thermal radiation,
for example, radiation from the sun cannot be modeled with this term. This term is a
specific (per mass) heat supply, r , used in the microwave oven or in a laser welding.
We will call the term internal heating or heat supply in the following. The last term
on the right-hand side denotes a production term. When a deformation occurs, this
production term will alter the internal energy. We cannot simply neglect this term.
As long as there is a deformation in the continuum body, internal energy will be
produced. The internal energy is related to the temperature such that an increasing
internal energy will imply a temperature increase. Therefore, for any process where
a deformation occurs, there will be a change in temperature. The production term
is also called an internal friction. In many systems this production term may be
small, especially for slow deformations, such that we can assume that the process is
isothermal. This justification has been used in the Chap.1.

In this section we restrict the model for rigid bodies, vi = 0, no deformations are
allowed. Balances of mass and momentum are satisfied identically and the balance
of internal energy simplifies to

ρu• + ∂q j

∂x j
− ρr = 0 . (2.11)

For a rigid body the internal energy depends only on temperature,

u = u(T ) . (2.12)

The internal heating or heat supply, r , increases the temperature by affecting all
particles together. This term is a volumetric power; the food in the microwave oven
heats up in each of its particles at the same time. In the example of a spoon in hot
water, heat is transferred across the surface and then fluxes from one end to the other.
If we put the spoon in a microwave oven, all of its particles heat up together due
to the supplied heat supply, r . The same holds in case of a laser beam.3 A laser
beam supplies energy on a focused location. Suppose that a laser beam irradiates on
one end of the spoon. All particles on that end are irradiated and they all heat up
simultaneously. The laser radiates heat in such a way that it increases the temperature
volumetrically. We model a laser welding via specific heat supply term, r .

We want to implement a laser welding process and choose a plate as geometry: A
steel plate is welded with a laser beam. The energy supply comes as a laser beam in

3A laser (Light Amplification by Stimulated Emission of Radiation) generates a focused beam of
photons in the same wavelength (coherent).

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Fig. 2.1 Laser beam
distribution as the Gaussian
bell shape in xy-plane
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a concentrated manner and heats up the whole thickness of the plate at once, roughly
alike cylinder, but instead a circle cross section, a Gaussian bell shape4 should be
modeled. Any circular Gaussian bell shape in x1x2-plane can be expressed as

r = P exp

(
−

(
(x1 − x̂1)

2 + (x2 − x̂2)
2
))

, (2.13)

such that the laser beam reaches its maximum value P at the position (x̂1, x̂2), since
r = P exp(0) = P . The power becomes asymptotically zero for coordinates away
from (x̂1, x̂2) owing to the minus sign. We want to simulate a laser beam evolving in
time. The power (energy rate) of the laser reads

L(xi , t) = P exp

(
− 50000

((
x1 − l

2

(
1 + 1

2
sin(2πτ )

))2 + (
x2 − vL t

)2))
,

(2.14)
where the laser beam moves with a time parameter τ = t/tend = [0, . . . 1] in x1
sinusoidally and along x2 linearly with a constant speed vL . Of course, this is a
model problem. In reality, the path is already defined in design and programmed into
a NC (Numeric Controller) laser welding machine. Here we want to implement a
complicated path description in order to present how to implement such a process
into the code. The power of the laser beam, P , can be found in the data sheet of the
laser weldingmachine. In order to visualize the implemented laser beam distribution,
we plot the distribution for x̂ = ŷ = 30mm and P = 3000W/kg in Fig. 2.1. Since
we multiplied L in Eq. (2.14) with a huge number of 50 000, the laser beam affects
only locally, as expected from a focused light.

4It is named for Carl Friedrich Gauß.
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For a rigid body the deformation gradient equals to the Kronecker delta such
that current and initial frames are equal, xi = Xi . The balance of internal energy
reads

ρ
∂u

∂t
+ ∂qi

∂xi
− ρr = 0 . (2.15)

For the internal heating we use the laser beam, r = L . Moreover, the internal energy
depends only on the temperature, u = u(T ), in case of a rigid body. Hence we obtain

ρ
∂u

∂T

∂T

∂t
+ ∂qi

∂xi
− ρL = 0 . (2.16)

In Sect. 2.3 on p.126 we will formally introduce and discuss the so-called specific
heat capacity:

c = ∂u

∂T
, (2.17)

and explain how tomeasure thismaterial parameter. The specific heat capacity is con-
stant for many engineering materials. We also need a constitutive (material) equation
for the heat flux, qi . The simplest relation is given by Fourier’s law:5

qi = −κ
∂T

∂xi
, (2.18)

where the material parameter, κ, is referred to as thermal conductivity. We assume it
being constant. The minus sign denotes that the heat flux conducts in the direction of
decreasing temperature gradient. Hence, heat fluxes from higher to lower tempera-
ture. This phenomenon is known intuitively and its validity is a subject of theoretical
thermodynamics. For the moment we take it for granted and insert Fourier’s law
into the balance of internal energy

ρc
∂T

∂t
− κ

∂2T

∂xi∂xi
− ρL = 0 . (2.19)

This differential equation is called the field equation for T , where its solution leads
to the temperature distribution in a rigid body. We acquire the variational form of the
latter differential equation by discretizing in time and by using integration by parts.
First we utilize a backward difference scheme for temporal discretization, as usual,

∂T

∂t
= T (t) − T (t − Δt)

Δt
= T − T 0

Δt
. (2.20)

5The constitutive equation is named after Jean-Baptiste Joseph Fourier.
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Secondly, we multiply the field equation by the test function, δT , for spatial dis-
cretization ∫

B

(
ρc

Δt
(T − T 0) − κ

∂2T

∂xi∂xi
− ρL

)
δT dv = 0 . (2.21)

The second term in the integral form possesses a second derivative in space, whereas
the multiplied test function has no derivatives. Thus, the continuity conditions of
T and δT are different. In the Galerkin procedure we utilize the same function
space for the primitive variable T and its test function δT . Hence it has to belong to
class C2 at least. We can integrate by parts and acquire a form where both terms are
differentiated once such that the continuity condition of T , δT is weakened and they
need to belong to C1. After integrating by parts we acquire the weak form:

FT =
∫
B

(
ρc

Δt
(T − T 0) δT + κ

∂T

∂xi

∂ δT

∂xi
− ρL δT

)
dv −

∫
∂B

κ
∂T

∂xi
δTni da .

(2.22)
The integrand on the boundaries ∂B shall be given. In Chap.1 we have seenDirich-
let boundary conditions, where the solution itself is given, and Neumann boundary
conditions, where the gradient of the solution in the surface outward normal, ni , is
defined. For the case of the energy equation the heat flux, qi , projected into the surface
normal, qini , defines aNeumann condition. This condition is the heat exchange from
the surface of the plate to the surrounding medium, probably air or some special kind
of gases like Argon or Helium for a better welding. The heat exchange is due to the
temperature difference between the surface and the surroundings. Surface becomes
hot as a consequence of the energy delivered by the laser beam. The temperature of
the surroundings might be set constant6 to an ambient temperature, Tamb. Thus, we
obtain the Dirichlet condition T = Tamb on the boundary. Both conditions can be
mixed together in order to create another type of boundary condition. We introduce
a mixed boundary condition, to which is referred as a Robin boundary condition,7

for the whole surface ∂B as follows

qini = h(T − Tamb) ∀xi ∈ ∂B , (2.23)

where a (positive) convective heat transfer coefficient, h in W/(m2 K), is introduced
that depends on the material and state of the ambient. If the body is embedded in
fluid the convection heat transfer coefficient is higher than in air. In case of a moving

6Constant temperature of the surroundings is a warm bath idealization. Suppose that there is so
much water in a bath; a heat exchange with the body within the bath does not affect the temperature
of the bath, at all. The water on the surface of the body remains at the same constant temperature
all the time.
7It is named after Victor Gustave Robin.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Fig. 2.2 Temperature distribution at 2, 5, 15, and 50s in the steel plate during the laser welding

fluid that surrounds the body, the coefficient is even higher. This so-called natural
convection in Eq. (2.23) provides a positive energy flux into the body if the ambient
temperature is higher than the surface temperature,

−qini = h(Tamb − T ) > 0 when Tamb > T . (2.24)

Additionally, for the heat flux we readily employ Fourier’s law in Eq. (2.18). Now
the linear variational form reads

FT =
∫
B

(
ρc

Δt
(T − T 0) δT + κ

∂T

∂xi

∂ δT

∂xi
− ρL δT

)
dv+

+
∫

∂B

h(T − Tamb) δT da .

(2.25)

The code below computes the temperature distribution transiently, which can be seen
in Fig. 2.2.
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1 ”””Computational r e a l i t y 10 , temperature d i s t r i b u t i o n in a
→ macroscopic body”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 parameters [ ” a l l ow ex t r apo l a t i on ”]=True
9 parameters [ ” form compi l er ” ] [ ” cpp opt imize ” ] = True

10 s e t l o g l e v e l (ERROR)
11
12 rho=7860.0 # mass d e n s i t y o f s t e e l i n kg /mˆ3
13 c=624.0 # he a t c a p a c i t y i n J / ( kg K)
14 kappa=30.1 # th e rm a l c o n d u c t i v i t y i n W/(m K)
15 h=18.0 # he a t c o n v e c t i o n ou t o f t h e s u r f a c e i n t o amb i e n t

→ i n W/(mˆ2 K)
16 Ta=300.0 # amb i en t t e m p e r a t u r e i n K
17 l =0.1 # l e n g t h i n x and y d i r e c t i o n s i n m
18 t h i c kn e s s=0.001 # t h i c k n e s s o f t h e p l a t e i n m
19 P=3.0 e6 # l a s e r powe r i n W/ kg
20 speed=0.02 # l a s e r s p e e d i n m/ s
21 # C r e a t e mesh and d e f i n e f u n c t i o n s p a c e
22 mesh = BoxMesh ( Point ( 0 . 0 , 0 . 0 , 0 . 0 ) , Point ( l , l , t h i c kn e s s ) ,

→ 200 ,200 ,2)
23 Space = FunctionSpace (mesh , P , 1)
24 c e l l s = Cel lFunct ion ( s i z e t , mesh )
25 f a c e t s = FacetFunction ( s i z e t , mesh )
26 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
27 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
28 t=0.0
29 t end=50.0
30 Dt=0.1
31 i n i t i a l T = Expres s ion ( ”Tini ” , Tini=Ta)
32 T0 = i n t e r p o l a t e ( i n i t i a l T , Space )
33 Laser = Expres s ion ( ”P exp ( −50000.0 ( pow(x [0 ] −0.5 l (1+0.5 s i n

→ (2 p i t / t e ) ) , 2)+pow(x [1] − ve l o t , 2) ) ) ” ,P=P, t=0, t e=
→ t end/10.,l=l , v e l o=speed )

34 T = Tria lFunct ion ( Space )
35 del T = TestFunction ( Space )
36 Form = ( rho c/Dt (T−T0) del T \
37 + kappa T. dx ( i ) del T . dx ( i ) \
38 − rho Laser del T ) dv \
39 + h (T−Ta) del T da
40
41 l e f t=l h s (Form)
42 r i gh t=rhs (Form)
43
44 A = assemble ( l e f t ) # non−c h a n g i n g by t im e s t e p p i n g
45 b = None # d y n a m i c a l l y a s s e m b l e d a c c . t o t im e
46 T = Function ( Space )
47 f i l e T = F i l e ( ”/ c a l c u l /CR10/T. pvd” )
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48 for t in numpy. arange (0 , t end , Dt ) :
49 print ”Time ” , t
50 Laser . t=t
51 b=assemble ( r i gh t , t en sor=b)
52 s o l v e (A, T. v ec to r ( ) , b , cg )
53 i f t == int ( t ) : f i l e T << (T, t )
54 T0 . as s i gn (T)

To-do

Temperature distribution in a macroscopic rigid body has been computed. In order
to deepen the understanding of the implementation try to do the following steps:

• Since the integral form is linear we may have implemented as in the previous
sections by using “Form” and “Gain.” Try to implement in this way, the results
have to be identical.

• Change the boundary condition to a weak8 Dirichlet condition and then to adi-
abatic9 boundaries by manipulating the parameter h.

• Search for approximate values of h for natural and forced convection. Which one
has been established in the given code?

• Since heat escapes over the boundaries, sooner or later the temperature becomes
the ambient temperature homogeneously in all body. Find the material parameters
for a polymer and apply the same laser power. Is the body out of steel or polymer
will reach the ambient temperature quicker?

2.2 Heat Transfer in Micromechanics

Heat propagation in a rigid body has been described by a parabolic differential equa-
tion in the last section. A mathematician recognizes the differential equations under
two classes: diffusion andwave problems. A parabolic differential equation models a
diffusion problem and a hyperbolic differential equation models a wave propagation.
We refrain from using this terminology and point on the famous “paradox” due to
the characteristics of the parabolic differential equation used in the heat transfer.10

Consider Fourier’s law describing the heat flux:

qi (x, t) = −κGi (x, t) , Gi = ∂T

∂xi
. (2.26)

8We apply a Dirichlet condition strongly by exchanging the solution with the given solution by
using “DirichletBC” in the code. Instead of this method, we can satisfy the condition weakly by
writing it under the boundary integral.
9An adiabatic boundary prevents heat transfer across boundaries.
10See [16] for some interesting explanations on the characteristics of the heat propagation.
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Flux is the rate of energy exchange, in other words, it describes how quickly the heat
energy travels between neighboring particles. Since the flux depends only on the
temperature gradient, as long as there exists a temperature gradient the exchangemay
happen as quick as possible. Therefore, heat flux depending only on the temperature
gradient results in an infinite propagation of the information. A typical example is a
long bar excited on one end by a laser pulse. As expected, the temperature changes on
the excited end. According to Eq. (2.26) at the very moment changed the temperature
the neighboring element feels this change. The temperature change implies a heat flux
instantaneously, thus whole bar “knows” this temperature change. In other words,
the temperature starts changing in the whole bar instantaneously. For a bar in a
macroscopic length scale, the temperature change is insignificant. Hence, Fourier’s
law is quite accurate for many engineering problems in macroscale. However, in a
microscopic length scale and laser pulses in femtoseconds the accuracy of Fourier’s
law is inappropriate. There are even measurements in these scales suggesting a more
sophisticated definition of the heat flux11 than Fourier’s law. In this section we
will generalize the heat flux by adding a rate dependency, similar to ideas used in
Sect. 1.4, and simulate in microscale.

The generalization of the heat flux can be introduced in many different ways. We
are interested in applied thermodynamics; so we use an argumentation that the flux
and temperature gradient occur in different time instants. It is challenging to choose
cause and effect, thus, we basically introduce a time lag both to the heat flux and
temperature gradient:

qi (x, t + τq) = −κGi (x, t + τT ) . (2.27)

The parameters τq and τT defines the time-delay or relaxation times between the
flux and its response, i.e., the temperature gradient. By setting τT = 0 we attain
Cattaneo–Vernotte’s heat flux12 Since we want to evaluate the heat flux in the
current time, t , we expand the left and right sides of Eq. (2.27) around the current
time by using a Taylor series with linear terms:

qi (x, t) + τqq
•
i (x, t) = −κGi (x, t) − κτT G

•
i (x, t) . (2.28)

By suppressing the arguments the heat flux for micromechanics reads

qi = −τqq
•
i − κGi − κτT G

•
i . (2.29)

11See, for example, [18].
12It is named for Carlo Cattáneo and Pierre Vernotte.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Since the body is rigid, there is no difference between the total and partial time rate.
Time discretization delivers

qi = −τq
qi − q0

i

Δt
− κGi − κτT

Gi − G0
i

Δt
,

qi = Δt

Δt + τq

(
τq

Δt
q0
i − κ

(
1 + τT

Δt

)
Gi + κτT

Δt
G0

i

)
.

(2.30)

As we have established the field equation for a rigid body in the last section

ρc
∂T

∂t
+ ∂qi

∂xi
− ρL = 0 , (2.31)

we can now implement the heat flux with relaxation times. After making the first
term discrete in time, multiplying by the test function, δT , and then applying an
integration by parts, we obtain the weak form:

∫
B

(
ρc

Δt
(T − T0) δT − qi

∂ δT

∂xi
− ρL δT

)
dv +

∫
∂B

q̂ δT da , (2.32)

where q̂ = qini is the given boundary condition.
Every body consists of electronic particles and thus emits energy as a result of

the changes in the electronic configurations of the atoms. This phenomenon happens
above the absolute temperature, 0 K, for all times in form of radiation. Radiation
is a volumetric supply and every particle of the body emits energy in the form
of electromagnetic waves (photons), however, they are again absorbed from the
neighboring particles. Only the particles building the surface emits energy such that
this type of radiation is modeled as a surface phenomenon.13 The maximum rate of
energy emitted from a rigid body into a vacuum is given by the Stefan–Boltzmann
law:14

q̃ = σT 4 , (2.33)

where the Stefan–Boltzmann constant, σ = 5.670 · 10−8W/m2, is a universal
constant. In the vacuum, the radiation waves propagate with the speed of light,
c0 = 2.998 · 108m/s. In air, they propagate with cair = c0/n, where the refractive
index is n = 1.0008 for air. The energy rate to the air is

q̃ = n2σT 4 , (2.34)

in other words, it is only 0.16% more than into the vacuum; this difference is neg-
ligible. The aforementioned relation holds for the idealized surface referred to as a

13For some intuitive explanations and examples of the thermal radiation, see [2, Chap. II, Sect. 9–4].
14The law is named after Josef Stefan and Ludwig Boltzmann.
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blackbody. Real surfaces emit less energy than the blackbody and this rate is mea-
sured by the emissivity, ε, of the surface:

q̃ = εσT 4 . (2.35)

The emissivity is between zero and one. Even in vacuum this type of energy exchange
occurs. If the body is surrounded by air at Tamb then the energy rate emitted from the
body reads

q̃ = εσ(T 4 − T 4
amb) . (2.36)

We can now combine the natural convection and the surface radiation in order to find
out the boundary condition as follows

q̂ = qini = h(T − Tamb) + εσ(T 4 − T 4
amb) , (2.37)

for a body embedded in resting air. If the air possesses a velocity, as in case of a
forced convection, the value of h increases and the heat exchange via convection
dominates; the surface radiation can be completely neglected.

We acquire the following weak form for the computation:

Form =
∫
B

(
ρc

Δt
(T − T0) δT − qi

∂ δT

∂xi
− ρL δT

)
dv+

+
∫

∂B

(
h(T − Tamb) + εσ(T 4 − T 4

amb)
)
δT da ,

(2.38)

with the heat flux, qi , as in Eq. (2.30). Obviously, the weak form is nonlinear due to
the thermal radiation in the boundary conditions.

Suppose we have a tiny beam of 100 × 5 × 5μm excited on one end with a laser
beam. Taken from [18] time lag parameters are given below in picoseconds:

for Cu , τT = 70.833 ps , τq = 0.4648 ps ,

for Au or Ag , τT = 89.286 ps , τq = 0.7438 ps ,

for Pb , τT = 12.097 ps , τq = 0.1720 ps .

(2.39)

We choose an appropriate unit system:

1 ps = 10−12 s , 1μg = 10−9 kg , 1μm = 10−6 m , 1 nN = 10−9 N , (2.40)

where energy is in femtoJoule, 1nN × 1μm = 10−15 Nm = 1 fJ, and temperature
in K as usual. A short pulse of laser on one end ignites a heat transport to the surface
and toward to other end, see Fig. 2.3. The implementation with consistent units has
been realized by the code below.
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Fig. 2.3 Temperature distribution at 1, 15, 50, and 100ns in the gold bar, consider the change of
the temperature scale for a better visualization

1 ”””Computational r e a l i t y 11 , temperature d i s t r i b u t i o n in a
→ micros cop i c body”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 parameters [ ” a l l ow ex t r ap o l a t i on ”]=True
9 parameters [ ” form compi l er ” ] [ ” cpp opt imize ” ] = True

10 s e t l o g l e v e l (ERROR)
11
12 rho=19.3E−6 # mass d e n s i t y o f g o l d (Au ) i n mug/mumˆ 3 ]
13 c=129.0E6 # he a t c a p a c i t y i n f J / ( mug K)
14 kappa=318.0E−3 # th e rm a l c o n d u c t i v i t y i n f J / (mum K ps )
15 tau T = 89.286 # i n ps
16 tau q = 0.7438 # i n ps
17 h=18.0E−9 # n a t u r a l c o n v e c t i o n c o e f f i c i e n t i n f J / ( p s mumˆ2

→ K) ]
18 emis=0.47 # e m i s s i v i t y o f g o l d n o t p o l i s h e d
19 sigma=5.670E−17 # St e f a n −Bo l t zmann c o n s t a n t i n f J / ( p s mum 2 )
20 Ta=300.0 # amb i en t t e m p e r a t u r e i n K
21 l =100.0 # l e n g t h i n mum
22 th=5.0 # t h i c k n e s s i n mum
23 P=30.0E3 # l a s e r powe r i n f J / (mum ps )
24
25 mesh = BoxMesh ( Point ( 0 . 0 , 0 . 0 , 0 . 0 ) , Point ( l , th , th ) , 200 ,10 ,10)
26 Space = FunctionSpace (mesh , P , 1)
27 VectorSpace = VectorFunctionSpace (mesh , P , 1)
28 c e l l s = Cel lFunct ion ( s i z e t , mesh )
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29 f a c e t s = FacetFunction ( s i z e t , mesh )
30 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
31 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
32 t=0.0
33 t end=100000.0 #0 . 1 mus
34 Dt=1000.0
35 i n i t i a l T = Expres s ion ( ”Tini ” , Tini=Ta)
36 T0 = i n t e r p o l a t e ( i n i t i a l T , Space )
37 Laser = Expres s ion ( ”P exp ( −1.0 ( pow(x [0] −2 , 2)+pow(x [ 1 ] , 2)+

→ pow(x [2 ] −2 . 5 , 2) ) ) ” ,P=P)
38 T = Function ( Space )
39 del T = TestFunction ( Space )
40 dT = Tria lFunct ion ( Space )
41 q0 = Function ( VectorSpace )
42 G = as t en s o r (T. dx ( i ) , ( i , ) )
43 G0 = as t en s o r (T0 . dx ( i ) , ( i , ) )
44 q = as t en s o r (Dt/(Dt+tau q ) ( tau q /Dt q0 [ i ]−kappa (1+tau T/Dt

→ ) G[ i ]+kappa tau T/Dt G0[ i ] ) , ( i , ) )
45 Form = ( rho c/Dt (T−T0) del T \
46 − q [ i ] del T . dx ( i ) \
47 − rho Laser del T ) dv \
48 + (h (T−Ta) \
49 + emis sigma (T 4−Ta 4) ) del T da
50 Gain = de r i v a t i v e (Form , T, dT)
51
52 f i l e T = F i l e ( ”/ c a l c u l /CR11/T. pvd” )
53 for t in numpy. arange (0 , t end , Dt ) :
54 print ”Time ” , t
55 i f t>=2000.: Laser .P=0
56 s o l v e (Form== 0 , T, [ ] , J=Gain , \
57 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
58 f orm compi l er parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

59
60 i f t == int ( t ) : f i l e T << (T, t )
61 q0 = p ro j e c t (q , VectorSpace )
62 T0 . as s i gn (T)

To-do

Temperature distribution with a time lag has been implemented.

• Change the boundary condition to a Dirichlet boundary without radiation.
• Simulate the same problem with Fourier’s law.
• Produce a 2D plot with temperature versus x-coordinates. Plot the results with
Cattaneo–Vernotte’s and Fourier’s law on top of each other and analyse the
difference.
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2.3 Thermodynamics in a Nutshell

Theoretical thermodynamics concerns derivation of the constitutive equations, which
we have already been using in the former sections. For some viscous fluids, for exam-
ple water, we are certain that the Navier–Stokes equation is an adequate model to
describe the flow behavior. Thematerial model given by the constitutive equation has
been attained phenomenologically (by using empirical research). In the early 1940s
the concept of continuum mechanics has been redesigned under the name rational
mechanics. Different scientific branches of mechanics: solid body mechanics, fluid
mechanics, and applied thermodynamics, have been fused by using this concept.
Such an abstraction of different studies has lead to theoretical thermodynamics15

used to derive the constitutive equations.
Theoretical thermodynamics is a non-unique approach. At least four prominent

methodologies can be listed: the Coleman–Noll procedure, Muller’s rational
thermodynamics, and non-equilibrium thermodynamics.16 They deliver the basic
equations like Navier–Stokes’s equation such that we believe that all methodolo-
gies are correct. We omit an introduction and discussion of different methodologies
and design a method using elements from all of them. The output is again the well-
known equations for simple viscous fluids such that we can convince ourselves that
the procedure is acceptable. The proposed method possesses some limitations that
we will remark by presenting and applying the procedure in the following. Although
the method has some weak points, it is relatively simple and allows to be generalized
easily in order to involve electromagnetic interactions in Chap.3.

We have introduced and implemented the following three balance equations in
their local forms: the balance of mass, the balance of linear momentum, and the
balance of internal energy, respectively:

ρ• + ρ
∂vi

∂xi
= 0 , ρv•

i − ∂σ j i

∂x j
− ρ fi = 0 , ρu• + ∂qi

∂xi
− ρr = σi j

∂v j

∂xi
, (2.41)

in the current frame expressed in a Cartesian coordinate system. The first two has
zero sources, i.e., zero right-hand sides and the balance of internal energy has a non-
zero source. The source is a production term. We cannot eliminate or “shut off” the
production term. For example the production term of the internal energy—known as
the internal friction—alters the internal energy, as long as the material undergoes a
motion. Internal energy fails to be a conserved quantity. Mass and linear momentum
are conserved quantities, since they lack a production term.

From the balance equations we want to solve the mass density, ρ, the velocity, vi ,
and the temperature, T . First we need to close the balance equations by defining the
constitutive equations for the Cauchy stress, σ j i , for the specific internal energy, u,

15Thermodynamics of irreversible processes started with papers of Carl Eckart, see [4], [5], [6], [7].
16The Coleman-Noll procedure is named after Bernard D. Coleman and Walter Noll, see [3].
Muller’s rational thermodynamics is named for Ingo Müller, see [11]. The non-equilibrium ther-
modynamics is introduced by Sybren Ruurds de Groot and Peter Mazur, see [8].

http://dx.doi.org/10.1007/978-981-10-2444-3_3
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and for the heat flux, qi . After having found the definitions, the formulation will be
complete such that we can generate a weak form and solve the balance equations aug-
mented with the constitutive equations. Theoretical thermodynamics has the aim of
determining the constitutive equations. In this section we will perform the necessary
steps leading to the adequate constitutive equations modeling a viscous fluid.

We want to compute (ρ, vi , T ) for a fluid in a Eulerian frame, (xi , t). The
unknowns (ρ, vi , T ) are referred to as primitive variables: their mathematical exis-
tence is accepted without any further investigation. Our goal is to compute the primi-
tive variables by satisfying the balance equations.We can solve the balance equations
if they are closed: All constitutive equations for σi j , qi , and u are given by functions
depending on the primitive variables or their time and space derivatives.

The first assumption is that the specific total energy, e, is additive so that the
specific internal energy, u, and specific kinetic energy, ekin., are separable and inde-
pendent. Hence, the internal energy fails to depend on the velocity. By following
[14] we assume that the change of the internal energy17 is recoverable. The kinetic
energy is irreversible. There are many different formulations in the literature and
none of them is wrong, because we cannot measure different parts of the energy sep-
arately; they are just various models approximating the behavior of the material with
different accuracies. The accuracy of any formalism can only be tested by measure-
ments. In the end, the primitive variables are calculated with adequate accuracy, if
the material modeling is appropriate. Without discussing its limitations, we assume
that the internal energy possesses only terms occurring a recoverable change. This
assumption is of paramount importance and leads to a useful methodology described
in the following.

We introducemass density, ρ(xi , t), velocity, vi (x j , t), and temperature T (xi , t) as
primitive variables. We axiomatically assume that they are independent functions.18

Velocity fails to be an objective variable. If we perform a Euclidian coordinate
transformation, velocity transforms other than a tensor of rank one. Fortunately,
symmetric velocity gradient, di j = ∂v(i/∂x j), is an objective variable, it is a tensor
of rank two.19 Constitutive equations shall depend on objective variables.

We start the formulation byproposing an equation for the internal energy.Actually,
this equation can be derived in various ways. We present here a method based on the
balance of internal energy since we will make much use of it in the next chapter.20

Consider a material of having the following constitutive equation:

σ j i = rσ j i + dσ j i , (2.42)

17Under the assumption that no phase changes occur.
18Of course they are coupled, however, independent. We can hold the temperature fixed and move
the body or restrict any motion and change the temperature.
19The formulation holds for fluids with elasticity, too. Therefore, we need to introduce, di j = ε•

i j ,
for a fixed frame, wi = 0. The proof of this identity is out of scope, therefore, we explain it in
AppendixA.4 on p.301.
20For another, more conventional derivation, see [1, Sect. 3].
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where the reversible (recoverable) change is given by the first and irreversible (dissi-
pative) change is described by the second term. The assumption of separating stress
tensor additively is justified by the energy assumption, where we have also separated
the reversible (recoverable) and irreversible (dissipative) terms into an internal and
kinetic energy, respectively. For a fluid without elasticity, we introduce the reversible
term by using pressure, p, as follows

rσ j i = −pδ j i . (2.43)

The dissipative termwill be a function of di j leading to a flow in the system. The stress
consists of the reversible term, if the fluid rests (zero velocity),21 this state is called a
mechanical equilibrium. In equilibrium, the pressure enables a reversible momentum
transport, for example the sound waves in a fluid are transported by the pressure, p.
This process is reversible since the motion of fluid particles are recovered after the
sound wave has passed by. This small motion of fluid particles are neglected at all,
we only calculate the velocity leading to a convection of the fluid. If the fluid rests,
pressure still transports sound waves reversibly. Hence, we can call the pressure as
a hydrostatic pressure since it is responsible for a momentum transport in the static
or equilibrium state. In the mechanical equilibrium the stress reads

σ j i

∣∣∣
eq.

= −pδ j i . (2.44)

Formally, the decomposition in Eq. (2.42) is correct since we still have not defined
dσi j . Instead of searching for a definition of σi j we now have to search for p and dσ j i .

For a thermal equilibrium we introduce a quantity called a specific entropy, η, as

−∂qi
∂xi

∣∣∣
eq.

= q •
∣∣∣
eq.

,
1

T
q •

∣∣∣
eq.

= ρη• , (2.45)

by following [8, Chap.XIV, Sect. 2]. The entropy is responsible for a reversible
transport of energy, i.e., the process is in a thermal equilibrium. Thermal equilibrium
is often explained as a slow temperature change, actually, it is just the reversible
part of the process without any dissipation. Indeed a slow temperature change is
undertaken by the reversible part. Similar to the previous case, we now have to
determine a constitutive equation for η and qi . The balance of internal energy:

ρu• + ∂qi
∂xi

− ρr = σi j
∂v j

∂xi
, (2.46)

reads at thermal and mechanical equilibrium

21Since we use a Euclidean transformation to test the objectivity, a constant velocity is accepted,
too. Consider a rigid body moving with a constant velocity, it actually rests in a coordinate system
moving with this velocity. Hence, we can always introduce a constantly moving coordinate system,
which is allowed in the Euclidean transformation, where the body rests.
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ρu• − ρT η• = −p
∂vi

∂xi
, (2.47)

since by existing internal heating (supply term), equilibrium cannot take place. We
recall that the internal energy is fully recoverable. By introducing a specific volume,
v = 1/ρ, a volume per mass, we can rewrite the balance of mass as follows

(v−1)•v = −∂vi

∂xi
,

v•

v
= ∂vi

∂xi
,

ρv• = ∂vi

∂xi
.

(2.48)

Now by inserting the latter into the balance of internal energy we obtain

ρu• − ρT η• = −ρpv• ,

u• = T η• − pv• .
(2.49)

Furthermore from the latter expression, we acquire so-called Gibbs’s equation:

du = T dη − p dv , (2.50)

under the condition that u has a first integral:

u =
∫

du . (2.51)

Often, this condition is referred to as the 1st lawof thermodynamics.22 The integration
is between two states. Suppose we start from the state, {T = T0, v = v0}, and end
up in a state at another temperature and mass density (thus specific volume), {T, v}.
Since the internal energy is a total differential we can obtain the energy by integrating
from the state one to state two

u =
∫ (T,v)

(T0,v0)
du = u(T, v) − u(T0, v0) . (2.52)

Only the first and last states are important, not the states in between. This condition is
a limitation and the methodology herein with this limitation is called the equilibrium
thermodynamics. Exactly this assumption is a deficiency on the way to a general

22For instance in [14] the internal energy is introduced as a full recoverable quantity such that the
first integral is automatically justified. Either we can accept the axiom of existence of du as the 1st
law, or the assumption that the internal energy is fully recoverable as the 1st law.
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theory.23 In other words, for some processes this assumption may lead to constitutive
equations not capable of describing the process accurately. The fact that the total
energy has a dissipative term only due to the kinetic energy might be too restrictive.
The methodology presented here would not suffice for describing a process where
temperature (or its rate) plays a dissipative role in the total energy. However, at
least for all processes presented in this book, this restriction is admissible and the
implemented method is reliable.

Usually Gibbs’s equation is an axiomatic start; its validity is taken for granted.
Herein, we have motivated it by using the balance of internal energy at the equilib-
rium. Since the internal energy is assumed to be recoverable, the differential relation
holds for the non-equilibrium, too. By considering Eq. (2.50) we realize that the
internal energy is a function of entropy and specific volume,

u = u(η, v) . (2.53)

We have an inconsistency by defining energy depending on a variable, η, which is
not yet defined. Better we shall find a constitutive equation for energy depending
on the primitive variables or their derivatives, i.e., on the so-called state variables.24

In this section the state or primary variables are {T, v}. Thus, we need an energy
definition depending only on the primary variables. In order to obtain such an energy
we introduce the so-called specific Helmholtz free energy:

ψ = u − T η . (2.54)

Its total differential is assumed to exist25

dψ = du − η dT − T dη . (2.55)

By inserting Eq. (2.50) into the latter we obtain

dψ = −η dT − p dv . (2.56)

From this differential form we realize that the free energy depends on the primary
variables

ψ = ψ(T, v) . (2.57)

23For a brief explanation of this deficiency, we refer to [13, Chap.2].
24Since state variables are derived from the primitive variables we can also name them as primary
variables.
25This assumption is another weak point in the methodology, the 1st law of thermodynamics only
states that the internal energy has a perfect differential, du, but not the free energy. Concretely, we
have to make sure that d(T η) exists.
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Obviously, we have the following relations:

dψ = ∂ψ

∂T
dT + ∂ψ

∂v
dv , η = −∂ψ

∂T
, p = −∂ψ

∂v
. (2.58)

Our goal is to determine the dual variables depending on the primary variables26

η = η(T, v) , p = p(T, v) , (2.59)

leading to the following differentials:

dη = ∂η

∂T
dT + ∂η

∂v
dv = A dT + B dv ,

dp = ∂ p

∂T
dT + ∂ p

∂v
dv = C dT + D dv .

(2.60)

We need to determine the material coefficients A, B,C , D as functions depending on
the state variables. The partial derivatives are taken by holding the other arguments
fixed. We skip an explicit notation about the dependency, since it is superfluous. The
small change d(·) is simply how we shall undertake the measurements.

We cannot measure the (specific) entropy, η, directly. Instead, heat (thermal
energy) is measured in a calorimeter, δq = T dη. The notational difference, δq, is
only due to the fact that we cannot form a total differential of the heat. In other words,
it is necessary to integrate over the whole process that is an evolution, the knowledge
of the start and end states is not sufficient for δq. Technically, we justmeasure the heat
energy supplied to the system. By holding the specific volume constant, dv = 0, and
by varying the temperature, dT , we obtain a change of heat, δq, which is measured
as

δq = c dT ⇒ A = c

T
, (2.61)

where c is called the specific heat capacity by holding volume constant. It may
depend on temperature and have to be measured for different specific volumes. Of
course for different specific volumes, the numerical value of cmay vary, too. Hence,
c = c(T, v), at least in principle. These measurements are difficult such that either
heat capacity is assumed to be constant or solely the dependence on the temperature
is found in the literature.

We can easily measure the coefficient D by fixing the temperature, dT = 0; vary-
ing the specific volume, dv; and measuring the pressure change, dp. It is possible
to change the temperature and measure the pressure for a fixed (specific) volume
for determining C . However, it is rather difficult to set the temperature constant and
measure the heat exchange due to the variation in the specific volume. The problem is

26Although this is mathematically obvious that the dual variables have to depend on the same set of
arguments of the free energy, namely on the state variables, this condition is called the equipresence
principle, see [17, Sect. 293.η].
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that we normally measure the heat change over the temperature measurement. There
is aMuller-calorimeter for this purpose but it is not appropriate for all materials.27

Fortunately, we can skip measurements for determining C coefficient because
C = B. In order to see this relation, we write the dual variables in a matrix notation:

(
dη
dp

)
=

(
c/T B
C D

)(
dT
dv

)
. (2.62)

The condition B = C is a symmetry condition in the matrix of coefficients. This
condition can be seen readily by using the free energy depending on T and v,

B = ∂η

∂v
= − ∂2ψ

∂v∂T
= − ∂2ψ

∂T∂v
= ∂ p

∂T
= C . (2.63)

This condition is known asMaxwell’s reciprocal relation.28 For a viscous fluid we
can integrate and find out the constitutive equations:

η =
∫

dη =
∫

c

T
dT +

∫
B dv , p =

∫
dp =

∫
B dT +

∫
D dv , (2.64)

from a reference state {Tref., vref.} to the current state {T, v}. For a linear material the
coefficients are constants such that we readily obtain

η = c ln
( T

Tref.

)
+ B(v − vref.) ,

p = B(T − Tref.) + D(v − vref.) .

(2.65)

For an incompressible material v = vref. such that B and D fails to be measured by a
variation of the specific volume, since dv = 0.Gibbs’s equation becomes du = c dT
and the specific entropy reads

η = c ln
( T

Tref.

)
. (2.66)

We calculate p from the balance of mass.
In order to derive the heat flux, qi , and the dissipative part of the stress tensor, dσi j ,

we continue the methodology in the following. Since we have defined the internal
energy, we can insert Eq. (2.49)2:

u• = T η• − pv• (2.67)

27See [10] for a detailed explanation about the Muller-calorimeter named after F. Horst Müller.
28It is named after James Clerk Maxwell.
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into the balance of internal energy in Eq. (2.41)3 and obtain

Tρη• − pρv• + ∂qi
∂xi

− ρr = σi j
∂v j

∂xi
,

Tρη• + ∂qi
∂xi

− ρr = dσi j
∂v j

∂xi
,

(2.68)

after having used the balance of mass as in Eq. (2.48). We can rewrite the latter
equation further,

ρη• + 1

T

∂qi
∂xi

− ρ
r

T
= 1

T
dσi j

∂v j

∂xi
,

ρη• + ∂

∂xi

(qi
T

)
− qi

∂

∂xi

( 1

T

)
− ρ

r

T
= 1

T
dσi j

∂v j

∂xi
,

(2.69)

in order to acquire a balance equation:

ρη• + ∂

∂xi

(qi
T

)
− ρ

r

T
= − qi

T 2

∂T

∂xi
+ 1

T
dσi j

∂v j

∂xi
. (2.70)

This balance equation is the balance of entropy:

ρη• + ∂Φi

∂xi
− ρ

r

T
= � , (2.71)

with the flux term, Φi , and the production term, �, as follows

Φi = qi
T

, � = − qi
T 2

∂T

∂xi
+ 1

T
dσi j

∂v j

∂xi
. (2.72)

The 2nd law of thermodynamics asserts that any process attains a positive entropy
production:

� ≥ 0 . (2.73)

This law restricts the possible constitutive relations. In other words, qi , σ j i have to
be such that � ≥ 0 is assured for every possible processes. This restriction leads to
the constitutive equations for qi and σi j as presented in the following in three steps.
First we introduce the following notation:

Gi = ∂T

∂xi
, di j = ∂v(i

∂x j)
, d|i j | = di j − 1

3
dkkδi j . (2.74)

Moreover, in non-polar materials the dissipative stress is symmetric, dσi j = dσ j i . We
exclude polar materials in this book.29 Secondly, we rewrite the entropy production:

29Nematic fluids used in LCD (Liquid Crystal Display) is a prominent polar material.
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� = − 1

T 2
qiGi + 1

3T
dσi i d j j + 1

T
dσ|i j |d|i j | ≥ 0 . (2.75)

This multiplication can be seen as thermodynamical fluxes:

Fα =
{

− qi , dσi i , dσ|i j |
}

, (2.76)

multiplied (by an inner product) with thermodynamical forces:

Kα =
{Gi

T 2
,

1

3T
d j j ,

1

T
d|i j |

}
, (2.77)

as follows
� = Fα · Kα ≥ 0 , α = 1, 2, 3 . (2.78)

The thermodynamical forces are independent among each other. Thirdly, each ther-
modynamical force is of another rank. For an isotropic material a thermodynamical
flux may depend only on the same rank of the thermodynamical forces. Since other-
wise under a coordinate transformation different rank tensors transform differently
such that the dependency of one flux component on the force component changes.
Hence, for isotropic materials the thermodynamical fluxes depend only on the ther-
modynamical forces of the same rank:

F1 = F1(K1) , F2 = F2(K2) , F3 = F3(K3) . (2.79)

This condition is known as the Curie symmetry principle.30 Consider the following
relations:

−qi = ā
1

T 2
Gi , dσi i = b̄

1

3T
d j j , dσ|i j | = c̄

1

T
d|i j | , (2.80)

where the material coefficients may depend on the thermodynamical forces.31 If we
insert the constitutive relations into the entropy production

� = ā
1

T 4
GiGi + b̄

1

9T 2
dii d j j + c̄

1

T 2
d|i j |d|i j | ≥ 0 , (2.81)

has to hold. We know that every term is a multiplication between different types of
fluxes and forces, i.e., every term is independent. In order to demand � ≥ 0 for any
process, the coefficients have to be

ā ≥ 0 , b̄ ≥ 0 , c̄ ≥ 0 , (2.82)

30It is named after Pierre Curie.
31For the sake of clarity, the coefficients are functions of the invariants of thermodynamical forces.
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since T > 0 in K(elvin). This conclusion is quite general and the coefficients may be
scalar functions of the thermodynamical forces, i.e., the thermodynamical fluxesmay
depend on the thermodynamical forces nonlinearly. If we rename the coefficients:

ā
1

T 2
= κ , b̄

1

3T
= 3λ + 2μ , c̄

1

T
= 2μ , (2.83)

and simplify to linear materials by assuming that κ, λ, and μ are constant, then we
end up in a Navier–Stokes–Fourier fluid:

qi = −κGi ,

σi j = −pδi j + dσi j = −pδi j + 1

3
(3λ + 2μ)dkkδi j + 2μd|i j | =

= (−p + λdkk)δi j + 2μdi j .

(2.84)

Obviously the material constants are κ ≥ 0, μ ≥ 0, and 3λ + 2μ ≥ 0, in order to
fulfill the 2nd law. Since dii = ρv• for an incompressible fluid, commonly 3λ + 2μ =
0 is used,which is knownasStokes’s hypothesis.However, this hypothesis cannot be
verified experimentally. Since dii = 0 holds for an incompressible fluid flow, it is not
possible to detect the value of 3λ + 2μ. We will never use this hypothesis. Certainly,
by utilizing dii = 0 we assume that the flow is incompressible. This interpretation is
correct, incompressibility is not a material property; even water flows compressible
under great pressure and temperature conditions.32 By using the incompressibility
we spare the mass balance for the computation of p. For a numerical stability λ shall
be a large number.

For a non-linear fluid we can now quickly generalize the constitutive equations
and propose

c̄
1

T
= 2

(
μ0 + k

π
√
I I

arctan
(√

I I

B

))
, I I = 1

2
di j di j , (2.85)

as already employed in Sect. 1.8. For the thermodynamical consistency, material
parameters, μ0, k, B, have positive values.

We want to compute the same channel problem as in Sect. 1.7, this time by com-
puting not only the pressure and velocity but also the temperature change.We choose
water, a viscous linear fluid and model with Fourier–Navier–Stokes constitutive
equations:

σi j = −pδi j + dσi j , dσi j = λdkkδi j + 2μdi j , qi = −κ
∂T

∂xi
. (2.86)

32However, if we use 3λ + 2μ = 0 then we assume that the incompressibility is a property of the
material. This is definitely not the case, see [9] and also [15].

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Since water can be assumed as incompressible, dv = 0, we have the rate of internal
energy from Gibbs’s equation:

ρu• = ρT η• = ρcT • . (2.87)

For a fixed33 domain, �, we obtain a weak form from Eq(2.41)1 for computing the
pressure:

Fp =
∫

�

(
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi

)
δp

ρ
dv . (2.88)

This integral form is in the unit of power. For an incompressible flow the latter
reduces to

Fp =
∫

�

∂vi

∂xi
δp dv . (2.89)

Analogously the balance of linear momentum in Eq (2.41)2 leads to a weak form for
computing the velocity:

Fv =
∫

�

(
ρ
∂vi

∂t
δvi + ρv j

∂vi

∂x j
δvi + ∂ p

∂xi
δvi + dσ j i

∂ δvi

∂x j
− ρ fi δvi

)
dv−

−
∫

∂�

dσ j i n j δvi da .

(2.90)

This integral form is also in the unit of power. If we want to apply a Neumann

boundary bydefining amechanical pressure applied on the boundary, then the traction
vector:

t̂i = σ j i n j = −pni + dσ j i n j , (2.91)

is necessary. We can apply a mechanical pressure on left and right openings, p̂. The
mechanical pressure on a boundary reads

−1

3
σkk = p̂ = −1

3

( − pδkk + dσkk
)
. (2.92)

For applying this pressure we need the traction vector inward the domain

t̂i = −ni p̂ = ni
3

( − pδkk + dσkk
)
. (2.93)

For an incompressible flow, dkk = 0, the spherical dissipative stress vanishes such
that we obtain

t̂i = −pni , (2.94)

33In a fixed domain we simply write d(·)
dt instead of (·)• and obtain the balance equations for open

systems.
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leading to
dσ j i n j = t̂i + pni = 0 . (2.95)

Due to the latter the boundary terms vanish in Eq. (2.91), i.e., in general for incom-
pressible flows, the boundary terms in the weak form of velocity vanish.

In order to compute the temperature, we need a weak form in the unit of power.
Either we generate it from the balance of internal energy as in Eq. (2.41)3 by dividing
by T and multiplying with δT , or from the balance of entropy as in Eq. (2.70) by
multiplying with δT . For the first option we need to use ρu• = ρcT • and for the
second option η• = T •c/T . The result is the same. We use the entropy balance and
obtain
∫

�

(
ρc

T

∂T

∂t
+ ρc

T
vi

∂T

∂xi
+ ∂

∂xi

(qi
T

)
− ρr

T
− 1

T
σi j

∂v j

∂xi
+ 1

T 2
qi

∂T

∂xi

)
δT dv = 0 .

(2.96)

The term with the heat flux needs to be integrated by parts, since it consists a second
gradient of temperature. Hence we acquire the weak form

FT =
∫

�

(
ρc

T

∂T

∂t
δT + ρc

T
vi

∂T

∂xi
δT − qi

T

∂ δT

∂xi
− ρr

T
δT−

− 1

T
σi j

∂v j

∂xi
δT + 1

T 2
qi

∂T

∂xi
δT

)
dv +

∫
∂�

1

T
q̂ δT da .

(2.97)

After utilizing the time discretization we can sum up all integral forms since they are
all in the unit of power

Form = Fp + Fv + FT =
∫

�

(
vi,i δp + ρ

vi − v0
i

Δt
δvi + ρv jvi, j δvi+

+p,i δvi + dσ j i δvi, j − ρ fi δvi + ρc

T

T − T 0

Δt
δT + ρc

T
vi T,i δT − qi

T
δT,i−

−ρr

T
δT − 1

T
σi jv j,i δT + 1

T 2
qi T,i δT

)
dv +

∫
∂�

1

T
q̂ δT da ,

(2.98)

wherewe have employed the usual commanotation for a partial space derivative. This
form can be solved by applying appropriate boundary conditions. In a 2D channel
filledwithwater, the primitive variables, {p, vi , T }, are computed. On top and bottom
walls fluid rests at 300K temperature. Due to the greater pressure on the left side
than on the right hand side, water flows from left to right. The pressure on the left
rises linearly in time such that the viscous fluid moves faster in time, with the typical
parabolic flow profile. The production term increases the temperature because of
the viscous flow. We keep on top and bottom at 300K and on the left and right we
implement adiabatic boundaries. In Figs. 2.4, 2.5 and 2.6 we present distributions of



138 2 Thermodynamics

Fig. 2.4 Pressure distribution in channel flow at 300s

Fig. 2.5 Velocity distribution in channel flow at 300s. Colors denote the magnitude of velocity

Fig. 2.6 Distribution of temperature in channel flow at 300s. Temperature increases due to the
internal friction. It is forced to be 300K on top and bottom boundaries

primitive variables after 5min obtained with the code below. The viscous flow with
a relatively high velocity causes a significant temperature change. We have used the
code given below. By using a mixed function space for primitive variables we have
computed all unknowns at once, i.e., monolithically. This method is necessary since
we have inserted the balance equations in each other by obtaining the governing
equations. Moreover, the field equations are coupled and nonlinear, so we are not
allowed to solve them separately.
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1 ”””Computational r e a l i t y 12 , channel f l ow o f Navier−Stokes−
→ Four ie r f l u i d ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9

10 x length = 0.5 # m
11 y length = 0.1 # m
12 mesh=RectangleMesh ( Point (0.0 ,− y length /2 . 0 ) , Point ( x length ,

→ y length /2 . 0 ) , 200 ,40)
13
14 TensorSpace = TensorFunctionSpace (mesh , P , 1)
15 VectorSpace = VectorFunctionSpace (mesh , P , 1)
16 ScalarSpace = FunctionSpace (mesh , P , 1)
17 # p , v , T
18 Space = MixedFunctionSpace ( [ ScalarSpace , VectorSpace ,

→ ScalarSpace ] )
19
20 f a c e t s = FacetFunction ( s i z e t ,mesh )
21 c e l l s = Cel lFunct ion ( s i z e t ,mesh )
22 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
23 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
24
25 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
26 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
27 bottom = CompiledSubDomain ( near (x [1] , − y l /2 . 0 ) , y l=y length )
28 top = CompiledSubDomain ( near (x [ 1 ] , y l /2 . 0 ) , y l=y length )
29
30 v no s l i p = Constant ( ( 0 . 0 , 0 . 0 ) )
31 pL = Expres s ion ( 100000.0+10 t , t=0)
32 pR = Constant (100000 . 0 )
33 Tini = 300. #K
34 bc1=DirichletBC ( Space . sub (0) , pL , l e f t )
35 bc2=DirichletBC ( Space . sub (0) , pR, r i gh t )
36 bc3=DirichletBC ( Space . sub (1) , v nos l i p , bottom)
37 bc4=DirichletBC ( Space . sub (1) , v nos l i p , top )
38 bc5=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , l e f t )
39 bc6=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , r i gh t )
40 bc7=DirichletBC ( Space . sub (2) , Tini , top )
41 bc8=DirichletBC ( Space . sub (2) , Tini , bottom)
42
43 bc=[bc1 , bc2 , bc3 , bc4 , bc5 , bc6 , bc7 , bc8 ]
44 u i n i t = Expres s ion ( ( p0 , 0 . 0 , 0 . 0 , T0 ) , p0=100000.0 ,T0=

→ Tini )
45
46 i , j , k , l =i n d i c e s (4 )
47 n = FacetNormal (mesh )
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48 t = 0 .0
49 Dt = 50 .
50 t end = 500.
51
52 t e s t = TestFunction ( Space )
53 du = Tria lFunct ion ( Space )
54 u0 = Function ( Space )
55 u = Function ( Space )
56 u0 = i n t e r p o l a t e ( u i n i t , Space )
57 u = i n t e r p o l a t e ( u i n i t , Space )
58 p0 , v0 , T0 = s p l i t ( u0 )
59 p , v , T = s p l i t (u)
60 delp , delv , delT = s p l i t ( t e s t )
61 de l ta = Id en t i t y (2)
62
63 #wa t e r app r ox . a t 300 K
64 rho = 995.7 #kg /mˆ3
65 mu = 0.8 #Ns/mˆ2 = kg / s /m
66 lambada = mu 1E5
67 c = 4180. #J / ( kgK )
68 kappa = 0.58 #W/ (m K)
69 h=18.0 #W/ (mˆ2 K)
70 Tamb = Tini
71
72 d = sym( grad (v ) )
73 dsigma = as t en s o r ( lambada d [ k , k ] d e l t a [ i , j ] + 2 . 0 mu d [ i , j

→ ] , ( i , j ) )
74 sigma = as t en s o r ( −p de l ta [ i , j ] + dsigma [ i , j ] , ( i , j ) )
75 q = as t en s o r ( −kappa T. dx ( i ) , ( i , ) )
76 f = Constant ( ( 0 , 0 ) )
77 r = Constant (0)
78
79 Form = ( v [ i ] . dx ( i ) delp \
80 + rho (v−v0 ) [ i ] /Dt de lv [ i ] \
81 + rho v [ j ] v [ i ] . dx ( j ) de lv [ i ] \
82 + p . dx ( i ) de lv [ i ] \
83 + dsigma [ j , i ] de lv [ i ] . dx ( j ) \
84 − rho f [ i ] de lv [ i ]
85 + rho c/T (T−T0) /Dt delT \
86 + rho c/T v [ i ] T. dx ( i ) delT \
87 − q [ i ] /T delT . dx ( i ) \
88 − rho r /T delT \
89 − 1 . /T sigma [ i , j ] v [ j ] . dx ( i ) delT \
90 + 1./T 2 q [ i ] T. dx ( i ) delT \
91 ) dv
92
93 Gain = de r i v a t i v e (Form , u , du )
94
95 pwd= / c a l c u l /CR12/
96 f i l e p = F i l e (pwd+ pres su re . pvd )
97 f i l e v = F i l e (pwd+ v e l o c i t y . pvd )
98 f i l e T = F i l e (pwd+ temperature . pvd )
99
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100 for t in numpy. arange (0 , t end , Dt ) :
101 print time : , t
102 pL . t = t
103 s o l v e (Form== 0 , u , bc , J=Gain , \
104 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
105 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

106 f i l e p << (u . s p l i t ( ) [ 0 ] , t )
107 f i l e v << (u . s p l i t ( ) [ 1 ] , t )
108 f i l e T << (u . s p l i t ( ) [ 2 ] , t )
109 u0 . a s s i gn (u)

To-do

We have implemented the same channel flow as in Sect. 1.7 by incorporating the
temperature distribution caused by the viscous flow. For such high velocities, the
temperature increase is significant. This outcome is partly due to the implemented
adiabatic boundaries, which are actually not very realistic.

• Implement Robin boundary conditions for heat flux on all boundaries.
• Implement the code by using a material with a higher viscosity (search for prop-
erties of a polymer melt).

2.4 Thermoviscoelasticity

By considering the principles of thermodynamics in a Eulerian frame, we have
derived all of the necessary constitutive equations for a viscousfluid in the last section.
For fluids we use an open system. In this section we will derive the constitutive
equations for a deformable solid in a Lagrangean (reference) frame expressed in
Cartesian coordinates. Amaterial system is utilized for solids. As the reference frame
we choose the initial frame, where the positions (coordinates) of particles are known.
We start first by transforming the balance equations from the current frame to the
initial frame. The following identities in a Cartesian coordinate system:

dv = J dV , n j da = (F−1)k j J Nk dA , (2.99)

have been derived in Sect. 1.4 for arbitrary coordinate systems. The balance equations
of mass, momentum, and internal energy in the current frame for a material system:34

34Amaterial system is a closed system possessing the same particles over time. In a material system
no (mass) convection is allowed.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
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( ∫
B

ρ dv

)•

= 0 ,

(∫
B

ρvi dv

)•

=
∫

∂B

σ j i n j da +
∫
B

ρ fi dv ,

( ∫
B

ρu dv

)•

= −
∫

∂B

q jn j da +
∫
B

(
ρr + σ j i

∂vi

∂x j

)
dv ,

(2.100)

are transformed into the initial frame
(∫

B0

ρJ dV

)•

= 0 ,

(∫
B0

ρvi J dV

)•

=
∫

∂B0

σ j i (F−1)k j J Nk dA +
∫
B0

ρ fi J dV ,

( ∫
B0

ρu J dV

)•

= −
∫

∂B0

q j (F−1)k j J Nk dA +
∫
B0

(
ρr + σ j i

∂vi

∂x j

)
J dV .

(2.101)
Initial frame is constant in time, ( dV )• = 0, thus, the balance of mass in the initial
frame reads

ρ0 = ρJ . (2.102)

The mass density in the initial state, ρ0, is of course constant in time, ρ•
0 = 0. By

introducing fluxes in the initial frame:

Pki = σ j i (F−1)k j J , Qk = q j (F−1)k j J , (2.103)

and inserting the mass balance into the momentum balance and internal energy
balance, we acquire

∫
B0

ρ0v
•
i dV =

∫
∂B0

Pki dA +
∫
B0

ρ fi J dV ,

∫
B0

ρ0u
• dV = −

∫
∂B0

QkNk dA +
∫
B0

(
ρ0r + Jσ j i

∂vi

∂x j

)
dV .

(2.104)

After utilizingGauss’s law on the boundary integrals, wewrite the balance equations
in their local forms:

ρ0v
•
i − ∂Pki

∂Xk
− ρ0 fi = 0 , ρ0u

• + ∂Qk

∂Xk
− ρ0r = Jσ j i

∂vi

∂x j
. (2.105)

We have written the production terms on the right-hand side. Since the formulation is
in the initial frame, the partial derivative with respect to xi needs to be reformulated
as a differentiation in Xi . The velocity gradient in the current frame reads
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∂vi

∂x j
= ∂vi

∂Xk

∂Xk

∂x j
= ∂vi

∂Xk
(F−1)k j , (2.106)

hence, we obtain

Jσ j i
∂vi

∂x j
= Jσ j i

∂vi

∂Xk
(F−1)k j = Pki

∂vi

∂Xk
. (2.107)

The second Piola–Kirchhoff stress tensor:

Si j = (F−1) jk Pik = (F−1) jkσlk(F−1)il J , (2.108)

is more beneficial by obtaining constitutive equations. From the latter the nominal
stress becomes

Pi j = Fjl Sil . (2.109)

We further rewrite the production term. By starting with the right Cauchy–Green
deformation tensor, Ci j = Fki Fkj , and its corresponding Green–Lagrange strain
tensor, 2Ei j = (Ci j − δi j ), we obtain

Ci j = Fki Fkj = Fkj Fki = C ji ,

2E •
i j = C •

i j = 2F •
k(i Fk j) .

(2.110)

In the initial frame we have the following identity:

∂v j

∂Xi
= ∂2x j

∂Xi∂t
= ∂2x j

∂t∂Xi
= F •

j i , (2.111)

since xi = xi (t, X j ). By using the aforementioned relations we acquire the following
version of the production term:

Pi j
∂v j

∂Xi
= Fjl Sil

∂v j

∂Xi
= Fjl Sil F

•
j i = Fj (l Sil F

•
j i) = Sil E

•
il , (2.112)

for a symmetric stress tensor, Si j = Sji . In case of non-polar materials, the Cauchy
stress tensor is symmetric, leading to the symmetric second Piola–Kirchhoff stress
tensor given in Eq. (2.108). For non-polar materials the balance of internal energy in
the initial frame reads

ρ0u
• + ∂Qk

∂Xk
− ρ0r = Si j E

•
i j . (2.113)

At equilibrium the balance of internal energy is

ρ0u
• − ρ0T η• = eSi j E

•
i j , (2.114)
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since the internal energy is fully recoverable and the stress tensor is decomposed into
an elastic (reversible) term, eSi j , and into a dissipative (irreversible) term, dSi j , such
that

Si j = eSi j + dSi j . (2.115)

We need constitutive equations for the specific entropy, η, for the heat flux, Qi ,
and for the elastic and dissipative stress tensors, eSi j , dSi j . By using the 1st law of
thermodynamics we can rewrite the rate of internal energy as a differential form:

du = T dη + eSi jv dEi j , (2.116)

where the specific volume, v = 1/ρ0, is a known quantity. The latter differential form
is often introduced as Gibbs’s equation.35

In Eq. (2.116) the internal energy is given as a function of η and Ei j . Having
a function of the strains is adequate since the strains are given by the primitive
variables (displacement). However, we have just introduced a variable called entropy,
η, we lack a definition for it. We simply want to exchange the dependency from
entropy to the temperature, which is one of the primitive variables. We transform36

the differential form in Eq. (2.116) by introducing a free energy:

ψ = u − T η , (2.117)

into the following form:

dψ = du − η dT − T dη = −η dT + eSi jv dEi j . (2.118)

This differential form implies an energy depending on the temperature and strain,

ψ = ψ(T, Ei j ) , (2.119)

such that

−η = ∂ψ

∂T
, eSi jv = ∂ψ

∂Ei j
. (2.120)

The temperature and strain are called the primary or state variables. Since the energy
depends on the primary variables, its derivatives depend on the same set of variables,
too. So the derived, dual, or conjugate variables, η, eSi j , depend on the primary
variables

dη = A dT + p̄i j dEi j ,

d eSi j = pi j dT + Ci jkl dEkl .
(2.121)

35For an alternative derivation of Gibbs’s equation we refer to [12, Chap.8].
36Mathematicians call this transformation a Legendre transformation named after Adrien-Marie
Legendre.
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We can readily apply the Maxwell symmetry condition (reciprocal relation):

p̄i j = ∂η

∂Ei j
= − ∂2ψ

∂Ei j∂T
= − ∂2ψ

∂T∂Ei j
= −∂ eSi jv

∂T
= −v

∂ eSi j
∂T

= −vpi j .

(2.122)
The specific volume is a given function in space for heterogeneous materials or a
constant value for homogeneous materials. It is coupled to the temperature through
constitutive equations, however, it is independent on T so we have taken it out in the
differentiation with respect to the temperature. The dual variables read

dη = A dT − pi jv dEi j ,

d eSi j = pi j dT + Ci jkl dEkl .
(2.123)

As in the previous section A = c/T , where the specific heat capacity, c, is mea-
sured by varying the temperature and recording the change of heat by fixed strains,
dEi j = 0. In other words, all of the boundaries are clamped and the temperature is
varied. The stiffness tensor Ci jkl is measured on a constant temperature, dT = 0, by
varying the strains dEi j and recording the stress changes d eSi j . Since Ci jkl consists
of many coefficients, we also need to establish various measurements. One of such
measurements is the prominent tensile test. Throughout the experiment, the temper-
ature is fixed such that the components of Ci jkl are valid for a specific temperature.
One needs to redo the experiments in different temperatures for determining com-
ponents as a function in T . The thermal pressure pi j is the pressure occurring due to
temperature variation by fixed strains, dEi j = 0. The body tries to expand or shrink
and applies a pressure on the clamped boundaries holding the strains fixed.

The values for the thermal pressure are difficult to find in the literature. Therefore,
we introduce the coefficients of thermal expansion, αi j , which are measured by
varying the temperature and measuring the strain change

dEi j = αi j dT , (2.124)

for a specific stress. Since such a measurement is realized by fixed stress, d eSi j = 0,
we can observe from Eq. (2.123)2

0 = pi j dT + Ci jkl dEkl , pi j dT = −Ci jklαkl dT

⇒ pi j = −Ci jklαkl .
(2.125)

Now, the dual variables become

dη = c

T
dT + Ci jklαklv dEi j ,

d eSi j = −Ci jklαkl dT + Ci jkl dEkl .

(2.126)

For non-polar materials the stress tensor is symmetric, we assume that the elastic part
is also symmetric, eSi j = eSji . We restrict the formalism for linear materials such that
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the stiffness tensor, Ci jkl , the coefficients of thermal expansion, αi j , and the specific
heat capacity, c, are constants and we acquire the dual variables by integrating from
the reference state, T = Tref., Ei j = 0, to the current state

η = c ln
( T

Tref.

)
+ Ci jklαklvEi j ,

eSi j = −Ci jklαkl(T − Tref.) + Ci jkl Ekl .

(2.127)

Often, thermal strains are introduced

thEkl = αkl(T − Tref.) , (2.128)

such that the elastic stress is written as

eSi j = Ci jkl
(
Ekl − thEkl

)
. (2.129)

Finally, we have determined the Gibbs equation:

du = T dη + eSi jv dEi j =
= c dT + TCi jklαklv dEi j + Ci jkl

(
Ekl − αkl(T − Tref.)

)
v dEi j =

= c dT + vCi jklαkl Tref. dEi j + vCi jkl Ekl dEi j ,

(2.130)

solely depending on the temperature and displacement (over the known relation
between strain and displacement). For a linear thermoelastic isotropic body, the
material parameters reduce to

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk , αi j = αδi j , (2.131)

thus, the internal energy rate reads

u• = cT • + v(3λ + 2μ)αTref.E
•
i i + v(λδi j Ekk + 2μEi j )E

•
i j . (2.132)

For deriving the heat flux, Qi , and the dissipative stress, dSi j , we start with Eq. (2.116)
in the following form:

ρ0u
• = ρ0T η• + (

Si j − dSi j
)
E •
i j , (2.133)

and insert it into Eq. (2.113) in order to acquire the balance of entropy in the reference
frame:

ρ0η
• + ∂

∂Xi

(Qi

T

)
− ρ0

r

T
= 1

T
dSi j E

•
i j + Qi

∂

∂Xi

( 1

T

)
,

ρ0η
• + ∂

∂Xi

(Qi

T

)
− ρ0

r

T
= 1

T
dSi j E

•
i j − 1

T 2
Qi

∂T

∂Xi
.

(2.134)
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The right-hand side is the production term and it has to be positive according to the
2nd law of thermodynamics:

� = 1

T
dSi j E

•
i j − 1

T 2
QiGi ≥ 0 , (2.135)

where again for simplicity we have used the following notation:

Gi = ∂T

∂Xi
. (2.136)

The stress tensor is symmetric for non-polar materials; we have employed a symmet-
ric reversible term, the dissipative term has to be symmetric, too. A symmetric tensor
of rank two can be decomposed into a spherical (volumetric) term and a deviatoric
term. Multiplication of a volumetric with a deviatoric term vanishes such that the
entropy production reads

� = 1

3T
dSii E

•
j j + 1

T
dS|i j |E •

|i j | −
1

T 2
QiGi ≥ 0 . (2.137)

By introducing thermodynamical fluxes:

Fα =
{
Qi , dSii , dS|i j |

}
, (2.138)

and thermodynamical forces:

Kα =
{

− Gi

T 2
,

1

3T
E •

j j ,
1

T
E •

|i j |
}

, (2.139)

we can rewrite the 2nd law:

� = Fα · Kα , α = 1, 2, 3 . (2.140)

All of thermodynamical fluxes are of different type (tensors of different ranks).
According to the Curie principle thermodynamical fluxes depend only on their
corresponding thermodynamical forces of the same rank such that we obtain

F1 = F1(K1) , F2 = F2(K2) , F3 = F3(K3) . (2.141)

We can readily propose linear constitutive equations:

dSii = μ1E
•
i i , dS|i j | = μ2E

•
|i j | , Qi = −κGi , (2.142)

where μ1, μ2, and κ are all positive constants such that � ≥ 0. The viscous part of
the stress reads
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dSi j = 1

3
dSkkδi j + dS|i j | = μ1

3
E •
kkδi j + μ2

(
E •
i j − 1

3
E •
kkδi j

)
=

= μ1 − μ2

3
E •
kkδi j + μ2E

•
i j .

(2.143)

Then by using the obtained elastic stress we acquire a linear thermoviscoelastic
material model:

Si j = Ci jkl
(
Ekl − αi j (T − Tref.)

) + μ1 − μ2

3
E •
kkδi j + μ2E

•
i j . (2.144)

For a constant κ the constitutive equation:

Qi = −κ
∂T

∂Xi
, (2.145)

is called Fourier’s law in the Lagrangean frame.
In order to compute the displacement and temperature in a linear thermoviscoelas-

tic body, we employ the balance of momentum and the balance of entropy:

ρ0u
••
i − ∂Pji

∂X j
− ρ0 fi = 0 ,

ρ0η
• + ∂

∂Xi

(Qi

T

)
− ρ0

r

T
= 1

T
dSi j E

•
i j − 1

T 2
Qi

∂T

∂Xi
.

(2.146)

The primitive variables are displacement, ui , and temperature, T . Hence wemultiply
the balance of linear momentum with δui and integrate over the continuum body for
generating a form in the unit of energy. Bymultiplying the balance of entropywith δT
and integrating over the body, we obtain a form in the unit of power. After discretizing
in time, we can multiply the equation with Δt in order to acquire both forms in the
unit of energy. Having forms in the same unit, we can sum them up. Furthermore,
we apply Gauss’s law in order to weaken the forms and acquire

Form =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + Pji δui, j − ρ0 fi δui+

+ρ0

T
(η − η0) δT − Δt

1

T
Qi δT,i − Δt

ρ0r

T
δT − 1

T
dSi j (Ei j − E0

i j ) δT+

+Δt
1

T 2
QiT,i δT

)
dV +

∫
∂B0

(
Δt

1

T
Q̂ δT − t̂i δui

)
dA ,

(2.147)

where the comma notation has been used for a partial space derivative in Xi . We
summarize the necessary relations:

Fi j = ∂ui
∂X j

+ δi j , Ci j = Fki Fkj , Ei j = 1

2
(Ci j − δi j ) ,
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eSi j = −Ci jklαkl(T − Tref.) + Ci jkl Ekl , η = c ln
( T

Tref.

)
+ Ci jklαklvEi j ,

dSi j = μ1 − μ2

3
E •
kkδi j + μ2E

•
i j , Qi = −κ

∂T

∂Xi
,

Si j = eSi j + dSi j , Pi j = Fjl Sil . (2.148)

For an isotropic body the stiffness tensor and coefficients of thermal expansion are

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk , αi j = αδi j . (2.149)

Therefore, in case of an isotropic body we need seven material parameters, viz., λ,
μ, α, μ1, μ2, κ, and c.

In a tensile testing we normally assume that the process is isothermal. By comput-
ing the reality where heat is produced due to the entropy production, we can validate
this engineering assumption. The geometry is a beam along X1 and we use a Robin
boundary condition for the heat flux over all boundaries:

Q̂ = h(T − Tamb) . (2.150)

On the left side we hold the beam fixed and on the right side we pull with the force
given by the traction vector t̂i = (800t, 0, 0)MPa linearly in time, t . The traction
(force per area) is the controlled parameter, i.e., the machine is steered by the force.
The tip displacement is measured, it is an observed quantity. Conveniently we plot
stress versus strain, where the stress (on the right tip) is the (axial) traction and the
(normal axial) strain, E11, is the displacement divided by the initial length. The
traction vector, t̂ = N j Pji , is given by the nominal or engineering stress, Pji . The
strain, Ei j , is called the engineering strain; we have introduced it as the Green–
Lagrange strain measure.

We apply a mechanical load and measure the temperature in the middle of the
beam as well as the stress and strain on the tip. In Fig. 2.7 the temperature change can
be seen, it is clearly negligible. This is good news, because we measure the elasticity

Fig. 2.7 Tensile testing and
temperature change due to
the deformation
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components, λ, ν for isotropic materials by using a tensile testing and assume that
the temperature remains constant. The code for the computation is given below.

1 ”””Computational Rea l i ty 13 , t h e rmov i s c o e l a s t i c i t y ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : mm, 1 0 0 0 kg=ton , s , MPa , mJ , K

10 de l ta = Id en t i t y (3)
11 f = Constant ( ( 0 . 0 , 0 . 0 , −9810.) )
12 r = 0 .
13 Tref = 293.15 #i n K
14 Tamb=Tref
15
16 # M a t e r i a l d a t a o f P265GH ( S t 4 5 . 8 ) f r om VDI Wae rmeat l a s , a t

→ 2 9 3 . 1 5 K
17 rho0 = 7850.0E−9 #i n kg / mmˆ3
18 kappa = 57.0 #i n mJ / ( s mm K)
19 capac i ty = 430.0E6 #i n mJ / ( ton K)
20 alpha = 12.2E−6 #i n 1/K a t 3 7 3 . 1 5 K
21 EModul = 211.E+3 #i n MPa
22 nu = 0.28
23 h = 10 .E−3 #i n mJ / ( s mˆ2 K)
24 mu1 = 1 .E+6 #i n MPa / s
25 mu2 = 3 .E+6 #i n MPa / s
26
27 tMax = 5.0
28 Dt = 0.5
29 t = 0 .0
30
31 xMin , xMax , xElements = 0 . 0 , 100 . 0 , 10
32 yMin , yMax , yElements = −10. , +10. , 10
33 zMin , zMax , zElements = +10. , −10. , 10
34 mesh = BoxMesh ( Point (xMin , yMin , zMin ) , Point (xMax , yMax , zMax) ,

→ xElements , yElements , zElements )
35 N = FacetNormal (mesh )
36 l ength = abs (xMax−xMin)
37
38 T Space = FunctionSpace (mesh , P , 1)
39 u Space = VectorFunctionSpace (mesh , P , 1)
40 Space = MixedFunctionSpace ( [ T Space , u Space ] )
41
42 c e l l s = Cel lFunct ion ( s i z e t , mesh )
43 f a c e t s = FacetFunction ( s i z e t , mesh )
44 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
45 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
46
47 l e f t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=xMin

→ )
48 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ xMax)



2.4 Thermoviscoelasticity 151

49 back = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=yMin
→ )

50 f r on t = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=
→ yMax)

51 bottom = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=
→ zMin )

52 top = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=zMax)
53
54 f a c e t s . s e t a l l ( 0 )
55 r i gh t . mark ( f a c e t s , 1)
56 tHat = Expres s ion ( ( A t , 0 . , 0 . ) , A=250. , t =0.)
57 bc = [ DirichletBC ( Space . sub (1) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,

→ l e f t ) ,\
58 DirichletBC ( Space . sub (1) . sub (1) , Constant ( 0 . 0 ) , r i gh t ) ,\
59 DirichletBC ( Space . sub (1) . sub (2) , Constant ( 0 . 0 ) , r i gh t ) ]
60
61 dunkn = Tria lFunct ion ( Space )
62 t e s t = TestFunction ( Space )
63 delT , delu = s p l i t ( t e s t )
64
65 unkn = Function ( Space )
66 unkn0 = Function ( Space )
67 unkn00 = Function ( Space )
68
69 unkn in i t = Expres s ion ( ( T in i , 0 , 0 , 0 ) , T in i=Tref )
70 unkn = i n t e r p o l a t e ( unkn in i t , Space )
71 unkn0 . a s s i gn (unkn)
72 unkn00 . a s s i gn ( unkn0)
73
74 T, u = s p l i t ( unkn)
75 T0 , u0 = s p l i t ( unkn0)
76 T00 , u00 = s p l i t ( unkn0)
77
78 i , j , k , l = i n d i c e s (4 )
79 de l ta = Id en t i t y (3)
80 F = as t en s o r (u [ i ] . dx ( j )+de l ta [ i , j ] , ( i , j ) )
81 F0 = as t en s o r ( u0 [ i ] . dx ( j )+de l ta [ i , j ] , ( i , j ) )
82 C = as t en s o r (F [ k , i ] F [ k , j ] , ( i , j ) )
83 C0 = as t en s o r (F0 [ k , i ] F0 [ k , j ] , ( i , j ) )
84 E = as t en s o r ( 1 . / 2 . (C[ i , j ]− de l ta [ i , j ] ) , ( i , j ) )
85 E0 = as t en s o r ( 1 . / 2 . (C0 [ i , j ]− de l ta [ i , j ] ) , ( i , j ) )
86 lambada = EModul nu / ( 1 . + nu) / ( 1 . − 2 . nu)
87 mu = 0.5 EModul / ( 1 . + nu)
88 C = as t en s o r ( lambada de l ta [ i , j ] d e l t a [ k , l ]+mu de l ta [ i , k ]

→ de l ta [ j , l ]+mu de l ta [ i , l ] d e l ta [ j , k ] , ( i , j , k , l ) )
89 alp = as t en s o r ( alpha de l ta [ i , j ] , ( i , j ) )
90 eS t r e s s = a s t en s o r (−C [ i , j , k , l ] a lp [ k , l ] (T−Tref ) + C [ i , j , k

→ , l ] E [ k , l ] , ( i , j ) )
91 dSt re s s = a s t en s o r ( (mu1−mu2) /3 . (E−E0) [ k , k ] /Dt de l ta [ i , j ] +

→ mu2 (E−E0) [ i , j ] /Dt , ( i , j ) )
92 S = as t en s o r ( eS t r e s s [ i , j ]+ dSt re s s [ i , j ] , ( i , j ) )
93 P = as t en s o r (F [ j , l ] S [ i , l ] , ( i , j ) )
94 eta = as t en s o r ( capac i ty ln (T/Tref ) + C [ i , j , k , l ] a lp [ k , l
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→ ] 1 . / rho0 E[ i , j ] , ( ) )
95 eta0 = as t en s o r ( capac i ty ln (T0/Tref ) + C [ i , j , k , l ] a lp [ k , l

→ ] 1 . / rho0 E0 [ i , j ] , ( ) )
96 Q = as t en s o r (−kappa T. dx ( i ) , ( i , ) )
97
98 Form = ( rho0 (u−2. u0+u00 ) [ i ] /Dt/Dt delu [ i ] + P[ j , i ] delu [ i ] .

→ dx ( j ) − rho0 f [ i ] delu [ i ] + rho0/T ( eta−eta0 ) delT −
→ Dt/T Q[ i ] delT . dx ( i ) − Dt rho0 r /T delT − 1 . /T dStre s s
→ [ i , j ] (E−E0) [ i , j ] delT + Dt/T 2 Q[ i ] T. dx ( i ) delT )
→ dV + Dt/T h (T−Tamb) delT (dA(0)+dA(1) ) − tHat [ i ] delu
→ [ i ] dA(1)

99
100 Gain = de r i v a t i v e (Form , unkn , dunkn)
101
102 import matp lo t l i b as mpl
103 mpl . use ( Agg )
104 import matp lot l i b . pyp lot as pylab
105 pylab . rc ( t ex t , usetex=True )
106 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e=30 )
107 pylab . rc ( l egend , f o n t s i z e =30)
108 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
109 pylab . s ubp l o t s ad j u s t ( top =0.90)
110 pylab . s ubp l o t s ad j u s t ( bottom=0.17)
111 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
112 pylab . s ubp l o t s ad j u s t ( r i gh t =0.8)
113
114 f i g = pylab . f i g u r e (1 , f i g s i z e =(14 ,10) )
115 ax1 = f i g . add subp lot (111)
116 ax1 . g r id (True , ax i s= x )
117 ax1 . s e t x l a b e l ( u 1 / l 0 in \% )
118 ax1 . s e t y l a b e l ( F/A in MPa , c o l o r= r )
119 ax1 . t ick params ( ax i s= y , c o l o r s= r )
120 ax1 . g r i d (True , ax i s= y , c o l o r= r )
121 ax2 = ax1 . twinx ( )
122 ax2 . s e t y l a b e l ( (T−T \mathrm{ r e f }) in K , c o l o r= b )
123 ax2 . t ick params ( ax i s= y , c o l o r s= b )
124 ax2 . g r i d (True , ax i s= y , c o l o r= b )
125 ax2 . t i c k l a b e l f o rma t ( s t y l e= s c i , ax i s= y , s c i l i m i t s =(−2,2) )
126
127 pwd= / c a l c u l /CR13/
128 f i l e u = F i l e (pwd+ d i s p l . pvd )
129 f i l e T = F i l e (pwd+ temp . pvd )
130 s t ra in , s t r e s s , temp = [ ] , [ ] , [ ]
131
132 while t < tMax :
133 print time : , t
134 tHat . t = t
135 s o l v e (Form== 0 , unkn , bc , J=Gain , \
136 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
137 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )
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138
139 f i l e T << ( unkn . s p l i t ( ) [ 0 ] , t )
140 f i l e u << ( unkn . s p l i t ( ) [ 1 ] , t )
141
142 s t r a i n . append(unkn . s p l i t ( ) [ 1 ] ( xMax , 0 . , 0 . ) [ 0 ] / l ength 100 . )
143 s t r e s s . append( tHat (xMax , 0 . , 0 . ) [ 0 ] )
144 temp . append(unkn . s p l i t ( ) [ 0 ] ( xMax/ 2 . , 0 . , 0 . )−Tref )
145 ax1 . p l o t ( s t ra in , s t r e s s , o− , c o l o r= r )
146 t i c k s = numpy. l i n s p ac e (numpy . array ( s t r a i n ) .min( ) , numpy.

→ array ( s t r a i n ) .max( ) , 4)
147 ax1 . s e t x t i c k s ( t i c k s )
148 ax1 . s e t x t i c k l a b e l s ( [ %1.2 f % i t i c k s for i t i c k s in

→ t i c k s ] )
149 ax2 . p l o t ( s t ra in , temp , d− , c o l o r= b )
150 f i g . s a v e f i g (pwd+ CompReal13 tens i l etes t . pdf )
151 unkn00 . a s s i gn ( unkn0)
152 unkn0 . a s s i gn (unkn )
153 t += Dt

To-do

We have employed the 1st and 2nd laws of thermodynamics, obtained constitutive
(material) equations, and computed a coupled thermoviscoelastic problem. In a ten-
sile testing the temperature change is negligible.

• Which term is responsible for the temperature change?
• Implement the code for a thermoelastic problem by setting μ1 = μ2 = 0, thus,

dSi j = 0. Solve a laser welding application as in Sect. 2.1 and determine the defor-
mations.

• Try to implement a bimetal and apply a thermal loading. Guess and inspect the
occurring deformation.

2.5 Thermoplasticity

We have seen a methodology for deriving material equations from thermodynamical
restrictions called the 1st and 2nd laws. Unfortunately, it is rather difficult to utilize
this procedure for plasticity. There are numerous different suggestions but none of
them is accepted by all communities. We present here a more or less widely accepted
methodology—it is used in many commercial codes.37 Within its derivation there
occurmany assumptions, hence, themethod fails to rely on a sound thermodynamical
formulation. From a pragmatic point of view, however, it works!

37We present amonolithic approach; however, many commercial codes still use a staggered schema.
A staggered schema solves the field equations subsequently such that the results from each solution
are used in the subsequent field equation. Such an approach is used in Sect. 1.9, where the balance
equations are solved subsequently.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Balance equations of mass, momentum, and internal energy has been motivated
in the last section. By neglecting big deformations with Fi j ≈ δi j they result in38

ρ0 = ρ , ρu••
i − σ j i, j − ρ fi = 0 , ρu• + qi,i − ρ0r = σi jε

•
i j . (2.151)

We axiomatically assume that the production of internal energy consists of two parts:
a reversible part including elastic and thermal strain, and an irreversible part due to
the plastic strain:

σi jε
•
i j = σi j

(
rε•
i j + pε•

i j

)
. (2.152)

This assumption is by nomeansmore restrictive than the assumption of decomposing
the stress in the last sections. Again we assume that the reversible part remains at
equilibrium such that we obtain from the balance of internal energy at equilibrium

ρu• − T η• = σi j
rε•
i j . (2.153)

In this setting, Gibbs’s equation reads

du = T dη + vσi j d
rεi j , (2.154)

again with v = 1/ρ as a known quantity. The latter equation allows us to generate the
material equations for the dual variables. However, this time rεi j is not known. Hence,
the chosen primary variables should be {T,σi j }. We use the same mathematical trick
in order to transform the energy into a quantity depending on the primary variables
by introducing the so-called specific Gibbs free energy:

g = u − T η − vσi j
rεi j , (2.155)

with its differential:

dg = du − η dT − T dη − v rεi j dσi j − vσi j d
rεi j , (2.156)

and by inserting the latter in Eq. (2.154)

dg = −η dT − v rεi j dσi j . (2.157)

The assumption that the free energy possesses a first integral:

g =
∫

dg , (2.158)

38We also use a linear strain measure, εi j , instead of Ei j in order to attain an identical formulation
for plasticity as given in the literature.
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is a weakness in the formulation. We take the latter as granted; under this assumption
it is obvious that we can write

g = g(T,σi j ) , −η = ∂g
∂T

, −v rεi j = ∂g
∂σi j

. (2.159)

Gibbs’s free energy depends on the primary variables, viz., on T and σi j . The con-
jugated or dual variables, η and rεi j , depend on the same set of arguments as the
energy,

dη = c

T
dT + ᾱi j dσi j ,

d rεi j = αi j dT + Si jkl dσkl .

(2.160)

Again we employ the Maxwell relation:

ᾱi j = ∂η

∂σi j
= − ∂2g

∂σi j∂T
= − ∂2g

∂T∂σi j
= v

∂ rεi j

∂T
= vαi j , (2.161)

since v = 1/ρ is a function of Xi but not of the temperature. For a linear material
model the coefficients, c, αi j , Si jkl are all constants. For a linear model we obtain
the dual variables by integrating from the ground state {T = Tref.,σi j = 0} without
strain and entropy to the current state and obtain

η = c ln
( T

Tref.

)
+ vαi jσi j ,

rεi j = αi j (T − Tref.) + Si jklσkl .

(2.162)

The first term can be seen as thermal strains and the second term as elastic strains:

thεi j = αi j (T − Tref.) , eεi j = Si jklσkl ,
rεi j = thεi j + eεi j .

(2.163)

Then the so-called Hooke’s law with Duhamel–Neumann supplemental term39

for thermal strains can be deduced

σkl = Ckli j
(

rεi j − thεi j
)
, (2.164)

where the stiffness tensor, Ci jkl , is the inverse40 of the compliance tensor, Si jkl . We
can even use the assumption already undertaken:

39It is named after Jean-Marie Constant Duhamel and Franz Ernst Neumann.
40For the inverse of a tensor of rank four we need an identity tensor of rank four. This method can be
challenging. Instead of that, the inverse is found by using the Voigt notation. For linear materials
we can always rewrite the compliance tensor in the Voigt notation, which is a 6 × 6 matrix and its
inverse is easy to determine. From the resulting 6 × 6 matrix in the Voigt notation, the stiffness
tensor is obtained.
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εi j = rεi j + pεi j , (2.165)

in order to rewrite the material equation for stress:

σi j = Ci jkl
(
εkl − pεkl − thεkl

)
. (2.166)

The rate of stress reads

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl − thε•
kl

)
,

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl − αkl T
•
)
,

(2.167)

by using that Ci jkl , αi j , as well as Tref. are constants. From the balance of internal
energy in Eq. (2.151)3 augmented by Gibbs’s equation (2.154) we obtain

ρT η• + σi j
rε•
i j + qi,i − ρ0r = σi jε

•
i j ,

ρT η• + qi,i − ρ0r = σi j
pε•
i j .

(2.168)

Now by using the material equations for dual variables in Eq. (2.160) and in
Eq. (2.166) we obtain the field equation for temperature:

ρcT • + Tαi jσ
•
i j + qi,i − ρ0r = σi j

pε•
j i ,

ρcT • + Tαi jCi jkl
(
ε•
kl − pε•

kl − αkl T
•
) + qi,i−

−ρ0r − Ci jkl
(
εkl − pεkl − αkl(T − Tref.)

)
pε•

j i = 0 .

(2.169)

The field equation for displacement is acquired from Eq. (2.151)2 by augmenting
Eq. (2.166) as follows

ρu••
i − σ j i, j − ρ fi = 0 ,

ρu••
i − C jikl

(
εkl − pεkl − αkl(T − Tref.)

)
, j

− ρ fi = 0 .
(2.170)

Thefield equations are nonlinear and coupled.We can solve themafter having defined
pεi j , pε•

i j , and qi .
Plasticity starts with the assumption that we can acquire the rate of plastic strain

by using a dissipation function, Φ, as follows

pε•
i j = Λ• ∂Φ

∂σi j
. (2.171)
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The associated plasticity proposes to use the flow potential, f , for the dissipation
function, f ≡ Φ. Modeling kinematic hardening has been discussed in Sect. 1.6.2,
we use the same notation and skip the calculations undertaken there. The flow
potential:

f = 1

2
(σ|i j | − βi j )(σ|i j | − βi j ) − 1

3
σ2
Y , (2.172)

results in

cΛ• = Γ • , Λ• =
(
σ|i j | − βi j

)
σ•
i j

2
3cσ

2
Y

. (2.173)

With the help of Eq. (2.167) we write

Λ• =
(
σ|i j | − βi j

)
Ci jkl

(
ε•
kl − pε•

kl − thε•
kl

)
2
3cσ

2
Y

, (2.174)

and by inserting the rate of plastic strain:

pε•
kl = Λ• ∂ f

∂σkl
= Λ•

(
σ|kl| − βkl

)
, (2.175)

into the multiplier, we obtain

Λ•

(
1 +

(
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

)
2
3cσ

2
Y

)
=

(
σ|i j | − βi j

)
Ci jkl(ε

•
kl − thε•

kl)

2
3cσ

2
Y

,

Λ• =
(
σ|i j | − βi j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9Hσ2

Y + (
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

) ,

(2.176)
where we have chosen c = 2/3H for an easier association of parameters.41 By using
the conditional parameter 〈γ〉 from Eq. (1.216) we define the plastic strain rate:

pε•
mn = 〈γ〉

(
σ|i j | − βi j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9Hσ2

Y + (
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

) (σ|mn| − βmn) . (2.177)

This equation gives the evolution of the plastic strain, which is accumulated by the
rate of plastic strain such that we can acquire it by integration,

pεi j =
∫

pε•
i j dt . (2.178)

41We use H for the plastic modulus instead of h as in Sect. 1.6 since we have started to use h for
the convective heat transfer coefficient in the mixed boundary conditions for temperature.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1


158 2 Thermodynamics

For the heat flux we use Fourier’s law:

qi = −κT,i . (2.179)

Furthermore, we may test the validity of the evolution equation by employing the
2nd law of thermodynamics. By using Eq. (2.168)2 we reformulate the balance of
internal energy into the balance of entropy:

ρT η• + qi,i − ρr = σi j
pε•
i j ,

ρη• +
(qi
T

)
,i

− ρ
r

T
= − 1

T 2
qi T,i + 1

T
σi j

pε•
i j ,

(2.180)

with the production term being positive:

� = − 1

T 2
qi T,i + 1

T
σi j

pε•
i j ≥ 0 . (2.181)

Obviously, it is challenging to prove that the rate of plastic strain in Eq. (2.177) is
thermodynamically admissible. Therefore, we rather have to “believe in” the for-
mulation than to derive in a thermodynamically compatible way. For the moment a
thermodynamically consistent formulation of plasticity is an unresolved issue and
still heavily discussed in the literature.

We have obtained two coupled field equations for temperature and displacement
from the balance equations of internal energy in Eq. (2.169) and of momentum in
Eq. (2.170), respectively. In the initial frame the time derivatives are simply the partial
time derivatives. From the balance of momentum and energy we generate the weak
forms in the unit of energy. First we apply the usual time discretization. Secondly,
we multiply the momentum balance with δui and the energy balance with Δt δT/T
in order to rectify the unit of energy. Finally, we integrate by parts and obtain

Fu =
∫
B0

(
ρ
ui − 2u0i + u00i

Δt2
δui + σ j i δui, j − ρ fi δui

)
dV −

∫
∂B0

t̂i δui dA ,

(2.182)
as well as

FT =
∫
B0

(
ρc

T
(T − T 0) δT + Δtαi jCi jkl

(
ε•
kl − pε•

kl − thε•
kl

)
δT−

−Δtqi
(
δT

T

)
,i

− Δt
ρr

T
δT − Δt

T
σi j

pε•
i j δT + Δt

1

T 2
qi T,i δT

)
dV+

+
∫

∂B0

Δt q̂
δT

T
dA ,

(2.183)
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with
F = Fu + FT , (2.184)

wherewe implement the stress, the kinematic hardening, and the plastic strain accord-
ing to the so-called incremental plasticity,

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl − thε•
kl

)
, σi j = σ0

i j + Δtσ•
i j ,

thε•
kl = αkl

T − T 0

Δt
, β•

i j = (σ0
|kl| − β0

kl)σ
•
kl

2
3σ

2
Y

(σ0
|i j | − β0

i j ) ,

pε•
mn = 〈γ〉

(
σ0

|i j | − β0
i j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9Hσ2

Y + (
σ0

|i j | − β0
i j

)
Ci jkl

(
σ0

|kl| − β0
kl

) (σ0
|mn| − β0

mn) ,

βi j = β0
i j + Δtβ•

i j , pεi j = pε0i j + Δt pε•
i j ,

(2.185)

and the heat flux as well as the strain as follows

qi = −κT,i , εi j = u(i, j) , ε0i j = u0(i, j) , ε•
i j = 1

Δt
(εi j − ε0i j ) . (2.186)

Consider again a one-axial tensile testing, as in the previous section. By including
plasticity we can capture an effect known from the daily life. If a cyclic loading with
plastic deformation is utilized, the structure heats up. This phenomenon can clearly
be seen in Fig. 2.8. A part of the energy has been stored such that the temperature
decreases and increases. This part of the process is reversible and it is modeled by
the entropy, η. Simultaneously, entropy is produced by �, which is an irreversible
effect increasing the temperature further. In total, after one cycle of deformation, the
temperature is increased approximately 1K. The code is below including all realistic
material parameters for a standard steel.

Fig. 2.8 Tensile testing and
temperature rise due to the
plastic deformation
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1 ”””Computational r e a l i t y 14 , t h e rmop l a s t i c i t y ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : mm, 1 0 0 0 kg=ton , s , MPa , mJ , K

10 Tref = 300. #i n K
11 Tamb=Tref
12 # M a t e r i a l d a t a o f P265GH ( S t 4 5 . 8 ) f r om VDI Wae rmeat l a s , a t

→ 2 9 3 . 1 5 K
13 rho = 7.85E−9 #i n t on n e / mmˆ3
14 kappa = 57.0 #i n mJ / ( s mm K)
15 capac i ty = 430.0E6 #i n mJ / ( ton K)
16 alpha = 12.2E−6 #i n 1/K a t 3 7 3 . 1 5 K
17 EModul = 211.0E+3 #i n MPa
18 nu = 0.28
19 H = 2600. #MPa
20 h = 10 .E−3 #i n mJ / ( s mmˆ2 K)
21 sigmaY = Constant ( 250 . 0 ) #MPa
22
23 tMax = 10.0
24 Dt = 0.2
25 t = 0 .0
26
27 xMin , xMax , xElements = 0 . 0 , 100 . 0 , 20
28 yMin , yMax , yElements = −5. , +5. , 2
29 zMin , zMax , zElements = −5. , +5. , 2
30 mesh = BoxMesh ( Point (xMin , yMin , zMin ) , Point (xMax , yMax , zMax) ,

→ xElements , yElements , zElements )
31 N = FacetNormal (mesh )
32 l ength = abs (xMax−xMin)
33
34 Sca l a r = FunctionSpace (mesh , P , 1)
35 Vector = VectorFunctionSpace (mesh , P , 1)
36 Tensor = TensorFunctionSpace (mesh , P , 1)
37 Space = MixedFunctionSpace ( [ Sca lar , Vector ] )
38
39 c e l l s = Cel lFunct ion ( s i z e t , mesh )
40 f a c e t s = FacetFunction ( s i z e t , mesh )
41 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
42 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
43
44 l e f t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=xMin

→ )
45 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ xMax)
46 back = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=yMin

→ )
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47 f r on t = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=
→ yMax)

48 bottom = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=
→ zMin )

49 top = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=zMax)
50
51 f a c e t s . s e t a l l ( 0 )
52 d i s p l = Expres s ion ( ( 0 . 5 s i n ( 2 . p i f time ) , 0 . 0 , 0 . 0 ) , f

→ =0.1 , time=0)
53 bc1 = DirichletBC ( Space . sub (1) , d i sp l , r i gh t )
54 bc2 = DirichletBC ( Space . sub (1) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) , l e f t )
55
56 bc = [ bc1 , bc2 ]
57
58 dunkn = Tria lFunct ion ( Space )
59 t e s t = TestFunction ( Space )
60 delT , delu = s p l i t ( t e s t )
61
62 unkn = Function ( Space )
63 unkn0 = Function ( Space )
64 unkn00 = Function ( Space )
65
66 unkn in i t = Expres s ion ( ( Tini , 0 , 0 , 0 ) , Tini=Tref )
67 unkn = i n t e r p o l a t e ( unkn in i t , Space )
68 unkn0 . a s s i gn (unkn)
69 unkn00 . a s s i gn ( unkn0)
70
71 T, u = s p l i t ( unkn)
72 T0 , u0 = s p l i t ( unkn0)
73 T00 , u00 = s p l i t ( unkn0)
74
75 i , j , k , l , m, n , o , p , r , s = i n d i c e s (10)
76 de l ta = Id en t i t y (3)
77 lambada = EModul nu / (1.+nu) / (1. −2. nu)
78 mu = 0.5 EModul / (1.+nu)
79 C = as t en s o r ( lambada de l ta [ i , j ] d e l t a [ k , l ]+mu de l ta [ i , k ]

→ de l ta [ j , l ]+mu de l ta [ i , l ] d e l ta [ j , k ] , ( i , j , k , l ) )
80 alp = alpha de l ta
81
82 peps0 = Function ( Tensor )
83 sigma0= Function ( Tensor )
84 dev s igma0 = as t en s o r ( sigma0 [ i , j ] −1./3 . sigma0 [ k , k ] d e l t a [ i ,

→ j ] , ( i , j ) )
85 beta0 = Function ( Tensor )
86
87 eps = sym( grad (u) )
88 eps0 = sym( grad (u0 ) )
89 Deps = ( eps−eps0 ) /Dt
90
91 teps = alp (T−Tref )
92 Dteps = alp (T−T0) /Dt
93
94 gamma = Function ( Sca l a r )
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95 Dpeps = as t en s o r (gamma ( dev sigma0−beta0 ) [ i , j ] C[ i , j , k , l ] (
→ Deps−Dteps ) [ k , l ] / ( 4 . / 9 . H sigmaY 2+( dev sigma0−beta0 )
→ [m, n ] C[m, n , o , p ] ( dev sigma0−beta0 ) [ o , p ] ) ( dev sigma0−
→ beta0 ) [ r , s ] , ( r , s ) )

96
97 Dsigma = as t en s o r (C[ i , j , k , l ] ( Deps−Dpeps−Dteps ) [ k , l ] , ( i , j ) )
98 Dbeta = as t en s o r ( gamma ( dev sigma0−beta0 ) [ k , l ] Dsigma [ k , l

→ ] / ( 2 . / 3 . sigmaY 2) ( dev sigma0−beta0 ) [ i , j ] , ( i , j ) )
99

100 sigma = sigma0 + Dt Dsigma
101 beta = beta0 + Dt Dbeta
102 peps = peps0 + Dt Dpeps
103
104 dev s igma = as t en s o r ( sigma [ i , j ] −1./3 . sigma [ k , k ] d e l t a [ i , j ] ,

→ ( i , j ) )
105 q = as t en s o r (−kappa T. dx ( i ) , ( i , ) )
106
107 f = Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) )
108 R = Constant ( 0 . 0 )
109 qHat = h (T−Tamb)
110
111 F u = ( rho (u−2. u0+u00 ) [ i ] /Dt/Dt delu [ i ] + sigma [ j , i ] delu [ i

→ ] . dx ( j ) − rho f [ i ] delu [ i ] ) dV
112 F T = ( rho capac i ty /T (T−T0) delT+ Dt alp [ i , j ] C[ i , j , k , l ] (

→ Deps−Dpeps−Dteps ) [ k , l ] delT − Dt q [ i ] ( delT/T) . dx ( i ) −
→ Dt rho R/T delT − Dt sigma0 [ i , j ] Dpeps [ j , i ] delT/T )
→ dV + Dt qHat delT/T dA

113
114 Form = F u + F T
115 Gain = de r i v a t i v e (Form , unkn , dunkn)
116
117 import matp lo t l i b as mpl
118 mpl . use ( Agg )
119 import matp lo t l i b . pyp lot as pylab
120 pylab . rc ( t ex t , usetex=True )
121 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e=30 )
122 pylab . rc ( l egend , f o n t s i z e =30)
123 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
124 pylab . s ubp l o t s ad j u s t ( top =0.90)
125 pylab . s ubp l o t s ad j u s t ( bottom=0.17)
126 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
127 pylab . s ubp l o t s ad j u s t ( r i gh t =0.75)
128
129 f i g = pylab . f i g u r e (1 , f i g s i z e =(14 ,10) )
130 ax1 = f i g . add subp lot (111)
131 ax1 . g r i d (True , ax i s= x )
132 ax1 . s e t x l a b e l ( r u 1 / l 0 in \% )
133 ax1 . s e t y l a b e l ( r \ s igma {11} in MPa , c o l o r= r )
134 ax1 . t ick params ( ax i s= y , c o l o r s= r )
135 ax1 . g r i d (True , ax i s= y , c o l o r= r )
136 ax2 = ax1 . twinx ( )
137 ax2 . s e t y l a b e l ( r (T−T \mathrm{ r e f }) in K , c o l o r= b )
138 ax2 . t ick params ( ax i s= y , c o l o r s= b )
139 ax2 . g r i d (True , ax i s= y , c o l o r= b )
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140 ax2 . t i c k l a b e l f o rma t ( s t y l e= s c i , ax i s= y , s c i l i m i t s =(−2,2) )
141
142 pwd= / c a l c u l /CR14/
143 f i l e u = F i l e (pwd+ d i s p l . pvd )
144 f i l e T = F i l e (pwd+ temp . pvd )
145 s t ra in , s t r e s s , temp = [ ] , [ ] , [ ]
146
147 while t < tMax :
148 print time : , t
149 d i s p l . time = t
150 s o l v e (Form== 0 , unkn , bc , J=Gain , \
151 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
152 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

153
154 f i l e T << ( unkn . s p l i t ( ) [ 0 ] , t )
155 f i l e u << ( unkn . s p l i t ( ) [ 1 ] , t )
156
157 s igma = p ro j e c t ( sigma , Tensor , s o l v e r t yp e=”mumps” ,\
158 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

159 sigma0 . a s s i gn ( s igma )
160 beta = p ro j e c t ( beta , Tensor , s o l v e r t yp e=”mumps” ,\
161 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

162 beta0 . a s s i gn ( beta )
163 f l ow = p ro j e c t ( 1 . / 2 . ( dev sigma0−beta0 ) [ i , j ] ( dev sigma0

→ −beta0 ) [ i , j ] − 1 . / 3 . sigmaY 2 , Scalar ,
→ s o l v e r t yp e=”mumps” ,\

164 form compi ler parameters={” cpp opt imize ” : True , ”
→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

165 f l ow boo l = f l ow . v ec tor ( ) . array ( ) >= 0 .
166 d i r e c t i o n = p ro j e c t ( ( dev sigma0−beta0 ) [ i , j ] Deps [ i , j ] ,

→ Scalar , s o l v e r t yp e=”mumps” ,\
167 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

168 d i r e c t i o n bo o l =1./2 . ( numpy . s i gn ( d i r e c t i o n . v ec tor ( ) .
→ array ( ) ) +1.)

169 gamma . v ec tor ( ) [ : ] = numpy . array ( f l ow boo l d i r e c t i on boo l ,
→ dtype=int )

170
171 peps = p ro j e c t ( peps , Tensor , s o l v e r t yp e=”mumps” ,\
172 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

173 peps0 . a s s i gn ( peps )
174
175 unkn00 . a s s i gn ( unkn0)
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176 unkn0 . a s s i gn (unkn)
177
178 s t r a i n . append( unkn0 . s p l i t ( ) [ 1 ] ( xMax , 0 . , 0 . ) [ 0 ] / l ength

→ 100 . )
179 s t r e s s . append( sigma0 (xMax/ 2 . , 0 . , 0 . ) [ 0 ] )
180 temp . append( unkn0 . s p l i t ( ) [ 0 ] ( xMax/ 2 . , 0 . , 0 . )−Tref )
181 ax1 . p l o t ( s t ra in , s t r e s s , o− , c o l o r= r )
182 t i c k s = numpy. l i n s p ac e (numpy . array ( s t r a i n ) .min( ) , numpy.

→ array ( s t r a i n ) .max( ) , 4)
183 ax1 . s e t x t i c k s ( t i c k s )
184 ax1 . s e t x t i c k l a b e l s ( [ %1.2 f % i t i c k s for i t i c k s in

→ t i c k s ] )
185 ax2 . p l o t ( s t ra in , temp , d− , c o l o r= b )
186 f i g . s a v e f i g (pwd+ CompReal14 tens i l e tes t . pdf )
187
188 t += Dt

To-do

Plastic deformation generates a temperature change in the system.

• Try to change the boundary conditions to adiabatic boundaries. Guess the result
before starting the numerical calculation.

• Find out a stress/strain curve for another material and determine the plasticity
modulus or hardening parameter H in MPa. What will be the result for a lower or
higher H parameter?

• Find out the material behavior of aluminum and explain why the linear hardening
model used in this section is inadequate for modeling an aluminum sample.
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Chapter 3
Electromagnetism

Acontinuum body consists ofmaterial particles having amass and an electric charge.
In Chaps. 1 and 2 we have analyzed a continuum body made of massive particles,
matter, without electric charge. We have ignored the electromagnetic interaction
completely. In order to include the electric charge and the effects of its motion,
we will introduce Maxwell’s equations1 and solve them. There are different ways
of introducing Maxwell’s equations leading to slightly different governing equa-
tions.2 We will follow [28, Chap.9] for the motivation of Maxwell’s equations
from balance equations and use the Ampere–Lorentz convention3 in the rational-
ized mks system of units,4 also referred to as Giorgi system.5 The unit of charge is
C(oulomb).6

Electromagnetism is the theory of electromagnetic interactions with matter. In
this theory there occur various new quantities; and this makes a straight-forward
introduction of equations challenging. These new quantities lead to electromagnetic
fields, which can be measured. However, they often lack a clear interpretation. For
example, a moving electric charge fails to be understood completely, but an electric
current is something we use in our daily lives. Another difficulty arises in the defini-
tion of the electromagnetic i nteractions with matter: we have to redefine all balance
equations used in Chaps. 1 and 2. Especially this step is quite confusing owing to
various formulations existing in the literature. In order to establish a knowledge of
electromagnetism, we will motivate governing equations one-by-one with applica-
tions in the following sections. This approach is beneficial for obtaining a familiarity
with the electromagnetic fields and their governing equations.

1They are named after James Clerk Maxwell.
2See [30].
3It is named for André Marie Ampère and Hendrik Antoon Lorentz.
4The abbreviation mks stands for meter, kilogramm, seconds.
5It is named after Giovanni Giorgi.
6It is named for Charles-Augustin de Coulomb.
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The purpose of computation is to obtain five quantities as functions in space and
timewithin the continuumbody:mass density, ρ, velocity, vi , temperature, T , electric
field, Ei , and magnetic flux (area) density, Bi . They are the primitive variables7 and
we need field equations for computing them. The electric field Ei in V(olt)/m and
magnetic flux density Bi in T(esla) are8 acquired by the Maxwell equations and
the mass density, velocity, temperature by the balance equations.

In Sect. 3.1 we consider a conducting wire and investigate how it heats up due
to the production term in the balance of internal energy. We introduce electric field
and magnetic flux in polarized materials in Sect. 3.2. By using thermodynamical
principles we derive the constitutive equations and solve a problem addressing the
thermoelectric coupling in Sect. 3.3. We include plasticity in Sect. 3.4. In Sect. 3.5
a piezoelectric sensor is discussed by deriving the constitutive equations in a ther-
modynamically consistent way. A magnetohydrodynamical problem is presented in
Sect. 3.6.

3.1 Conducting Wire

Electric charge is a fundamental quantity like mass. It can neither be destroyed nor
supplied, hence, a balance equation in the current frame reads for a material system9

( ∫
B

zdm

)•

= 0 , dm = ρ dv, (3.1)

where z denotes a specific electric charge (charge per mass) in C/kg. Instead of mas-
sive particles, the continuum body B consists of charged particles. The coordinates
denote charged particles instead of matter and a motion of continuum body means
moving charged particles. Electrically charged particles in motion possess a velocity,
ve
i = x •

i , measured in a laboratory frame. Although the laboratory frame itself may
have a velocity, wi , we ignore it for simplicity and use a fixed frame. For inserting
the time rate into the integral we need the following relation:

(dv)• = (dx1dx2dx3)
• dv

dx1dx2dx3
=

(∂x •
1

∂x1
+ ∂x •

2

∂x2
+ ∂x •

3

∂x3

)
dv = ∂ve

i

∂xi
. (3.2)

7The electromagnetic theory started by believing that electric field Ei and magnetic field Hi shall
be the primitive variables. In 1940s the theoretical thermodynamics introduced the way of starting
with Ei and Bi fields. There are still explanations starting different than the approach used herein.
8The units are named after Alessandro Volta and Nikola Tesla.
9In the case of an open system, there would be an additional convective term.
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Now the balance equation reads

( ∫
B

ρzdv

)•

=
∫
B

(
(ρz)• + ρz

∂ve
i

∂xi

)
dv = 0 ,

∂ρz

∂t
+ ve

i

∂ρz

∂xi
+ ρz

∂ve
i

∂xi
= ∂ρz

∂t
+ ∂ρzve

i

∂xi
= 0 .

(3.3)

In a conducting wire electrically charged particles travel or flow with the velocity
ve
i , however, it is difficult to measure this velocity for each charge. Instead, the flow
of charged particles is observed as the electric current (area) density:

Ji = ρzve
i , (3.4)

which is the conducting charge per area and per time, i.e., the flux of electric charge.10

We may move the conducting wire with a velocity, vi , measured in the (fixed) labo-
ratory frame. This motion is of matter and the charges are carried with that leads to
a convection current. We measure in a laboratory frame an electric current:

Ji = Ji + ρzvi , (3.5)

caused by a conduction current and a convection current. The conduction current
(area density), Ji , is measured on the co-moving continuum, i.e., we “sit” on the
moving wire, measure the velocity of flowing particles, and multiply them by their
charge density, ρz, in atomic scale. In the macroscopic setting we cannot detect
every single moving electron and consider this current as the conduction current.
The charge is somehow conducted from one end to the other in the wire. Since this
quantity is measured co-movingly, it is objective. In any coordinate system we will
have the same conduction definition. We need to define a constitutive equation for
the electric current due to conduction, Ji . With its definition we can solve the balance
of charge:

∂ρz

∂t
+ ∂

∂xi
(Ji + ρzvi ) = 0 , (3.6)

in order to obtain the charge distribution. For a fixed electric wire, vi = 0, made
of a homogeneous material, ρ = const.|x and z = const.|x , the electric charge will
remain constant, when a charge enters the wire on one end, another charge exists
the wire on the other end simultaneously. The energy that bounces the charged

10Charge per time, C/s, is called A(mpere) named for André Marie Ampère. The electric current
(area) density, Ji , is in A/m2.
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particles is transported so quick that we observe it as instantaneous.11 The charge
remains constant in time, z = const.|t . We can visualize this phenomenon as an
“incompressible” flow of electric charge. In the coming sections we will amend the
formulation for incorporation this effect, too. In this section, as a consequence of the
incompressible charge flow, we obtain the balance of charge for a conducting, rigid,
homogeneous wire

∂Ji
∂xi

= 0 . (3.7)

The simplest relation for the electric conduction current, Ji , is to associate the current
with a force ormoment that accelerates the charged particles. The specific force, zEi ,
is given by the electromotive force (charge) density12 or intensity, Ei , measured in
the co-moving frame. It is an objective quantity.13 Again in the co-moving frame we
can measure a moment due to the magnetic flux (area) density, Bi .14 The magnetic
flux may be applied on the system or it is induced due to the conduction current. The
total force density:

Fi = ρ f Lor.i = ρzEi + εi jkJ jBk , (3.8)

containing the electromotive intensity andmagneticflux is referred to as theLorentz

force density.15 The first term can be comprehended as a result of a translational
charge movement and the second term is because of a rotational motion. The transla-
tional motion of charged particles are measured as the conduction current such that
the electric current depends on the first term of the Lorentz force. In the next section
wewill see that the conduction current induces amagnetic force affecting conduction
over the second term in an indirect way. The conduction current is, however, only
due to the translational motion and a linear relation between them reads

Ji = ςEi , (3.9)

11We know that the action fails to be instantaneous; however, our experimental machine is detecting
slower than the information transported from one end to the other end of the wire.
12Since the continuum body is defined as a collection of charges, density here means a quantity per
electric charge, hence we write a force charge density meaning a force per charge, N/C. Another
adequate name is intensity, which we shall use further on.
13The electromotive intensity is measured in V(olt) per meter since 1V is the energy per electric
charge, 1V =̂ 1J/C such that 1N/C =̂ 1Nm/(Cm) =̂ 1V/m. Moreover, a single V across a wire
conducting a current of 1A dissipates of 1W =̂ 1J/s of power, hence 1W =̂ 1AV.
14The unit of magnetic flux area density is in T or in Wb (Weber) per m2 named after Wilhelm
Eduard Weber. Since 1Wb =̂ 1kgm2/(Cs) =̂ 1Nsm/C =̂ 1Vs, magnetic flux area density is in
Vs/m2.
15The force is named for Hendrik Antoon Lorentz. For a detailed physical interpretation of this
force in the atomic scale, see [33, Sect. 4–5].
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which is referred to as Ohm’s law16 with the electric conductivity,17 ς , the inverse of
resistivity, r = 1/ς . This constitutive equationwill be derived in a thermodynamically
consistent way in Sect. 3.3 on p.213. In this section we take it for granted.

Measuring the Lorentz force in a co-moving frame is difficult such that we want
to transform it from the co-moving to the laboratory frame.18 The magnetic flux
remains simply the same:

Bi = Bi , (3.10)

in other words, we measure the same numerical values for the components of the
magnetic flux (area) density in the co-moving as well as in the laboratory frame.
From now on we will not distinguish between them and use Bi for the magnetic flux
(area) density. The electric field measured on the laboratory frame, however, depends
on the velocity and magnetic flux as follows

Ei = Ei − (v × B)i = Ei − εi jkv j Bk . (3.11)

Now by using Eq. (3.5) we obtain the Lorentz force density measured in the labo-

ratory frame:

Fi = ρ f Lor.i = ρzEi + εi jkJ j Bk =
= ρz(Ei + εi jkv j Bk) + εi jk(Jj − ρzv j )Bk = ρzEi + εi jk J j Bk .

(3.12)

The primitive variables are Ei and Bi fields. In this section we neglect the magnetic

flux, Bi = 0, and set our goal to solve the electric field.Unfortunately,we cannot solve
Eq. (3.7) and obtain three components in Ei , since Eq. (3.7) is a single differential
equation. Therefore, we introduce another scalar quantity

Ei = − ∂φ

∂xi
, (3.13)

where the electric potential, φ, is in V. In Sect. 3.2 on p.178 we will generalize
the latter formulation and introduce the definition of the electric potential in a more
convenient way. By introducing the scalar or electric potential, φ, we find a primitive
variable to be computed by satisfying Eq. (3.7). Hence, we multiply Eq. (3.7) with
the test function, δφ, within the continuum body of matter

16It is named after Georg Simon Ohm.
17Electrical conductivity is in S(iemens)/m where S =̂ 1/� =̂ A/V. Thus the conductivity is in
A/(Vm). The unit S is named for Werner von Siemens. The unit � is capital omega in Greek
pronounced as Ohm if used as the unit named after Georg Simon Ohm.
18We refer to [24, Sect. 9] for the transformation of Ei and Bi fields from the co-moving to the
laboratory frame.
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∫
B

Ji,i δφ dv = 0 , (3.14)

where again we have used a comma notation for partial derivative in space. In this
section we assume that the body is rigid, vi = 0, such thatEi = Ei and Ji = Ji . Since
the conduction current depends on the electric field that depends on the derivative of
φ we have a twice differentiability condition of the electric potential.19 We weaken
this condition by integrating by parts

Fφ = −
∫
B

Ji δφ,idv +
∫

∂B

Ji δφnida . (3.15)

This weak form is in the unit of power.Wewant tomodel a conductingwire grounded
on its left side whereas the electric potential is altered on wire’s right side. Hence,
we use Dirichlet conditions on the left and right boundaries such that δφ = 0 on
these sides. For the other boundaries we assume an electric insulation, Jini = 0.

A conducting body heats up. Actually, we experience this liberation of heat in
our daily lives. A smartphone produces heat energy during phoning or watching a
video. This heat energy increases the temperature. Since the temperature distribution
is computed by using the balance of internal energy, we need the balance equation
of internal energy for a rigid conductor20

ρc
∂T

∂t
+ ∂qi

∂xi
− ρr = Ji Ei . (3.16)

The right hand side is called the Joule heating, resistive heating, or Ohmic loss. It
produces heat leading to a temperature increasewith a positive electrical conductivity,
ς > 0, since Ji = ςEi in a rigid body. For the heat flux, qi , we implement Fourier’s
law:

qi = −κT,i . (3.17)

The weak form is then acquired after discretizing in time, multiplying with δT/T ,
applying integration by parts, and using a comma for partial derivative in space, as
follows

FT =
∫
B

(
ρc

T − T 0

Δt
δT

T
− qi

(
δT

T

)
,i

− ρr
δT

T
+ Jiφ,i

δT

T

)
dv+

+
∫

∂B

qi
δT

T
nida .

(3.18)

19Mathematically speaking the function has to belong to C2 or higher in order to ensure the twice
differentiability condition. Since φ and δφ are of the same space according to the Galerkin type
finite element method, both have to be twice differentiable.
20In this section we deal with unpolarized systems.
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This weak form is in the unit of power. For boundaries we use the natural convection
as introduced in Sect. 2.1 as the mixed or Robin conditions:

qini = h(T − Tamb) , (3.19)

with the convective heat transfer coefficient, h, in W/(m2 K). The form for com-
puting electric potential, φ, and temperature, T , with the aforementioned boundary
conditions reads

Form = Fφ + FT =
∫
B

(
− Ji δφ,i + ρc

T − T 0

Δt
δT

T
− qi

(
δT

T

)
,i
−

−ρr
δT

T
+ Jiφ,i

δT

T

)
dv +

∫
∂B

h(T − Tamb)
δT

T
da ,

(3.20)

where the electric current and heat flux are given by

Ji = −ςφ,i , qi = −κT,i . (3.21)

We compute a copper wire with a constant thermal conductivity:

κ = 400W/(mK) , (3.22)

and a temperature dependent electrical conductivity:

ς = ς0

(1 + α̃(T − Tref.))
, ς0 = 5.8 · 107 S/m , α̃ = 3.9 · 10−3 K−1 . (3.23)

A wire of length 1m and of square shaped cross section21 has been modeled. The
wire is initially at the reference temperature, Tref. = 300K. One end of the wire is
grounded, i.e., 0V, and a potential difference of 0.1V is applied on the other end.
The electric potential changes immediately and distributes linearly as to be depicted
in Fig. 3.1. The temperature increases over time and for the case of free convection
in air, h ≈ 10W/(m2 K), after 10 and 20min we observe a significant increase in
temperature in Fig. 3.2.

Actually, this configuration is unrealistic.Wehave implemented awirewithΔV =
0.1V difference per meter and a resistivity of r = 1/ς ≈ 1.7 · 10−8 �m for 1mwire.
Since the conductivity of copper is huge, its resistivity is quite low. In order to

21We should model a rounded wire since in reality wires have round cross sections, however, it is
simpler and shorter to code it this way. The presented solutions and discussions are the same for
both cases.

http://dx.doi.org/10.1007/978-981-10-2444-3_2
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Fig. 3.1 Distribution of
electric potential φ in V
within a conducting wire out
of copper

Fig. 3.2 Temperature distribution under 0.1V difference in 1m wire after 10min (on left) and
20min (on right) for the case of free convection in air

realize the consequences, we employ Ohm’s law as learned in school, ΔV = I R,
and calculate the current in ampere. We need to obtain the so-called resistance, R,
from the resistivity, r , by the following relation:

R = r�

a
, (3.24)

where the length of the wire, � = 1m, and the cross-sectional area of the wire,
a = 0.01 × 0.01m2, are known.Then the electric current reads I = ΔV/R = 580A,
which is too high. For example, at home we have an electrical fuse that breaks the
circuit by a current higher than 15A. This unrealistic simulation is owing to the
implemented wire with a nearly zero resistance as a part of a circuit. In reality there
is much greater resistance on the electric circuit since a light bulb or an LCD-monitor
is connected to thewire, thus,much smaller currents occur in the circuit. Although the
wire might transfer charges in such high current, as we observe from the simulation,
its heat production is tremendous. A small current produces a small Joule heating
such that our cables at home remain nearly at the room temperature.
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Fig. 3.3 Temperature increase under 0.1V difference in the 1m wire for free convection in air (on
left) and for forced convection in air (on right)

The temperature increase is caused by the current conducting in the wire and heat
convection across the boundary. We simulate two different cases in order to present
the effect of the natural convection. First case is a free convection in air. Air remains
still and the convection coefficient is set as h = 10W/(m2 K). The value of this
parameter is difficult to measure and it depends on the properties of air and copper.
Usually, only the properties of air are accounted for estimating the convective heat
transfer coefficient, h. For the second case we assume a forced convection, i.e., a fan
is blowing air of 300K to the wire. This time the heat transfer coefficient increases
to h = 100W/(m2 K) and the heat convection over the boundary gets more efficient.
We present the results in Fig. 3.3.

Depending on the choice of the free or forced convection, the time until steady
state is achieved and the value of temperature at steady state vary. Electric potential
distribution remains constant, leading to a constant Joule heating. As the temper-
ature increases the heat exchange across boundaries grows, too. After a while the
heat exchange catches the heat production such that the temperature converges to
a steady state value. As in reality, the heat transferred over the boundary increases
for greater differences between the boundary and ambient temperature depending on
the parameter h. We all know that a fan in our laptop is necessary, since the convec-
tive heat transfer coefficient for a free convection in air is much lower than in case
of a forced convection. For special computers where the power (and thus, current)
is higher we even need an active cooling system working with water such that the
convection parameter is increased further. We recall that the resistance in the wire is
set to a unrealistically low value, we simulate a short circuit. The code below is used
for all simulations in this section.
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1 ””” Computational r e a l i t y 15 , conducting wire ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : m, kg , s , A , V , K

10 de l ta = Id en t i t y (3)
11 Tref = 300. #i n K
12 t a lpha = 3.9E−3 #i n 1/K
13 varsigma0 = 5.8E7 #i n S/m o r i n 1 / (Ohm m)
14 Tamb  = Tref
15 rho = 8960. #i n kg / mˆ3
16 kappa = 400.0 #i n W/ (m K)
17 capac i ty = 390. #i n J / ( kg K)
18 #ap p r o x i ma t e v a l u e s : f o r c o n v e c t i o n o v e r b o u n d a r i e s
19 # f r e e c o n v e c t i o n i n a i r h=10
20 #f o r c e d c o n v e c t i o n i n a i r h=100
21 #f o r c e d c o n v e c t i o n i n wa t e r h =1000
22 h = 10 . #i n W / (mˆ2 K)
23
24 tMax = 1500.0
25 Dt = 50.0
26 t = 0 .0
27
28 xMin , xMax , xElements = 0 . 0 , 1 . 0 , 200
29 yMin , yMax , yElements = −0.005 , +0.005 , 2
30 zMin , zMax , zElements = −0.005 , +0.005 , 2
31 mesh = BoxMesh ( Point (xMin , yMin , zMin ) , Point (xMax , yMax , zMax) ,

→ xElements , yElements , zElements )
32 N = FacetNormal (mesh )
33
34 Sca l a r = FunctionSpace (mesh , P , 1)
35 Vector = VectorFunctionSpace (mesh , P , 1)
36 Tensor = TensorFunctionSpace (mesh , P , 1)
37 # ph i , T
38 Space = MixedFunctionSpace ( [ Sca lar , S ca l a r ] )
39
40 c e l l s = Cel lFunct ion ( s i z e t , mesh )
41 f a c e t s = FacetFunction ( s i z e t , mesh )
42 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
43 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
44
45 l e f t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=xMin

→ )
46 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ xMax)
47 f a c e t s . s e t a l l ( 0 )
48 bc = [ DirichletBC ( Space . sub (0) , 0 . 0 , l e f t ) ,\
49 DirichletBC ( Space . sub (0) , 0 . 1 , r i gh t ) , ]
50
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51 dunkn = Tria lFunct ion ( Space )
52 t e s t = TestFunction ( Space )
53 de l ph i , del T = s p l i t ( t e s t )
54
55 unkn = Function ( Space )
56 unkn0 = Function ( Space )
57
58 unkn in i t = Expres s ion ( ( 0 . 0 , T in i ) , T in i=Tref )
59 unkn0 = i n t e r p o l a t e ( unkn in i t , Space )
60 unkn = i n t e r p o l a t e ( unkn in i t , Space )
61
62 phi , T = s p l i t ( unkn)
63 phi0 , T0 = s p l i t ( unkn0)
64
65 i , j , k , l = i n d i c e s (4 )
66 de l ta = Id en t i t y (3)
67 varsigma = varsigma0 /(1 . 0 + t a lpha (T−Tref ) )
68 J = −varsigma grad ( phi )
69 q = −kappa grad (T)
70 r = Constant ( 0 . 0 )
71
72 Form = (−J [ i ] d e l ph i . dx ( i ) + rho capac i ty (T−T0) /Dt del T /T

→ − q [ i ] ( del T /T) . dx ( i ) − rho r del T /T + J [ i ] phi . dx ( i
→ ) del T /T ) dv + h (T−Tamb) del T /T da

73 Gain = de r i v a t i v e (Form , unkn , dunkn)
74
75 pwd= / c a l c u l /CR15/
76 f i l e p h i = F i l e (pwd+ phi . pvd )
77 f i l e T = F i l e (pwd+ temp . pvd )
78
79 import matp lo t l i b as mpl
80 mpl . use ( Agg )
81 import matp lo t l i b . pyp lot as pylab
82 pylab . rc ( t ex t , usetex=True )
83 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e =30 )
84 pylab . rc ( l egend , f o n t s i z e =30)
85 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
86 pylab . s ubp l o t s ad j u s t ( top =0.90)
87 pylab . s ubp l o t s ad j u s t ( bottom=0.17)
88 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
89 pylab . s ubp l o t s ad j u s t ( r i gh t =0.95)
90 f i g = pylab . f i g u r e (1 , f i g s i z e =(14 ,10) )
91 ax1 = f i g . add subp lot (111)
92 ax1 . s e t x l a b e l ( t in s )
93 ax1 . s e t y l a b e l ( T in K )
94 ax1 . s e t x l im ( [ 0 . 0 , tMax ] )
95 t p l o t , T p lot = [ 0 ] , [ Tref ]
96
97 while t < tMax :
98 print time : , t , T , T plot [ −1]
99 s o l v e (Form== 0 , unkn , bc , J=Gain , \

100 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :
→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \

101 form compi l er parameters={” cpp opt imize ” : True , ”
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→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

102
103 # f i l e T << ( unkn . s p l i t ( ) [ 1 ] , t )
104 # f i l e p h i << ( unkn . s p l i t ( ) [ 0 ] , t )
105
106 t p l o t . append( t )
107 T plot . append(unkn . s p l i t ( ) [ 1 ] ( xMax/ 2 . , 0 . , 0 . ) )
108 ax1 . p l o t ( t p l o t , T plot , o− , c o l o r= r )
109 f i g . s a v e f i g (pwd+ CompReal15 temp . pdf )
110 unkn0 . a s s i gn (unkn )
111 t += Dt

To-do

An electrothermal coupling has been modeled. In many commercial codes this type
of a simulation is achieved over a staggered scheme. We have implemented here in
a monolithic way such that in each time step the electric potential and temperature
are solved at once. The temperature rise occurs due to the current being conducted
in the wire.

• Implement the code for a gold wire. Of course it costs more than copper but what
can be achieved by using a gold wire instead of copper?

• Find out a forced convection parameter changingwith the speed of air and compare
the results for different fan speeds. During computation the fan of the laptop gets
louder by rotating in an increased speed. Is the convection parameter, h, higher
for an increased speed?

3.2 Polarized Materials

As a material specific property, the continuum body can be electrically or magneti-
cally polarized subject to electromagnetic fields. The electric or magnetic polariza-
tion indicates a change in the electric charge distribution in the body. Suppose that
the electric charge is homogeneously distributed. Under the influence of electromag-
netic fields, charged particles deviate from their homogeneous distribution and the
continuum body becomes polarized. Before we discuss this phenomenon deeply, we
reinvent the Maxwell equations and then bring in the ideas of polarization.

We start with a balance equation on a material surface,22 S, known as Faraday’s
law:23 (∫

S

Bidai

)•

= −
∫

∂S

Eid�i , (3.25)

22A material surface is a material system without convection terms where the domain is a surface
instead of a volume leading to an area density instead of a volume density.
23It is named after Michael Faraday.
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where the magnetic flux area density, Bi , in a material surface, S, is balanced with the
electromotive intensity, Ei , acting on the boundary of the surface, ∂S. We recall that
Bi = Bi . Hence, Faraday’s law is defined on a material surface co-moving with the
continuum body. This equation has to hold for any surface, for example, in the case
of a closed surface without boundaries, ∂S̄ = {}, it still holds

( ∮
S̄

Bidai

)•

= 0 . (3.26)

This closed surface can be visualized like a closed hull over a body, S̄ = ∂B, such that
∂∂B = {}. By integrating in time we obtain an integration constant to be determined
by theknown initial condition.Wemay set the initialmagneticflux as zero.By starting
with zero magnetic flux area density, Bi (t = 0, x j ) = 0, the integration constant
vanishes ∫

∂B

Bidai = 0 . (3.27)

Since the surface is closed we can apply Gauss’s law and obtain

∂Bi

∂xi
= 0 . (3.28)

The latter equation is one of Maxwell’s equations and it holds universally.24 Now
wewant to obtain a local form fromEq. (3.25). Firstwe use product rule and Stokes’s
law on the line integral

∫
S

B•
idai +

∫
S

Bi (dai )
• = −

∫
S

curl(EEE)idai . (3.29)

Since the domain is on a material surface, xi denotes the current position of massive
particles such that x •

i = vi of matter. Thus, we can use the identities in Eqs. (1.120),
(1.121) as follows

(dv)• = (JdV )• = J •dV = J •

J
dv , (dv)• = ∂vi

∂xi
dv ⇒ J • = J

∂vi

∂xi
, (3.30)

and

(dai )
• =

(
J (F−1) j idA j

)• =
(
J

∂vk

∂xk
(F−1) j i + J (F−1)•j i

)
dA j . (3.31)

24A relation holds universally, if it is free of any dependence on the underlying material. In other
words, a universal relation holds for all materials and even in the case of no material—vacuum.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Moreover, we know Fi j (F−1) jk = δik such that the following identity:

(
Fi j (F−1) jk

)• = 0 ,

Fi j (F−1)•jk = −F •
i j (F

−1) jk ,

(F−1)•jk = −F •
il(F

−1)lk(F−1) j i ,

(3.32)

can be used in order to acquire

(dai )
• = J

∂vk

∂xk
(F−1) j idA j − J F •

nl(F
−1)li (F−1) jndA j =

= ∂vk

∂xk
dai − F •

nl(F
−1)lidan =

(
∂vk

∂xk
δ j i − ∂v j

∂xi

)
da j ,

(3.33)

since

F •
nl(F

−1)li =
(

∂xn
∂Xl

)• ∂Xl

∂xi
= ∂vn

∂Xl

∂Xl

∂xi
= ∂vn

∂xi
. (3.34)

Therefore, we obtain the following local form for Faraday’s law:

B•
j + Bi

(
∂vk

∂xk
δ j i − ∂v j

∂xi

)
= − curl(EEE) j ,

∂Bj

∂t
+ ∂Bj

∂xk
vk + Bj

∂vk

∂xk
− Bi

∂v j

∂xi
+ curl(EEE) j = 0 ,

∂Bj

∂t
+ ∂Bjvk

∂xk
− Bi

∂v j

∂xi
+ curl(EEE) j = 0 .

(3.35)

Since εi jkεklm = δilδ jm − δimδ jl , we can insert the following relation:

curl(v × B)i = εi jk
∂(v × B)k

∂x j
= εi jkεklm

∂vl Bm

∂x j
= ∂vi B j

∂x j
− ∂v j Bi

∂x j
,

∂v j Bi

∂x j
= ∂vi B j

∂x j
− curl(v × B)i ,

(3.36)

into the latter to obtain

∂Bj

∂t
+ ∂v j Bi

∂xi
− curl(v × B) j − Bi

∂v j

∂xi
+ curl(EEE) j = 0 ,

∂Bj

∂t
+ v j

∂Bi

∂xi
+ curl(EEE − v × B) j = 0 .

(3.37)
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By using Eq. (3.11) and inserting one of Maxwell’s equations in Eq. (3.28) we
express the latter in the laboratory frame

∂Bj

∂t
+ curl(E) j = 0 ,

∂Bi

∂t
+ εi jk

∂Ek

∂x j
= 0 .

(3.38)

This equation is another one of Maxwell’s equations holding universally. We have
declared Ei and Bi as the primitive variables. Two of Maxwell’s equations, namely
Eqs. (3.28) and (3.38), can be solved by using the following trial functions:

Ei = − ∂φ

∂xi
− ∂Ai

∂t
, Bi = εi jk

∂Ak

∂x j
, (3.39)

where we introduce the so-called electric andmagnetic potentials, φ and Ai , respec-
tively, as functions in space and time:

φ = φ(xi , t) , Ai = Ai (x j , t) . (3.40)

The electric potentials are the new primitive variables instead of Ei and Bi . It is
important to recall that we introduce the electric and magnetic potentials as one
possible solution of Eqs. (3.28) and (3.38). We just propose these ansatz functions25

and insert them into Eqs. (3.28) and (3.38) in order to ensure that they satisfy the
aforementioned Maxwell’s equations, see AppendixA.6 on p.305.

There is one drawback in the proposed solution of Eqs. (3.28) and (3.38). Instead
of Ei and Bi , i.e., six components in 3D space, we search now for φ, Ai , i.e., only
fours components in 3D space. Hence we loose information given by two scalar
functions. Concretely, we lack information of ∂φ/∂t and ∂Ai/∂xi , which is called
the gauge freedom.26 We can choose ∂φ/∂t and ∂Ai/∂xi arbitrarily and Eqs. (3.39)
still satisfy Eqs. (3.28) and (3.38). We have already seen one of the consequences of
this free choice of ∂φ/∂t in the last section. The electric potential has been set up
instantaneously and remained the same. We need to deliver this missing information
for an accurate consistent formulation. Themost common choice isGauss’s gauge:27

∂φ

∂t
= 0 ,

∂Ai

∂xi
= 0 . (3.41)

25The German word ansatz has the equal meaning of a trial function. We simply find out by trial
the functions satisfying differential equations.
26For the motivation of the gauge freedom see AppendixA.6 on p.305.
27This gauge is named after Carl Friedrich Gauß.
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Since the choice is free, the latter is definitely admissible and the simplest choice at
all. Another choice is called Lorenz’s gauge:28

∂φ

∂t
= −c2

∂Ai

∂xi
, (3.42)

which will lead to some useful simplifications in the formulation and will be used
herein. For themoment it is hard to see, how this choice shall simplify the formulation.

We need governing equations for solving electric potentials, φ, Ai , in space and
time. These equations follow from the balance of electric charge:

∂ρz

∂t
+ ∂ Ji

∂xi
= 0 , Ji = Ji + ρzvi ,

z
(∂ρ

∂t
+ ρ

∂vi

∂xi
+ vi

∂ρ

∂xi

)
+ ρ

∂z

∂t
+ ρvi

∂z

∂xi
+ ∂Ji

∂xi
= 0 ,

z
(
ρ• + ρ

∂vi

∂xi

)
+ ρz• + ∂Ji

∂xi
= 0 .

(3.43)

By employing the balance of mass we obtain the balance of electric charge:

ρz• + ∂Ji
∂xi

= 0 . (3.44)

This local form of a balance equation can be written in a global form for an arbitrary
(fixed) domain, �, of an open system, which is unbounded to the matter

∫
�

(
ρz• + ∂Ji

∂xi

)
dv = 0 ,

∫
�

ρz•dv = −
∫

∂�

Jidai ,

( ∫
�

ρzdv

)•

= −
∫

∂�

ρzvidai −
∫

∂�

Jidai ,

(3.45)

where we have used Gauss’s law and then the balance of mass for an open system
as introduced in Eq. (1.261) on p.86. By taking Eq. (3.5) on p. 169 into account, the
balance of electric charge in a fixed domain (control volume) reads

( ∫
�

ρzdv

)•

= −
∫

∂�

Jidai . (3.46)

In an arbitrarily chosen control volume in space, we can compute the electric charge
by using a so-called charge potential, Di , representing the amount of charge escaping
from the domain across its boundaries as follows

28The gauge is named for Ludvig Valentin Lorenz.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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∫
�

ρzdv =
∫

∂�

Didai . (3.47)

Hence Di describes in a way the displacement of electric charges. By usingGauss’s
law we obtain another Maxwell equation:

ρz = ∂Di

∂xi
. (3.48)

Moreover, we can now rewrite Eq. (3.46) and obtain a balance on an arbitrary surface,
S, instead of a volume,

( ∫
∂�

Didai

)•

= −
∫

∂�

Jidai ,

( ∫
S
Didai

)•

=
∫

∂S
Hid�i −

∫
S
Jidai ,

(3.49)

where Hi is called the current potential. It is of importance to clarify that a volume has
an enclosed surface or hull. Hence the hull, ∂�, has no boundaries. If we exchange
the enclosed surface ∂� with an arbitrary surface S, we have to add a term on the
boundary of the surface, ∂S, with its line element, d�i .29 All quantities, Di , Hi , and
Ji , are measured in the laboratory frame. The arbitrary surface, S, may possess a
velocity, wi , then the local form becomes

∂Di

∂t
+ wi

∂Dj

∂x j
− curl(w × D)i = curl(H)i − Ji , (3.50)

by using the aforementioned transformation and identities between Eq. (3.30) and
Eq. (3.37). As we want to use a fixed domain, wi = 0, it reads

∂Di

∂t
= εi jk

∂Hk

∂x j
− Ji ,

−∂Di

∂t
+ εi jk

∂Hk

∂x j
= Ji ,

(3.51)

which is the final one of Maxwell’s equations. From Eqs. (3.48) and (3.51) we
can compute the primitive variables, φ, Ai , after closing up the governing equations
by defining constitutive equations for Di and Hi . The Maxwell–Lorentz aether
relations30 define the necessary constitutive equations in free space31

29The line element is directed along the positive surface boundary. The positive direction is such
that we “walk along” the surface boundary and the surface is on our left-hand side.
30They are named after James Clerk Maxwell and Hendrik Antoon Lorentz.
31Free space is a technical definition used as a reference for electromagnetic fields, Ei , Bi . It
can be visualized as a perfect vacuum without any medium such as massive particles that may
transport the electromagnetic fields. Even in this free space the fields do propagate (with the speed of
light, c).
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Di = ε0Ei , Hi = 1

μ0
Bi , (3.52)

where ε0 = 8.85 · 10−12 As/(Vm) and μ0 = 12.6 · 10−7 Vs/(Am) are universal con-
stants.32 Additionally, there is a paramount relation:

ε0μ0 = 1

c2
, (3.53)

where the speed of light in the free space, c, is also a universal constant. We can
rewrite the Maxwell–Lorentz aether relations as follows

∂Di

∂E j
= δi jε0 ,

∂Hi

∂Bj
= δi jμ

−1
0 . (3.54)

They hold in free space. If we want to amend the formulation such that it holds in
matter then we separate the electric charges, z, in two parts: free and bound charges.

Basically the atomic structure is such that charged particles within core are bound
and outer charged particles—valence electrons—may move between atoms and
molecules. Therefore, there are charged particles that move freely in body and thus
conduct an electric current. The displacement of free charges per mass, zfr., is given
by the free charge potential:Di . The atomic position (energy level) of valence elec-
trons determines how much energy is necessary to conduct electric current. At most
there are 8 valence electrons: the first 2 are in s-band and the rest 6 are in p-band. The
energy levels of s and p bands varies with the occupancy. Monovalent metals such as
copper and silver have only one valence electron in the s-band with high energy such
that only a small portion of energy succeeds to move them to neighboring atoms.
Copper, silver, and gold are the best conductors.33 In case of aluminum, s-band is full
with two electrons and there is 1 electron in p-band. The energy level is lower than in
monovalent metals. Therefore, aluminum is a good conductor, however, not as good
as the monovalent metals.34 If the s-band is full without any p-band electrons, then
metal is divalent and the energy level is even lower. Hence we have to supply more
energy to move the valence electrons. Iron (steel) and titanium have more resistivity
than aluminum.35 Valence electrons are moving freely and enable a free conduction
current in matter.

There are also charges per mass, z − zfr., which are bound. This quantity is rather
difficult to visualize. Consider a massive particle consisting of many molecules.
The molecules consisting of atoms possess many positively and negatively charged
particles distributed in space. The center of positive charges and the center of negative
charges coincide.We call this state unpolarized. As a consequence of an electric field,
these bound charges shift a bit (less than the atomic radius) and so-called dipoles

32Universal constants hold for every material, even without matter (in free space).
33Electronic configurations: Copper (Cu) 3d104s1, Silver (Ag) 4d105s1, Gold (Au) 4 f 145d106s1.
34Electronic configuration: Aluminum (Al) 3s23p1.
35Electronic configurations: Iron (Fe) 3d64s2, Titanium (Ti) 3d24s2.
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appear—the material is now electrically polarized. This atomic displacement creates
a polarization current.

By convention the direction of the electric polarization is given from the center
of negative charges to the center of positive charges, in the opposite direction of
(positive) charge escape, Di . Suppose the charge density isq = ρz inC/m3. If positive
and negative charges in an atom moved apart a distance of di (pointing from −q to
+q), then the dipole moment mi = qdi in C/m2 creates a polarized material. For
a molecule with N atoms we can sum up all mi and divide them by the number,
N , in order to obtain an average value, 〈mi 〉. In the continuum scale the electric
polarization, Pi = 〈mi 〉N , is a charge area density in C/m2 directing toward positive
charges. Now the bound (positive) charges diverging from the domain can be given

∫
�

ρ(z − zfr.)dv = −
∫

∂�

Pidai , (3.55)

since positive charges move from positive to negative, i.e., toward the opposite direc-
tion of Pi . By using Gauss’s law we obtain

ρ(z − zfr.) = −∂Pi
∂xi

. (3.56)

By inserting the latter into Eq. (3.48) we acquire

∂Di

∂xi
− ρzfr. = −∂Pi

∂xi
,

∂Di

∂xi
+ ∂Pi

∂xi
= ρzfr. ,

(3.57)

which is equal to
∂Di

∂xi
= ρzfr. , (3.58)

with the free charge potential, Di = Di + Pi . We can now obtain a total charge
potential:

Di = Di − Pi , (3.59)

whereDi denotes a charge potential due to free charges and Pi due to bound charges.
The minus sign is because of the convention that the direction of the electric polar-
ization is against the direction of the total charge potential. A moving electric charge
creates an electric current. The freely moving electric current is much greater than
the displacement current occurring due to the electric polarization. For a conductor,
the electric polarization fails to be significant. Practically, an electric polarization
occurs in an insulator.
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Additional to the electric polarization the material possesses a magnetic
polarization. Consider again in the atomic scale the dipoles. According to
Rutherford–Bohr’s atomic model36 the electrons moving around the nucleus
creates a current, ji , inA/m2 in the atomic scale. These dipole loops induce amoment,
mi = εi jkd j jk in A/m, due to the atomic current. This current is a monopole without
positive and negative sides. The average value, 〈mi 〉, is measured as amagnetic polar-
ization (or simply a magnetization) Mi = 〈mi 〉N . Magnetization in A/m is a current
line density. In the macroscopic scale we comprehend the magnetization, Mi , as a
property of bound charges. Unfortunately, if the bound charges creating an electric
polarization have a circular motion they create P × v that we cannot distinguish
from the magnetization, Mi , experimentally. Therefore, the sum:

Mi = Mi + εi jk Pjvk , (3.60)

is observed in an experiment and also used in modeling the magnetization.37 Anal-
ogous to polarization we introduce the so-called total (free and bound) current
potential:

Hi = Hi + Mi , (3.61)

with a plus sign since this time we have introduced the magnetic polarization in
the direction of current, thus, it has the same sign as the current potential. Now by
inserting Eqs. (3.59) and (3.61) into Eq. (3.51) we obtain

−∂Di

∂t
+ ∂Pi

∂t
+ εi jk

∂Hk

∂x j
+ εi jk

∂Mk

∂x j
= Ji ,

−∂Di

∂t
+ εi jk

∂Hk

∂x j
= J fr.

i ,

(3.62)

with

J fr.
i = Ji − ∂Pi

∂t
− εi jk

∂Mk

∂x j
. (3.63)

We can rewrite the latter for an interpretation of the total current, Ji , as a sum of
free current, J fr.

i , and polarization currents

Ji = J fr.
i + ∂Pi

∂t
+ εi jk

∂Mk

∂x j
. (3.64)

36This model fails to be correct since if electrons would rotate they would radiate electromag-
netic waves. Since experimentally we cannot detect any radiation from atoms this visualization
is false. Better models are proposed by using quantum mechanics. However, we keep up with
continuum mechanics; for introducing magnetic polarization we use the nice visualization of
Rutherford–Bohr’s model named for Ernest Rutherford and Niels Henrik David Bohr.
37The magnetization used for the modeling, Mi , is an objective quantity.



3.2 Polarized Materials 187

All currents aremeasured in the laboratory frame.We can introduce objective electric
current for the total current, Ji , as well as for the free current, J fr.

i , as follows

Ji = Ji + ρzvi , J fr.
i = J fr.i + ρzfr.vi . (3.65)

For polarized materials the objective free current is given by Ohm’s law:

J fr.i = ςEi , (3.66)

we postpone its derivation to Sect. 3.5 on p.243. We shall define charge and current
potentials,Di andHi , respectively, as well as electric and magnetic polarizations, Pi
and Mi , respectively, in order to close Eqs. (3.58), (3.62)2.

There are two similar methods used in the literature for defining the necessary
constitutive equations. The first method is based on defining the charge and current
potentials from the electric and magnetic polarizations. For a material with bound
chargeswe need to definematerial equations for charge and current potentials,Di and
Hi , respectively. Based on the Maxwell–Lorentz aether relations in Eqs. (3.54)
we can motivate

∂Di

∂E j
= εel.i j ,

∂Hi

∂Bj
= (µ−1

mag.)i j , (3.67)

hence we obtain relations for Di and Hi by measuring the permittivity tensor, εel.i j ,
and the permeability tensor, μmag.

i j . For so-called simplematerials the charge potential
depends only on the electric field and the current potential depends only on the
magnetic flux:

Di = εel.i j E j , Hi = (µ−1
mag.)i j B j , (3.68)

where the dielectric permittivity, εel.i j , and the magnetic permeability, μmag.
i j , consist

of constant coefficients38 (constant in Ei and Bi ) for linear materials. For isotropic
materials they are reduced to εel.i j = εel.δi j and μ

mag.
i j = μmag.δi j such that we can now

write
Di = εel.Ei = ε0ε̄

el.Ei ,

Hi = μ−1
mag.Bi = (μ0μ̄

mag.)−1Bi = 1

μ0μ̄mag.
Bi ,

(3.69)

by introducing the relative permittivity ε̄el. = εel./ε0 and the relative permeability
μ̄mag. = μmag./μ0 without unit. By measuring the permittivity and permeability we
have defined the charge and current potentials. We deduce from them the electric
and magnetic polarizations:

38The permittivity is measured in F(arad)/m =̂C/(Vm) =̂As/(Vm) where F is named afterMichael
Faraday. The permeability is measured in H(enry)/m =̂ Wb/(Am) =̂ Vs/(Am) where H is named
for Joseph Henry.
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Pi = Di − Di = ε0ε̄
el.Ei − ε0Ei = ε0(ε̄

el. − 1)Ei = ε0χ
el.Ei ,

Mi = −Hi + Hi = − 1

μ0μ̄mag.
Bi + 1

μ0
Bi = μ̄mag. − 1

μ0μ̄mag.
Bi = χmag.

μ0μ̄mag.
Bi ,

(3.70)

where χel. = ε̄el. − 1 and χmag. = μ̄mag. − 1 are the electric and magnetic
susceptibilities, respectively. Often they are found in the literature in the follow-
ing form:

Pi = ε0χ
el.Ei = χel.Di , Mi = χmag.

μ0μ̄mag.
Bi = χmag.Hi . (3.71)

We have two different options for describing the constitutive equations for polarized
matter. The first option is to measure dielectric permittivity and magnetic permeabil-
ity such that Eqs. (3.69) define the constitutive equations for the electric and current
potentials. The second possibility relies uponmeasurements of electric and magnetic
susceptibilities39 and using Eqs. (3.70) as constitutive equations for the electric and
magnetic polarizations. Both are correct since we have started with their relation
as in Eqs. (3.59), (3.61). In both ways we have related them to the primitive vari-
ables, φ, Ai , since Ei , Bi are given in terms of the electric and magnetic potentials
in Eqs. (3.39). By having defined the polarization we have arrived at a constitutive
equation for the free current, J fr., in Eq. (3.63). Hence the governing Eqs. (3.58),
(3.62)2 are now closed and can be solved.

Our goal is to computeφ and Ai , thus, we need twoweak forms. Althoughwe skip
a thorough discussion of the balance equations on singular surfaces, we will make
much use of them especially in the weak forms of the electromagnetic potentials.
A singular surface denotes an area over which a function undergoes a discontinuity.
This singularity is simply a jump in the value of the function by crossing the sin-
gular surface. Consider two different materials attached together; their interface is
a singular surface. A material specific quantity like a free charge potential, Di , or
free current potential, Hi , have jumps over the interface, since the permittivities and
permeabilities are different for the two adjacent materials. Technically, interface is a
singular surface without its own mass density. It is a fictitious surface, not a material
surface.40 Moreover, we neglect any effect of the surface charges on the interface.41

39There are various methods for measuring the susceptibilities, see for example [26, 37].
40The interface is a fictitious surface without mass. If we have a thin layer between two different
materials, we may declare it as a singular surface (surface has zero thickness) by neglecting the
layers thickness.However, the singularwould have then amass.We consider herein singular surfaces
without mass.
41In many applications the surface charges have no effect at all. In Sect. 3.5 on p.243 we will
simulate the piezoelectric effect under 100V and have a small error less than 1V by neglecting
the surface charges, see for a detailed computation of surface charges in piezoelectric ceramics in
[21]. For some applications concerning mass diffusion (electromigration) in mixtures, the surface
charges may have a significant effect. In this book mixtures are out of scope.
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Under these assumptions the balance equations on singular surfaces take the simple
form:

n · [
D

] = 0 , n × [
H

] = 0 , (3.72)

where we have introduced squared brackets indicating a jump. Suppose the interface
has material 1 and material 2 at both sides. The value of Di on the interface as a
boundary of material 1 is different than the value on the interface as a boundary
of material 2. In other words, D+

i indicates the value on the boundary of material
1, i.e., the interface adjacent to material 1. Analogously, D−

i is the value on the
interface adjacent to material 2. At the same point on interface, the plane normal of
the boundary belonging to material 1, n+

i , is directed against the plane normal of the
boundary of material 2, n−

i , such that n+
i = −n−

i . Then the balance equations read

ni
[
Di

] = ni (D
+
i − D−

i ) = n+
i D

+
i + n−

i D
−
i = 0 ,

εi jkn j
[
Hk

] = εi jkn j (H
+
k − H−

k ) = εi jk(n
+
j H

+
k + n−

j H
−
k ) = 0 .

(3.73)

In order to obtain a weak form for computing the electric potential, φ, we use the
balance of electric charge:

∂ρz

∂t
+ Ji,i = 0 , (3.74)

again by starting to use the comma notation for partial derivatives in space. By insert-
ing one of Maxwell’s equations in Eq. (3.48) and the total current as in Eq. (3.63)
into the balance equation, we acquire the field equation for electric potential:

∂Di,i

∂t
+

(
J fr.
i + ∂Pi

∂t
+ εi jkMk, j

)
,i

= 0 . (3.75)

Within a domain where Pi is continuous, we can interchange the order of space and
time derivative such that the field equation reads

∂Di,i

∂t
+

(
J fr.
i + εi jkMk, j

)
,i

= 0 . (3.76)

First we utilize the time discretization. Secondly, by multiplying with the test func-
tion, δφ, and integrating over the domain where Pi andDi are continuous, we obtain
a variational form. In order to have it in the unit of energy we multiply the form
with Δt , which is constant in space. Thirdly, by integrating by parts we lower the
continuity condition and generate the weak form:

Fφ =
∫

�∗

( − (Di − D0
i ) δφ,i − Δt J fr.

i δφ,i − Δtεi jkMk, j δφ,i
)
dv+

+
∫

∂�∗
ni (Di − D0

i + Δt J fr.
i + Δtεi jkMk, j ) δφ da .

(3.77)



190 3 Electromagnetism

Consider a domain, �, consisting of two materials, �1 and �2. A polarized material
surrounded by air is an adequate example. We simply state that � = �1 ∪ �2 and
∂�I = ∂�1 ∩ ∂�2, where the interaction boundary between the different materials,
∂�I , is a fictitious, singular surface. The primitive variables are continuous within
the whole domain: the electric and magnetic potentials, φ, Ai , are continuous in �.
Hence, the electric field, Ei , as well as the magnetic flux density, Bi , are continuous
in �. However, this case fails to be true for constitutive equations. For example, J fr.i
has a jump on the interface since the electrical conductivities within�1 and�2 differ.
Analogously Pi and Di have discontinuities on the interface.

By discretizing in space we solve the integral form in each finite element and sum
it up over the elements. If we observe two elements on both sides of the interface, i.e.,
one element is in�1 and the other one is in�2, then the summation over elements lead
to two boundary integrals coming from each element with a plane normal pointing
outward the domain �1 or �2. Hence we obtain a jump on the interface and attain
the following weak form:

Fφ =
∫

�

( − (Di − D0
i ) δφ,i − Δt J fr.

i δφ,i − Δtεi jkMk, j δφ,i
)
dv+

+
∫

∂�I

ni
[
Di − D0

i + Δt J fr.
i + Δtεi jkMk, j

]
δφ da+

+
∫

∂�

ni (Di − D0
i + Δt J fr.

i + Δtεi jkMk, j ) δφ da .

(3.78)

From the balance equation on singular surfaces we know that ni
[
Di

] = 0. Therefore,
the weak form for computing the electric potential reads

Fφ =
∫

�

( − (Di − D0
i ) δφ,i − Δt J fr.

i δφ,i − Δtεi jkMk, j δφ,i
)
dv+

+
∫

∂�I

(
niΔt

[
J fr.
i

]
δφ + niΔtεi jk

[
Mk, j

]
δφ

)
da+

+
∫

∂�

ni (Di − D0
i + Δt J fr.

i + Δtεi jkMk, j ) δφ da .

(3.79)

We will employ Dirichlet boundary conditions on ∂� such that δφ|∂� = 0 leads
to the following weak form:

Fφ =
∫

�

( − (Di − D0
i ) δφ,i − Δt J fr.

i δφ,i − Δtεi jkMk, j δφ,i
)
dv+

+
∫

∂�I

(
niΔt

[
J fr.
i

]
δφ + niΔtεi jk

[
Mk, j

]
δφ

)
da .

(3.80)
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For the magnetic potential, Ai , we will use Maxwell’s Eq. (3.51), namely,

−∂Di

∂t
+ εi jk Hk, j = Ji , (3.81)

after implementingLorenz’s gauge. This choice of the gauge is because of numerical
reasons—Lorenz’s gauge enables a simplification in the field equation. In order to
see this simplification we employ the Maxwell–Lorentz aether relations

− ∂

∂t
(ε0Ei ) + εi jk

∂

∂x j

( 1

μ 0
Bk

)
= Ji . (3.82)

After utilizing Eqs. (3.39) we obtain

ε0
∂

∂t

( ∂φ

∂xi
+ ∂Ai

∂t

)
+ 1

μ 0
εi jkεkmn

∂2An

∂x j∂xm
= Ji . (3.83)

Since εi jk = εki j and additionally with the identity, εki jεkmn = δimδ jn − δinδ jm , hold-
ing in Cartesian coordinates, we acquire the following equation:

ε0
∂2φ

∂t∂xi
+ ε0

∂2Ai

∂t2
+ 1

μ 0

(
∂2A j

∂x j∂xi
− ∂2Ai

∂x j∂x j

)
= Ji ,

∂

∂xi

(
ε0

∂φ

∂t
+ 1

μ 0

∂A j

∂x j

)
+ ε0

∂2Ai

∂t2
− 1

μ 0

∂2Ai

∂x j∂x j
= Ji ,

(3.84)

where Schwarz’s theorem42 has been used. The first term vanishes by applying
Lorenz’s gauge in Eq. (3.42). After inserting the total current from Eq. (3.63), the
field equation for magnetic potential reads

ε0
∂2Ai

∂t2
− 1

μ 0

∂2Ai

∂x j∂x j
= J fr.

i + ∂Pi
∂t

+ εi jkMk, j . (3.85)

As usual, after discretizing in time we generate the weak form by multiplying with
the test function and lower the differentiability by integrating by parts and acquire

FA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

ΔtΔt
δAi + 1

μ0
Ai, j δAi, j − J fr.

i δAi−

− Pi − P0
i

Δt
δAi + εi jkMk δAi, j

)
dv −

∫
∂�

( 1

μ0
Ai, j + εi jkMk

)
δAin jda .

(3.86)

Again by summing up over the finite elements we find out (by recalling that μ0 is a
universal constant)

42The interchangeability of the order of variables in a differentiation is named after Hermann
Amandus Schwarz.
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FA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

ΔtΔt
δAi + 1

μ0
Ai, j δAi, j − J fr.

i δAi−

− Pi − P0
i

Δt
δAi + εi jkMk δAi, j

)
dv −

∫
∂�I

(
1

μ0

[
Ai, j

] + εi jk
[
Mk

])
δAin jda−

−
∫

∂�

( 1

μ0
Ai, j + εi jkMk

)
δAin jda .

(3.87)
For the jump condition we use the following balance equation on singular surfaces:

εi jkn j
[
Hk

] = 0 . (3.88)

By rewriting the latter we acquire

εi jkn j
[
Hk − Mk

] = 0 ,

εi jkn j
[
Hk

] = εi jkn j
[
Mk

]
,

εi jkn j
1

μ0
εklm

[
Am,l

] = εi jkn j
[
Mk

]
.

(3.89)

Now by using the identity εi jkεklm = δilδ jm − δimδ jl we obtain

n j
1

μ0

[
A j,i − Ai, j

] = εi jkn j
[
Mk

]
,

n j
1

μ0

[
A j,i

] = n j
1

μ0

[
Ai, j

] + εi jkn j
[
Mk

]
.

(3.90)

Therefore, the weak form for computing the magnetic potential reads

FormA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

ΔtΔt
δAi + 1

μ0
Ai, j δAi, j − J fr.

i δAi−

− Pi − P0
i

Δt
δAi + εi jkMk δAi, j

)
dv−

−
∫

∂�I

1

μ0

[
A j,i

]
δAin jda −

∫
∂�

( 1

μ0
Ai, j + εi jkMk

)
δAin jda .

(3.91)

Since the primitive variables are continuous across the interface, the integral on ∂�I

vanishes. Moreover, we will use Dirichlet boundary conditions on ∂� such that
δAi |∂� = 0 leads to the weak form:

FA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

ΔtΔt
δAi + 1

μ0
Ai, j δAi, j − J fr.

i δAi−

− Pi − P0
i

Δt
δAi + εi jkMk δAi, j

)
dv .

(3.92)



3.2 Polarized Materials 193

By using the weak form: Form = Fφ + FA with Fφ as in Eq. (3.80) and FA as in
Eq. (3.92), we compute three engineering examples: capacitor, transformer, skin and
proximity effects in a conductor.

3.2.1 Capacitor Simulation

An electric insulator between twometal conductors is a capacitor. Since the insulator
does not permit an electric current, any positive or negative charges brought on the
conductors are held. In other words, the capacitor stores electric energy. The stored
charges on the conductors can be used as a power supply by connecting them in a
circuit. This method is used in camera flashes where the capacitor is first charged by
the battery and then the flash gets its power from the capacitor. If the current (power
consumption) is high the battery starts to sag (shows a high latency and provides a
lower energy output due to the resistance). Capacitors are much more accurate and
reliable especially for high power consumptions, like a bright light for a short period
of time as being the case in a camera flash.

Consider an insulator between two metal plates. As insulator we will use PTFE,43

metal plates are made of copper. The capacitor is surrounded by air. The geometry
consists of three different parts, namely PTFE, copper, and air. For generating the
geometry and meshing, i.e., for preprocessing we use Salome44 and obtain the model
in Fig. 3.4.Air is an insulator, ςair = 3 · 10−15, and its susceptibilities are zero. In other
words, air can be undertaken as a free space (vacuum) by means of electromagnetic
interaction with the following permittivity and permeability:

ε0 = 8.85 · 10−12 A s/(Vm) , μ0 = 12.6 · 10−7 V s/(Am) . (3.93)

PTFE is an insulator and shows a strong electric polarization and a weak magnetic
polarization:

ς = 10−25 S/m , χel.
PTFE = 1 , χ

mag.
PTFE = 10−6 . (3.94)

Copper (Cu) is a conductor, thus, it shows no electric polarization, χel.
Cu = 0, but a

weak magnetization:

ς = 58.56 S/m , χ
mag.
Cu = −10−5 . (3.95)

Since χ
mag.
Cu < 0, copper is a diamagnetic material.

43PTFE stands for PolyTetraFluoroEthylene—its prominent brand-name is Teflon from DuPont in
France.
44See AppendixA.3 on p.297 for instructions how to mark the surfaces for applying the boundary
conditions and to mark the volumes for different parts.
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Fig. 3.4 The geometry is a capacitor in air with an insulator out of PTFE with two copper plates
on both sides

For computing the primitive variables, viz., electric potential φ and magnetic
potential Ai , we exploit the weak form as given in Eqs. (3.80), (3.92). At both sides of
the capacitor we set the electric potential such that the difference increases (linearly)
over time. After 1 s there is 0.2V difference between the plates. Since PTFE is an
insulator no current flows, however,we canmeasure an electric field due to the electric
polarization. In other words, bound charges shift and this displacement of charges
known as dielectric displacement creates an electric field within the capacitor as well
as in the surrounding air. Moreover, this field varies in time leading to a magnetic
field. Both effects can be seen in Fig. 3.5.

Electric field, Ei , and magnetic flux (area density), Bi , are orthogonal to each
other. We show in Fig. 3.5 the electric field on z-plane and the magnetic flux on
y-plane. The magnetic flux is small, however, it exists. Its magnitude depends on the
rate of voltage on the plates, we generate 0.2V difference in 1 s. In other words, the
polarization current during charging is very low. Since PTFE is an insulator, there
occurs no conduction current and the polarization current gains importance. If the
capacitor is fully charged and the circuit is cut off, then the electric field becomes
stationary, polarization current and thus the magnetic flux vanish completely.
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Fig. 3.5 PTFE insulator is visualized as wireframe and the copper plates as surfaces. The capacitor
is colored by φ. The polarization of the capacitor creates an electric field shown on the upper figure.
It creates also a magnetic flux during charging presented on the lower figure. The Ei and Bi fields
are visualized by arrows only on cut planes for the sake of a better visualization. The transient
solution is presented at 1 s

Far away from the capacitor—on the domain boundaries—electromagnetic fields
vanish throughout the simulation, φ

∣∣
∂�

= 0, Ai

∣∣
∂�

= 0, which is implemented as
Dirichlet conditions. On interfaces between air and copper, PTFE and copper,
air and PTFE; the conditions from the balance equations on singular surfaces are
implemented as aforementioned by deducing Eqs. (3.80), (3.92). The geometry for
the computation can be found in [1]. Below, the code is given for the capacitor
where standard finite element form functions are used and all primitive variables are
computed at once in each iteration.
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1 ””” Computational r e a l i t y 16 , p o l a r i z ed mater ia l , s imu lat i on
→ o f a capac i to r ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9

10 2D 1 ”boundary in ”
11 2D 2 ”boundary out ”
12 2D 3 ” me ta l a i r ”
13 2D 4 ” p t f e a i r ”
14 2D 5 ” pt f e meta l ”
15 2D 6 ” boundary ai r ”
16 3D 1 ” a i r ”
17 3D 2 ”metal ”
18 3D 3 ” p t f e ”
19
20 mesh = Mesh ( geo/CR16 geo . xml )
21 c e l l s = MeshFunction( s i z e t ,mesh , geo/

→ CR16 geo phy s i ca l r eg ion . xml )
22 f a c e t s = MeshFunction( s i z e t ,mesh , geo/

→ CR16 geo f ace t r eg i on . xml )
23
24 def m a t e r i a l c o e f f i c i e n t ( target mesh , c e l l s l i s t , c o e f f s ) :
25 c o e f f f u n c = Function ( FunctionSpace ( target mesh , DG , 0)

→ )
26 markers = numpy. asarray ( c e l l s l i s t . array ( ) , dtype=numpy.

→ i n t32 )
27 c o e f f f u n c . v ec tor ( ) [ : ] = numpy . choose ( markers −1, c o e f f s )
28 return c o e f f f u n c
29
30 n = FacetNormal (mesh )
31 # i n t e r f a c e , a r e a , vo lume e l e m e n t s
32 di = Measure ( dS , domain=mesh , subdomain data=f a c e t s )
33 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
34 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
35
36 Sca l a r = FunctionSpace (mesh , P , 1)
37 Vector = VectorFunctionSpace (mesh , P , 1)
38 Tensor = TensorFunctionSpace (mesh , P , 1)
39 Space = MixedFunctionSpace ( [ Sca lar , Vector ] ) #ph i , A
40
41 #u n i t s : m, kg , s , A , V , K
42 de l ta = Id en t i t y (3)
43 l e v i c i v i t a 2 = as matr ix ( [ (0 ,1 , −1) , ( −1 ,0 ,1) , (1 , −1 ,0) ] )
44 l e v i c i v i t a 3 = as t en s o r ( [ ( (0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (

→ (0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)
→ , ( 0 , 0 , 0 ) ) ] )

45 ep s i l on = l e v i c i v i t a 3
46
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47 eps 0 = 8.85E−12 #i n A s / (V m)
48 mu 0 = 12.6E−7 #i n V s / (A m)
49
50 nu l l=1E−20 #f o r n u m e r i c a l r e a s o n s i t i s n o t z e r o
51
52 #a i r
53 var s i gma a i r = 3E−15
54 c h i e l a i r = nu l l
55 ch i ma a i r = nu l l
56 mu r ma air = ch i ma a i r + 1 .
57
58 #me t a l ( c o p p e r )
59 vars igma cu = 58.5E+6 #i n S/m o r i n 1 / (Ohm m)
60 c h i e l c u = nu l l
61 chi ma cu = −1E−5
62 mu r ma cu = chi ma cu + 1 .
63
64 #T e f l o n ( p t f e ) i s an i n s u l a t o r
65 var s i gma pt f e = 1E−25 #i n S/m o r i n 1 / (Ohm m)
66 c h i e l p t f e = 1 .0
67 ch i ma pt f e = 1E−6
68 mu r ma ptfe = ch i ma pt f e + 1 .
69
70 c h i e l = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ c h i e l a i r ,

→ ch i e l c u , c h i e l p t f e ] )
71 chi ma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ ch i ma ai r ,

→ chi ma cu , ch i ma pt f e ] )
72 mu r ma = ma t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ mu r ma air ,

→ mu r ma cu , mu r ma ptfe ] )
73 varsigma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ vars igma ai r ,

→ vars igma cu , var s i gma pt f e ] )
74
75 tMax = 1.0
76 Dt = 0.1
77 t = 0 .0
78
79 c apac i t o r 1 = Expres s ion ( 0 . 1 time , time=0)
80 c apac i t o r 2 = Expres s ion ( −0.1 time , time=0)
81 bc01=DirichletBC ( Space . sub (0) , capac i to r 1 , f a c e t s , 1)
82 bc02=DirichletBC ( Space . sub (0) , capac i to r 2 , f a c e t s , 2)
83 bc03=DirichletBC ( Space . sub (0) , Constant ( 0 . ) , f a c e t s , 6)
84 bc04=DirichletBC ( Space . sub (1) , Constant ( ( 0 . , 0 . , 0 . ) ) , f a c e t s ,

→ 6)
85
86 bc = [ bc01 , bc02 , bc03 , bc04 ]
87
88 dunkn = Tria lFunct ion ( Space )
89 t e s t = TestFunction ( Space )
90 de l ph i , del A = s p l i t ( t e s t )
91
92 unkn = Function ( Space )
93 unkn0 = Function ( Space )
94 unkn00 = Function ( Space )
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95
96 unkn in i t = Expres s ion ( ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) )
97 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
98 unkn0 . a s s i gn ( unkn00 )
99 unkn . as s i gn ( unkn0)

100
101 phi , A = s p l i t ( unkn)
102 phi0 , A0 = s p l i t ( unkn0)
103 phi00 , A00 = s p l i t ( unkn00 )
104
105 i , j , k , l = i n d i c e s (4 )
106 de l ta = Id en t i t y (3)
107 E = as t en s o r (−phi . dx ( i )−(A−A0) [ i ] /Dt , ( i , ) )
108 E0 = as t en s o r (−phi0 . dx ( i )−(A0−A00) [ i ] /Dt , ( i , ) )
109 B = as t en s o r ( ep s i l on [ i , j , k ] A[ k ] . dx ( j ) , ( i , ) )
110
111 D = eps 0 E
112 D0 = eps 0 E0
113 H = 1./mu 0 B
114 P = eps 0 c h i e l E
115 P0 = eps 0 c h i e l E0
116 mD = D + P
117 mD0 = D0 + P0
118 MM =1./mu 0/mu r ma chi ma B
119 J f r = varsigma E
120
121 F phi = ( −(mD−mD0) [ i ] d e l ph i . dx ( i ) − Dt J f r [ i ] d e l ph i . dx (

→ i ) − Dt ep s i l on [ i , j , k ] MM[ k ] . dx ( j ) d e l ph i . dx ( i ) ) ( dv
→ (1 )+dv (2)+dv (3) ) + ( n( + ) [ i ] Dt ( J f r ( + ) − J f r ( −
→ ) ) [ i ] d e l ph i ( + ) + n( + ) [ i ] Dt ep s i l on [ i , j , k ] (MM(
→ + ) [ k ] . dx ( j ) − MM( − ) [ k ] . dx ( j ) ) d e l ph i ( + ) ) ( d i
→ (3 )+di (4 )+di (5 ) )

122
123 F A = ( eps 0 (A−2. A0+A00) [ i ] /Dt/Dt del A [ i ] + 1 . / mu 0 A[ i ] .

→ dx ( j ) del A [ i ] . dx ( j ) −J f r [ i ] del A [ i ] − (P−P0) [ i ] /Dt
→ del A [ i ] + ep s i l on [ i , j , k ] MM[ k ] del A [ i ] . dx ( j ) ) ( dv
→ (1 )+dv (2)+dv (3) )

124
125 Form = F phi + F A
126 Gain = de r i v a t i v e (Form , unkn , dunkn)
127
128 pwd= / c a l c u l /CR16 capacitor /
129 f i l e p h i m e t a l = F i l e (pwd+ phi metal . pvd )
130 f i l e p h i p t f e = F i l e (pwd+ ph i p t f e . pvd )
131 f i l e E = F i l e (pwd+ E. pvd )
132 f i l e B = F i l e (pwd+ B. pvd )
133
134 mesh metal = SubMesh(mesh , c e l l s , 2 )
135 mesh ptfe = SubMesh(mesh , c e l l s , 3 )
136
137 VectorSpace metal = FunctionSpace ( mesh metal , P , 1)
138 VectorSpace pt fe = FunctionSpace ( mesh ptfe , P , 1)
139 ph i meta l = Function ( VectorSpace metal , name= \ phi )
140 ph i p t f e = Function ( VectorSpace pt fe , name= \ phi )
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141
142
143 while t < tMax :
144 t += Dt
145 print time : , t
146 c apac i t o r 1 . time = t
147 c apac i t o r 2 . time = t
148 s o l v e (Form== 0 , unkn , bc , J=Gain , \
149 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
150 form compi l er parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

151
152 ph i meta l . a s s i gn ( p r o j e c t ( unkn . s p l i t ( deepcopy=True ) [ 0 ] ,

→ VectorSpace metal ) )
153 f i l e p h i m e t a l << ( phi metal , t )
154 ph i p t f e . a s s i gn ( p r o j e c t ( unkn . s p l i t ( deepcopy=True ) [ 0 ] ,

→ VectorSpace pt fe ) )
155 f i l e p h i p t f e << ( ph i p t f e , t )
156 f i l e B << ( p r o j e c t (B, Vector ) , t )
157 f i l e E << ( p r o j e c t (E, Vector ) , t )
158
159 unkn00 . a s s i gn ( unkn0)
160 unkn0 . a s s i gn (unkn )

3.2.2 Transformer Simulation

Every electronic device uses electricity. For example in a laptop the motherboard
needs 12V, however, the plug on the wall supplies 110–240V depending on the
country. For decreasing the voltage from the plug to the necessary voltage for the
laptop, we need a transformer. The transformer consists of a core and two windings.
The primary winding is connected to the input (to the plug on the wall) and the
secondary winding is connected to the output (to the laptop). We model a simple
transformer with a primary winding of 3 turns and a secondary winding of 2 turns,
see Fig. 3.6.

Thewindings and core are good conductors; however, they are not in contact. Since
both windings are connected to different circuits, we have an input and an output
voltages. The input voltage due to the alternating current (A.C.) varies harmonically
in ν = 50Hz, and due to the coiled geometry of the winding, this induces a magnetic
flux along the core. The core is chosen out of a ferromagnetic material with high
permeability such that the magnetic flux is increased within the core. It generates a
strong magnetic polarization directed along the core. Thus, the magnetic flux created
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Fig. 3.6 The geometry is a transformer in air. A ferromagnetic electric steel is used as the
transformer core and it transports the magnetic flux from the primary to the secondary winding,
without contacting the windings

by the primary winding is increased and transported to the secondary winding. This
flux induces a change in the electric potential on the secondary winding. As the input
current in the primary winding is alternating, an induced A.C. is generated as the
output.

If the magnetic core has no losses, then 3 turns input and 2 turns output would
decrease the input voltage to 2/3. Of course the core material has some losses. Two
different physical phenomena cause losses in the core. The first one is due to the
magnetostriction, i.e., a deformation owing to the magnetic polarization. This effect
causes a vibration in A.C. We assume rigid bodies in this section such that we ignore
this effect in the simulation. The second aspect ismainly a characteristic of the chosen
material. Modern transformers use a material called an electric steel with negligibly
small losses. A small amount of silicon mixed into the steel is named as an electric
steel. Moreover, the orientation of grains in the electric steel are directed along the
core geometry. This choice reduces the loss further such that we assume that the
material shows no hysteresis in A.C. In order to justify this assumption we consider
a Grain Oriented Electric Steel (GOES) alloy with the experimental data as seen in
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Fig. 3.7 Permeability A.C. measurement of a Grain Oriented Electric Steel (GOES) alloy, in
logarithmic base (left) and in non-logarithmic base (right). The experimental data is taken from
Allegheny Technologies Incorporated, www.ATImetals.com

Fig. 3.7. The experimental data is provided in logarithmic base and shows that no
hysteresis occurs in A.C. In order to comprehend the data better, we plot it in normal
(non-logarithmic) base. Obviously, the relation between Bi and Hi is not linear in
the whole range, in other words, the permeability is not a constant. However, by
restricting to magnetic fluxes lower than 1.5T we may assume a constant (relative)
permeability:

μ̄mag. = 20 000 . (3.96)

Copper and GOES alloy are conductors such that we implement Eqs. (3.80), (3.92)
for computing the electric potentials. On the ends of the winding with 3 turns the
electric potential is prescribed by Dirichlet conditions:

φ = A sin(ν2πt) , (3.97)

where A = ±110V at both ends and ν = 50Hz such that we have a 220V difference
alternating with 50Hz as usual in the home electricity in Europe. The core out of
GOES alloy and the copper windings are embedded in air.45 In reality there is a thin
layer on the winding, a coating, suppressing a current in the plane normal direction.
Hence, for a precise modeling, the current toward the interface normal is set to
zero on the interface between air and winding. We employ Eqs. (3.80), (3.92) for
computing the electromagnetic potentials leading to the magnetic flux due to the
electric current in the primary winding. The winding made of copper possesses
an electric conductivity as high as ς = 1/r = 58.5 · 106 S/m. However, this is not

45In reality, the transformer is housed in a polymer like epoxy, which is an insulator alike air. We
just neglect the electric polarization occurring in the polymer housing.

www.ATImetals.com
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realistic. The winding is on a circuit with a resistance. Otherwise, the electric current
would be so high that the production of heat due to the Joule heating would melt
the copper wire. For a 30W transformer the resistance on the primary winding can
be chosen as R1 = 100�. Since in the transformer we have 3 turns in the primary
and 2 turns in the secondary winding we reduce from 220V to 220/(3/2) ≈ 150V.
The current in A reads

I =
∫

Jidai , (3.98)

and the voltage is V1 = 220V and V2 = 150V in two windings. Since the power is
the same in each winding:

P = I1V1 = I2V2 , (3.99)

we can find out the adequate resistance on the secondary winding

V1 = I1R1 , V2 = I2R2 ,

R1

R2
= V1 I2

V2 I1
=

(
V1

V2

)2

=
(
3

2

)2

,

R2 = R1

(3/2)2
≈ 45� .

(3.100)

As the coils of radius, rc = 0.004m, has a surface of a = π r2c /2, the conductivity
of windings, ς = 1/r , read

ς1 = �1

R1a
, ς2 = �2

R2a
, (3.101)

where the length of each winding is �w = 2π rwwith the winding radius of rw =
0.02m. The primarywinding is then �1 = 3�w and the secondary winding is of length
�2 = 2�w. Since the resistance in the second winding is lower, the possible electric
current is higher. The electric current in the first winding flows in a helix such that
a magnetic flux is induced inside the coil, i.e., in the core in −z direction. This flux
creates a magnetic polarization in the core. The polarization is transferred over the
core to the second winding. There the magnetic flux is in+z direction and creates an
electric current in the secondwinding in the opposite direction. In a power supplywith
A.C. the direction of current has no importance. We visualize the electric potentials
in the windings, the magnetic polarization within the core, and the magnetic flux in
the whole space in Fig. 3.8. The geometry for the computation is in [1]. The code
below is used for the transient simulation of electrodynamics in rigid bodies.
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1 ””” Computational r e a l i t y 16 , p o l a r i z ed mater ia l , s imu lat i on
→ o f a trans former ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9

10 2D 1 ” copper 2 out ”
11 2D 2 ” copper 1 in ”
12 2D 3 ” copper 1 out ”
13 2D 4 ” a i r g o e s ”
14 2D 5 ” copp e r 1 a i r ”
15 2D 6 ” copp e r 2 a i r ”
16 2D 7 ” ai r boundary ”
17 2D 8 ” copper 2 in ”
18 3D 1 ” copper 1 wi th 3 tu rn s ”
19 3D 2 ” copper 2 wi th 2 tu rn s ”
20 3D 3 ” a i r ”
21 3D 4 ”goes ”
22
23 mesh = Mesh ( geo/CR16 geo trafo . xml )
24 c e l l s = MeshFunction( s i z e t ,mesh , geo/

→ CR16 geo t r a f o phy s i c a l r e g i on . xml )
25 f a c e t s = MeshFunction( s i z e t ,mesh , geo/

→ CR16 geo t r a f o f a c e t r e g i on . xml )
26
27 def m a t e r i a l c o e f f i c i e n t ( target mesh , c e l l s l i s t , c o e f f s ) :
28 c o e f f f u n c = Function ( FunctionSpace ( target mesh , DG , 0)

→ )
29 markers = numpy. asarray ( c e l l s l i s t . array ( ) , dtype=numpy.

→ i n t32 )
30 c o e f f f u n c . v ec tor ( ) [ : ] = numpy . choose ( markers −1, c o e f f s )
31 return c o e f f f u n c
32
33 n = FacetNormal (mesh )
34 # i n t e r f a c e , a r e a , vo lume e l e m e n t s
35 di = Measure ( dS , domain=mesh , subdomain data=f a c e t s )
36 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
37 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
38
39 Sca l a r = FunctionSpace (mesh , P , 1)
40 Vector = VectorFunctionSpace (mesh , P , 1)
41 Tensor = TensorFunctionSpace (mesh , P , 1)
42 Space = MixedFunctionSpace ( [ Sca lar , Vector ] ) #ph i , A
43
44 #u n i t s : m, kg , s , A , V , K
45 de l ta = Id en t i t y (3)
46 ep s i l on = as t en s o r ( [ ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (

(0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)→
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→ , ( 0 , 0 , 0 ) ) ] )
47
48 eps 0 = 8.85E−12 #i n A s / (V m)
49 mu 0 = 12.6E−7 #i n V s / (A m)
50
51 nu l l=1E−20 #f o r n u m e r i c a l r e a s o n s i t i s n o t z e r o
52
53 #Gra in O r i e n t e d E l e c t r i c a l S t e e l (GOES) i s a f e r r o m a g n e t i c

→ m a t e r i a l
54 vars igma goes = 2 .1E+6 #i n S/m o r i n 1 / (Ohm m)
55 c h i e l g o e s = nu l l
56 mu r ma goes = 20000. #a p p r o x im a t e l y
57 ch i ma goes = mu r ma goes − 1 .
58
59 #a i r
60 var s i gma a i r = 3E−15
61 c h i e l a i r = nu l l
62 ch i ma a i r = nu l l
63 mu r ma air = ch i ma a i r + 1 .
64
65 #me t a l ( c o p p e r )
66 a = pi 0 . 004 2/2 .
67 l w = 2 . p i 0 .02
68 #w i nd i n g 1 w i t h 3 t u r n s
69 l 1 = 3 . l w
70 R 1 = 100. #i n Ohm o r 1/ S
71 V 1 = 220. #i n V
72 I 1 = V 1/R 1
73 vars igma cu 1 = l 1 /(R 1 a ) #i n S/m
74 #w i nd i n g 2 w i t h 2 t u r n s
75 l 2 = 2 . l w
76 R 2 = 45 .
77 vars igma cu 2 = l 2 /(R 2 a ) #i n S/m o r i n 1 / (Ohm m)
78
79 c h i e l c u = nu l l
80 chi ma cu = −1E−5
81 mu r ma cu = chi ma cu + 1 .
82
83 c h i e l = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ c h i e l c u ,

→ ch i e l c u , c h i e l a i r , c h i e l g o e s ] )
84 chi ma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ chi ma cu ,

→ chi ma cu , ch i ma ai r , ch i ma goes ] )
85 mu r ma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ mu r ma cu ,

→ mu r ma cu , mu r ma air , mu r ma goes ] )
86 varsigma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ vars igma cu 1 ,

→ vars igma cu 2 , vars igma ai r , vars igma goes ] )
87
88 tMax = 0.02
89 Dt = tMax/20.
90 t = 0 .0
91
92 bc01=DirichletBC ( Space . sub (0) , Constant ( 0 . ) , f a c e t s , 7)
93 bc02=DirichletBC ( Space . sub (1) , Constant ( ( 0 . , 0 . , 0 . ) ) , f a c e t s ,

→ 7)
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94 bc cu in = Expres s ion ( A s i n (nu 2 . 0 p i time ) ,A=V 1 /2 . , nu
→ =50. , time =0.)

95 bc cu out = Expres s ion ( A s i n (nu 2 . 0 p i time ) ,A=−V 1 /2 . , nu
→ =50. , time =0.)

96 bc03=DirichletBC ( Space . sub (0) , bc cu in , f a c e t s , 2)
97 bc04=DirichletBC ( Space . sub (0) , bc cu out , f a c e t s , 3)
98 bc = [ bc01 , bc02 , bc03 , bc04 ]
99

100 dunkn = Tria lFunct ion ( Space )
101 t e s t = TestFunction ( Space )
102 de l ph i , del A = s p l i t ( t e s t )
103
104 unkn = Function ( Space )
105 unkn0 = Function ( Space )
106 unkn00 = Function ( Space )
107
108 unkn in i t = Expres s ion ( ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) )
109 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
110 unkn0 . a s s i gn ( unkn00 )
111 unkn . as s i gn ( unkn0)
112
113 phi , A = s p l i t ( unkn)
114 phi0 , A0 = s p l i t ( unkn0)
115 phi00 , A00 = s p l i t ( unkn00 )
116
117 i , j , k , l = i n d i c e s (4 )
118 de l ta = Id en t i t y (3)
119 E = as t en s o r (−phi . dx ( i )−(A−A0) [ i ] /Dt , ( i , ) )
120 E0 = as t en s o r (−phi0 . dx ( i )−(A0−A00) [ i ] /Dt , ( i , ) )
121 B = as t en s o r ( ep s i l on [ i , j , k ] A[ k ] . dx ( j ) , ( i , ) )
122
123 D = eps 0 E
124 D0 = eps 0 E0
125 H = 1./mu 0 B
126 P = eps 0 c h i e l E
127 P0 = eps 0 c h i e l E0
128 mD = D + P
129 mD0 = D0 + P0
130 MM = 1./mu 0/mu r ma chi ma B
131 J f r = varsigma E
132
133 F phi = ( −(mD−mD0) [ i ] d e l ph i . dx ( i ) − Dt J f r [ i ] d e l ph i . dx (

→ i ) − Dt ep s i l on [ i , j , k ] MM[ k ] . dx ( j ) d e l ph i . dx ( i ) ) ( dv
→ (1 )+dv (2)+dv (3)+dv (4) ) + n( + ) [ i ] Dt ep s i l on [ i , j , k ] (
→ MM( + ) [ k ] . dx ( j ) − MM( − ) [ k ] . dx ( j ) ) d e l ph i ( + ) ( d i
→ (1 )+di (4 )+di (5 )+di (6 )+di (8 ) )

134
135 F A = ( eps 0 (A−2. A0+A00) [ i ] /Dt/Dt del A [ i ] + 1 . / mu 0 A[ i ] .

→ dx ( j ) del A [ i ] . dx ( j ) −J f r [ i ] del A [ i ] − (P−P0) [ i ] /Dt
→ del A [ i ] + ep s i l on [ i , j , k ] MM[ k ] del A [ i ] . dx ( j ) ) ( dv (1)
→ +dv (2)+dv (3)+dv (4) )

136
137 Form = F phi + F A
138 Gain = de r i v a t i v e (Form , unkn , dunkn)
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139
140 pwd= / c a l c u l /CR16 transformer /
141 f i l e p h i = F i l e (pwd+ phi . pvd )
142 f i l e M = F i l e (pwd+ M. pvd )
143 f i l e B = F i l e (pwd+ B. pvd )
144
145 mesh 1 = SubMesh(mesh , c e l l s , 1 )
146 mesh 2 = SubMesh(mesh , c e l l s , 2 )
147 mesh 3 = SubMesh(mesh , c e l l s , 3 )
148 mesh 4 = SubMesh(mesh , c e l l s , 4 )
149
150 ph i copper 1 = Function ( FunctionSpace (mesh 1 , P , 1) , name=

→ \phi in V )
151 ph i copper 2 = Function ( FunctionSpace (mesh 2 , P , 1) , name=

→ \phi in V )
152 MM goes = Function ( VectorFunctionSpace (mesh 4 , P , 1) , name

→ = | \ mathcal{M} i | in A/m )
153 B = Function ( VectorFunctionSpace (mesh , P , 1) , name= | B i |

→ in T )
154
155
156 while t < tMax :
157 t += Dt
158 print time : , t
159 bc cu in . time = t
160 bc cu out . time = t
161 s o l v e (Form== 0 , unkn , bc , J=Gain , \
162 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
163 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

164
165 ph i copper 1 . a s s i gn ( p r o j e c t ( unkn . s p l i t ( deepcopy=True )

→ [ 0 ] , FunctionSpace ( mesh 1 , P , 1) ) )
166 f i l e p h i << ( ph i copper 1 , t )
167 ph i copper 2 . a s s i gn ( p r o j e c t ( unkn . s p l i t ( deepcopy=True )

→ [ 0 ] , FunctionSpace ( mesh 2 , P , 1) ) )
168 f i l e p h i << ( ph i copper 2 , t )
169 MM goes . a s s i gn ( p r o j e c t (MM, VectorFunctionSpace ( mesh 4 ,

→ P , 1) ) )
170 f i l e M << (MM goes , t )
171 B . as s i gn ( p r o j e c t (B, VectorFunctionSpace (mesh , P , 1) ) )
172 f i l e B << (B , t )
173
174 unkn00 . a s s i gn ( unkn0)
175 unkn0 . a s s i gn (unkn )
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Fig. 3.8 Three fields are visualized at t = 0.05s. The core out of GOES alloy is magnetized, the
magnetic polarization is visualized as arrows colored by the values of Mi . The primary winding
with 3 turns and the secondary winding with 2 turns are colored by the electric potential, φ. On a
slice in y-plane, the magnitude of the magnetic flux density, Bi , is shown as colored. The magnetic
flux is immensely increased inside the core, so the leaded magnetic field from the primary to the
secondary coil induces an electric potential in the secondary coil. Since the current is alternating
on the primary coil, the induced current is alternating, too

3.2.3 Proximity and Skin Effects

In a conductor, for example in a copperwire, the charge carriers are valence electrons.
They conduct the charge and this transport is called the free objective electric current,
J fr.i . It depends on the electromotive intensity, Ei , which is the electric field measured
on the co-moving frame. In this section we assume the copper wire as a rigid body;
all objective variables, J fr.i , Ei , Mi , equal to their corresponding variables measured
in the laboratory frame, J fr.

i = J fr.i , Ei = Ei , Mi = Mi .
An alternating electric current induces a magnetic field, which again induces a

current in the wire itself. This induced current is swirling within the wire and is called
Foucault or eddy current.46 The eddy current is perpendicular to the cross-section
of the wire and is directed along the current near the surface and against the current
in the core of the wire. The net amount of current is greater on the outer shell than
in the core of the wire. Even if we apply a constant electric potential over the cross-
section, the current comes out as distributed. The effective conduction current (area
density), J fr.

i , is greater near surface than in core. In Fig. 3.9 the so-called skin effect
is visualized at 500kHz. Skin effect occurs in an alternating current, A.C., since a
current is induced due to the varying charge potential. Impedance is an effective
resistance of the wire against A.C., thus, the skin effect increases the impedance of
thewiremore in the core than on the surface. The deviation of the impedance between
surface and core increases with increasing frequency. Especially for digital cables
carrying signals in MHz, the skin effect results in an effective current transported

46Eddy current was discovered firstly by Jean Bernard Léon Foucault.
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Fig. 3.9 Skin effect at 500kHz can be seen at 1/10 of the period. Colors denote to the magnitude
of J fr.i and arrows denote the direction of the magnetic flux density, Bi

Fig. 3.10 Proximity effect is seen at 1/10 of the period at 500kHz. Colors denote to the magnitude
of J fr.i and arrows indicate Bi

on the surface. Special finishing is used on the surface of high quality cables to
maximize the purity of copper and increase the conductivity on the surface as much
as possible.

By having two cables, the eddy currents of both play a role such that the current
distribution on the cross-section changes, which is referred to as a proximity effect.
The proximity effect is visualized in Fig. 3.10. Especially for cables in high frequen-
cies there are many different designs reducing the skin and proximity effects. The
general idea is to use bundles twisted around each other such that the proximity effect
is eliminated by the neighboring cables in every direction. These cables are called
litz wires.47 The geometries for the computations can be found in [1] and the code
used for computing the skin and proximity effects is given below.

47Der Litzendraht in German means stranded wire.
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1 ””” Computational r e a l i t y 16 , p o l a r i z ed mater ia l , s k in and
→ proximity e f f e c t ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9

10
11 2D 1 ” in ”
12 2D 2 ”out”
13 2D 3 ” ai r boundary ”
14 2D 4 ” a i r c opp e r ”
15 3D 1 ” a i r ”
16 3D 2 ” copper”
17
18 mesh = Mesh ( geo/CR16 geo prox imity two wires . xml )
19 c e l l s = MeshFunction( s i z e t ,mesh , geo/

→ CR16 geo p rox imi ty two wi r e s phy s i ca l r eg i on . xml )
20 f a c e t s = MeshFunction( s i z e t ,mesh , geo/

→ CR16 geo p rox imi ty two wi r e s f ace t r eg i on . xml )
21
22 def m a t e r i a l c o e f f i c i e n t ( target mesh , c e l l s l i s t , c o e f f s ) :
23 c o e f f f u n c = Function ( FunctionSpace ( target mesh , DG , 0)

→ )
24 markers = numpy. asarray ( c e l l s l i s t . array ( ) , dtype=numpy.

→ i n t32 )
25 c o e f f f u n c . v ec tor ( ) [ : ] = numpy . choose ( markers −1, c o e f f s )
26 return c o e f f f u n c
27
28 n = FacetNormal (mesh )
29 # i n t e r f a c e , a r e a , vo l ume e l e m e n t s
30 di = Measure ( dS , domain=mesh , subdomain data=f a c e t s )
31 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
32 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
33
34 Sca l a r = FunctionSpace (mesh , P , 1)
35 Vector = VectorFunctionSpace (mesh , P , 1)
36 Tensor = TensorFunctionSpace (mesh , P , 1)
37 Space = MixedFunctionSpace ( [ Sca lar , Vector ] ) #ph i , A
38
39 #u n i t s : m, kg , s , A , V , K
40 de l ta = Id en t i t y (3)
41 ep s i l on = as t en s o r ( [ ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (

→ (0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)
→ , ( 0 , 0 , 0 ) ) ] )

42
43 eps 0 = 8.85E−12 #i n A s / (V m)
44 mu 0 = 12.6E−7 #i n V s / (A m)
45 nu l l=1E−20 #f o r n u m e r i c a l r e a s o n s i t i s n o t z e r o
46
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47 #a i r
48 var s i gma a i r = 3E−15
49 c h i e l a i r = nu l l
50 ch i ma a i r = nu l l
51 mu r ma air = ch i ma a i r + 1 .
52
53 #c o p p e r
54 rho cu = 8960. #i n kg / mˆ3
55 a = pi 0 . 01 2/2 .
56 l = 0 . 1
57 R = 100.
58 vars igma cu = l /(R a ) #i n S/m o r i n 1 / (Ohm m)
59 V = 220. #i n V , I = V/R i n A
60 c h i e l c u = nu l l
61 chi ma cu = −1E−5
62 mu r ma cu = chi ma cu + 1 .
63
64 c h i e l = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ c h i e l a i r ,

→ c h i e l c u ] )
65 chi ma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ ch i ma ai r ,

→ chi ma cu ] )
66 mu r ma = ma t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ mu r ma air ,

→ mu r ma cu ] )
67 varsigma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ vars igma ai r ,

→ vars igma cu ] )
68
69 f r e q = 500000. #i n Hz
70 tMax = 1./ f r e q
71 Dt = tMax/20.
72 t = 0 .0
73
74 bc01=DirichletBC ( Space . sub (0) , Constant ( 0 . ) , f a c e t s , 3)
75 bc02=DirichletBC ( Space . sub (1) , Constant ( ( 0 . , 0 . , 0 . ) ) , f a c e t s ,

→ 3)
76 bc in = Expres s ion ( A s i n (nu 2 . 0 p i time ) ,A=V/2 . , nu=freq ,

→ time =0.)
77 bc out = Expres s ion ( A s i n (nu 2 . 0 p i time ) ,A=−V/2 . , nu=freq ,

→ time =0.)
78 bc03=DirichletBC ( Space . sub (0) , bc in , f a c e t s , 1)
79 bc04=DirichletBC ( Space . sub (0) , bc out , f a c e t s , 2)
80 bc = [ bc01 , bc02 , bc03 , bc04 ]
81
82 dunkn = Tria lFunct ion ( Space )
83 t e s t = TestFunction ( Space )
84 de l ph i , del A = s p l i t ( t e s t )
85
86 unkn = Function ( Space )
87 unkn0 = Function ( Space )
88 unkn00 = Function ( Space )
89
90 unkn in i t = Expres s ion ( ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) )
91 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
92 unkn0 . a s s i gn ( unkn00 )
93 unkn . as s i gn ( unkn0)
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94
95 phi , A = s p l i t ( unkn)
96 phi0 , A0 = s p l i t ( unkn0)
97 phi00 , A00 = s p l i t ( unkn00 )
98
99 i , j , k , l = i n d i c e s (4 )

100 de l ta = Id en t i t y (3)
101 E = as t en s o r (−phi . dx ( i )−(A−A0) [ i ] /Dt , ( i , ) )
102 E0 = as t en s o r (−phi0 . dx ( i )−(A0−A00) [ i ] /Dt , ( i , ) )
103 B = as t en s o r ( ep s i l on [ i , j , k ] A[ k ] . dx ( j ) , ( i , ) )
104
105 D = eps 0 E
106 D0 = eps 0 E0
107 H = 1./mu 0 B
108 P = eps 0 c h i e l E
109 P0 = eps 0 c h i e l E0
110 mD = D + P
111 mD0 = D0 + P0
112 MM = 1./mu 0/mu r ma chi ma B
113 J f r = varsigma E
114
115 F phi = ( −(mD−mD0) [ i ] d e l ph i . dx ( i ) − Dt J f r [ i ] d e l ph i . dx (

→ i ) − Dt ep s i l on [ i , j , k ] MM[ k ] . dx ( j ) d e l ph i . dx ( i ) ) ( dv
→ (1 )+dv (2) ) + ( n( + ) [ i ] Dt ( J f r ( + ) − J f r ( − ) ) [ i
→ ] d e l ph i ( + ) + n( + ) [ i ] Dt ep s i l on [ i , j , k ] (MM( + ) [
→ k ] . dx ( j ) − MM( − ) [ k ] . dx ( j ) ) d e l ph i ( + ) ) d i (4 )

116
117 F A = ( eps 0 (A−2. A0+A00) [ i ] /Dt/Dt del A [ i ] + 1 . / mu 0 A[ i ] .

→ dx ( j ) del A [ i ] . dx ( j ) −J f r [ i ] del A [ i ] − (P−P0) [ i ] /Dt
→ del A [ i ] + ep s i l on [ i , j , k ] MM[ k ] del A [ i ] . dx ( j ) ) ( dv (1)
→ +dv (2) )

118
119 Form = F phi + F A
120 Gain = de r i v a t i v e (Form , unkn , dunkn)
121
122 pwd= / c a l c u l /CR16 proximity two wires /
123 f i l e p h i = F i l e (pwd+ phi . pvd )
124 f i l e z = F i l e (pwd+ z . pvd )
125 f i l e B = F i l e (pwd+ B. pvd )
126 f i l e J f r = F i l e (pwd+ J f r . pvd )
127
128 mesh 1 = SubMesh(mesh , c e l l s , 1 )
129 mesh 2 = SubMesh(mesh , c e l l s , 2 )
130
131 ph i copper = Function ( FunctionSpace (mesh 2 , P , 1) , name=

→ \phi in V )
132 z = Function ( FunctionSpace ( mesh 2 , P , 1) , name= z in C/

→ kg )
133 B = Function ( VectorFunctionSpace (mesh , P , 1) , name= | B i |

→ in T )
134 J f r = Function ( VectorFunctionSpace (mesh 2 , P , 1) , name=

→ J i ˆ\mathrm{ f r .} in A/m ˆ2 )
135
136
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137 while t < tMax :
138 t += Dt
139 print time : , t
140 bc in . time = t
141 bc out . time = t
142 t i c ( )
143 s o l v e (Form== 0 , unkn , bc , J=Gain , \
144 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
145 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

146
147 print f i n i s h e d in , toc ( ) , s econds
148 ph i copper . a s s i gn ( p r o j e c t ( unkn . s p l i t ( deepcopy=True ) [ 0 ] ,

→ FunctionSpace ( mesh 2 , P , 1) ) )
149 f i l e p h i << ( ph i copper , t )
150 B . as s i gn ( p r o j e c t (B, VectorFunctionSpace (mesh , P , 1) ) )
151 f i l e B << (B , t )
152 z . a s s i gn ( p ro j e c t (D[ i ] . dx ( i ) / rho cu , FunctionSpace ( mesh 2

→ , P , 1) ) )
153 f i l e z << ( z , t )
154 J f r . a s s i gn ( p r o j e c t ( J f r , VectorFunctionSpace ( mesh 2 , P

→ , 1) ) )
155 f i l e J f r << ( J f r , t )
156
157 unkn00 . a s s i gn ( unkn0)
158 unkn0 . a s s i gn (unkn)

To-do

The electric field, Ei , and the magnetic flux (area density), Bi , exist in material and
in free space. They are always orthogonal to each other.

• Implement the code for capacitor and plot on the same cut plane Ei as well as Bi

in order to see that they are orthogonal.
• Simulate a transformer with a different core.
• Use the code for a conducting wire and plot Di,i = ρz in order to test the simpli-
fication of incompressible flow of electric charges utilized in the last section.

• In the literature there are formulations attacking Maxwell’s equations in a way
to solve directly the fields Ei and Bi without using the electromagnetic potentials,
φ, Ai . In this configuration the numerical implementation of appropriate elements
is quite difficult. There are different proposals. One of them is implementing
special elements for Ei and Bi . Search for Nedelec elements and solutions of
electromagnetic problems by using Nedelec elements in FEniCS.

• Make a web based search for the capacitors. Learn how the capacitive touchscreen
of a smartphone works.
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3.3 Thermoelectric Coupling

As we have seen in Sect. 3.1 the continuum body heats up due to the heat produced
during conducting an electric current. Formally, this production is Joule’s heating
and written on the right hand side in the balance of internal energy. Since the temper-
ature changes, the material shrinks or expands. In order to incorporate this effect into
the computational reality, we have to use the balance of linear momentum with the
electromagnetic interactions (with matter). We will motivate the balance equation
and then derive the constitutive equations in a thermodynamically consistent way.
In this section we employ the formulation for an unpolarized material, z − zfr. = 0.
Thus, electric and magnetic polarizations vanish

Pi = 0 , Mi = 0 . (3.102)

Total energy consists of the energydue to thematter andfield.Matter denotes particles
with mass and field means the electromagnetic fields due to particles with an electric
charge. Of course materials like copper include molecules with mass and charge.
However, mass and charge are treated separately, they are both assumed to exist
independently. The thermodynamical formulation starts with the assertion that the
total energy is conserved. In other words, a balance of total energy lacks a production
term

∂ρe

∂t
− ∂

∂x j

( − v jρe + Fj
) − ρs = 0 , (3.103)

where the specific total energy, e, its flux term, Fi , and its specific supply term,
s, shall be defined. We postpone their derivation and proceed with the balance of
momentum with the electromagnetic interactions:

∂ρvi

∂t
− ∂

∂x j

( − v jρvi + σ j i
) − ρ fi = Fi , (3.104)

where the additional force density, Fi , is caused by the electromagnetic fields. A
moving particle “feels” this additional force density—it is the Lorentz force density
for unpolarized systems:

Fi = ρzEi + εi jk J j Bk , (3.105)

as given in Eq. (3.12) with the help of the specific electric charge, z, the mass density,
ρ, and the electric current, Ji . In the case of electromagnetic interactions between
matter and field, the momentum is not a conserved quantity and the Lorentz force
acts as a production. Now by using the balance of mass:

∂ρ

∂t
+ ∂ρv j

∂x j
= 0 , (3.106)
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and the so-called total time rate:48

d

dt
= ∂

∂t
+ v j

∂

∂x j
, (3.107)

we obtain from the balance of momentum

ρ
dvi
dt

− ∂σ j i

∂x j
− ρ fi = Fi . (3.108)

By multiplying the latter with the velocity, we acquire the balance of kinetic energy:

ρ
dvi
dt

vi − ∂σ j i

∂x j
vi − ρ fivi = Fivi ,

ρ
d

dt

(1
2
vivi

)
− ∂σ j ivi

∂x j
− ρ fivi = −σ j i

∂vi

∂x j
+ Fivi .

(3.109)

The balance of mass is used once more in order to bring the balance of kinetic energy
in the following form:

∂

∂t

(
ρ
1

2
vivi

)
− ∂

∂x j

(
− ρv j

1

2
vivi + σ j ivi

)
− ρ fivi = −σ j i

∂vi

∂x j
+ Fivi ,

(3.110)
where the right-hand side is the production term. Now by using

Ji = Ji + ρzvi , Ei = Ei − εi jkv j Bk , (3.111)

we can rewrite the final term in the production of kinetic energy,

Fivi = (
ρzEi + εi jk J j Bk

)
vi =

= (Ji − Ji )Ei + εi jkvi (J j + ρzv j )Bk =
= Ji Ei − J j (E j − εi jkvi Bk) = Ji Ei − J j (E j + ε j ikvi Bk) =

= Ji Ei − J jE j .

(3.112)

By employing Maxwell’s Eq. (3.51)2 and εi jk = −εik j we rewrite the latter,

48For a scalar and as a special case for the velocity the total time rate, d(·)
dt , is equal to the objective

time rate, (·)•, for a fixed coordinate system, wi = 0.
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Fivi =
(

− ∂Di

∂t
+ εi jk

∂Hk

∂x j

)
Ei − JiEi =

= −∂Di

∂t
Ei + εi jk

∂HkEi

∂x j
− εi jk Hk

∂Ei

∂x j
− JiEi =

= −∂Di

∂t
Ei − εik j

∂HkEi

∂x j
+ Hkεk ji

∂Ei

∂x j
− JiEi .

(3.113)

After inserting Maxwell’s Eq. (3.38) and employing the Maxwell–Lorentz
aether relations in Eqs. (3.52) we acquire

Fivi = −∂Di

∂t
Ei − ∂(E × H) j

∂x j
− Hk

∂Bk

∂t
− JiEi =

= −1

2

∂ε0Ei Ei

∂t
− ∂(E × H) j

∂x j
− 1

μ0
Bk

∂Bk

∂t
− JiEi =

= −1

2

∂

∂t

(
ε0Ei Ei + 1

μ0
Bk Bk

)
− ∂(E × H) j

∂x j
− JiEi =

= − ∂

∂t

(1
2
(Di Ei + Hi Bi )

)
− ∂(E × H) j

∂x j
− JiEi .

(3.114)

The latter is inserted into the balance of kinetic energy in Eq. (3.110) and we obtain

∂

∂t

(
ρ
1

2
vivi + 1

2
(Di Ei + Hi Bi )

)
− ∂

∂x j

(
− ρv j

1

2
vivi − (E × H) j + σ j ivi

)
−

−ρ fivi = −σ j i
∂vi

∂x j
− JiEi .

(3.115)

The kinetic energy density has two components, ρekin. = ρem. + ef., one due tomatter
and one due to field:

ρem. = ρ
1

2
vivi , ef. = 1

2
(Di Ei + Hi Bi ) . (3.116)

For simplicity we rewrite the balance of kinetic energy as follows

∂

∂t

(
ρekin.

)
− ∂

∂x j

(
− v j (ρe

kin. − ef.) − (E × H) j + σ j ivi

)
− ρ fivi =

= −σ j i
∂vi

∂x j
− JiEi .

(3.117)

Since ef. exists even in a vacuum (without massive particles) we refrain from intro-
ducing a specific energy (energy per mass). The total energy is composed of the
kinetic energy (of matter and field) and of internal energy:
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e = ekin. + u . (3.118)

Hence, we can subtract from the balance of total energy in Eq. (3.103) the balance
of kinetic energy in Eq. (3.117),

∂

∂t

(
ρe − ρekin.

)
− ∂

∂x j

(
− v j (ρe − ρekin. + ef.) + Fj + (E × H) j − σ j ivi

)
−

−ρ(s − fivi ) = σ j i
∂vi

∂x j
+ JiEi ,

(3.119)
and obtain the balance of internal energy:

∂ρu

∂t
− ∂

∂x j

( − v j u − q j
) − ρr = � , (3.120)

with the so-called heat flux, qi , supply term, r , and production term, �,

−q j = −v j e
f. + Fj + (E × H) j − σ j ivi ,

r = s − fivi , � = σ j i
∂vi

∂x j
+ JiEi .

(3.121)

Especially the heat flux can be chosen differently than herein. Flux of field, (E ×
H) j , is the radiation transporting heat. A typical example is the heat of the Sun
reaching the Earth through the free space. Since the radiation is a heat flux the above
definition is possible. However, we could leave out the radiation from the heat flux
and continue with a balance of internal energy where its flux is −q j + (E × H) j .
The difference is how we measure the heat flux. If the measurement is done by
including the radiation term then the definition used herein is appropriate. After
using the balance of mass we obtain

ρ
du

dt
+ ∂q j

∂x j
− ρr = � , (3.122)

as we can use the objective and total rates interchangeably for a scalar quantity,

ρu• + ∂qi
∂xi

− ρr = � = σ j i
∂vi

∂x j
+ JiEi . (3.123)

The primitive variables are {φ, Ai , ui , T }. For the electromagnetic potentials, φ, Ai ,
we will use the same equations as in the last section, after utilizing the Lorenz gauge
we obtain

∂ρz

∂t
+ ∂ Ji

∂xi
= 0 , ε0

∂2Ai

∂t2
− 1

μ0

∂2Ai

∂x j∂x j
= Ji , (3.124)
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where the total current is

Ji = J fr.
i + ∂Pi

∂t
+ εi jk

∂Mk

∂x j
, J fr.

i = J fr.i + ρzfr.vi . (3.125)

For the displacement, ui , we will employ the balance of linear momentum:

ρv•
i − ∂σ j i

∂x j
− ρ fi = Fi . (3.126)

For the temperature, T , we may utilize the balance of internal energy:

ρu• + ∂qi
∂xi

− ρr = σ j i
∂vi

∂x j
+ JiEi . (3.127)

In order to close these equations we need to determine the constitutive equations, Ji ,
σi j , qi . We start off with the balance of internal energy at the equilibrium state. We
decompose the stress tensor into reversible and dissipative terms:

σi j = rσi j + dσi j , rσi j = −pδi j + eσi j , (3.128)

where eσi j denotes the elastic stress. We ignore the pressure, p, since its effect is
negligibly small for solid bodies. The stress tensor is symmetric for unpolarized
materials

σ j i
∂vi

∂x j
= σi j di j = σi jε

•
i j , (3.129)

wherewehaveused that the rate of strains is equal to the symmetric part of the velocity
gradient, for the sake of brevity we prove this identity in AppendixA.4 on p.301.
We readily restricted the implementation to linearized strains, εi j , in other words, we
assume that the displacements are so small that the deformation gradient is equal to
the identity. In order to obtain the equilibrium state and the constitutive equations,
we use the method introduced in Sect. 2.3 on p.126. For the mechanical equilibrium
we utilize the decomposition of stress and identify the dissipative term with the
irreversible process such that it has to vanish at equilibrium, dσi j = 0. For the thermal
equilibrium we introduce the entropy rate density, ρη•, as the minus divergence of
heat flux per temperature. Moreover, r = 0 for the thermal equilibrium. For the
electromagnetic equilibrium Ji = 0 holds such that the production term vanishes.
The balance of internal energy at equilibrium reads

ρu• − ρT η• = eσi jε
•
i j . (3.130)

By using the 1st law of thermodynamics we exchange the rates with differential
forms and obtain Gibbs’s equation:

http://dx.doi.org/10.1007/978-981-10-2444-3_2
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ρ du = ρT dη + eσi jdεi j ,

du = T dη + eσi jvdεi j .
(3.131)

with the specific volume, v = 1/ρ. Obviously, the internal energy depends on the
entropy and strain, u = u(η, εi j ). In order to acquire a dependence on temperature
instead on entropy, we introduce the specific free energy:

ψ = u − T η , dψ = du − η dT − T dη ,

dψ = −η dT + eσi jvdεi j .
(3.132)

The specific free energy depends on the temperature and strain, ψ = ψ(T, εi j ), as
follows

η = −∂ψ

∂T
, eσi jv = ∂ψ

∂εi j
. (3.133)

The dual variables, η and eσi j , depend on the same set of state variables such that we
obtain

dη = AdT + p̄i jdεi j ,

d eσi j = pi jdT + Ci jkldεkl ,
(3.134)

where the coefficients depend on the state space, A = A(T, εi j ), p̄i j = p̄i j (T, εi j ),
pi j = pi j (T, εi j ), Ci jkl = Ci jkl(T, εi j ). Instead of measuring entropy, the heat flux
is measured, δQ = T dη = cdT , by a constant strain, dεi j = 0. The specific heat
capacity, c = T A, is determined by varying the temperature and measuring the heat
flux. By holding the temperature constant, dT = 0, at a specific temperature, the
stiffness tensor, Ci jkl , is determined by varying strain and measuring stress. We
employ the Maxwell symmetry (reciprocal) relation:

p̄i j = ∂η

∂εi j
= − ∂2ψ

∂εi j∂T
= − ∂2ψ

∂T∂εi j
= −v

∂ eσi j

∂T
= −vpi j , (3.135)

since the mass density and thus the specific volume depends on space and time but
not on temperature. We obtain

dη = c

T
dT − pi jvdεi j ,

d eσi j = pi jdT + Ci jkldεkl .

(3.136)

The thermal pressure, pi j , can be rewritten by introducing an experiment where
temperature is varied and strain is measured, dεi j = αi jdT , in order to determine
the thermal expansion coefficient, αi j . Since this experiment is realized by holding
stress constant, we have from Eq. (3.136)2

0 = pi jdT + Ci jkldεkl = pi jdT + Ci jklαkldT

⇒ pi j = −Ci jklαkl .
(3.137)
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We want to implement a linear material, i.e., all parameters, c, Ci jkl , and αi j are
constants, in other words, they do not depend on the state variables. In this case we
simply integrate from a reference state, Tref., εi j = 0, without stress and entropy49 to
the actual state, T , εi j , and acquire the following constitutive equations:

η = c
(
ln(T ) − ln(Tref.)

) + Ci jklαklvεi j = c ln
( T

Tref.

)
+ Ci jklαklvεi j ,

eσi j = −Ci jklαkl(T − Tref.) + Ci jklεkl = Ci jkl
(
εkl − αkl(T − Tref.)

)
.

(3.138)

Now the rate of internal energy density is determined completely

ρu• = ρT η• + eσi jε
•
i j , (3.139)

so we can insert the latter into the balance of internal energy in Eq. (3.127) and obtain

ρT η• + ∂qi
∂xi

− ρr = JiEi + dσi j di j . (3.140)

In this section we set the dissipative stress zero by assuming that the material is only
elastic. After a reformulation we obtain the balance of entropy for an unpolarized
elastic material:

ρη• + ∂

∂xi

(qi
T

)
− 1

T
ρr = qi

∂

∂xi

( 1

T

)
+ 1

T
JiEi , (3.141)

with the entropy production:

� = qi
∂

∂xi

( 1

T

)
+ 1

T
JiEi = − qi

T 2

∂T

∂xi
+ Ji

T
Ei , (3.142)

which has to be positive according to the 2nd law of thermodynamics, � ≥ 0. For
notational simplicity we again use

Gi = ∂T

∂xi
. (3.143)

By introducing the thermodynamical fluxes:

Fα =
{

− qi , Ji
}

, (3.144)

49From a theoretical point of view this assumption is not satisfying. We shall consider T = 0 state
as the zero state for entropy. At T = Tref. the entropy is then η0 and it is unknown. Since we only
employ the rate of entropy, the unknown value drops and in the endwe reach the same formulation as
presented herein. However, for strains the coefficient of thermal expansion, αi j , has been measured
by using a reference temperature, which is certainly not 0K. In simulations we use Tref. = 300K.
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and the thermodynamical forces:

Kα =
{Gi

T 2
,

Ei

T

}
, (3.145)

the 2nd law of thermodynamics reads

� = Kα · Fα ≥ 0 , α = 1, 2 , (3.146)

where over α the summation convention is applied. Since both thermodynamical
forces are of the same type (tensor of rank one) both thermodynamical fluxes depend
on both thermodynamical forces

F1 = F1(K1,K2) , F2 = F2(K1,K2) . (3.147)

We propose the following relations:

−qi = λ
Gi

T 2
+ γ

Ei

T
, Ji = β

Gi

T 2
+ θ

Ei

T
. (3.148)

Since the 2nd law has to hold for any process

−qi
Gi

T 2
+ Ji

Ei

T
≥ 0 ,

λ
GiGi

T 4
+ (γ + β)

GiEi

T 3
+ θ

EiEi

T 2
≥ 0 ,

(3.149)

and since T > 0 we conclude

λ ≥ 0 , γ + β = 0 , θ ≥ 0 . (3.150)

The first and third relations are obvious, since GiGi ≥ 0 and EiEi ≥ 0 for any
process. The second relation comes from the fact that GiEi can be positive or nega-
tive for different processes. In order to satisfy the 2nd law for any process, we have
to restrict γ = −β such that the second relation vanishes. This restriction is referred
to as Onsager’s reciprocal relation.50 By renaming κ = λ/T 2, π = β/(T 2ς), and
ς = θ/T we obtain

qi = −κ
∂T

∂xi
+ ςπTEi , Ji = ςπ

∂T

∂xi
+ ςEi . (3.151)

The simplest case occurs if the heat conduction parameter, κ, the electrical con-
ductivity, ς , and the thermoelectric coupling, π, are all constant. The thermoelectric
coupling is in V/K and measured by varying temperature and measuring electric

50In the literature the Onsager relation is motivated by microscopic calculations. Herein we reach
the same conclusion by using thermodynamics.Onsager’s relations are named after Lars Onsager.
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field in a conductor. By having π = 0 we reach the usual Fourier’s and Ohm’s
laws; and realize that these material models are thermodynamically sound relations
for materials without thermoelectric coupling. In reality every conductor possesses
a thermoelectric coupling. For every conductor even a small temperature gradient
induces an electric current. This phenomenon in one conductor is called the Thom-
son effect51 and the same process between two different conductors is called the
Seebeck effect.52 Basically this effect is used in thermocouples measuring the tem-
perature. Moreover, we can have a heat conduction (thus entropy transport) without
temperature difference but just due to an electric field. This process is called the
Peltier effect.53

Consider a conductor clamped on one side, which is held fixed at a reference
temperature, Tref.. The geometry is simply a beam surrounded by air, we only model
the beam. In order tomeasure the temperature at the free endweconnect the conductor
to a circuit and measure the potential difference in both ends. This is basically how a
thermocoupleworks and for such a simulationwe needweak forms for computing the
electric (scalar) potential,φ, themagnetic (vector) potential, Ai , the displacement, ui ,
and the temperature, T . Sincewewant to compute the deformation, theLagrangean
frame is more appropriate. For the sake of simplicity we neglect the geometrical (and
also material) nonlinearities such that the transformation of the balance equations
from the current to the reference frame becomes an ease. As the reference frame we
choose the initial frame, Xi . Since the geometric nonlinearities are ignored, the mass
balance simplifies to ρ = ρ0. Moreover, the volume element in the initial and current
frame will be equal, dv = dV .

For the weak form of electric potential, φ, we use the following balance of electric
charge in Eq. (3.124)1 in the initial frame:

∂ρ0z

∂t
+ Ji,i = 0 , Ji,i = ∂ Ji

∂Xi
, (3.152)

without geometric nonlinearities. The latter is very similar to Eq. (3.46) such that we
follow the same steps and obtain Eq. (3.80). Since we have assumed that Pi = 0 and
Mi = 0, the weak form in the initial frame for small displacements reads

Fφ =
∫
B0

( − (Di − D0
i ) δφ,i − Δt Ji δφ,i

)
dV +

∫
∂B0

NiΔt Ji δφ dA , (3.153)

in the unit of energy. The interface between beam and air is simply the boundary
satisfying the balance laws on singular surfaces. Air is not modeled, its electric
conduction is taken as zero. Zero polarization leads to J fr.

i ≡ Ji and the electric
current is given by

Ji = Ji + ρzvi , ρz = Di,i , (3.154)

51It is called for William Thomson (Lord Kelvin).
52It is named after Thomas Johann Seebeck.
53This effect is named after Jean Charles Athanase Peltier.
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where Ji is defined in Eq. (3.151)2. For computing themagnetic potential, Ai , we start
with Eq. (3.124)2 and transform it from the current to the initial frame by neglecting
geometric nonlinearities and acquire

ε0
∂2Ai

∂t2
− 1

μ0
Ai, j j = Ji , Ai, j j = ∂2Ai

∂X j∂X j
. (3.155)

Its weak form is Eq. (3.92). Since polarization is omitted, there remains

FA =
∫
B0

(
ε0

Ai − 2A0
i + A00

i

ΔtΔt
δAi + 1

μ0
Ai, j δAi, j − Ji δAi

)
dV , (3.156)

in the unit of energy, where J fr.
i ≡ Ji . In the initial frame the velocity equals to the

partial derivative of displacement in time, thus,

vi = ∂ui
∂t

= ui − u0i
Δt

. (3.157)

In order to compute the displacement we use the balance of linear momentum in the
initial frame by neglecting geometric nonlinearities:

ρ0
∂2ui
∂t2

− ∂σ j i

∂X j
− ρ0 fi − Fi = 0 , Fi = ∂Dj

∂X j
Ei + εi jk J j Bk . (3.158)

Hence, we obtain the following weak form in the unit of energy:

Fu =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + σ j i δui, j − ρ0 fi δui−

−Fi δui

)
dV −

∫
∂B0

t̂i δuidA .

(3.159)

The boundaries will vanish for the clamped end by using Dirichlet conditions
and also for the other boundaries by assuming free boundaries, t̂i = n jσ j i = 0. For
computing temperature we utilize the balance of entropy in Eqs. (3.141), (3.142) in
the initial frame without geometric nonlinearities:

ρ0
∂η

∂t
+ ∂

∂Xi

(qi
T

)
− 1

T
ρ0r = − qi

T 2

∂T

∂Xi
+ 1

T
JiEi + 1

T
dσ j i

∂vi

∂X j
,

ρ0
∂η

∂t
+ 1

T

∂qi
∂Xi

− 1

T
ρ0r = 1

T
JiEi + 1

T
dσ j i

∂vi

∂X j
.

(3.160)

We assume that the deformation is purely elastic, dσ j i = 0. Hence, the weak form
for temperature reads in the unit of energy
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FT =
∫
B0

(
ρ0(η − η0) δT − Δtqi

(
δT

T

)
,i

− Δt

T
ρ0r δT−

−Δt

T
JiEi δT

)
dV +

∫
∂B0

Δt

T
h(T − Tref.) δT dA ,

(3.161)

where for boundaries we readily applied the natural boundary condition, qi Ni =
h(T − Tref.), with an ambient temperature as equal as the reference and initial tem-
perature. The nonlinear weak form is the sum of all forms above:

Form = Fφ + FA + Fu + FT , (3.162)

with the following constitutive equations:

Ji = ςπT,i + ςEi , Di = ε0Ei , Hi = 1

μ0
Bi , σi j = eσi j + dσi j ,

eσi j = Ci jkl
(
εkl − αkl(T − Tref.)

)
, dσi j = 0 ,

η = c ln
( T

Tref.

)
+ Ci jklαklvεi j , qi = −κ T,i + ςπTEi ,

(3.163)

and

Ei = Ei + εi jkv j Bk , Ei = −φ,i − Ai − A0
i

Δt
, Bi = εi jk Ak, j . (3.164)

The material parameters, Ci jkl , αi j , κ, c, π, and ς are constant. For an isotropic
material the stiffness tensor and coefficients of thermal expansion read

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk , αi j = αδi j , (3.165)

by reducing to three materials parameters, viz., the Lame parameters, λ, μ, and the
coefficient of thermal expansion, α.

The beam is made out of chromel, which is a nickel and chromium alloy with a
relatively large thermoelectric coupling such that it is used as a thermocouple. The
temperatures at both ends of the beam are given by Dirichlet boundary conditions.
The beam possesses Tref. on one end and a linearly increasing temperature on the other
end. The temperature difference induces in addition to a thermal flux also an electric
flux, i.e., the electric conduction current Ji since π �= 0 for chromel material. There-
fore, an electric potential difference occurs, see Fig. 3.11. After 30 s the temperature
is almost in steady state and the potential difference is approximately 0.3mV. The
magnetic (vector) potential is directed in the same direction (no curl exists) such that
magnetic flux vanishes. By measuring the potential difference we can estimate the
temperature difference in a real application. Moreover, the body is a conductor such
that in an electric circuit the potential difference implies an electric current. Hence,
by using a Peltier element we can light a bulb due to a temperature difference;



224 3 Electromagnetism

Fig. 3.11 Electric potential, temperature, and displacements after 30 s due to the temperature dif-
ference at both ends. Displacements are 2000 times enlarged for a better visualization. Arrows
denote the magnetic potential

however, it is quite inefficient. A Peltier element is mainly used for measuring the
temperature accurately or for tuning the temperature precisely by pumping heat flux
in or out of the system. In many devices performing material tests, the control of
temperature is established by using Peltier elements. The following code has been
used for the simulation of nonlinear and coupled field equations, where all primitive
variables, φ, Ai , ui , T , are solved at once.
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1 ””” Computational r e a l i t y 17 , t h e rmoe l e c t r i c coup l ing ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : m, kg , s , A , V , K

10 de l ta = Id en t i t y (3)
11 l e v i c i v i t a 2 = as matr ix ( [ (0 ,1 , −1) , ( −1 ,0 ,1) , (1 , −1 ,0) ] )
12 l e v i c i v i t a 3 = as t en s o r ( [ ( (0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (

→ (0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)
→ , ( 0 , 0 , 0 ) ) ] )

13 ep s i l on = l e v i c i v i t a 3
14
15 #t h e r m o c o u p l e o f t y p e E i s made o f
16 #ch r ome l ( n i c k e l −chromium a l l o y ) and
17 # i s non−mag n e t i c i n r e a l i t y , we a l s o
18 #assume t h a t i t i s non− p o l a r i z a b l e
19 r e s i s t i v i t y = 0.706E−6 #i n Ohm m
20 varsigma = 1./ r e s i s t i v i t y #0 . 6 2 5 #i n S /m
21 pi = 68E−6 #V/K
22 kappa = 19.0 #i n W/ (m K)
23 capac i ty = 390. #i n J / ( kg K)
24 alpha = 12.8E−6 #i n 1/K
25 EModul = 186E+9 #i n Pa
26 nu = 0.32
27 h = 10 . #i n J / ( s mˆ2 K)
28
29 eps 0 = 8.85E−12 #i n A s / (V m)
30 mu 0 = 12.6E−7 #i n V s / (A m)
31
32 rho0 = 8500. #i n kg / mˆ3
33 T re f = 300.0 # K
34
35 tMax = 30.0
36 Dt = 1.0
37 t = 0 .0
38
39 mesh = BoxMesh ( Point ( −0.05 , −0.01 , −0.01) , Point

→ ( 0 . 0 5 , 0 . 0 1 , 0 . 0 1 ) , 50 ,10 ,10)
40 N = FacetNormal (mesh )
41
42 Sca l a r = FunctionSpace (mesh , P , 1)
43 Vector = VectorFunctionSpace (mesh , P , 1)
44 Tensor = TensorFunctionSpace (mesh , P , 1)
45 #ph i , A , u , T
46 Space = MixedFunctionSpace ( [ Sca lar , Vector , Vector , S ca l a r ] )
47
48 c e l l s = Cel lFunct ion ( s i z e t , mesh )
49 f a c e t s = FacetFunction ( s i z e t , mesh )
50 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
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51 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
52
53 c e l l s . s e t a l l ( 0 )
54 f a c e t s . s e t a l l ( 0 )
55 l e f t = CompiledSubDomain ( near (x [ 0 ] , −0 . 05) && on boundary )
56 r i gh t = CompiledSubDomain ( near (x [ 0 ] , 0 . 0 5 ) && on boundary )
57 boundar i es = CompiledSubDomain ( on boundary )
58
59 #ph i , A , u , T
60 bc T = Expres s ion ( T r + 1 .0 time , T r=T ref , time =0.)
61 bc01=DirichletBC ( Space . sub (0) , 0 . 0 , r i gh t )
62 bc02=DirichletBC ( Space . sub (2) , Constant ( ( 0 . , 0 . , 0 . ) ) , r i gh t )
63 bc03=DirichletBC ( Space . sub (3) , T ref , r i gh t )
64 bc04=DirichletBC ( Space . sub (3) , bc T , l e f t )
65
66 bc = [ bc01 , bc02 , bc03 , bc04 ]
67
68 dunkn = Tria lFunct ion ( Space )
69 t e s t = TestFunction ( Space )
70 unkn = Function ( Space )
71 unkn0 = Function ( Space )
72 unkn00 = Function ( Space )
73
74 unkn in i t = Expres s ion ( ( 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,

→ T r ) , T r=T re f )
75 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
76 unkn0 . a s s i gn ( unkn00 )
77 unkn . as s i gn ( unkn0)
78
79 de l ph i , del A , de l u , del T = s p l i t ( t e s t )
80 phi ,A, u ,T = s p l i t ( unkn)
81 phi0 ,A0 , u0 ,T0 = s p l i t ( unkn0)
82 phi00 , A00 , u00 , T00 = s p l i t ( unkn00 )
83
84 i , j , k , l = i n d i c e s (4 )
85 de l ta = Id en t i t y (3)
86
87 lam = EModul nu / (1.+nu) / (1. −2. nu )
88 mu = 0.5 EModul / (1.+nu)
89 C = as t en s o r ( lam de l ta [ i , j ] d e l t a [ k , l ] + mu de l ta [ i , k ] d e l t a

→ [ j , l ] + mu de l ta [ i , l ] d e l t a [ j , k ] , ( i , j , k , l ) )
90 a l f a = alpha de l ta
91
92 eps = sym( grad (u) )
93 eps0 = sym( grad (u0 ) )
94 v = as t en s o r ( (u−u0 ) [ i ] /Dt , ( i , ) )
95 E = as t en s o r (−phi . dx ( i )−(A−A0) [ i ] /Dt , ( i , ) )
96 E0 = as t en s o r (−phi0 . dx ( i )−(A0−A00) [ i ] /Dt , ( i , ) )
97 B = as t en s o r ( ep s i l on [ i , j , k ] A[ k ] . dx ( j ) , ( i , ) )
98 EE = as t en s o r (E[ i ]+ ep s i l on [ i , j , k ] v [ j ] B[ k ] , ( i , ) )
99

100 D = eps 0 E
101 D0 = eps 0 E0
102 H = 1./mu 0 B
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103 JJ = as t en s o r ( varsigma pi T. dx ( i ) + varsigma EE[ i ] , ( i , ) )
104 J = as t en s o r ( JJ [ i ] + D[ j ] . dx ( j ) v [ i ] , ( i , ) )
105 sigma = as t en s o r ( C[ i , j , k , l ] ( eps [ k , l ]− a l f a [ k , l ] (T−T re f ) ) ,

→ ( i , j ) )
106 eta = as t en s o r ( capac i ty ln (T/ T re f ) + C[ i , j , k , l ] a l f a [ k , l ] /

→ rho0 eps [ i , j ] , ( ) )
107 eta0 = as t en s o r ( capac i ty ln (T0/ T re f ) + C[ i , j , k , l ] a l f a [ k , l

→ ] / rho0 eps0 [ i , j ] , ( ) )
108 q = as t en s o r (−kappa T. dx ( i )+varsigma pi T EE[ i ] , ( i , ) )
109 FF = as t en s o r (D[ j ] . dx ( j ) E[ i ] + ep s i l on [ i , j , k ] J [ j ] B[ k ] , ( i

→ , ) )
110 f = Constant ( ( 0 . , 0 . , 0 . ) )
111 r = Constant ( 0 . 0 )
112
113 F phi = (−(D−D0) [ i ] d e l ph i . dx ( i ) − Dt J [ i ] d e l ph i . dx ( i ) )

→ dV + Dt J [ i ] d e l ph i N[ i ] dA
114 F A = ( eps 0 (A−2. A0+A00) [ i ] /Dt/Dt del A [ i ] + 1 . / mu 0 A[ i ] .

→ dx ( j ) del A [ i ] . dx ( j ) − J [ i ] del A [ i ] ) dV
115 F u = ( rho0 (u−2. u0+u00 ) [ i ] /Dt/Dt de l u [ i ] + sigma [ j , i ]

→ de l u [ i ] . dx ( j ) − rho0 f [ i ] d e l u [ i ] − FF[ i ] d e l u [ i ] )
→ dV

116 F T = ( rho0 ( eta−eta0 ) del T − Dt q [ i ] ( del T /T) . dx ( i ) − Dt/T
→ rho0 r del T − Dt/T JJ [ i ] EE[ i ] del T ) dV + Dt/T h (
→ T−T re f ) del T dA

117
118 Form = F phi + F A + F u + F T
119 Gain = de r i v a t i v e (Form , unkn , dunkn)
120
121 pwd= / c a l c u l /CR17/
122 f i l e p h i = F i l e (pwd+ phi . pvd )
123 f i l e A = F i l e (pwd+ A. pvd )
124 f i l e E = F i l e (pwd+ E. pvd )
125 f i l e B = F i l e (pwd+ B. pvd )
126 f i l e u = F i l e (pwd+ u . pvd )
127 f i l e T = F i l e (pwd+ T. pvd )
128
129 ph i = Function ( Scalar , name= \ phi )
130 A = Function ( Vector , name= A i )
131 u = Function ( Vector , name= u i )
132 T = Function ( Scalar , name= T )
133 E = Function ( Vector , name= E i )
134 B = Function ( Vector , name= B i )
135
136 while t < tMax :
137 print time : , t
138 i f t <= 10 . : bc T . time = t
139 s o l v e (Form== 0 , unkn , bc , J=Gain , \
140 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
141 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

142
143 ph i . a s s i gn (unkn . s p l i t ( deepcopy=True ) [ 0 ] )
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144 A . as s i gn (unkn . s p l i t ( deepcopy=True ) [ 1 ] )
145 u . as s i gn (unkn . s p l i t ( deepcopy=True ) [ 2 ] )
146 T . as s i gn (unkn . s p l i t ( deepcopy=True ) [ 3 ] )
147 E . as s i gn ( p ro j e c t (E, Vector ) )
148 B . as s i gn ( p ro j e c t (B, Vector ) )
149
150 print max . e l e c t r i c p o t en t i a l : ,max( ph i . v ec to r ( ) ) ,

→ V
151 print min . e l e c t r i c p o t en t i a l : ,min( ph i . v ec to r ( ) ) ,

→ V
152
153 f i l e p h i << ( phi , t )
154 f i l e A << (A , t )
155 f i l e E << (E , t )
156 f i l e B << (B , t )
157 f i l e u << ( u , t )
158 f i l e T << (T , t )
159
160 unkn00 . a s s i gn ( unkn0)
161 unkn0 . a s s i gn (unkn )
162 t += Dt

To-do

Thermoelectric coupling is discussed and implemented.

• Which equation needs to be changed, if we want to include the polarization?
• Inspect the boundary conditions. Repeat and list the physical meanings of the
applied boundary conditions.

• Search for such computations in the literature. Try to find a coupled monolithic
solution by using a staggered scheme or by solving all unknowns at once as above.

• Perform a web-based search in order to grasp the different types of Peltier ele-
ments. Find out the crystallographic defects for an n-type and p-type Peltier

element.

3.4 Plastic Fatigue in a Circuit Board

In every electronic gadget, such as laptops, smartphones, or engine control systems in
cars; there is a circuit board providing electrical connections between transistors. A
circuit board consists of copper tracks embedded in an epoxy insulator. These copper
tracks are called vias. An electric signal is propagated through a via and passes a
semiconductor. The semiconductor allows the signal to pass by if its amplitude is
above a threshold value.

An electric signal is a current in the via, which is a good conductor such as copper.
As used in the last sections the electric current passing a conductor produces heat
due to the Joule heating. The temperature in the via increases. The via is embedded
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in the board such that the temperature in the board also increases. The via and the
board expand due to the temperature increase. Unfortunately, the via and the board
have different expansion coefficients. They try to expand differently and they are
coherent; thermal stresses occur. In many applications the value of the thermal stress
trespasses the yield stress and the via undergoes a plastic deformation. The board has
a lower Young’s modulus than the via such that the via deforms plastically whereas
the board remains elastic.

Consider a smartphone during phoning, some vias are in active use leading to
thermal stresses and a plastic deformation. After finishing phoning the tempera-
ture decreases back to the ambient temperature (due to the heat exchange over the
boundary). Hence, the via and board try to deform back to their initial geometries.
Unfortunately, this trial results in stresses once more, since the geometry did deform
plastically. Increasing and decreasing temperature generates a plastic deformation
in the via. Repeated use of the smartphone adds a plastic deformation such that the
plastic strain accumulates. By reaching a limit value the accumulated plastic strain
initiates a crack in the via. By further plastic deformation the crack grows and cut
off the circuit. This process is known as fatigue.54

For testing a new design there are standard experiments concerning fatigue fail-
ure. The board is tested under cyclic thermal or electric loading. Consider that the
board is subject to a cyclic electric loading, which is indeed accelerated in order
to achieve a fatigue failure in couple of days. In each cycle energy dissipates from
the system, which is used for the plastic deformation. In other words, the plastic
deformation accumulates in time and brings in new plastic deformation. The amount
of dissipated energy (or accumulated plastic strain) in each cycle remains the same.
This phenomenon is simply due to the reversible expansion of via and board. The
mismatch of the expansion coefficients results in the same thermal stress and plastic
strain in each cycle. After Nf. cycles the accumulated plastic strain attains a value at
which the via breaks or initiates a crack.

In order to simulate a fatigue experiment we need to involve plasticity.55 We
furthermore neglect the polarization in the material

Pi = 0 , Mi = 0 . (3.166)

The primitive variables are the electric and magnetic potentials, the displacement,
and the temperature, {φ, Ai , ui , T }. Since we compute a solid body, all primitive
variables are functions in space, Xi , and time, t , in the Lagrangean frame where
we choose the reference as initial frame with Xi denoting the positions of particles in
the beginning, t = 0. However, wewill neglect the geometric nonlinearities such that
the deformation gradient equals the Kronecker delta and partial derivatives with
respect to Xi and xi become identical. The effects of magnetic flux is negligible.

54The material never reaches an ultimate strain, where a failure is expected. The accumulated
deformation causes such a failure over time. For an electronic device this time frame is more than
couple of years.
55We have introduced associated plasticity in Sect. 1.6 and applied into the thermodynamical
formulation in Sect. 3.3.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Hence, we neglect the magnetic potential and spare computational time by solving
only 5 fields, {φ, ui , T }, instead of 8 fields, {φ, Ai , ui , T }. This estimation results
in a failure by computing the electric field without the rate of magnetic potential.
This error is small for electrical loadings at low frequencies, which is the case in the
following application. By setting Ai = 0 we obtain the following electromagnetic
fields:

Ei = −φ,i − Ai − A0
i

Δt
= −φ,i , Bi = εi jk Ak, j = 0 ,

Ei = Ei + εi jk
(u j − u0j )

Δt
Bk = Ei ,

(3.167)

of course the Maxwell–Lorentz aether relations hold as well:

Di = ε0Ei , Hi = 1

μ0
Bi = 0 . (3.168)

The electric potential is then computed by the following weak from:

Fφ =
∫
B0

( − (Di − D0
i ) δφ,i − Δt Ji δφ,i

)
dV+

+
∫

∂BI
0

NiΔt
[
Ji

]
δφdA +

∫
∂B0\∂BI

0

NiΔt Ji δφdA .

(3.169)

The interface between via and board is denoted by ∂BI
0. For computing the displace-

ment we utilize the balance of linear momentum and generate the weak form in the
unit of energy:

Fu =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + σ j i δui, j − ρ0 fi δui − Fi δui

)
dV−

−
∫

∂B0

t̂i δuidA ,

(3.170)

with the Lorentz force density:

Fi = ρzEi + εi jk J j Bk = Dj, j Ei , (3.171)

since we have set Ai = 0. The computation of the temperature is realized by the
weak form in the unit of energy generated from the balance of entropy

FT =
∫
B0

(
ρ0(η − η0) δT − ΔtΦi δT,i − Δtρ0

r

T
δT − Δt� δT

)
dV+

+
∫

∂B0

Δt

T
h(T − Tamb) δT dA ,

(3.172)
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with Robin boundary conditions. The entropy flux, Φi , and production, �, read

Φi = qi
T

, � = − qi
T 2

T,i + 1

T
JiEi + 1

T
σi j

pε•
i j . (3.173)

For all constitutive equations we basically repeat the procedure in Sect. 3.3 with the
thermodynamical consideration discussed in Sect. 2.5. By using the additive decom-
position in strains

εi j = rεi j + pεi j , (3.174)

into a reversible and an irreversible (plastic) term and by introducing the Gibbs free
energy:

g = u − T η − vσi j
rεi j , v = 1

ρ0
, (3.175)

we obtain the following linear constitutive equations with constant coefficients:

η = c ln
( T

Tref.

)
+ vαi jσi j ,

σi j = Ci jkl
(
εkl − pεkl − thεkl

)
, thεi j = αi j (T − Tref.) .

(3.176)

In order to calculate the plastic strains incrementally,

pεi j = pε0i j + Δt pε•
i j , (3.177)

we apply the associated plasticity with the kinematic hardening

pε•
mn = 〈γ〉

(
σ0

|i j | − β0
i j

)
Ci jkl(ε

•
kl − pε•

kl − thε•
kl)

4
9hσ2

Y + (
σ0

|i j | − β0
i j

)
Ci jkl

(
σ0

|kl| − β0
kl

) (σ0
|mn| − β0

mn) , (3.178)

together with its corresponding back stress:

βi j = β0
i j + Δtβ•

i j , β•
i j = (σ0

|kl| − β0
kl)σ

•
kl

2
3σ

2
Y

(σ0
|i j | − β0

i j ) . (3.179)

After using them in the balance of entropy and assuming that the choice of h and σY

such that σi j
pε•
i j is positive for every processes, we can derive from the 2nd law

Ji = ςπT,i + ςEi , qi = −κT,i + ςπTEi . (3.180)

Since Ai = 0 we have Ei ≡ Ei . The obtained weak form:

Form = Fφ + Fu + FT , (3.181)

is coupled and nonlinear because of the entropy production.

http://dx.doi.org/10.1007/978-981-10-2444-3_2
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Fig. 3.12 Geometry of a simplified board with a single via in upper figure: perspective view; lower
left figure: side view; lower right figure: top view. The board (green) is of fiber reinforced epoxy
and the via (yellow) is of copper

Consider a simplified board with a single via as shown in Fig. 3.12. The board
is a laminate composed of glass fibers and epoxy. Glass fibers are oriented along x
and y axis such that the laminate is an orthotropic material. Fibers are embedded
in a so-called matrix material. For circuit boards typically epoxy is used as the
matrix material. The glass fiber reinforced epoxy used as a circuit board possesses
the following materials properties at room temperature (293K):56

C lam.
I J =

⎛
⎜⎜⎜⎜⎜⎜⎝

66242 41797 37814 0 0 0
50460 32290 0 0 0

31591 0 0 0
2250 0 0

sym. 2250 0
6630

⎞
⎟⎟⎟⎟⎟⎟⎠

· 106 Pa , (3.182)

56Measurement of the stiffness tensor is undertaken in Fraunhofer IZM in Berlin (Germany) for a
typical laminate used in many circuit boards, the values at the room temperature are taken from [3],
the values between 233–443K can be found in [2, Table1].
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and

αlam
i j =

⎛
⎝
13.2 0 0
0 16.7 0
0 0 39

⎞
⎠ · 10−6 1/K , (3.183)

where the stiffness matrix is given in the Voigt notation:

CI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

sym. C1313 C1312

C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.184)

Epoxy is a good insulator such that the laminate becomes an insulator. Indeed, we
need an insulating board such that the signal is transferred along conducting vias.
Being a cubic material, copper is frequently used as vias. Within each grain, the
orientation of the cubic material varies randomly. For a geometry in a macroscopic
length scale many grains with different orientations lead to an isotropic behavior.
For electroplated copper used as vias, the grain size reaches approximately 50μm.
The geometric dimensions are in the same length scale such that we need to consider
copper as a cubic material. Unfortunately, we lack the knowledge of the correct
orientation in each grain. Thus, we model the copper as a single crystal with the axis
along the coordinate system with the stiffness matrix in the Voigt notation:

CCu
I J =

⎛
⎜⎜⎜⎜⎜⎜⎝

169.1 122.2 122.2 0 0 0
169.1 122.2 0 0 0

169.1 0 0 0
75.42 0 0

sym. 75.42 0
75.42

⎞
⎟⎟⎟⎟⎟⎟⎠

· 109 Pa , (3.185)

and the thermal expansion coefficient tensor:

αCu
i j =

⎛
⎝
17 0 0
0 17 0
0 0 17

⎞
⎠ · 10−6 1/K . (3.186)

In order to model a fatigue failure test, we perform a simulation of an electronic
signal produced by an electric potential on one end of the via:

φ̂ = A sin(2πνt) , (3.187)
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Fig. 3.13 Temperature distribution and accumulated plastic equivalent strain after one cycle

where the amplitude is A = 12V and the frequency is ν = 10Hz. The electrical
loading is cyclic such that the direction of the electric field alternates. However,
Joule’s heating, JiEi , becomes always positive since Ohm’s law asserts that the
current and electric field have the same sign. Therefore, the internal energy and thus
the temperature increase. We have applied Robin boundary conditions for a realistic
modeling and after one cycle the temperature distribution is shown in Fig. 3.13. Tem-
perature increase implies a deformation in the body consisting of different materials
with different expansion coefficients. Different expansion behaviors of via and board
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generate thermal stresses in each cycle leading to a plastic deformation. The plastic
strain rate is given in Eq. (3.178) such that the equivalent plastic strain rate according
to von Mises hypothesis reads

pε•
eq. =

√
2

3
pε•
i j

pε•
i j , (3.188)

where rate of the plastic strain is deviatoric since the plastic strain remains devia-
toric.57 The equivalent plastic strain reads

pεeq. =
∫

pε•
eq.dt . (3.189)

This equivalent plastic strain accumulates over time and the evolution of it is given
by pε•

eq.. It is important to notice that we cannot formulate the latter as a potential,
pε•
eq.dt �= dεeq., since all values over time affect the process; not only the values in the

beginning and at the end. We can demonstrate this phenomenon in a plastic sheet,
which we bend back and forth. Although we just bend it back and forth, in other
words, at the start and end the sheet has the same geometry, we know that after
couple of cycles (bending back and forth) the accumulated plastic strain attains the
ultimate strain limit and the sheet breaks. The accumulation process is only possible
to calculate if we establish the evolution of the plastic strain in time with pε•

eq..
The key parameter in the simulation is the electrical conductivity of copper, ςCu.

This parameter varies depending on the circuit modeling, we have used an estimated
value. As we know from the last sections, the real or effective conductivity depends
on the resistance (caused by the semiconductors in a circuit board) installed on the
wire. By having a lower conductivity on the wire, the electric current decreases,
which leads to a smaller Joule’s heating such that the internal energy increase rate
decreases. In reality the copper via undergoes a plastic deformation in each cycle,
which accumulates and leads to a breakage at the end of a so-called fatigue lifetime.
An accurate estimation of the lifetime due to fatigue is still an open question in the
electronic industry. The geometry for the computation is in [1] and the code is given
below.

57The factor 2/3 is due to the tensile test. See Sect. 1.6 for a motivation of the deviatoric plastic
strain.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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1 ””” Computational r e a l i t y 18 , f a t i g u e in a c i r c u i t board ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 parameters [ ” a l l ow ex t r ap o l a t i on ”]=True
8 import numpy
9 s e t l o g l e v e l (ERROR)

10
11 2D 1 ” vo l t ag e i n ”
12 2D 2 ” vo l tage ou t ”
13 2D 3 ”clamped”
14 2D 4 ” v i a a i r ”
15 2D 5 ” board a i r ”
16 2D 6 ” v ia board ”
17 3D 1 ”board ”
18 3D 2 ” v ia ”
19
20 mesh = Mesh ( geo/CR18 board . xml )
21 c e l l s = MeshFunction( s i z e t ,mesh , geo/

→ CR18 board phys ica l reg ion . xml )
22 f a c e t s = MeshFunction( s i z e t ,mesh , geo/

→ CR18 board facet reg ion . xml )
23
24 def m a t e r i a l c o e f f i c i e n t ( target mesh , c e l l s l i s t , c o e f f s ) :
25 c o e f f f u n c = Function ( FunctionSpace ( target mesh , DG , 0)

→ )
26 markers = numpy. asarray ( c e l l s l i s t . array ( ) , dtype=numpy.

→ i n t32 )
27 c o e f f f u n c . v ec tor ( ) [ : ] = numpy . choose ( markers −1, c o e f f s )
28 return c o e f f f u n c
29
30 N = FacetNormal (mesh )
31 dI = Measure ( dS , domain=mesh , subdomain data=f a c e t s )
32 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
33 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
34
35 Sca l a r = FunctionSpace (mesh , P , 1)
36 Vector = VectorFunctionSpace (mesh , P , 1)
37 Tensor = TensorFunctionSpace (mesh , P , 1)
38 #ph i , u , T
39 Space = MixedFunctionSpace ( [ Sca lar , Vector , S ca l a r ] )
40
41 mesh board = SubMesh(mesh , c e l l s , 1)
42 mesh via = SubMesh(mesh , c e l l s , 2)
43 Sca l a r board = FunctionSpace ( mesh board , P , 1)
44 S ca l a r v i a = FunctionSpace ( mesh via , P , 1)
45 Vector v i a = VectorFunctionSpace ( mesh via , P , 1)
46 Tensor v ia = TensorFunctionSpace ( mesh via , P , 1)
47
48 de l ta = Id en t i t y (3)
49 ep s i l on = as t en s o r ( [ ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (
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→ (0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)
→ , ( 0 , 0 , 0 ) ) ] )

50 T re f = 300.0 # K
51 T amb = T re f
52 eps 0 = 8.85E−12 #i n A s / (V m)
53 mu 0 = 12.6E−7 #i n V s / (A m)
54 nu l l = 1E−20
55
56 i , j , k , l ,m, n , o , p = i n d i c e s (8 )
57
58 f r e q = 10 .
59 cy c l e = 1 .
60 tMax = cy c l e / f r e q
61 Dt = tMax/( cy c l e 10 . )
62 t = 0 .0
63
64 bc in = Expres s ion ( amp s i n ( 2 . 0 p i nu time ) , amp=12. , nu=

→ f r eq , time=0)
65 bc01=DirichletBC ( Space . sub (0) , bc in , f a c e t s , 1)
66 bc02=DirichletBC ( Space . sub (0) , 0 . 0 , f a c e t s , 2)
67 bc03=DirichletBC ( Space . sub (1) , Constant ( ( 0 . , 0 . , 0 . ) ) , f a c e t s ,

→ 3)
68
69 bc = [ bc01 , bc02 , bc03 ]
70
71 dunkn = Tria lFunct ion ( Space )
72 t e s t = TestFunction ( Space )
73 unkn = Function ( Space )
74 unkn0 = Function ( Space )
75 unkn00 = Function ( Space )
76
77 unkn in i t = Expres s ion ( ( 0 . , 0 . , 0 . , 0 . , T int ) , T int=

→ T amb)
78 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
79 unkn0 . a s s i gn ( unkn00 )
80 unkn . as s i gn ( unkn0)
81
82 de l ph i , de l u , del T = s p l i t ( t e s t )
83 phi , u ,T = s p l i t ( unkn)
84 phi0 , u0 ,T0 = s p l i t ( unkn0)
85 phi00 , u00 , T00 = s p l i t ( unkn00 )
86
87 def VoigtToTensor (A) :
88 A11 , A12 , A13 , A14 , A15 , A16 = A[ 0 , 0 ] , A[ 0 , 1 ] , A[ 0 , 2 ] , A

→ [ 0 , 3 ] , A[ 0 , 4 ] , A[ 0 , 5 ]
89 A22 , A23 , A24 , A25 , A26 = A[ 1 , 1 ] , A[ 1 , 2 ] , A[ 1 , 3 ] , A[ 1 , 4 ] ,

→ A[ 1 , 5 ]
90 A33 , A34 , A35 , A36 = A[ 2 , 2 ] , A[ 2 , 3 ] , A[ 2 , 4 ] , A[ 2 , 5 ]
91 A44 , A45 , A46 = A[ 3 , 3 ] , A[ 3 , 4 ] , A[ 3 , 5 ]
92 A55 , A56 = A[ 4 , 4 ] , A[ 4 , 5 ]
93 A66 = A[ 5 , 5 ]
94 A21 , A31 , A41 , A51 , A61 = A12 , A13 , A14 , A15 , A16
95 A32 , A42 , A52 , A62 = A23 , A24 , A25 , A26
96 A43 , A53 , A63 = A34 , A35 , A36
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97 A54 , A64 = A45 , A46
98 A65 = A56
99 return a s t en s o r ( [ \

100 [ \
101 [ [ A11 , A16 , A15 ] , [ A16 , A12 , A14 ] , [ A15 ,A14 ,A13 ] ] , \
102 [ [ A61 , A66 , A65 ] , [ A66 , A62 , A64 ] , [ A65 ,A64 ,A63 ] ] , \
103 [ [ A51 , A56 , A55 ] , [ A56 , A52 , A54 ] , [ A55 ,A54 ,A53 ] ] \
104 ] , [ \
105 [ [ A61 , A66 , A65 ] , [ A66 , A62 , A64 ] , [ A65 ,A64 ,A63 ] ] , \
106 [ [ A21 , A26 , A25 ] , [ A26 , A22 , A24 ] , [ A25 ,A24 ,A23 ] ] , \
107 [ [ A41 , A46 , A45 ] , [ A46 , A42 , A44 ] , [ A45 ,A44 ,A43 ] ] \
108 ] , [ \
109 [ [ A51 , A56 , A55 ] , [ A56 , A52 , A54 ] , [ A55 ,A54 ,A53 ] ] , \
110 [ [ A41 , A46 , A45 ] , [ A46 , A42 , A44 ] , [ A45 ,A44 ,A43 ] ] , \
111 [ [ A31 , A36 , A35 ] , [ A36 , A32 , A34 ] , [ A35 ,A34 ,A33 ] ] ] \
112 ] )
113
114 #l a m i n a t e m a t e r i a l s d a t a ( f o r bo a r d )
115 var s i gma l = nu l l #i n S/m
116 p i l = nu l l #V/K
117 kappa l = 1 .3 #i n W/ (m K)
118 c ap a c i t y l = 800. #i n J / ( kg K)
119 a l p 1 1 l = 13.2E−6 #i n 1/K
120 a l p 2 2 l = 16.7E−6 #i n 1/K
121 a l p 3 3 l = 39E−6 #i n 1/K
122 a l pha l = as t en s o r ( [ [ a l p11 l , 0 . , 0 . ] , [ 0 . , a l p22 l , 0 . ] , [ 0 . , 0 . ,

→ a l p 3 3 l ] ] )
123 h l = 10 . #i n J / ( s mˆ2 K)
124 r h o l = 2 .5E3 #i n kg /mˆ3
125 C vo i g t l = numpy. array ( [ \
126 [ 6 6242 .E6 , 41797.E6 , 37814.E6 , 0 , 0 , 0 ] , \
127 [ 4 1797 .E6 , 50460.E6 , 32290.E6 , 0 , 0 , 0 ] , \
128 [ 3 7814 .E6 , 32290.E6 , 31591.E6 , 0 , 0 , 0 ] , \
129 [ 0 , 0 , 0 , 2250.E6 , 0 , 0 ] , \
130 [ 0 , 0 , 0 , 0 , 2250.E6 , 0 ] , \
131 [ 0 , 0 , 0 , 0 , 0 , 6630.E6 ] ] ) #i n Pa
132 C l = VoigtToTensor ( C vo i g t l )
133
134 #c o p p e r d a t a f o r a v i a i n P r i n t e d C i r c u i t B oa rd s ( PCBs )
135 vars igma cu = 1.7E4 #i n S/m
136 p i cu = 1 .8E−6 #V/K
137 kappa cu = 385. #i n W/ (m K)
138 capac i ty cu = 390. #i n J / ( kg K)
139 a lp cu = 17E−6 #i n 1/K
140 alpha cu = as t en s o r ( [ [ alp cu , 0 . , 0 . ] , [ 0 . , alp cu , 0 . ] , [ 0 . , 0 . ,

→ a lp cu ] ] )
141 h cu = 10 . #i n J / ( s mˆ2 K)
142 rho cu = 8.94E3 #kg /mˆ3
143 sigmaY cu = 100. E6 #i n Pa
144 h p l cu = 615. E6 #i n Pa
145 p1 , p2 , p3=169100.E6 , 122200 . E6 , 75420 . E6 #i n Pa
146 C voigt cu = numpy. array ( [ \
147 [ p1 , p2 , p2 , 0 , 0 , 0 ] , \
148 [ p2 , p1 , p2 , 0 , 0 , 0 ] , \
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149 [ p2 , p2 , p1 , 0 , 0 , 0 ] , \
150 [ 0 , 0 , 0 , p3 , 0 , 0 ] , \
151 [ 0 , 0 , 0 , 0 , p3 , 0 ] , \
152 [ 0 , 0 , 0 , 0 , 0 , p3 ] ] )
153 C cu = VoigtToTensor ( C voigt cu )
154
155 rho = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ rho l , rho cu ] )
156 varsigma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ vars igma l ,

→ vars igma cu ] )
157 p i = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ p i l , p i cu ] )
158 kappa = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ kappa l , kappa cu

→ ] )
159 capac i ty = ma t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ c ap ac i t y l ,

→ capac i ty cu ] )
160 h = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ h l , h cu ] )
161
162 eps = sym( grad (u) )
163 eps0 = sym( grad (u0 ) )
164 epsDot = ( eps−eps0 ) /Dt
165 v = as t en s o r ( (u−u0 ) [ i ] /Dt , ( i , ) )
166 v0 = as t en s o r ( ( u0−u00 ) [ i ] /Dt , ( i , ) )
167 E = −grad ( phi )
168 E0 = −grad ( phi0 )
169 EE = E
170 D = eps 0 E
171 D0 = eps 0 E0
172 JJ = as t en s o r ( varsigma p i T. dx ( i ) + varsigma EE[ i ] , ( i , ) )
173 J = as t en s o r ( D[ j ] . dx ( j ) v [ i ] + JJ [ i ] , ( i , ) )
174 FF = as t en s o r (D[ j ] . dx ( j ) E[ i ] , ( i , ) )
175 q = as t en s o r (−kappa T. dx ( i )+varsigma p i T EE[ i ] , ( i , ) )
176 Phi = q/T
177
178 f = Constant ( ( 0 . , 0 . , 0 . ) )
179 r = Constant ( 0 . 0 )
180
181 #l a m i n a t e
182 p ep s eq l = Function ( Sca l a r board )
183 t e p s l = a s t en s o r ( a l pha l [ i , j ] (T−T re f ) , ( i , j ) )
184 s i gma l = as t en s o r ( C l [ i , j , k , l ] ( eps [ k , l ] − t e p s l [ k , l ] ) , (

→ i , j ) )
185 e t a l = a s t en s o r ( capac i ty ln (T/ T re f ) + a l pha l [ i , j ] / rho

→ s i gma l [ i , j ] , ( ) )
186 e t a 0 l = a s t en s o r ( capac i ty ln (T0/ T re f ) + C l [ i , j , k , l ]

→ a l pha l [ k , l ] / rho eps0 [ i , j ] , ( ) )
187 Sigma l = as t en s o r (−q [ i ] /T/T T. dx ( i ) + JJ [ i ] /T EE[ i ] , ( ) )
188
189 #c o p p e r
190 gamma cu = Function ( Sca l a r )
191 s igma0 cu = Function ( Tensor )
192 peps0 cu = Function ( Tensor )
193 beta0 cu = Function ( Tensor )
194 peps eq cu = Function ( S ca l a r v i a )
195
196 dev s igma0 cu = as t en s o r ( s igma0 cu [ i , j ] −1./3. s igma0 cu [ k , k
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→ ] d e l t a [ i , j ] , ( i , j ) )
197 pepsDot cu = as t en s o r (gamma cu ( dev s igma0 cu [ i , j ]−beta0 cu [

→ i , j ] ) C cu [ i , j , k , l ] epsDot [ k , l ] / ( 4 . / 9 . sigmaY cu 2
→ h p l cu +(dev s igma0 cu [ i , j ]−beta0 cu [ i , j ] ) C cu [ i , j , k
→ , l ] ( dev s igma0 cu [ k , l ]−beta0 cu [ k , l ] ) ) (
→ dev s igma0 cu [m, n]−beta0 cu [m, n ] ) , (m, n) )

198 t ep s cu = as t en s o r ( a lpha cu [ i , j ] (T−T re f ) , ( i , j ) )
199 tepsDot cu = as t en s o r ( a lpha cu [ i , j ] (T−T0) /Dt , ( i , j ) )
200 sigmaDot cu = as t en s o r ( C cu [ i , j , k , l ] ( epsDot [ k , l ]−

→ tepsDot cu [ k , l ]−pepsDot cu [ k , l ] ) , ( i , j ) )
201
202 betaDot cu = as t en s o r ( gamma cu ( dev s igma0 cu [ k , l ]−beta0 cu

→ [ k , l ] ) s igmaDot cu [ k , l ] / ( 2 . 0 /3 . 0 sigmaY cu 2) (
→ dev s igma0 cu [ i , j ]−beta0 cu [ i , j ] ) , ( i , j ) )

203
204 s igma cu = sigma0 cu + Dt sigmaDot cu
205 beta cu = beta0 cu + Dt betaDot cu
206 peps cu = peps0 cu + Dt pepsDot cu
207
208 e ta cu = as t en s o r ( capac i ty ln (T/ T re f ) + alpha cu [ i , j ] / rho

→ s igma cu [ i , j ] , ( ) )
209 eta0 cu = as t en s o r ( capac i ty ln (T0/ T re f ) + alpha cu [ i , j ] /

→ rho s igma0 cu [ i , j ] , ( ) )
210 Sigma cu = as t en s o r (−q [ i ] /T/T T. dx ( i ) + JJ [ i ] /T EE[ i ] +

→ s igma cu [ i , j ] /T peps cu [ i , j ] , ( ) )
211
212
213 F phi = (−(D−D0) [ i ] d e l ph i . dx ( i ) − Dt J [ i ] d e l ph i . dx ( i ) ) (

→ dV(1)+dV(2) ) + N( + ) [ i ] Dt ( J ( + )−J ( − ) ) [ i ] d e l ph i
→ ( + ) dI (6 ) + N[ i ] Dt J [ i ] d e l ph i (dA(1)+dA(2)+dA(3)+
→ dA(4)+dA(5) )

214
215 F u = ( rho (v−v0 ) [ i ] /Dt de l u [ i ] − rho f [ i ] d e l u [ i ] − FF[ i

→ ] d e l u [ i ] ) (dV(1)+dV(2) ) + s i gma l [ j , i ] d e l u [ i ] . dx (
→ j ) dV(1) + sigma cu [ j , i ] d e l u [ i ] . dx ( j ) dV(2)

216
217 F T = ( − Dt Phi [ i ] del T . dx ( i ) − Dt rho r /T del T ) (dV(1)+

→ dV(2) ) + ( rho ( e t a l −e t a 0 l ) del T − Dt Sigma l del T
→ ) dV(1) + ( rho ( eta cu−eta0 cu ) del T − Dt Sigma cu
→ del T ) dV(2) + Dt h (T−T re f ) /T del T (dA(1)+dA(2)+dA
→ (3 )+dA(4)+dA(5) )

218
219
220 Form = F phi + F u + F T
221 Gain = de r i v a t i v e (Form , unkn , dunkn)
222
223 pwd= / c a l c u l /CR18/
224 f i l e p h i v i a = F i l e (pwd+ phi . pvd )
225 f i l e J v i a = F i l e (pwd+ J . pvd )
226 f i l e u = F i l e (pwd+ u . pvd )
227 f i l e p e p s v i a = F i l e (pwd+ peps v i a . pvd )
228 f i l e p e p s b o a r d = F i l e (pwd+ peps board . pvd )
229 f i l e T = F i l e (pwd+ T. pvd )
230
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231 ph i v i a = Function ( Sca l a r v i a , name= \ phi in V )
232 J v i a = Function ( Vector v ia , name= | J i | in A/m ˆ2 )
233 u = Function ( Vector , name= | u i | )
234 p ep s v i a = Function ( Sca l a r v i a , name= ˆ\mathrm{p }\ !\

→ va r ep s i l on \mathrm{eq .} )
235 T = Function ( Scalar , name= T in K )
236
237 while t < tMax :
238 print time : , t
239 bc in . time = t
240 t i c ( )
241 s o l v e (Form== 0 , unkn , bc , J=Gain , \
242 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
243 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

244
245 ph i v i a . a s s i gn ( p r o j e c t ( unkn . s p l i t ( deepcopy=True ) [ 0 ] ,

→ S ca l a r v i a ) )
246 J v i a . a s s i gn ( p ro j e c t (J , Vector v i a ) )
247 u . as s i gn (unkn . s p l i t ( deepcopy=True ) [ 1 ] )
248 T . as s i gn (unkn . s p l i t ( deepcopy=True ) [ 2 ] )
249 f i l e p h i v i a << ( ph i v i a , t )
250 f i l e J v i a << ( J v i a , t )
251 f i l e u << ( u , t )
252 f i l e T << (T , t )
253 print toc ( ) , s econds long computed , T max : ,max( unkn .

→ s p l i t ( deepcopy=True ) [ 2 ] . v ec to r ( ) . array ( ) )
254
255 s igma cu = p ro j e c t ( sigma cu , Tensor , s o l v e r t yp e=”mumps”

→ , \
256 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

257 s igma0 cu . a s s i gn ( s igma cu )
258
259 beta cu = p ro j e c t ( beta cu , Tensor , s o l v e r t yp e=”mumps” ,

→ \
260 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

261 beta0 cu . a s s i gn ( beta cu )
262 f l ow = p ro j e c t ( 1 . / 2 . ( dev s igma0 cu [ i , j ]−beta0 cu [ i , j ] )

→ ( dev s igma0 cu [ i , j ]−beta0 cu [ i , j ] ) −1./3.
→ sigmaY cu 2 , \

263 Sca lar , s o l v e r t yp e=”mumps” , form compi ler parameters
→ ={” cpp opt imize ” : True , ” r ep r e s en t a t i on ” : ”
→ quadrature ” , ” quadrature degree ” : 2})

264 f l ow boo l = f l ow . v ec tor ( ) . array ( ) >= 0 .
265
266 d i r e c t i o n = p ro j e c t ( ( dev s igma0 cu [ i , j ]−beta0 cu [ i , j ] )

→ epsDot [ i , j ] , \
267 Sca lar , s o l v e r t yp e=”mumps” , form compi ler parameters
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→ ={” cpp opt imize ” : True , ” r ep r e s en t a t i on ” : ”
→ quadrature ” , ” quadrature degree ” : 2})

268
269 d i r e c t i o n bo o l = d i r e c t i o n . v ec tor ( ) . array ( ) > 0
270 gamma cu . v ec tor ( ) [ : ] = numpy . array ( f l ow boo l

→ d i r e c t i o n b o o l )
271
272 peps eq = p ro j e c t ( peps eq cu + Dt ( 2 . / 3 . pepsDot cu [ i , j

→ ] pepsDot cu [ i , j ] ) 0 . 5 , \
273 Sca l a r v i a , s o l v e r t yp e=”mumps” ,

→ form compi ler parameters={” cpp opt imize ” : True
→ , ” r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2})

274 print P l a s t i c i t y : ,max(gamma cu . v ec tor ( ) . array ( ) )
275 peps eq cu . a s s i gn ( pep s eq )
276 f i l e p e p s v i a << ( peps eq cu , t )
277 f i l e p e p s b o a r d << ( pep s eq l , t )
278
279 unkn00 . a s s i gn ( unkn0)
280 unkn0 . a s s i gn (unkn )
281 t += Dt

To-do

The accumulated plastic strain is a good measure for estimating fatigue. There are
many different proposals for this estimation. Find out some of them by searching
for:

• Coffin–Manson model,
• Paris’s law,
• Basquin equation.

Estimating fatigue is of paramount importance. Unfortunately, there have been
fatigue failures in the history, where a fatigue was not foreseen but lead to a disaster:
British Overseas Airways Corporation Flight 781, on January 10, 1954; Alexan-
der Kielland Platform in North Sea, on March 27, 1980; Petrochemical Plant in
Edmonton, Canada, on April 18, 1982; Japan Airlines Flight 123, on August 12,
1985; Aloha Airlines Flight 243, Boeing 737, on April 28, 1988; Deutsche Bahn
Hanover-Hamburg train in Eschede/Germany on June 3, 1998; Crude Oil Pipeline
in Winchester Kentucky, US, on January 27, 2000; China Airlines Flight CI611,
B-18255, on May 25, 2002.
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3.5 Piezoelectric Transducer

In 1880 Pierre and Paul-Jacques Curie brothers58 had discovered an interesting phe-
nomenon occurring on some non-conductive materials. An applied voltage results in
stretching (or shrinking), thus, creating amechanical stress in these materials. Nowa-
days, this property is used in actuators; an applied electric potential (leading to an
electric field) generates a displacement (motion). The reverse relation holds, too. In
sensors a force acts on this type of a material and generates an electric field measured
as an electric potential difference. This coupling of electric field with mechanical
stress is called piezoelectricity. Actually, we all experience this effect in tendons,
which connect muscles to bones and shorten by an applied electric signal sent by
nerves.

There are organic, natural, and synthetic piezoelectric materials. Starting from
1950s quartz (SiO2), barium-titanate (BaTiO3), and later on lead-zirconate-titanate
(PZT59) are known as piezoceramics showing the phenomenon of piezoelectricity.
There are even polymers having piezoelectric properties, for example,
polyvinylidene-fluoride (PVDF). Another coupling between temperature and elec-
tric field is known as pyroelectricity. A temperature change generates an electric
field as a material specific property. The inverse coupling also occurs. The piezo-
and pyroelectricity are electromagnetic coupling effects used in pressure and thermal
sensors, respectively. We want to include them into our computational reality.

Electromagnetic coupling effects such as piezo- and pyroelectricity occur in polar-
ized materials. For polarized materials the Gibbs equation is given differently in the
literature. Especially, the different formulations for the electromagnetic coupling is
quite confusing.Wewant to derive theGibbs equation and present a general method-
ology leading to the electromagnetic coupling such that the different formulations
can be comprehended. No formulation is better than another, in principle, they are all
admissible. Only by experimental validation we can verify their accuracy. The reality
may be modeled in various ways. We need to understand the differences between
the formulations such that we can estimate the most feasible selection in a specific
system.

For the sake of presenting the differences between various formulations in the
literature, it is beneficial to start with the balance of electromagnetic momentum:

∂Gi

∂t
= ∂m ji

∂x j
− Fi , (3.190)

where the relation is defined between an electromagnetic momentum density, Gi ,
an electromagnetic flux term, m ji , and an electromagnetic supply term, Fi . The
electromagnetic momentum density, Gi , is in the same unit of (linear or angular)
momentum density such as the flux term is a stress and the supply term is a force

58Pierre Curie had been the husband of Marie Skłodowska-Curie.
59PZT is the general name for lead-zirconate-titanate, Pb1.1Zr0.3Ti0.7O3 and PbZr0.52Ti0.48O3 are
the common used compositions of PZT.
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density. The definition of the electromagnetic stress, m ji , depends on the definition
of the electromagnetic force density, Fi . Their definitions are in some sense arbitrary;
however, as given in Eq. (3.190), the divergence of the electromagnetic stress minus
the electromagnetic force density is unique and equals the rate of the electromagnetic
momentum density. This methodology leads to a consistent formulation.60 We only
need the definition of the electromagnetic momentum density, Gi . If we have a def-
inition for the electromagnetic momentum then we can propose an electromagnetic
stress61 as well as an electromagnetic force satisfying Eq. (3.190).

Unfortunately, the definition of the electromagnetic momentum density, Gi , is
discussed heavily in the literature without a general consensus.62 There are mainly
three different variants for the definition of the electromagnetic momentum, viz., the
Poynting vector, GP

i ,Minkowski’s definition, GM
i , and Abraham’s choice, GA

i , as
follows63

GP
i = (D × B)i , GM

i = (D × B)i , GA
i = 1

c2
(E × H)i . (3.191)

Each definition has been proposed by using an evident motivation and convincing
gedankenexperiments64 such that each can be declared as correct.65 In order to com-
pare them with each other, we employ

c2 = 1

ε0μ0
, (3.192)

and the Maxwell–Lorentz aether relations:

Di = ε0Ei , Hi = 1

μ0
Bi . (3.193)

Moreover, we need to employ the following relations between charge and current
potentials:

60See [15, Chap.XIV].
61The same formulation in Eq. (3.190) can also be found by using an electromagnetic energy-
momentum tensor, Si j , where this tensor is just the negative of the electromagnetic stress, Si j =
−mi j . Confusingly, in some books the divergence is taken regarding the second index. For the
electromagnetic stress as well as for the energy-momentum tensor the choice matters, since they
are not required to be symmetric.
62See for example [14, 25, 29].
63The different electromagnetic momenta are named after John Henry Poynting, Hermann
Minkowski, Max Abraham.
64Thought experiments.
65See [8] for a review about experimental evidences for each choice. In [7, Sect. 4.4 and 8.7] there is
some insight about different choices of electrodynamic forces and energies in the literature. See [20]
for an experimental discussion about Abraham and Minkowski choices. See [6] for simulations
of experiments with different choices and their comparison to experiments from the literature.
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Di = Di − Pi , Hi = Hi + Mi + (P × v)i = Hi + Mi , (3.194)

which are introduced and discussed in Sect. 3.2. We use an objectivemagnetic polar-
ization, Mi = Mi + (P × v)i , since an experiment fails to distinguish between a
magnetic polarization, Mi , and a rotary motion of particles with an electric polar-
ization, P × v. Not only the formulation is simpler but the term Mi is an objective
tensor: It transforms according to the tensor laws. Now by using the latter relations,
we can rewrite Abraham’s electromagnetic momentum density:

GA
i = ε0μ0εi jk E jHk = εi jk D j (Bk − μ0Mk) = GP

i − μ0(D ×MMM )i . (3.195)

Analogously for Minkowki’s choice we obtain

GM
i = εi jkD j Bk = εi jk(Dj + Pj )Bk = GP

i + (P × B)i . (3.196)

Obviously, for amaterial without polarization, all choices are identical to the Poynt-
ing vector. The formulation by choosing Gi = GP

i is often used in textbooks about
electrodynamics. This choice is certainly correct for a material without polariza-
tion. Suppose that the system is unpolarized and we use Poynting vector as the
electromagnetic momentum. After defining the electromagnetic momentum, we can
now select a possible set of electromagnetic stress and force. This derivation is well-
known in the literature and it is often referred to as Poynting’s equation.We start off
with the following Maxwell equations expressed in (fixed) Cartesian coordinates

−∂Di

∂t
+ εi jk

∂Hk

∂x j
= Ji ,

∂Bi

∂t
+ εi jk

∂Ek

∂x j
= 0 . (3.197)

Then we calculate the rate of the Poynting vector by inserting theMaxwell equa-
tions

∂

∂t
(D × B)i = εi jk

∂Dj Bk

∂t
= εi jk

∂Dj

∂t
Bk + εi jk D j

∂Bk

∂t
=

= εi jk

(
ε jlm

∂Hm

∂xl
− Jj

)
Bk − εi jk D jεklm

∂Em

∂xl
=

= −∂Hk

∂xi
Bk + ∂Hi

∂xk
Bk − (J × B)i − Dj

∂E j

∂xi
+ Dj

∂Ei

∂x j
,

(3.198)

where εi jk = −εik j and εi jkεklm = δilδ jm − δimδ jl have been used. The first and forth
terms of the latter can be rewritten by using theMaxwell–Lorentz aether relations:
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−∂Hk

∂xi
Bk − Dj

∂E j

∂xi
= − 1

μ0

∂Bk

∂xi
Bk − ε0Ek

∂Ek

∂xi
= − 1

2μ0

∂

∂x j
(Bk Bkδi j )−

−ε0

2

∂

∂x j
(EkEkδi j ) = − ∂

∂x j

(
1

2
δ j i (HkBk + DkEk)

)
.

(3.199)
Next, we employ the following Maxwell equations:

∂Bi

∂xi
= 0 ,

∂Di

∂xi
= ρz . (3.200)

By using the latter we can rewrite the second and fifth terms in Eq. (3.198) as follows

∂Hi

∂x j
B j + Dj

∂Ei

∂x j
= ∂

∂x j
(Hi Bj + Dj Ei ) − Eiρz . (3.201)

Hence we obtain the Poynting equation:

∂

∂t
(D × B)i = ∂

∂x j

(
− 1

2
δ j i (HkBk + DkEk) + Hi Bj + Dj Ei

)
−

−ρzEi − (J × B)i .

(3.202)

This equation equals the balance of electromagnetic momentum in Eq. (3.190) by
associating

Gi = GP
i = (D × B)i ,

m ji = −1

2
δ j i (HkBk + DkEk) + Hi Bj + Dj Ei ,

Fi = ρzEi + (J × B)i .

(3.203)

The electromagnetic stress, m ji , is referred to asMaxwell’s stress66 tensor and the
supply term is called Lorentz’s force (density). An unpolarized matter “feels” the
volumetric force density Fi = ρzEi + (J × B)i in every particles.

For a polarized material we may propose GM
i or GA

i as the correct electromagnetic
momentumdensity.67 We chooseGM

i in the following.With the analogous calculation
we obtain

GM
i = GP

i + εi jk Pj Bk , m ji = −1

2
δ j i (HkBk + DkEk) + Hi Bj + Dj Ei ,

Fi = ρzEi + εi jk J j Bk − εi jk
∂Pj

∂t
Bk − εi jk Pj

∂Bk

∂t
.

(3.204)

66It is named for James Clerk Maxwell.
67A thermodynamical formulation for the choice of GA

i can be found in [15, Chap.XIV, Sect. 2].
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The electromagnetic stress is chosen as Maxwell’s stress and the supply term is
changed such that Eq. (3.190) holds. A polarizedmatter “feels” additional volumetric
forces due to the electric polarization and its rate.

We develop a thermodynamical formulation of polarized materials by starting
with the balance of mass and the balance of linear momentum. The balance of mass
expressed in a fixed, Cartesian coordinate system reads

∂ρ

∂t
+ ∂ρvi

∂xi
= 0 . (3.205)

Mass is a conserved quantity since its balance equation lacks a production term.
Total momentum has to be a conserved quantity, too. Since the polarized material
generates an electromagnetic momentum density, Gi , in addition to the mechanical
momentum density, ρvi , balance of the total momentum becomes

∂ρvi + Gi

∂t
− ∂

∂x j

( − v jρvi + σ j i + m ji
) − ρ fi = 0 . (3.206)

We can insert the balance of the electromagnetic momentum in Eq. (3.190) in order
to obtain

∂ρvi

∂t
− ∂

∂x j

( − v jρvi + σ j i
) − ρ fi = Fi , (3.207)

with the electromagnetic supply term as given in Eq. (3.204)3. By inserting balance
of mass into the balance of total momentum we acquire

ρ
dvi
dt

− ∂σ j i

∂x j
− ρ fi = Fi . (3.208)

We write the electromagnetic supply term on the right-hand side for denoting the
fact that it tends to be a production term since it cannot be “switched off.” A moving
particle with an electric charge creates this supply term. We fail to establish a con-
figuration where this supply term vanishes. The mechanical momentum possesses a
production term, thus, it is not a conserved quantity in case of a polarized material.
The total momentum is a conserved quantity.

By multiplying the latter form of the balance of momentum with vi and using the
mass balance once more, we obtain the balance of kinetic energy:

ρ
d

dt

(1
2
vivi

)
− ∂σ j ivi

∂x j
− ρ fivi = −σ j i

∂vi

∂x j
+ Fivi ,

∂

∂t

(
ρ
1

2
vivi

)
− ∂

∂x j

(
− ρv j

1

2
vivi + σ j ivi

)
− ρ fivi = −σ j i

∂vi

∂x j
+ Fivi .

(3.209)
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The final term is a production term due to the supply term of electromagnetic
momentum given in Eq. (3.204)3. We will rewrite this term in order to see a relation
leading to the Gibbs equation in polarized materials. The formulation is lengthy and
unfortunately not straight-forward. Therefore, we present it herein in a fully detailed
manner. We start by writing the term explicitly,

Fivi = ∂Dj

∂x j
Eivi + viεi jk J j Bk − viεi jk

∂Pj

∂t
Bk + viεi jk Pjεklm

∂Em

∂xl
, (3.210)

after inserting Maxwell’s equations (3.197)2 and (3.200)2. We can also insert
Eqs. (3.194) intoMaxwell’s equations and obtain

∂Di

∂xi
= ρzfr. , −∂Di

∂t
+ εi jk

∂Hk

∂x j
= Ji − ∂Pi

∂t
− εi jk

∂Mk

∂x j
= J fr.

i . (3.211)

The latter equations are known as Maxwell’s equation in polarized matter, they
have been introduced in Sect. 3.2. The definition of the free current, J fr.

i , can be
inserted into the production term of electromagnetic momentum as follows

Fivi = ∂Dj

∂x j
Eivi + viεi jk

(
J fr.
j + ∂Pj

∂t
+ ε jlm

∂Mm

∂xl

)
Bk−

−viεi jk
∂Pj

∂t
Bk + viεi jk Pjεklm

∂Em

∂xl
.

(3.212)

By using the tensorial identities:

εi jk = −ε j ik , ε j ikε jlm = δilδkm − δimδkl , (3.213)

we acquire

Fivi = ∂Dj

∂x j
Eivi + viεi jk J

fr.
j Bk − vi

(
∂Mk

∂xi
− ∂Mi

∂xk

)
Bk+

+vi Pj

(
∂E j

∂xi
− ∂Ei

∂x j

)
= ∂Dj Ei

∂x j
vi − (Dj + Pj )

∂Ei

∂x j
vi + viεi jk J

fr.
j Bk−

−vi
∂Mk

∂xi
Bk + vi

∂Mi

∂xk
Bk + vi Pj

∂E j

∂xi
.

(3.214)

After inserting Eqs. (3.200)1, (3.194) into the latter, we obtain
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Fivi = ∂Dj Ei

∂x j
vi − D j

∂Ei

∂x j
vi + viεi jk J

fr.
j Bk −

(
dMk

dt
− ∂Mk

∂t

)
Bk+

+vi
∂Mi Bk

∂xk
+ Pj

(
dE j

dt
− ∂E j

∂t

)
= ∂Dj Ei

∂x j
vi − D j

∂Ei

∂x j
vi + viεi jk J

fr.
j Bk−

−
(
dMk

dt
− ∂Mk

∂t

)
Bk + vi

∂Mi Bk

∂xk
+ Pj

dE j

dt
− ∂Pj E j

∂t
+ E j

∂Pj

∂t
.

(3.215)
By using the material conduction current:

J fr.i = J fr.
i − ρzfr.vi , (3.216)

as well as Eq. (3.211)2, we acquire

Fivi = ∂Dj Ei

∂x j
vi − D j

∂Ei

∂x j
vi + viεi jk(J fr.j + ρzfr.v j )Bk − Bi

dMi

dt
+

+∂BiMi

∂t
− Mi

∂Bi

∂t
+ vi

∂Mi Bk

∂xk
+ Pj

dE j

dt
− ∂Pj E j

∂t
− E j

∂Dj

∂t
−

+E j

(
ε jkl

∂Hl

∂xk
− J fr.

j

)
= vi

∂

∂x j

(
Dj Ei − D j Ei + Mi B j

) + vi
∂D j

∂x j
Ei+

+ ∂

∂t

(
BiMi − Pj E j

) − E j
∂Dj

∂t
− viε j ikJ fr.j Bk − Mi

∂Bi

∂t
+

+Pi
dEi

dt
− Bi

dMi

dt
+ E jε jkl

∂Hl

∂xk
− E j J

fr.
j ,

(3.217)

since εi jkviv j = 0 owing to Eq. (3.213)1. After inserting Eqs. (3.197)2, (3.211)1 into
the latter, the production term becomes

Fivi = vi
∂

∂x j

( − Pj Ei + Mi B j
) + (viρz

fr. − J fr.
i )Ei + ∂

∂t

(
BiMi − Pj E j

)
−

−E j
∂Dj

∂t
− (E j − E j )J fr.j + Miεi jk

∂Ek

∂x j
+ Pi

dEi

dt
− Bi

dMi

dt
+ E jε jkl

∂Hl

∂xk
=

= vi
∂

∂x j

( − Pj Ei + Mi B j
) + ∂

∂t

(
BiMi − Pj E j

)
− E j

∂Dj

∂t
−

−EiJ fr.i + Miεi jk
∂Ek

∂x j
+ Pi

dEi

dt
− Bi

dMi

dt
+ E jε jkl

∂Hl

∂xk
.

(3.218)
The fifth and eight terms can be rewritten as follows
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Miεi jk
∂Ek

∂x j
+ E jε jkl

∂Hl

∂xk
= −Miε j ik

∂Ek

∂x j
+ E jε jkl

∂Hl

∂xk
=

= − ∂

∂x j

(
ε j ikMi Ek

) + Ek

(
ε j ik

∂Mi

∂x j
+ εklm

∂Hm

∂xl

)
=

= − ∂

∂x j

(
ε j ikMi Ek

) + Ekεk ji
∂Hi

∂x j
=

= − ∂

∂x j

(
ε j ikMi Ek

) + ∂

∂x j
(Ekεk ji Hi ) − εk ji

∂Ek

∂x j
Hi =

= ∂

∂x j

(
− ε j ikMi Ek + ε j ik Hi Ek

)
− ∂Bi

∂t
Hi = ∂

∂x j

(
ε j ikHi Ek

) − ∂Bi

∂t
Hi ,

(3.219)

where we have employed Eqs. (3.197)2, (3.213)1. Hence, by using the latter,
Eq. (3.194)2, and the Maxwell–Lorentz aether relations, we attain the second
term of the production of kinetic energy in its final form:

Fivi = ∂

∂x j

(
(−Pj Ei + Mi B j )vi + (

H × E
)
j

)
+

+ ∂

∂t

(
BiMi − Pj E j − 1

2
Dj E j − 1

2
Bi Hi

)
− (−Pj Ei + Mi B j )

∂vi

∂x j
−

−EiJ fr.i + Pi
dEi

dt
− Bi

dMi

dt
.

(3.220)

The balance of kinetic energy can be rewritten by using the latter and by employing
the Maxwell–Lorentz aether relations as follows

∂

∂t

(1
2
ρvivi − BiMi + Pj E j + 1

2
Dj E j + 1

2
Bi Hi

)
−

− ∂

∂x j

(
− v j

1

2
ρvivi + (

σ j i − Pj Ei + Mi B j
)
vi − (

E × H
)
j

)
−

−ρ fivi = −(
σ j i − Pj Ei + Mi B j

) ∂vi

∂x j
− EiJ fr.i + Pi

dEi

dt
− Bi

dMi

dt
.

(3.221)

This balance equation is well-known for unpolarizedmaterials. For a polarizedmate-
rial it depends on the choice of electromagneticmomentum;we have usedGM

i leading
to Eq. (3.221). Especially E × H is the term responsible for the electromagnetic radi-
ation. It is the energy flux over the boundary due to the electromagnetic fields.We can
simplify the balance of kinetic energy by using a similar notation as in Sect. 3.3. The
kinetic energy density consists of three terms, ρekin. = ρem. + ep. + ef., first term is
due to the mass, ρem., second term is caused by the polarized material, ep., and the
third term is the energy density of the field, ef., as follows

ρem. = 1

2
ρvivi , ep. = −BiMi + Pj E j , ef. = 1

2

(
Dj E j + Bi Hi

)
. (3.222)
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By using the above definitions we just rewrite the balance of kinetic energy:

∂ρekin.

∂t
− ∂

∂x j

(
− v j (ρe

kin. − ep. − ef.) − (
E × H

)
j+

+(
σ j i − Pj Ei + Mi B j

)
vi

)
− ρ fivi =

= −(
σ j i − Pj Ei + Mi B j

) ∂vi

∂x j
− EiJ fr.i + Pi

dEi

dt
− Bi

dMi

dt
.

(3.223)

We aim for the Gibbs equation in polarized material. Thus, we need to acquire the
balance of internal energy. Since we have found the balance of kinetic energy we
can subtract it from the balance of total energy and acquire the balance of internal
energy. The specific total energy, e, is the sum of specific kinetic energy, ekin., and
specific internal energy, u, as, e = ekin. + u. We start off with the balance of (total)
energy:

∂ρe

∂t
− ∂

∂x j

( − v jρe + Fj
) − ρs = 0 , (3.224)

where the flux of energy, Fj , and the energy supply per mass, s, are not defined,
yet. Total energy is a conserved quantity implying that the balance of energy lacks
a production term. By subtracting the balance of kinetic energy from the balance of
total energy we obtain

∂(ρe − ρekin.)

∂t
− ∂

∂x j

( − v j (ρe − ρekin. + ep. + ef.) + Fj + (
E × H

)
j
−

−(
σ j i − Pj Ei + Mi B j

)
vi

) − ρ(s − fivi ) =
= (

σ j i − Pj Ei + Mi B j
) ∂vi

∂x j
+ EiJ fr.i − Pi

dEi

dt
+ Bi

dMi

dt
.

(3.225)
The latter is the balance of internal energy:

∂ρu

∂t
− ∂

∂x j

( − v jρu − q j
) − ρr = � , (3.226)

with the specific internal energy, u = e − ekin., with the flux of internal energy or
heat flux:

−q j = −v j (e
p. + ef.) + Fj + (

E × H
)
j − (

σ j i − Pj Ei + Mi B j
)
vi , (3.227)

with the supply of internal energy or internal heating:

r = s − fivi , (3.228)

and with the production of internal energy:
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� = (
σ j i − Pj Ei + Mi B j

) ∂vi

∂x j
+ EiJ fr.i − Pi

dEi

dt
+ Bi

dMi

dt
. (3.229)

After inserting the balance ofmasswe obtain the following balance of internal energy
in the current frame:

ρ
du

dt
+ ∂q j

∂x j
− ρr = (

σ j i − Pj Ei + Mi B j
) ∂vi

∂x j
+ EiJ fr.i − Pi

dEi

dt
+ Bi

dMi

dt
.

(3.230)

We will use thermodynamics to obtain the necessary constitutive equations, viz., u,
qi , σ j i , Pi , Mi , and J fr.i . Then the aforementioned definitions lead to e and Fi .

In this sectionwe search for field equations for deformable solids. Thus,we need to
transform the balance of internal energy from the current frame to the Lagrangean
frame. For the sake of brevity we neglect the geometric nonlinearities. Then the
transformation onto the Lagrangean frame is an ease

ρ0
du

dt
+ ∂q j

∂X j
− ρ0r = (

σ j i − Pj Ei + Mi B j
) ∂vi

∂X j
+ EiJ fr.i − Pi

dEi

dt
+ Bi

dMi

dt
.

(3.231)

As we have decomposed the stress, σ j i , we also split the polarization tensors, Pi ,
Mi , into reversible and dissipative terms:

σ j i = rσ j i + dσ j i , Pi = rPi + dPi , Mi = rMi + dMi . (3.232)

We analyze first the equilibrium state. At the equilibrium state all dissipative terms
vanish. The supply terms shall vanish at the equilibrium, too. For a mechanical
equilibrium the velocity gradient deduces to rate of strains:

∂v(i

∂X j)
= ∂

∂X j)

du(i

dt
= d

dt

∂u(i

∂X j)
= dεi j

dt
. (3.233)

For a symmetric reversible stress tensor, rσi j = rσ j i , we can write

rσi j
∂v(i

∂X j)
= rσi j

dεi j
dt

. (3.234)

For an electromagnetic equilibrium the electric current vanishes. For a thermal equi-
librium we again introduce68 as exactly in Sect. 3.3 a new quantity called entropy as
follows

− ∂qi
∂Xi

∣∣∣
eq.

= dq

dt

∣∣∣
eq.

,
1

T

dq

dt

∣∣∣
eq.

= ρ0
dη

dt
, (3.235)

68See [15, Chap.XIV, Sect. 2].
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where the specific entropy, η, is responsible for a reversible exchange from
mechanical or electromagnetic energies to thermal energy. Hence, at equilibrium,
the balance of internal energy reads69

ρ0
du

dt
= ρ0T

dη

dt
+ rσ j i

dεi j
dt

− rPi
dEi

dt
+ Bi

d rMi

dt
. (3.236)

According to the 1st law of thermodynamics we can rewrite the latter in terms of
differentials:

du = T dη + v rσ j idεi j − v rPidEi + vBid
rMi , (3.237)

where we have utilized the specific volume, v = 1/ρ0. The latter equation can be
called the Gibbs equation for polarized materials. Next, we will define the dual
variables η, rσ j i , rPi , and rMi with respect to the primary (or state) variables T ,
εi j , Ei , and Bi . We choose the primary variables as T , εi j , Ei , Bi , since we know
their relations to the primitive variables, T , ui , φ, Ai . In order to obtain an energy
depending on the primary variables, we introduce a free energy:

ψ = u − T η − Biv
rMi , (3.238)

and by taking its total differential we obtain

dψ = du − ηdT − T dη − Bivd
rMi − rMivdBi =

= −ηdT + rσ j ivdεi j − rPivdEi − rMivdBi .
(3.239)

The free energy depends on the primary variables,ψ = ψ(T, εi j , Ei , Bi ). Obviously,
each dual variable, η, rσi j , rPi , rMi , may depend on the primary variables, T , εi j , Ei ,
Bi , such that we acquire

dη = c̃dT + p̃i jdεi j + �̃idEi + õidBi ,

d rσi j = P̃i jdT + Ci jkldεkl + t̃ki jdEk + s̃i jkdBk ,

d rPi = L̃ idT + T̃i jkdε jk + χ̃el.
i j dE j + r̃i jdBj ,

d rMi = ÕidT + S̃i jkdε jk + R̃i jdE j + χ̃
mag.
i j dBj .

(3.240)

69An alternative is to use the following formulation:

ρ0
du

dt
= ρ0T

dη

dt
+ ( rσ j i − rPj Ei + rMi B j )

dεi j
dt

− rPi
dEi

dt
+ Bi

d rMi

dt
.

This formulation leads to the same constitutive equations and is also admissible. The argumentation
for explaining themeasurements in the dual variables becomesmore difficult by using the alternative
formulation.
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All material parameters, c̃, p̃i j , �̃i , õi , P̃i j , Ci jkl , t̃ki j , s̃i jk , L̃ i , T̃i jk , χel.
i j , r̃i j , Õi , S̃i jk ,

R̃i j , χ̃
mag.
i j shall be determined experimentally. By using theMaxwell symmetry or

reciprocal relations:

P̃i j = ∂ rσi j

∂T
= ρ0

∂ rσi jv

∂T
= ρ0

∂2ψ

∂T∂εi j
= ρ0

∂2ψ

∂εi j∂T
= −ρ0

∂η

∂εi j
= −ρ0 p̃i j

⇒ p̃i j = −v P̃i j ,

L̃ i = ∂ rPi
∂T

= ρ0
∂ rPiv

∂T
= −ρ0

∂2ψ

∂T∂Ei
= −ρ0

∂2ψ

∂Ei∂T
= ρ0

∂η

∂Ei
= ρ0�̃i

⇒ �̃i = v L̃ i ,

Õi = ∂ rMi

∂T
= ρ0

∂ rMiv

∂T
= −ρ0

∂2ψ

∂T∂Bi
= −ρ0

∂2ψ

∂Bi∂T
= ρ0

∂η

∂Bi
= ρ0õi

⇒ õi = vÕi ,

(3.241)
as well as

T̃i jk = ∂ rPi
∂ε jk

= ρ0
∂ rPiv

∂ε jk
= −ρ0

∂2ψ

∂ε jk∂Ei
= −ρ0

∂2ψ

∂Ei∂ε jk
= −ρ0

∂ rσ jkv

∂Ei
= −t̃i jk

⇒ t̃ki j = −T̃ki j ,

S̃i jk = ∂ rMi

∂ε jk
= ρ0

∂ rMiv

∂ε jk
= −ρ0

∂2ψ

∂ε jk∂Bi
= −ρ0

∂2ψ

∂Bi∂ε jk
= −∂ rσk j

∂Bi
= −s̃k j i

⇒ s̃i jk = S̃k ji ,

R̃i j = ∂ rMi

∂E j
= ρ0

∂ rMiv

∂E j
= −ρ0

∂2ψ

∂E j∂Bi
= −ρ0

∂2ψ

∂Bi∂E j
= ∂ rPj

∂Bi
= r̃ j i

⇒ r̃i j = R̃ ji ,

(3.242)
we can reduce the necessary amount of measurements for determining materials
parameters. The experiments are established by varying one of the primary variable
as holding the other primary variables fixed and measuring the corresponding dual
variable.

The stiffness tensor, Ci jkl , is measured for a specific (fixed) temperature, dT = 0,
for a fixed electric field, dEi = 0, for a fixed magnetic intensity, dBi = 0, by varying
strain, dεi j , and measuring stress, dσi j . The electric susceptibility, χel.

i j , constitut-
ing χ̃el.

i j = ε0χ
el.
i j is measured analogously by varying dEi and measuring d rPi . The

magnetic susceptibility, χmag.
i j , in χ̃

mag.
i j = μ−1χ

mag.
i j is measured by varying dBi and

measuring d rMi . We cannot measure entropy directly but the specific heat energy,
δQ = T dη = T c̃dT , can be measured by varying temperature, δQ = cdT , where
the specific heat capacity, c = T c̃, has been introduced. All direct relations, namely
stiffness, susceptibility, heat capacity, can easily be found in the literature for various
materials.
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Moreover, there are the coupling terms, viz., the thermal pressure, P̃i j , the
pyroelectric tensor, L̃ i , the electromagnetic coupling, R̃i j , the magnetothermal cou-
pling, Õi , the piezoelectric tensor, T̃i jk , and the piezomagnetic tensor, S̃i jk . Especially
for the thermal pressure, pyroelectric tensor, and the magnetothermal coupling the
material parameters are difficult to find in the literature. However, we can rewrite
them by using coefficients of thermal expansion,αi j , which is determined by varying
temperature and measuring strain

dεi j = αi jdT . (3.243)

The coefficients of thermal expansion are measured by holding the other variables
fixed, hence, from Eq. (3.240)2 we obtain for fixed rσi j , Ei , Bi ,

0 = P̃i jdT + Ci jkldεkl = P̃i jdT + Ci jklαkldT

⇒ P̃i j = −Ci jklαkl .
(3.244)

Analogously we acquire

L̃ i = −T̃i jkα jk , Õi = −S̃i jkα jk . (3.245)

Now by using the thermal expansion coefficients and employing the Maxwell

relations we obtain

dη = c

T
dT + vCi jklαkldεi j − vT̃i jkαkldEi − v S̃i jkαkldBi ,

d rσi j = −Ci jklαkldT + Ci jkldεkl − T̃ki jdEk + S̃k jidBk ,

d rPi = −T̃i jkα jkdT + T̃i jkdε jk + ε0χ
el.
i j dE j + R̃ jidBj ,

d rMi = −S̃i jkα jkdT + S̃i jkdε jk + R̃i jdE j + μ−1
0 χ

mag.
i j dBj .

(3.246)

Instead of the piezoelectric tensor, T̃i jk , it is more common to find the so-called
piezoelectric coefficients, d̃i jk , in the literature.70 Variation of the electric field and
measurement of the induced strain are used to determine the piezoelectric coefficients
with dεkl = d̃mkldEm by fixed stress, d rσi j = 0, at a constant temperature, dT = 0,
and for a constant magnetic flux, dBi = 0, such that we observe from Eq. (3.246)2

0 = Ci jkldεkl − T̃mi jdEm = Ci jkl d̃mkldEm − T̃mi jdEm ,

T̃mi j = Ci jkl d̃mkl .
(3.247)

The notation d̃mkl is a standardized notation (without tilde) for the piezoelectric
coefficients.

70See the measurements described in [27].
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All material parameters, namely c̃, Ci jkl , χel.
i j , χ

mag.
i j , αi j , T̃i jk , S̃i jk , and R̃i j may

depend on the primary variables, T , εi j , Ei , and Bi . Some materials show an electro-
magneto-strictionmeaning that the susceptibilities depend on electric field and mag-
netic flux. For a simple and linear material, where material parameters are constants
in the primary variables, we can obtain the dual variables simply by integrating from
the ground state, T = Tref., εi j = 0, Ei = 0, Bi = 0, to the present state, T , εi j , Ei ,
Bi , as follows

η = c ln
( T

Tref.

)
+ vCi jklαklεi j − vT̃i jkα jk Ei − v S̃i jkα jk Bi ,

rσi j = −Ci jklαkl(T − Tref.) + Ci jklεkl − T̃ki j Ek + S̃k ji Bk ,

rPi = −T̃i jkα jk(T − Tref.) + T̃i jkε jk + ε0χ
el.
i j E j + R̃ ji B j ,

rMi = −S̃i jkα jk(T − Tref.) + S̃i jkε jk + R̃i j E j + μ−1
0 χ

mag.
i j B j .

(3.248)

We have defined all of the reversible parts of σi j , Pi , and Mi by using the Gibbs

equation at the equilibrium state. We assume that the rate of internal energy holds at
the non-equilibrium state, too. In other words, we assume that the internal energy is
recoverable. Now the balance of internal energy in Eq. (3.231) can be rewritten by
inserting the Gibbs equation

ρ0T
dη

dt
+ ∂q j

∂X j
− ρ0r = (

dσ j i − Pj Ei + Mi B j
) ∂vi

∂X j
+

+EiJ fr.i − dPi
dEi

dt
+ Bi

d dMi

dt
,

(3.249)

or even as follows

ρ0T
∂η

∂t
+ ∂q j

∂X j
− ρ0r = (

dσ j i − Pj Ei + Mi B j
) ∂vi

∂X j
+

+EiJ fr.i − dPi
∂Ei

∂t
+ Bi

∂ dMi

∂t
,

(3.250)

since the formulation is in the Lagrangean frame. We can rewrite the latter in order
to obtain a balance equation:

ρ0
∂η

∂t
+ ∂

∂X j

(
q j

T

)
− ρ0

r

T
= q j

∂

∂X j

(
1

T

)
+ 1

T

(
dσ j i − Pj Ei + Mi B j

) ∂vi

∂X j
+

+ 1

T
EiJ fr.i − 1

T
dPi

∂Ei

∂t
+ 1

T
Bi

∂ dMi

∂t
.

(3.251)
This balance equation is the balance of entropy in the Lagrangean frame:

ρ0
∂η

∂t
+ ∂Φ j

∂X j
− ρ0

r

T
= � , (3.252)
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with a flux term, Φi , and a production term, �, as

Φ j = q j

T
,

� = − q j

T 2

∂T

∂X j
+ 1

T

(
dσ j i − Pj Ei + Mi B j

) ∂vi

∂X j
+

+ 1

T
EiJ fr.i − 1

T
dPi

∂Ei

∂t
+ 1

T
Bi

∂ dMi

∂t
.

(3.253)

The entropy flux, Φi , might become differently by redefining the energy flux in
Eq. (3.227). We could include the radiation term E × H into the balance of internal
energy by leaving out the radiation term in Eq. (3.227). Then the entropy flux and
the entropy production would have an additional term in the heat flux similar to a
Hall effect.71 For its interpretation see [28, Sect. 9.9.4]. We propose a choice, where
the radiation is included in the heat flux. Both choices are reasonable for different
experimental setups. In other words, the appropriate choice depends on measuring
the heat flux with or without the radiation term.

There are various heat flux gauges, they mostly rely on a heat flux definition,
which we will derive in the following. As we know from Fourier’s law, the heat
flux depends on the temperature, thus, the temperature measurement plays a crucial
role. Although temperature is a primitive variable—we accept its existence without
questioning—measuring the temperature is always succeeded in an indirect way. In
case of a non-contact temperature measurement with an infrared camera, the detector
outputs an electric signal denoting the temperature (after a calibration with a known
temperature). The detector in the camera is a sensor. If a quantum detector is used,
where the sensor is a photodiode transforming the electromagnetic radiation into an
electric signal, then we have to include the radiation term in the heat flux. However,
if a thermal detector with a pyroelectric material as sensor is employed, then we shall
separate radiation and heat flux.

We continue by using the above definition of heat flux including radiation. More-
over, we restrict our formalism to the case that polarization causes a reversible evo-
lution. In other words, we assume

dPi = 0 , dMi = 0 ⇒ Pi = rPi , Mi = rMi . (3.254)

Then the entropy production reads by introducing the comma notation for derivatives
in Xi , as follows

� = − q j

T 2
T, j + 1

T

(
dσ j i − Pj Ei + Mi B j

)
vi, j + 1

T
EiJ fr.i . (3.255)

According to the 2nd law of thermodynamics, the entropy production vanishes,� =
0, for reversible processes (at the equilibrium state); and it is positive, � > 0, on

71It is named after Edwin Herbert Hall.
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irreversible processes (at non-equilibrium). Moreover, tensors of rank two can be
decomposed into the spherical, symmetric deviatoric, and antisymmetric terms, for
example, in the case of a generic tensor of rank two, Ai j , this would be

A ji = A( j i) + A[ j i] = A|( j i)| + 1

3
Akkδ j i + A[ j i] ,

A( j i) = 1

2

(
A ji + Ai j

)
, A|( j i)| = A( j i) − 1

3
Akkδ j i , A[ j i] = 1

2

(
A ji − Ai j

)
,

(3.256)
leading to

dσ j i − Pj Ei + Mi B j = � j i ,

1

T
� j ivi, j = 1

T
�|( j i)|v|(i, j)| + 1

3T
�i iv j, j + 1

T
�[ j i]v[i, j] .

(3.257)

Hence we can rewrite the production of entropy by introducing two lists:

Kα =
{

1

T 2
T, j ,

1

T
v|(i, j)| ,

1

T
v j, j ,

1

T
v[i, j] ,

1

T
Ei

}
,

Fα =
{

− q j , �|( j i)| , �i i , �[ j i] , J fr.i

}
,

(3.258)

where the thermodynamical forces,Kα, are derived from the primitive variables and
thermodynamical fluxes,Fα, are going to be defined in the following. The production
of entropy reads

� = Kα · Fα ≥ 0 , α = 1, 2, . . . , 5 , (3.259)

where the summation convention is used for α. The thermodynamical fluxes depend
only on the thermodynamical forces of the same rank. For example, F1 is a thermo-
dynamical flux of rank one and depends only on the thermodynamical forces of rank
one, namely on K1 and K5. This restriction is due to the different transformation
properties of tensors of different ranks and referred to as the Curie principle. The
thermodynamical flux of rank zero reads

�i i = Ā
1

T
v j, j . (3.260)

Analogously the thermodynamical fluxes of rank one become

−q j = ā
1

T 2
T, j + b̄

1

T
E j , J fr.i = B̄

1

T 2
T, j + c̄

1

T
E j . (3.261)

The thermodynamical fluxes of rank two are

�|( j i)| = d̄
1

T
v|(i, j)| , �[ j i] = ē

1

T
v[i, j] . (3.262)
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In order to fulfill the 2nd law of thermodynamics we acquire

� = Ā

T 2
vi,iv j, j + ā

T 4
T, j T, j + 1

T 3
T, jE j (b̄ + B̄)+

+c̄
1

T 2
EiEi + d̄

T 2
v|(i, j)|v|(i, j)| + ē

T 2
v[i, j]v[i, j] ≥ 0 ,

(3.263)

such that Ā > 0, ā > 0, c̄ > 0, d̄ > 0, and ē > 0 have to hold. For the coupling con-
stants we have to obtain b̄ + B̄ = 0 in order to inhibit a negative entropy production,
since we cannot assure for all processes that the temperature gradient and the electric
field shall have the same direction.

Piezoceramics are insulators such that free conducting current shall vanish, J fr.i =
0, i.e., b̄ = 0, c̄ = 0. Hence we obtain for the piezoceramic material:

q j = −κT, j , κ = ā

T 2
> 0 , (3.264)

this material equation is referred to as Fourier’s law for the case of κ = const. We
also suppose that an irreversible motion fails to exist, in other words, the material is
elastic. In order to achieve that we set Ā = 0, d̄ = 0, and ē = 0. Hence the dissipative
stress tensor becomes

�i i = 0 , �|(i j)| = 0 , �[i j] = 0 ,
dσi i = Pi Ei − Mi Bi , dσ|( j i)| = P|( j Ei)| − M|(i B j)| , dσ[ j i] = P[ j Ei] − M[i B j] ,

dσ j i = Pj Ei − Mi B j .

(3.265)
Moreover, we suppose that the piezoceramic material lacks a magnetic polarization,
Mi = rMi = 0. In order to succeed this the corresponding materials parameters have
to vanish, S̃i jk = 0, R̃i j = 0, χmag.

i j = 0. Hence the following constitutive equations
are valid for piezoceramics:

η = c ln
( T

Tref.

)
+ vCi jklαklεi j − vT̃i jkα jk Ei , qi = −κT,i ,

σ j i = dσ j i + rσ j i = Pj Ei − C jiklαkl(T − Tref.) + C jiklεkl − T̃k ji Ek ,

Pi = rPi = −T̃i jkα jk(T − Tref.) + T̃i jkε jk + ε0χ
el.
i j E j ,

(3.266)

with the following primary variables:

εi j = u(i, j) , Ei = −φ,i − ∂Ai

∂t
, Bi = εi jk Ak, j . (3.267)

We have deduced all necessary constitutive equations by using thermodynamics.
The governing equations are now closed and can be solved. Our aim is to compute
the electric potential, φ, the magnetic potential, Ai , the displacement, ui , and the



260 3 Electromagnetism

Fig. 3.14 Drawing of a micropump with two valves on top and a thin membrane on its bottom. The
piezo actuator moves the membrane up- and downward such that the volume changes and fluid is
pumped from inlet to outlet

Fig. 3.15 The membrane of the micropump, a PZT-5H piezoceramic rectangular sheet (green) is
mounted on a thin circular plate out of brass (yellow)

temperature, T , as functions in space, Xi , and time, t , in the Lagrangean frame for
a solid body.

Consider a micropump as drawn in Fig. 3.14. A diaphragm or membrane is actu-
ated with the mounted piezoceramic on the outer side. By applying a cyclic electric
potential difference on the piezoceramic plate, the membrane bends down and up
such that the chamber sucks in a medium through inlet and pumps out through outlet.
The deformation of the membrane is controlled over the given potential difference.
Hence, the volume rate out of the pump is dosed very accurately. Such micropumps
with piezo drivers are used in medical devices, they are called lab-on-a-chip. We
want to simulate the motion of the membrane of such a micropump. The membrane
comprises a circular plate out of brass (copper and zinc alloy) and a PbZr0.53Ti0.47O3

(PZT-5H) piezoceramic sheet on the plate—it is shown in Fig. 3.15. Since the brass
plate is a conductor we can connect the electric supply on any point on it and the
piezo sheet has an electric potential on its top. Although it is not modeled, there is
a thin sheet of a conductor (like brass) on piezo sheet’s bottom utilizing an electric
potential on the whole bottom-side.

The piezoelectric properties are naturally found in some single-crystals, however
nowadays, the synthetic (polycrystalline) piezoceramics are used in the industry. The
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piezoelectric ceramic is poled in a certain direction.72 This process creates the piezo-
electric properties. The poling direction is also called the piezoelectric axis and it is
always chosen along x3 in the literature. Therefore, we have modeled the geometry
such that x3 is directed along the thickness. The potential difference is set along the
poling direction. Therefore, the material is isotropic but during (piezoelectric) poling
the thermal and mechanical properties along x3-axis alter. In a data sheet for PZT-5H
we find the following values:73

ρ0 = 7500 kg/m3 , S33 = 20 · 10−12 m2/N ,

S11 = 15.6 · 10−12 m2/N , ν = 0.31 ,

d̃33 = 585 · 10−12 m/V , d̃31 = −265 · 10−12 m/V ,

d̃15 = 730 · 10−12 m/V , ε̄el.33 = 3400 , ε̄el.11 = 3130 ,

c = 350 J/(kgK) , κ = 1.1W/(mK) ,

α33 = −4 · 10−6 1/K , α11 = 6 · 10−6 1/K .

(3.268)

The compliance matrix, SI J , in the Voigt notation reads

SI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11 −νS11 −νS11 0 0 0
−νS11 S11 −νS11 0 0 0
−νS11 −νS11 S33 0 0 0

0 0 0 (1 + ν)S11 0 0
0 0 0 0 (1 + ν)S11 0
0 0 0 0 0 (1 + ν)S11

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.269)

The inverse of the compliance matrix is the stiffness matrix in the Voigt notation:

(SJ I )
−1 = CI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.270)

Analogously, we have the piezoelectric constants, d̃i J , by using the Voigt notation
on the indices belonging to the strain

72Some materials have different stable states where the configuration of molecules are different.
By applying a high electric field, i.e., poling, the configuration is changed to the new stable state.
The lattice is distorted in this new state so that the electric field and deformation are connected. An
electric field (smaller than the poling field) induces a strain (distortion in the lattice). This shape
change is reversible as long as the applied field remains smaller than the poling field.
73All parameters of PZT-5H are compiled from http://www.piceramic.com/piezo-technology/
fundamentals.html and http://bostonpiezooptics.com/ceramic-materials-pzt

http://www.piceramic.com/piezo-technology/fundamentals.html
http://www.piceramic.com/piezo-technology/fundamentals.html
http://bostonpiezooptics.com/ceramic-materials-pzt
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d̃i J =
⎛
⎝
d̃111 d̃122 d̃133 d̃123 d̃131 d̃112
d̃211 d̃222 d̃233 d̃223 d̃231 d̃212
d̃311 d̃322 d̃333 d̃323 d̃331 d̃312

⎞
⎠ =

⎛
⎝

0 0 0 0 d̃15 0
0 0 0 d̃15 0 0
d̃31 d̃31 d̃33 0 0 0

⎞
⎠ , (3.271)

where the necessary coefficients are calculated with the aforementioned relation:

T̃mi j = Ci jkl d̃mkl . (3.272)

The susceptibility is given by the relative permittivity values:

χel.
i j =

⎛
⎝

εel.11 0 0
0 εel.11 0
0 0 εel.33

⎞
⎠ − δi j . (3.273)

The thermal expansion coefficients read

αi j =
⎛
⎝

α11 0 0
0 α11 0
0 0 α33

⎞
⎠ . (3.274)

Piezoceramic is an insulator and brass is a conductor. For the computational domain
where the piezo sheet is, we use �p., and for the brass plate we employ �b., so the
whole domain reads� = �p. ∪ �b.. Between brass and piezoceramicmaterials there
exists a singular surface, ∂�s. = ∂�p. ∩ ∂�b., onwhich the balance equations on sin-
gular surfaces need to be fulfilled. We simply employ the weak forms in Eqs. (3.80),
(3.92) derived in Sect. 3.2. For simplicity we skip modeling the air surrounding the
membrane and piezo sheet. On the boundaries to air, ∂�a. = ∂� \ ∂�s., either the
electric potential is given as a Dirichlet boundary condition or the electric current
vanishes in the plane normal direction. Similarly we assume that the gradient of mag-
netic potential is directed along the plane normal. We recall that the piezoceramic
material lacks magnetic polarization, Mi = 0. The weak forms for electromagnetic
potentials read in the energy unit

Fφ =
∫
�

( − (Di − D0
i ) δφ,i − Δt J fr.i δφ,i

)
dv +

∫
∂�I

(
niΔt

[
J fr.i

]
δφ

)
da .

FA =
∫
�

(
ε0

Ai − 2A0i + A00i
ΔtΔt

δAi + 1

μ0
Ai, j δAi, j − J fr.i δAi − Pi − P0

i
Δt

δAi
)
dv .

(3.275)

The free electric current is

J fr.
i = J fr.i + ρzfr.vi = J fr.i + Di,i

ui − u0i
Δt

, (3.276)
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by using the usual time discretization. For the piezo sheet the free objective current
vanishes, J fr.i = 0, whereas for the brass it is modeled by using Ohm’s law and
neglecting the thermoelectric coupling for brass, since the Peltier coefficient is
small.

In order to compute the displacement we employ the balance of linear momentum
in the Lagrangean frame after having neglected the geometric nonlinearities

ρ0
∂vi

∂t
− σ j i, j − ρ0 fi = Fi . (3.277)

By inserting the electromagnetic supply from Eq. (3.190) in the Lagrangean frame
for small deformations we acquire

ρ0
∂vi

∂t
+ ∂Gi

∂t
− σtot.

j i, j − ρ0 fi = 0 , σtot.
j i = σ j i + m ji . (3.278)

The electromagnetic momentum and stress are

Gi = εi jkD j Bk , m ji = −1

2
δi j (HkBk + DkEk) + Hi Bj + Dj Ei . (3.279)

For obtaining the weak form we need to integrate by parts solely the terms already
including a derivative. Thus, we separate the stress into τi j including terms with
derivatives of the primitive variables and into σ̄i j with the primitive variables without
derivatives as follows

σtot.
j i = σ̄ j i + τ j i ,

τ j i = m ji + Pj Ei + C jiklεkl − T̃k ji Ek ,

σ̄ j i = −C jiklαkl(T − Tref.) .

(3.280)

From the balance of linear momentum we acquire the following weak form in the
unit of energy:

Fu =
∫

�

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + εi jk(D j Bk − D0
j B

0
k )

Δt
δui−

−σ̄ j i, j δui + τ j i δui, j − ρ0 fi δui

)
dV −

∫
∂�

(t̂i − N j σ̄ j i ) δuidA .

(3.281)

The traction vector, t̂i = N j σ̂
tot.
j i , is given on the boundaries. Either it is a free surface

such that no traction occurs or there is a loading measured in Pa and stated by the
given traction vector, t̂i . It is of importance to recall that the traction on the surface
is undertaken by the mechanical and electromagnetic stress, together. Therefore,
under the same traction vector different combinations might occur where a high
mechanical stress is compensated by an electromagnetic stress, or otherwise. The
electromagnetic stress is generated by the electric and magnetic potentials computed
by their corresponding weak forms.
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For computing the temperature distribution we acquire the weak form from the
balance of entropy in the unit of energy:

FT =
∫

�

(
ρ0(η − η0) δT − ΔtΦi δT,i − Δtρ0

r

T
δT − Δt� δT

)
dV+

+
∫

∂�

ΔtΦ̂ δT dA ,

(3.282)

where flux and production of entropy are given in Eq. (3.253). After setting the
assumptions, dPi = 0, dMi = 0, rMi = 0, we obtain

Φi = qi
T

, Φ̂ = q̂i Ni

T
, � = − qi

T 2
T,i + 1

T
EiJ fr.i . (3.283)

For the boundaries we implement the usual Robin boundaries:

q̂i Ni = h(T − Tamb) , (3.284)

with the ambient temperature chosen equal to the reference temperature.
Since all forms are in the same unit we can sum them up and obtain a weak form:

Form = Fφ + FA + Fu + FT , (3.285)

in order to compute the primitive variables, viz., φ, Ai , ui , T . The nonlinear and
coupled form will be computed as usual monolithically after a Newton–Raphson
linearization at the level of the partial differential equations.

The aforementioned micropump’s membrane is simulated by setting a harmonic
potential difference:

φ̂ = A sin(2πνt) , (3.286)

where the amplitude is chosen as A = 100V and the frequency as ν = 10Hz. The
diaphragm out of brass is fixed on the pump’s body at its circumference. We simulate
the circumference as clamped and grounded. The piezoceramic sheet deforms due
to the potential difference. Electric potential at the bottom of the piezoceramic sheet
is the input and the motion of diaphragm’s top middle is the output. The response,
i.e., input versus output is plotted in Fig. 3.16. The response is nearly instantaneous,
which enables an accurate controlling of the micropump’s response. All primitive
variables are calculated at once. The maximum deflections occur roughly at the
first and third quarter of the cycle, see Fig. 3.17. The change in temperature is not
significant and the distribution of the magnetic potential is such that no magnetic
flux arises. The deformation is small since we have modeled one piezo sheet. In
reality the actuator consists of many layers—multilayer piezoceramics—such that
the piezoelectric coefficient in the poling direction increases. The geometry can be
obtained in [1] and the code used for the simulation is given below.
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Fig. 3.16 The input (continuous, red) and output (dashed, blue) of the piezo membrane in the
micropump for one cycle in 10Hz

Fig. 3.17 The deformation of the piezo membrane at the first (top) and third (bottom) quarter of
the first cycle with a scale factor of 10000. The membrane moves upward and downward
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1 ””” Computational r e a l i t y 19 , p i e z o e l e c t r i c t ransducer ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : m, kg , s , V , K

10 de l ta = Id en t i t y (3)
11 ep s i l on = as t en s o r ( [ ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (

→ (0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)
→ , ( 0 , 0 , 0 ) ) ] )

12
13 def VoigtToTensorRank4 (A11=0. , A12=0. , A13=0. , A14=0. , A15

→ =0. , A16=0. , A22=0. , A23=0. , A24=0. , A25=0. , A26=0. ,
→ A33=0. , A34=0. , A35=0. , A36=0. , A44=0. , A45=0. , A46
→ =0. , A55=0. , A56=0. , A66=0.) :

14 A21 , A31 , A41 , A51 , A61 = A12 , A13 , A14 , A15 , A16
15 A32 , A42 , A52 , A62 = A23 , A24 , A25 , A26
16 A43 , A53 , A63 = A34 , A35 , A36
17 A54 , A64 = A45 , A46
18 A65 = A56
19 return a s t en s o r ( [ \
20 [ \
21 [ [ A11 , A16 , A15 ] , [ A16 , A12 , A14 ] , [ A15 ,A14 ,A13 ] ] , \
22 [ [ A61 , A66 , A65 ] , [ A66 , A62 , A64 ] , [ A65 ,A64 ,A63 ] ] , \
23 [ [ A51 , A56 , A55 ] , [ A56 , A52 , A54 ] , [ A55 ,A54 ,A53 ] ] \
24 ] , [ \
25 [ [ A61 , A66 , A65 ] , [ A66 , A62 , A64 ] , [ A65 ,A64 ,A63 ] ] , \
26 [ [ A21 , A26 , A25 ] , [ A26 , A22 , A24 ] , [ A25 ,A24 ,A23 ] ] , \
27 [ [ A41 , A46 , A45 ] , [ A46 , A42 , A44 ] , [ A45 ,A44 ,A43 ] ] \
28 ] , [ \
29 [ [ A51 , A56 , A55 ] , [ A56 , A52 , A54 ] , [ A55 ,A54 ,A53 ] ] , \
30 [ [ A41 , A46 , A45 ] , [ A46 , A42 , A44 ] , [ A45 ,A44 ,A43 ] ] , \
31 [ [ A31 , A36 , A35 ] , [ A36 , A32 , A34 ] , [ A35 ,A34 ,A33 ] ] ] \
32 ] )
33
34 def VoigtToTensorRank3 (A11=0. ,A12=0. ,A13=0. ,A14=0. ,A15=0. ,A16

→ =0. , A21=0. ,A22=0. ,A23=0. ,A24=0. ,A25=0. ,A26=0. , A31
→ =0. ,A32=0. ,A33=0. ,A34=0. ,A35=0. ,A36=0.) :

35 return a s t en s o r ( [ \
36 [ \
37 [ A11 , A16 , A15 ] , \
38 [ A16 , A12 , A14 ] , \
39 [ A15 , A14 , A13 ] \
40 ] , [ \
41 [ A21 , A26 , A25 ] , \
42 [ A26 , A22 , A24 ] , \
43 [ A25 , A24 , A23 ] \
44 ] , [ \
45 [ A31 , A36 , A35 ] , \
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46 [ A36 , A32 , A34 ] , \
47 [ A35 , A34 , A33 ] ] \
48 ] )
49
50 def ToTensorRank2 (A11=0. ,A12=0. ,A13=0. , A21=0. ,A22=0. ,A23=0. ,

→ A31=0. ,A32=0. ,A33=0.) :
51 A21 , A31 , A32 = A12 , A13 , A23
52 return a s t en s o r ( [ \
53 [ A11 , A12 , A13 ] , \
54 [ A21 , A22 , A23 ] , \
55 [ A31 , A32 , A33 ] \
56 ] )
57
58 def m a t e r i a l c o e f f i c i e n t ( target mesh , c e l l s l i s t , c o e f f s ) :
59 c o e f f f u n c = Function ( FunctionSpace ( target mesh , DG , 0)

→ )
60 markers = numpy. asarray ( c e l l s l i s t . array ( ) , dtype=numpy.

→ i n t32 )
61 c o e f f f u n c . v ec tor ( ) [ : ] = numpy . choose ( markers −1, c o e f f s )
62 return c o e f f f u n c
63
64
65 2D 1 ” s i n g u l a r i t y ”
66 2D 2 ” boundary ai r ”
67 2D 3 ”clamp”
68 2D 4 ” load ing ”
69 3D 1 ” bras s ”
70 3D 2 ” p i ezo ”
71
72 mesh = Mesh ( geo/CR19 piezo . xml )
73 c e l l s = MeshFunction( s i z e t ,mesh , geo/

→ CR19 p i ezo phys i ca l r eg i on . xml )
74 f a c e t s = MeshFunction( s i z e t ,mesh , geo/

→ CR19 p i ezo f ace t r eg i on . xml )
75 N = FacetNormal (mesh )
76
77 Sca l a r = FunctionSpace (mesh , P , 1)
78 Vector = VectorFunctionSpace (mesh , P , 1)
79 #ph i , A , u , T
80 Space = MixedFunctionSpace ( [ Sca lar , Vector , Vector , S ca l a r ] )
81 dI = Measure ( dS , domain=mesh , subdomain data=f a c e t s )
82 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
83 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
84
85 nu = 10 . #i n Hz
86 t = 0 .0
87 tMax = 2./ nu
88 Dt = tMax/100.
89
90 i , j , k , l , n = i n d i c e s (5 )
91 f = Constant ( ( 0 . , 0 . , 0 . ) ) #N/ kg
92 r = Constant ( 0 . 0 )
93 Tref = 300. #i n K
94 Tamb = Tref
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95 eps 0 = 8.85E−12 #i n A s / (V m)
96 mu 0 = 12.6E−7 #i n V s / (A m)
97 nu l l=1E−20 #f o r n u m e r i c a l r e a s o n s i t i s n o t z e r o
98 h = 10 . #i n J / ( s mˆ2 K)
99

100 # b r a s s
101 E b = 105E9 #i n Pa
102 G b = 36E9 #i n Pa
103 l a b = (E b −2. G b) G b /(3 . G b−E b )
104 mu b = G b
105 C voigt b = numpy. array ( [ \
106 [ l a b +2. mu b , la b , la b , 0 , 0 , 0 ] , \
107 [ l a b , l a b +2. mu b , la b , 0 , 0 , 0 ] , \
108 [ l a b , la b , l a b +2. mu b , 0 , 0 , 0 ] , \
109 [ 0 , 0 , 0 , mu b , 0 , 0 ] , \
110 [ 0 , 0 , 0 , 0 , mu b , 0 ] , \
111 [ 0 , 0 , 0 , 0 , 0 , mu b ] ] )
112 alpha b = 19E−6 #i n 1/K
113 vars igma b = 0.6 #i n S/m o r i n 1 / (Ohm m)
114 kappa b = 109. #i n W/ (K m)
115 c b = 380. #i n J / ( kg K)
116 rho 0 b = 8400. #i n kg /m3
117
118 # PZT−5H m a t e r i a l
119 S11 p = 15.6E−12 #1/ Pa
120 S33 p = 20E−12 #1/ Pa
121 nu p = 0.31
122 S vo i g t p = numpy. array ( [ \
123 [ S11 p , −nu p S11 p , −nu p S11 p , 0 , 0 , 0 ] , \
124 [−nu p S11 p , S11 p , −nu p S11 p , 0 , 0 , 0 ] , \
125 [−nu p S11 p , −nu p S11 p , S33 p , 0 , 0 , 0 ] , \
126 [ 0 , 0 , 0 , (1.+nu p ) S11 p , 0 , 0 ] , \
127 [ 0 , 0 , 0 , 0 , (1.+nu p ) S11 p , 0 ] , \
128 [ 0 , 0 , 0 , 0 , 0 , (1.+nu p ) S11 p ] ] )
129 C voigt p = numpy. l i n a l g . inv ( S vo i g t p )
130 d t i l d e p 31 = −265E−12 #i n m/V
131 d t i l d e p 33 = 585E−12 #i n m/V
132 d t i l d e p 15 = 730E−12 #i n m/V
133 e p s r e l e l p 1 1 = 3130.
134 e p s r e l e l p 3 3 = 3400.
135 alpha p 11 = 6E−6 #i n 1/K
136 alpha p 33 =−4E−6 #i n 1/K
137 vars igma p = nu l l
138 kappa p = 1.1 #i n W/ (K m)
139 c p = 350. #i n J / ( kg K)
140 rho 0 p = 7500. #i n kg /m3
141
142 C11 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ C voigt b [ 0 , 0 ] ,

→ C voigt p [ 0 , 0 ] ] )
143 C12 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ C voigt b [ 0 , 1 ] ,

→ C voigt p [ 0 , 1 ] ] )
144 C13 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ C voigt b [ 0 , 2 ] ,

→ C voigt p [ 0 , 2 ] ] )
145 C22 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ C voigt b [ 1 , 1 ] ,
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→ C voigt p [ 1 , 1 ] ] )
146 C33 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ C voigt b [ 2 , 2 ] ,

→ C voigt p [ 2 , 2 ] ] )
147 C44 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ C voigt b [ 3 , 3 ] ,

→ C voigt p [ 3 , 3 ] ] )
148 C = VoigtToTensorRank4 (A11=C11 , A12=C12 , A13=C13 ,A22=C22 , A23=

→ C13 , A33=C33 , A44=C44 , A55=C44 , A66=C44 )
149
150 d t i l d e 31 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ 0 . , d t i l d e p 31

→ ] )
151 d t i l d e 33 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ 0 . , d t i l d e p 33

→ ] )
152 d t i l d e 15 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ 0 . , d t i l d e p 15

→ ] )
153 d t i l d e = VoigtToTensorRank3 (A31=dt i l d e31 , A32=dt i l d e31 , A33=

→ dt i l d e33 , A15=dt i l d e15 , A24=d t i l d e 15 )
154 Tt i ld e = as t en s o r ( d t i l d e [ i , j , k ] C[ n , l , j , k ] , ( i , n , l ) )
155
156 e p s r e l e l 1 1 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ 1 . ,

→ e p s r e l e l p 1 1 ] )
157 e p s r e l e l 3 3 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ 1 . ,

→ e p s r e l e l p 3 3 ] )
158 e p s r e l e l = ToTensorRank2 (A11=ep s r e l e l 1 1 , A22=ep s r e l e l 1 1

→ , A33=e p s r e l e l 3 3 )
159 c h i e l = e p s r e l e l − de l ta
160
161 alpha11 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ alpha b ,

→ alpha p 11 ] )
162 alpha33 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ alpha b ,

→ alpha p 33 ] )
163 alpha = ToTensorRank2 (A11=alpha11 , A22=alpha11 , A33=alpha33 )
164
165 varsigma = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ varsigma b ,

→ vars igma p ] )
166 kappa = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ kappa b , kappa p ] )
167 c = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ c b , c p ] )
168 rho 0 = m a t e r i a l c o e f f i c i e n t (mesh , c e l l s , [ rho 0 b , rho 0 p ] )
169 v 0 = 1./ rho 0
170
171 actuator = Expres s ion ( ” 100.0 s i n ( 2 . 0 p i f r e q t ) ” , f r e q=nu , t

→ =0)
172 bc1 = DirichletBC ( Space . sub (0) , 0 . 0 , f a c e t s , 3)
173 bc2 = DirichletBC ( Space . sub (0) , actuator , f a c e t s , 4)
174 bc3 = DirichletBC ( Space . sub (2) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,

→ f a c e t s , 3)
175 bc = [ bc1 , bc2 , bc3 ]
176
177 dunkn = Tria lFunct ion ( Space )
178 t e s t = TestFunction ( Space )
179 unkn = Function ( Space )
180 unkn0 = Function ( Space )
181 unkn00 = Function ( Space )
182
183 # i n i t i a l v a l u e s f o r ph i , A , u , T
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184 unkn in i t = Expres s ion ( ( 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
→ T r ) , T r=Tref )

185 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
186 unkn0 . a s s i gn ( unkn00 )
187 unkn . as s i gn ( unkn0)
188
189 de l ph i , del A , de l u , del T = s p l i t ( t e s t )
190 phi ,A, u ,T = s p l i t ( unkn)
191 phi0 ,A0 , u0 ,T0 = s p l i t ( unkn0)
192 phi00 , A00 , u00 , T00 = s p l i t ( unkn00 )
193
194 eps = sym( grad (u) )
195 eps0 = sym( grad (u0 ) )
196 E = −grad ( phi ) − (A−A0) /Dt
197 E0 = −grad ( phi0 ) − (A0−A00)/Dt
198 B = as t en s o r ( ep s i l on [ i , j , k ] A[ k ] . dx ( j ) , ( i , ) )
199 B0 = as t en s o r ( ep s i l on [ i , j , k ] A0 [ k ] . dx ( j ) , ( i , ) )
200 EE = as t en s o r (E[ i ] + ep s i l on [ i , j , k ] ( u−u0 ) [ j ] /Dt B[ k ] , ( i , ) )
201
202 #c o n s t i t u t i v e e q u a t i o n s
203 D = eps 0 E
204 D0 = eps 0 E0
205 H = 1./mu 0 B
206 m = as t en s o r ( −1./2. d e l ta [ i , j ] (H[ k ] B[ k]+D[ k ] E [ k ] ) + H[ i

→ ] B[ j ] + D[ j ] E [ i ] , ( j , i ) )
207 P = as t en s o r (−Tt i ld e [ i , j , k ] alpha [ j , k ] (T−Tref ) + Tt i l d e [ i , j

→ , k ] eps [ j , k ] + eps 0 c h i e l [ i , j ] E [ j ] , ( i , ) )
208 P0 = as t en s o r (−Tt i ld e [ i , j , k ] alpha [ j , k ] (T0−Tref ) + Tt i l d e [ i

→ , j , k ] eps0 [ j , k ] + eps 0 c h i e l [ i , j ] E0 [ j ] , ( i , ) )
209 mD = D + P
210 mD0 = D0 + P0
211 JJ f r = varsigma EE
212 J f r = a s t en s o r ( JJ f r [ i ] + mD[ j ] . dx ( j ) (u−u0 ) [ i ] /Dt , ( i , ) )
213 sigmaBar = as t en s o r ( −C[ j , i , k , l ] a lpha [ k , l ] (T−Tref ) , ( j , i )

→ )
214 tau = as t en s o r (m[ j , i ] + P[ j ] E [ i ] + C[ j , i , k , l ] eps [ k , l ] −

→ Tt i lde [ k , j , i ] E [ k ] , ( j , i ) )
215 eta = as t en s o r ( c ln (T/Tref ) + v 0 C[ i , j , k , l ] alpha [ k , l ] eps

→ [ i , j ] − v 0 Tt i l d e [ i , j , k ] alpha [ j , k ] E [ i ] , ( ) )
216 eta0 = as t en s o r ( c ln (T0/Tref ) + v 0 C[ i , j , k , l ] alpha [ k , l ]

→ eps0 [ i , j ] − v 0 Tt i l d e [ i , j , k ] alpha [ j , k ] E0 [ i ] , ( ) )
217 q = as t en s o r (−kappa T. dx ( i ) , ( i , ) )
218 Phi = q/T
219 Sigma = as t en s o r (−q [ i ] /T/T T. dx ( i )
220
221 qHat = h (T−Tamb)
222 PhiHat = qHat/T
223
224 #weak f o rm s
225 F phi = ( −(mD−mD0) [ i ] d e l ph i . dx ( i ) − Dt J f r [ i ] d e l ph i . dx (

→ i ) ) (dV(1)+dV(2) ) + N( + ) [ i ] Dt ( J f r ( + ) − J f r ( −
→ ) ) [ i ] d e l ph i ( + ) dI (1 )

226

+ 1./T EE[ i ]* * -JJ f r [ i ] , ( ) )
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227 F A = ( eps 0 (A−2. A0+A00) [ i ] /Dt/Dt del A [ i ] + 1 . / mu 0 A[ i ] .
→ dx ( j ) del A [ i ] . dx ( j ) −J f r [ i ] del A [ i ] − (P−P0) [ i ] /Dt
→ del A [ i ] ) (dV(1)+dV(2) )

228
229 F u = ( rho 0 (u−2. u0+u00 ) [ i ] /Dt/Dt de l u [ i ] − sigmaBar [ j , i ] .

→ dx ( j ) d e l u [ i ] + tau [ j , i ] d e l u [ i ] . dx ( j ) − rho 0 f [ i ]
→ de l u [ i ] ) (dV(1)+dV(2) ) + N[ j ] sigmaBar [ j , i ] d e l u [ i
→ ] (dA(2)+dA(4) )

230
231 F T = ( rho 0 ( eta−eta0 ) del T − Dt Phi [ i ] del T . dx ( i ) −Dt

→ rho 0 r /T del T − Dt Sigma del T ) (dV(1)+dV(2) ) + Dt
→ PhiHat del T (dA(2)+dA(3)+dA(4) )

232

233 Form = F phi + F A + F u + F T
234 Gain = de r i v a t i v e (Form , unkn , dunkn)
235
236 pwd = / c a l c u l /CR19/
237 f i l e p h i = F i l e (pwd + phi . pvd )
238 f i l e A = F i l e (pwd + A. pvd )
239 f i l e u = F i l e (pwd + u . pvd )
240 f i l e T = F i l e (pwd + T. pvd )
241
242 import matp lo t l i b as mpl
243 mpl . use ( Agg )
244 import matp lo t l i b . pyp lot as pylab
245 from mp l t oo l k i t s . ax e s g r i d 1 import hos t subp l o t
246 import mp l t oo l k i t s . a x i s a r t i s t as AA
247
248 pylab . rc ( t ex t , usetex=True )
249 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e =30 )
250 pylab . rc ( l egend , f o n t s i z e =30)
251 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
252 c1 , c2 = #990000 , #0033FF
253 f i g = pylab . f i g u r e (1 , f i g s i z e =(14 ,8) )
254 pylab . s ubp l o t s ad j u s t ( top =0.85)
255 pylab . s ubp l o t s ad j u s t ( bottom=0.15)
256 pylab . s ubp l o t s ad j u s t ( l e f t =0.18)
257 pylab . s ubp l o t s ad j u s t ( r i gh t =0.82)
258 f i g . c l f ( )
259 ax1 = hos t subp l o t (111 , a x e s c l a s s=AA. Axes )
260 ax1 . t i c k l a b e l f o rma t ( s t y l e= s c i , s c i l i m i t s =(−3,+3) , ax i s= y )
261 ax2 = ax1 . twinx ( )
262 ax2 . t i c k l a b e l f o rma t ( s t y l e= s c i , s c i l i m i t s =(−3,+3) , ax i s= y )
263 ax1 . g r i d (True , ax i s= x )
264 ax1 . s e t x l a b e l ( r t in s )
265 ax1 . s e t y l a b e l ( r \phi in V , c o l o r=c1 )
266 ax1 . t i ck params ( ax i s= y , c o l o r s=c1 )
267 ax1 . g r i d (True , ax i s= y , c o l o r=c1 )
268 ax2 . s e t y l a b e l ( r u 3 in mm , co l o r=c2 )
269 ax2 . t i ck params ( ax i s= y , c o l o r s=c2 )
270 ax2 . g r i d (True , ax i s= y , c o l o r=c2 )
271
272 t ime p lot , ph i p l o t , u p l o t = [ 0 ] , [ 0 ] , [ 0 ]
273 t i c ( )
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274 while t < tMax :
275 t += Dt
276 actuator . t = t
277 print time : , t , a f t e r , toc ( ) , s econds
278 t i c ( )
279 s o l v e (Form== 0 , unkn , bc , J=Gain , \
280 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
281 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

282
283
284 t ime p lo t . append( t )
285 ph i p l o t . append(unkn . s p l i t ( ) [ 0 ] ( 0 . , 0 . , −0 . 0001 ) )
286 u p lo t . append(unkn . s p l i t ( ) [ 2 ] ( 0 . , 0 . , 0 . 0 0 0 5 ) [ 2 ] 1 0 0 0 . )
287
288 ax1 . p l o t ( t ime p lot , ph i p l o t , c o l o r=c1 , l i n ew id th =3,

→ l i n e s t y l e= − , marker= o , markers i ze =8)
289 ax2 . p l o t ( t ime p lot , u p lot , c o l o r=c2 , l i n ew id th =3,

→ l i n e s t y l e= −− , marker= o , markers i ze =8)
290
291 pylab . s a v e f i g (pwd + CompReal19 input output . pdf )
292 f i l e p h i << ( unkn . s p l i t ( ) [ 0 ] , t )
293 f i l e A << ( unkn . s p l i t ( ) [ 1 ] , t )
294 f i l e u << ( unkn . s p l i t ( ) [ 2 ] , t )
295 f i l e T << ( unkn . s p l i t ( ) [ 3 ] , t )
296
297 unkn00 . a s s i gn ( unkn0)
298 unkn0 . a s s i gn (unkn )

To-do

Piezo drives are used in many measurement, medical, and high-precision devices.
Make a web based search for different systems using piezoelectricity, for example:

• Quartz oscillators,
• ultrasonic motors (or engines) for autofocusing in camera lenses,
• energy scavengers (piezoelectric generators),
• piezo gyros (gyroscopes).

We have implemented a uniform piezoceramic sheet, however, usually multilayer
piezoceramics are used. Search for a piezoceramic bimorph to comprehend the idea
of a multilayered piezoceramic sheet.
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3.6 Magnetohydrodynamics in Metal Smelting

Compounds like minerals are found in Earth’s crust. These minerals are nothing else
than rocks on streets. Some of them contain a high amount ofmetals like iron, copper,
aluminum, or even gold, and silver. These useful minerals are called ores. Gold and
silver have a low chemical activity such that they are found in the ore in their pure
state. Aluminum is an active metal such that it needs to be extracted from the ore
by using electrolysis. Copper and iron are reactive materials such that they can be
extracted by heating and adding carbon.74

Oneway of extractingmetal from the ore is called smelting. By increasing temper-
ature the ore melts and due to the different mass densities, metal and the impurities
separate. Either the impurities are burned off such that they leave the molten metal as
gases or they form a molten slag on top of the metal. The molten metal is stirred for
helping the separation. A type of smelting is the electric smelting, where a magnetic
flux is applied on the molten metal. This field induces an electric current. Another
type of smelting is an electrolytic reduction process. This electrochemical process is
based on the fact that a molten metal is an ionic conductor called electrolyte. Anode
and cathode are immersed into the electrolyte and pass an electric current directly.
Anode supplies positive charges such that the positive ions are “pushed” from anode
to cathode. In the ore the metal is a positive ion. In other words, the metal is separated
from the chemical solution by using a powerful electric current supplied directly into
the molten metal. The pure metal is extracted from its ore and collected on the cath-
ode. First, a process called electrowinning is applied, then, another process called
electrorefining is used. Metals as pure as 99.999% are possible to be produced by
using these methods.

Electrowinning is the primary extraction from the ore. For reactive materials like
copper, the electrolyte is a concentrated acidic solution with a very low pH value
such that the metal ions electrodeposit more efficiently. For an active material like
aluminum a fused-salt electrolysis is used. For aluminum extraction the ore, mainly
bauxite, is converted by the Bayer process to alumina (aluminum oxide). In the
Bayer process bauxite is mixed with sodium hydroxide under high temperatures and
pressures creating dissolved aluminum oxide. Unfortunately, this solution cannot
be used as the electrolyte in the electrowinning process. The alumina is dissolved
in molten cryolite in order to get a proper electrolyte. Historically, the discovery
of using the cyrolite as an electrolyte took a long time. Although bauxite is easy
to find in the nature, high production costs led to an aluminum consumption as
a precious metal until the end of 19th century. The discovery did decrease the alu-
minum production costs extremely. Nowadays, aluminum is used in a wide variety of
products. The electrowinning using cyrolite is called the Hall–Heroult process.75

Supposewewant to simulate the primary extraction process of aluminumbyusing the

74Iron with carbon is named as steel.
75In 1886 CharlesMartin Hall and (his sister) Julia Brainerd Hall developed the process. In the same
year Paul Héroult did develope the same process, independently to them. Therefore, the process is
called after all of them.
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Hall–Heroult process. The electrolyte is conducting a high electric current, induc-
ing a magnetic flux, thus, producing a body force—electromagnetic supply term.
Since the electrolyte is a viscous fluid, this supply term alters the velocity. In this
section we are interested in the hydrodynamics of a viscous conducting fluid.

In order to comprehend the interaction of the electromagnetic supply term with
hydrodynamics we need to obtain the constitutive equations in magnetohydrody-
namics. We start with the balance of mass and (linear) momentum:

∂ρ

∂t
+ ∂ρvi

∂xi
= 0 ,

∂ρvi

∂t
− ∂

∂x j

( − v jρvi + σ j i
) − ρ fi = Fi . (3.287)

Since the metal will be polarized we choose the following electromagnetic supply
term as motivated in the last section

Fi = ρzEi + εi jk J j Bk − εi jk
∂Pj

∂t
Bk − εi jk Pj

∂Bk

∂t
. (3.288)

By repeating the same steps from the last section we obtain the balance of internal
energy:

ρ
du

dt
+ ∂q j

∂x j
− ρr = (

σ j i − Pj Ei + Mi B j
) ∂vi

∂x j
+ EiJ fr.i − Pi

dEi

dt
+ Bi

dMi

dt
.

(3.289)

The molten salt is a viscous fluid such that the reversible part of the stress is given
by the hydrostatic pressure, p, as follows

σ j i = −pδ j i + dσ j i . (3.290)

By rewriting the balance of mass:

dρ

dt
+ ρ

∂vi

∂xi
= 0 ,

−∂vi

∂xi
= 1

ρ

dρ

dt
,

(3.291)

and then using it in the balance of internal energywith the stress tensor in Eq. (3.290),
we obtain

ρ
du

dt
+ ∂q j

∂x j
− ρr = p

ρ

dρ

dt
+ (

dσ j i − Pj Ei + Mi B j
) ∂vi

∂x j
+

+EiJ fr.i − Pi
dEi

dt
+ Bi

dMi

dt
.

(3.292)

We introduce the specific volume in the Eulerian frame, v = 1/ρ, such that the first
term on the right-hand side becomes
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p

ρ

dρ

dt
= pv

dv−1

dt
= −pvv−2 dv

dt
= −pρ

dv

dt
. (3.293)

The first simplification relies on the assumption that polarization is reversible. Hence,
we neglect the dissipative electric and magnetic polarizations, dPi = 0, dMi = 0.
At a mechanical equilibrium the velocity gradient vanishes; at a thermodynamical
equilibrium the heat flux is expressed via entropy as well as the supply term, r ,
disappears; and at an electromagnetic equilibrium a conducting current is vanishing.
Thus, at an equilibrium we acquire from the balance of internal energy the following
Gibbs equation:

du = T dη − pdv − vPidEi + vBidMi . (3.294)

By inserting Gibbs’s equation into the balance of internal energy we obtain the
balance of entropy without dissipative polarization terms:

ρ
dη

dt
+ ∂

∂x j

(q j

T

)
− ρ

r

T
= − q j

T 2

∂T

∂x j
+ 1

T

(
dσ j i − Pj Ei + Mi B j

) ∂vi

∂x j
+ 1

T
EiJ fr.i .

(3.295)

We have already introduced the entropy flux, Φi = qi/T , which will be used in the
following. The entropy production:

� = −q j
1

T 2
T, j + � j i

1

T
vi, j + J fr.i

1

T
Ei , (3.296)

has to be positive, where we have used again the comma notation ,i as the partial
derivative with respect to xi in the Eulerian frame, and where we have introduced
the abbreviation:

� j i = dσ j i − Pj Ei + Mi B j . (3.297)

Although � j i is a tensor of rank two, it is not symmetric. Again by decomposing
the tensor of rank two into symmetric-deviatoric, spherical, and antisymmetric terms
and by writing the thermodynamical forces:

Kα =
{

1

T 2
T, j ,

1

T
v|(i, j)| ,

1

T
v j, j ,

1

T
v[i, j] ,

1

T
Ei

}
, (3.298)

as well as the thermodynamical fluxes:

Fα =
{

− q j , �|( j i)| , �i i , �[ j i] , J fr.i

}
, (3.299)

we write the 2 law of thermodynamics,

� = Kα · Fα ≥ 0 , α = 1, 2, . . . , 5 . (3.300)
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With the help of the Curie principle such that each thermodynamical flux depends
on all thermodynamical forces of the same rank,

�i i = �i i

( 1

T
v j, j

)
, −qi = −qi

( 1

T 2
T, j ,

1

T
Ei

)
, J fr.i = J fr.i

( 1

T 2
T, j ,

1

T
Ei

)
,

�|( j i)| = �|( j i)|
( 1

T
v|(i, j)|

)
, �[ j i] = �[ j i]

( 1

T
v[i, j]

)
,

(3.301)
we propose the following constitutive equations:

�i i = c̄1
1

T
v j, j , −qi = c̄2

1

T 2
T,i + c̄3

1

T
Ei ,

J fr.i = c̄4
1

T 2
T,i + c̄5

1

T
Ei , �|( j i)| = c̄6

1

T
v|(i, j)| , �[ j i] = c̄7

1

T
v[i, j] ,

(3.302)

where all coefficients, c̄×, are functions of the corresponding thermodynamical
forces. By inserting them into Eq. (3.300) we result in the following conditions:

c̄1 ≥ 0 , c̄2 ≥ 0 , c̄3 + c̄4 = 0 , c̄6 ≥ 0 , c̄7 ≥ 0 , (3.303)

in order to guarantee the 2nd law of thermodynamics, � ≥ 0. Now by renaming,

1

T 2
c̄2 = κ ,

1

T
c̄5 = ς ,

1

T 2ς
c̄4 = π , (3.304)

we obtain the heat flux and the electric current:

qi = −κT,i + ςπEi , J fr.i = ςπT,i + ςEi , (3.305)

with the thermoelectric coupling, π, identical to the case of unpolarized materials
introduced in Sect. 3.3. Often, the simplification of linearity is utilized and κ, ς , π
are assumed to be constant values. Moreover, by renaming,

c̄1
1

T
= 3λ + 2μ , c̄6

1

T
= 2μ , c̄7

1

T
= ν , (3.306)

we acquire

� j i = 1

3
�kkδ j i + �|( j i)| + �[ j i] =

(
λ + 2

3
μ
)
vk,kδ j i + 2μv|(i, j)| + νv[i, j] ,

� j i = λvk,kδ j i + 2μv(i, j) + νv[i, j] ,
dσ j i = Pj Ei − Mi B j + λvk,kδ j i + 2μv(i, j) + νv[i, j] .

(3.307)

Here again we might assume a linear model, such that λ, μ, ν are constants. The
volumetric viscosity, λ, and shear viscosity, μ, have been introduced in Sect. 1.7 in

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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the Navier–Stokes equation. Their values can be found for a molten salt in the
literature. However, the viscosity ν causing an antisymmetric velocity gradients is
difficult to measure. As the second simplification we neglect this term and acquire

σ j i = −pδ j i + dσ j i = Pj Ei − Mi B j + (−p + λvk,k)δ j i + 2μv(i, j) . (3.308)

The mechanical pressure in the molten salt is simply the volumetric part of the
Cauchy stress:

−1

3
σi i = −1

3
Pi Ei + 1

3
Mi Bi + p −

(
λ + 2

3

)
vi,i = p + 1

3
p , (3.309)

where p is the hydrostatic pressure and p is called the dynamic pressure. At equilib-
rium the velocity gradient vanishes such that the dynamic pressure becomes

p = −Pi Ei + Mi Bi . (3.310)

The fluid flows with the velocity vi such that a part of the motion of electric charge
is due to convection. The dielectric displacement caused by the electric polarization
is in fact quite small with respect to the electric charge motion due to the convection.
Hence, we neglect this term, Pi = 0, and obtain at equilibrium

du = T dη − pdv + vBidMi ,

du = T dη − (p + BiMi )dv + Bid(vMi ) .
(3.311)

By introducing a specific magnetic polarization, mi = vMi , and total pressure, p̄ =
p + p, we acquire

du = T dη − p̄dv + Bidmi . (3.312)

For the extraction metallurgy, where the ore is melted such that the metal is extracted
from the ore, setting the correct temperature is of paramount importance. There are
many measurements of the Gibbs free energy, g , indicating the necessary energy for
a reaction to occur. For example, in order to extract aluminum from its ore76 first the
ore is crushed andwashed in sodium hydroxide, NaOH. This so-called Bayer process
leaches aluminum from bauxite in form of aluminum hydroxide, Al(OH)3, which
is calcined into alumina, Al2O3. From the alumina by using the Hall–Heroult
process aluminum is smelted. Alumina is dissolved in the molten cryolite, Na3AlF6.
Cryolite is just another mineral of aluminum found in nature. Nowadays, cyrolite
is synthetically produced to decrease the production costs and optimize its physical

76There are many different ores containing aluminum. Mainly bauxite is used. It is a mixture of
aluminumminerals, clay minerals, and insoluble materials. The main aluminumminerals in bauxite
are gibbsite Al(OH)3, boehmite γ−AlO(OH), and diaspore α−AlO(OH).
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properties.77 The positive ions of alumina are attracted to the cathode such that they
move to the cathode. By touching the cathode they are reduced to pure aluminum by
embodying electrons supplied from the cathode. This reduction (of charge) process
is called smelting or electrowinning and it uses high amount of electric current.
Basically, the aluminum reduction is done in areas with low electricity costs.

We want to simulate the motion of molten cryolite in an electrowinning process
by computing the electromagnetic potentials, pressure, velocity, and temperature.
Specific volume and specific magnetic polarization are derived from these primitive
variables. Hence, the internal energy, u = u(η, v,mi ), depending on specific entropy,
specific volume, and specific magnetic polarization is unpractical. We introduce the
specific Gibbs free energy at the equilibrium:

g = u − T η + p̄v − Bimi . (3.313)

Its differential:

dg = du − dT η − T dη + d p̄v + p̄dv − dBimi − Bidmi , (3.314)

leads to the following relation:

dg = −ηdT + vd p̄ − midBi , (3.315)

after inserting the Gibbs equation. From the latter relation we observe

g = g(T, p̄, Bi ) , (3.316)

the primary or state variables are now T , p̄, Bi . Their dual variables read η, v, mi

with the following relations:

η = − ∂g
∂T

, v = ∂g
∂ p̄

, mi = − ∂g
∂Bi

. (3.317)

Since the dual variables may depend on the primary variables we obtain

dη = c1dT + c2d p̄ + c3i dBi ,

dv = c4dT + c5d p̄ + c6i dBi ,

dmi = c7i dT + c8i d p̄ + c9dBi .

(3.318)

By using the Maxwell symmetry or reciprocal relations:

77There are many investigations for optimizing the extraction conditions, for example, see [5, 36].
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c2 = ∂η

∂ p̄
= − ∂2g

∂ p̄∂T
= − ∂2g

∂T∂ p̄
= − ∂v

∂T
= −c4 ,

c3 = ∂η

∂Bi
= − ∂2g

∂Bi∂T
= − ∂2g

∂T∂Bi
= −∂mi

∂T
= −c7 ,

c6 = ∂v

∂Bi
= ∂2g

∂Bi∂ p̄
= ∂2g

∂ p̄∂Bi
= ∂mi

∂ p̄
= c8i ,

(3.319)

we conclude
dη = c1dT − c4d p̄ − c7i dBi ,

dv = c4dT + c5d p̄ + c8i dBi ,

dmi = c7i dT + c8i d p̄ + c9dBi .

(3.320)

In principle, we can measure all material coefficients, c×, as functions depending
on the primary variables. Instead of this method one might measure the Gibbs free
energy and finds out the material coefficients as derivatives of the free energy. For
example, the specific heat capacity is

c1 = ∂η

∂T
= − ∂2g

∂T 2
. (3.321)

In chemical engineering one importantmeasure is enthalpy.We introduce the specific
enthalpy, h , as follows

h = u + p̄v − Bimi ,

h = g + T η .
(3.322)

Since T η = Q is the heat (per mass) added to the systemwe can obtain the following
relation:

g = h − Q , (3.323)

where the total energy of a chemical reaction, h , minus the heat dissipating within
the system, Q, can be seen as a driving energy necessary for a chemical process to
occur. In chemical engineering the Gibbs free energy is interpreted as the necessary
amount of energy to start a reaction or the excess energy generated in the process.
Therefore, the enthalpy is often used by measuring the material coefficients.

Cyrolite’s78 specific heat iswell-documented over temperature. In its solid phase it
depends on temperature linearly.A liquid cyrolite has a constant specific heat capacity
as in [4, Table8], which is measured by holding the total pressure, p̄, constant,
d p̄ = 0,

cp̄ = 394.7 J/(molK) , 1mol Na3AlF6 =̂ 209.9413 · 10−3 kg , c1 = cp̄
T

.

(3.324)

78The chemical composition of cyrolite is Na3AlF6.
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Since the volume variation with respect to a pressure change is difficult to measure
for liquid metals, the coefficient c5 will be approximated.79 In order to determine c4

we exploit the data from [23, Table1], where the mass density over temperature is
given. The measured dependency is linear in the temperature, so we need only two
values in order to define the linear temperature dependency of the specific volume.
We obtain the following specific volume (under constant total pressure, d p̄ = 0):

v = vref. + c4T , vref. = 1.891 · 10−4 m3/(kg) , c4 = 2.259 · 10−7 m3/(kgK) .

(3.325)

The magnetocaloric coefficient, c7i , occurs only in special alloys, for the molten
cyrolite we can neglect this effect by setting c7i = 0. Furthermore, the parameter c8i
claims amagnetization owing to pressure. This effect is so small that it gets important
in thin films. For a bulk of molten salt we exclude such an effect and implement a
magnetization occurring only as a consequence of electromagnetism. For molten
cyrolite we use the same constant magnetic susceptibility as solid aluminum.

Since all material parameters are constants, the underlying material is a linear
material and we obtain the dual variables by integrating from the reference state,
T = Tref., p = pref., Bi = 0, to the current state, by using p̄ = p + Mi Bi ,

η = cp̄ ln
( T

Tref.

)
− c4(p − pref. + Mi Bi ) ,

v = v0 + c4(T − Tref.) + c5(p − pref. + Mi Bi ) ,

mi = c9Bi ⇒ Mi = ρc9Bi .

(3.326)

The coefficient c9 can be rewritten, (μ0μ
mag.)−1χmag. = ρc9, where χmag. is the mag-

netic susceptibility of cyrolite, which is approximately the same constant value in
solid and liquid state, χmag. = 2.2 · 10−5.

In the following we continue using the comma notation for the space derivative.
The objective is to solve the electric potential, φ, the magnetic potential, Ai , the
pressure, p, the velocity, vi , and the temperature, T , in space, xi , and time, t . The
electromagnetic potentials φ and Ai are introduced as solutions of the following
Maxwell equations:

Bi,i = 0 ,
∂Bi

∂t
+ εi jk Ek, j = 0 , (3.327)

79In solid bodies the so-called equation of state (EOS) is well-documented for many materials.
For example,Mie- Gruneisen approximation, named after Gustav Adolf Feodor Wilhelm Ludwig
Mie and Eduard Grüneisen, is used for a relation between energy and pressure, in our notation
∂g/∂ p̄ = v/�, where � denotes the Gruneisen parameter. See for values of such a parameter for
Cu in [19] or for Cu, Al, Pb in [17, Table1].
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with adequate ansatz functions:

Bi = εi jk Ak, j , Ei = −φ,i − ∂Ai

∂t
. (3.328)

After implementing Lorenz’s gauge, we have obtained the weak forms for solving
φ and Ai in Sect. 3.2. The weak form for the computation of the electric potential as
in Eq. (3.80) reads in the unit of energy

Fφ =
∫

�

( − (Di − D0
i ) δφ,i − Δt J fr.

i δφ,i − Δtεi jkMk, j δφ,i
)
dv+

+
∫

∂�I

(
niΔt

[
J fr.
i

]
δφ + niΔtεi jk

[
Mk, j

]
δφ

)
da .

(3.329)

We recall that we employ Pi = 0 in this section such thatDi = Di = ε0Ei . The free
electric current is

J fr.
i = J fr.i + ρzfr.vi = J fr.i + D j, jvi , (3.330)

for J fr.i we have derived the necessary constitutive equation in Eq. (3.305) with the
objective electric field:

Ei = Ei + εi jkv j Bk . (3.331)

For the computation of the magnetic potential we use Eq. (3.92) in the unit of energy:

FA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

ΔtΔt
δAi + 1

μ0
Ai, j δAi, j − J fr.

i δAi + εi jkMk δAi, j

)
dv ,

(3.332)
where again the electric polarization is set to zero. In order to determine the hydrosta-
tic pressure, p, we use the balance of mass in Eq. (3.287)1. The weak form becomes
in the unit of energy after multiplying with the time step and dividing by the mass
density

Fp =
∫

�

(
(ρ − ρ0) + Δtρ,ivi + Δtρvi,i

)
δp

ρ
dv , (3.333)

where the mass density is given by ρ = 1/v and for the specific volume, v, we
have derived a constitutive equation in Eq. (3.326)2. For computing velocity, vi , we
rewrite the balance of linear momentum in Eq. (3.287)2 by using the balance of
electromagnetic momentum:

∂Gi

∂t
= m ji, j − Fi , (3.334)

with the electromagnetic momentum for polarized systems and with the
electromagnetic stress:
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Gi = εi jkD j Bk , m ji = −1

2
δ j i

(
HkBk + DkEk

) + Hi Bj + Dj Ei , (3.335)

such that we acquire

∂

∂t

(
ρvi + Gi

) − ∂

∂x j

( − ρviv j + σtot.
j i

) − ρ fi = 0 . (3.336)

The total stress,
σtot.
j i = σ j i + m ji = −pδ j i + m ji + dσ j i , (3.337)

is fully defined since the mechanical stress is derived in Eq. (3.308) and the elec-
tromagnetic stress is given by Eq. (3.335)2. By integrating by parts on the terms
including a gradient of the primitive variables we acquire the following weak form
in the unit of energy:

Fv =
∫

�

((
ρvi − ρ0v0

i + Gi − G0
i

)
δvi + Δtρ, jviv j δvi+

+Δtρvi, jv j δvi + Δtρviv j, j δvi + Δtp,i δvi + Δt (m ji + dσ j i ) δvi, j−
−Δtρ fi δvi

)
dv −

∫
∂�

Δt
(
t̂i + pni

)
δvida ,

(3.338)

after multiplying by the time step. The traction belongs to the total stress

t̂i = n jσ
tot.
j i . (3.339)

In other words, if a force is applied on the boundary then the mechanical and the
electromagnetic stress react together against this force. We will give the velocities
on the domain boundary such that the boundary integrals vanish. Equation (3.295)
is the balance of entropy in the Eulerian frame:

ρ
∂η

∂t
+ ρviη,i + Φi,i − ρ

r

T
= � , (3.340)

with the entropy flux, Φi = qi/T , and entropy production:

� = − qi
T 2

T,i + 1

T
( dσ j i + Mi B j )vi, j + 1

T
J fr.i Ei , (3.341)

as given in Eq. (3.296). All terms including derivatives are integrated by parts and
we acquire the following weak form in the unit of energy:
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FT =
∫

�

(
ρ(η − η0) δT − Δtη(ρvi δT ),i − Δt

qi
T

δT,i − Δtρ
r

T
δT−

−Δt� δT

)
dv +

∫
∂�I

Δt
([

ρη
]
vi + 1

T

[
qi

])
δTnida+

+
∫

∂�

Δt
(
ρviη + qi

T

)
δTnida .

(3.342)

The weak form is the sum of all weak forms in the same unit

Form = Fφ + FA + Fp + Fv + FT , (3.343)

which is a coupled and nonlinear integral form.
We compile all material coefficients of the molten cryolite from the literature. The

electrical conductivity depends on the temperature. We use values for a low-melting
point electrolyte produced synthetically,

ς = 3.95 · 102 exp
(

− 1192

T

)
S/m , (3.344)

taken from [18, Table1]. From the investigations in [22] we realize that cryolite
shows a thermoelectric coupling, we set π = −1.28 · 10−3 V/K based on [12, Fig. 3].
Shear viscosity’s temperature dependency might be neglected80 and we use μ =
2.5 · 10−2 Pa s based on [31, Table1]. As we fail to find experiments on the volume
change due to pressure variation, as expected, measurements of volume viscosity
seems to bemissing, too.Often, the liquidmetals are computed as incompressible.An
experimental validation of this assumption seems to bemissing.Wewill approximate
λ for the simulation and simulate the molten salt as compressible.

There is a considerable amount of computational effort and attempts to analyze the
complex phenomenon of metal smelting. Beyond the complicated coupling between
electromagnetismwith hydrodynamics, there are chemical reactions occurring in the
real process. Even by neglecting the chemical processes in an aluminum cell filled
with an assumed to be a one-phase, homogeneous cyrolite as a linear viscous fluid,
it is still difficult to obtain numerical results.

Magnetohydrodynamics is used for simulations of molten salts (electrolytes) in
smelting processes.81 There are mainly two drawbacks. First, the system of equa-
tions inmagnetohydrodynamics varies in different works, especially if polarization is
incorporated.Wehave seen herein a thermodynamically consistent formulation, how-
ever, equally well-justifiedworks arrive at slightly different formulations.82 Since the

80See [23, Fig. 5].
81For a copper cell simulation see [34] and for an aluminum cell simulation see [13]. A review of
such simulations can be found in [39].
82See [32, 35].
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Fig. 3.18 A simplified drawing of Hall–Heroult process. Left Orange anode rods are immersed
into the purple cyrolite. Right The anodes in the cyrolite are near to the green cathode at the bottom
of the (transparent) cyrolite

system is rather complex, it is difficult to verify the different formulations by using
experiments. Secondly, there occur instabilities in the real process. The high amount
of electric current may lead to shortcuts due to the motion of the electrolyte. Hence,
a simulation of the motion is of interest. Especially for a case, which likely results
in an instability. Unfortunately, there exist many numerical instabilities in fluid flow
simulations, especially for the incompressible, steady motion of fluids83 as mainly
done in the literature. Therefore, the subject attracts many interests and there are
even highly complicated simulations with attempts to include effects of gases in the
process.84 Such simulations of real processes help us to comprehend the interaction
between different physical phenomena based on electromagnetism, hydrodynamics,
even on chemistry.

Herein, we simulate a simplified Hall–Heroult process in order to see the
electromagnetism induced hydrodynamics in the molten salt in an aluminum cell.
Four conductive rods are immersed into the molten salt cyrolite bath of dimensions
1.8 × 1.8 × 0.2m, see Fig. 3.18. The rods work as anodes under a given electric
potential set asDirichlet boundary conditions. The bottomof the cyrolite is in touch
with the molten aluminum, which grows on top of the cathode. We exclude the alu-
minum from the simulation. Since the aluminum is highly conductive, we simulate
the cathode as being on top of aluminum. In a real process 4V potential difference
is used between anodes and cathode. We set the cathode zero and change the the
electric potential in anode linearly in time such that in 1000s the realistic difference
of 4V is attained. The potential difference generates an electric field that induces an
electric current. The current creates a magnetic flux. The effect of magnetism in the
total stress generates a linear momentum change such that the viscous fluid is set in
motion. This motion is very slow, therefore, by using a transient solution and afore-
mentioned constitutive equations for a compressible fluid flow we manage to obtain
simulation results, see Fig. 3.19. After 1000s the anode rods attain the optimum level

83See [16].
84For example in [9–11, 38].
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Fig. 3.19 Within electrolyte the electric potential is presented as a color distribution and the velocity
is shown as scaled arrows at 1000s just after reaching 4V potential difference between anode rods
and cathode (the bottom). Electric potential is shown as transparent for a better visualization of
the motion. We have simulated in two processors such that the computational domain is calculated
separately in two processors and the results are stitched afterward leading to a fictitious separation
in the middle of the whole domain

of 4V. Since the cyrolite is a good conductor there occurs a high amount of elec-
tric current from anodes to the bottom layer of the electrolyte, which is the cathode
(grounded in the simulation). The high electric current is presented in Fig. 3.19. The
electric current is applied directly by exerting a potential difference between anode
and cathode. This current, J fr.i , induces a magnetic flux, Bi , leading to a magnetic
polarization,Mi , in the electrolyte. Magnetic flux and polarization are parallel due to
the constitutive equation. We see that the current and magnetic polarization (or flux)
are perpendicular to each other. Hence, there is a contribution of a body force in the
electromagnetic supply term, Fi , in Eq. (3.288) leading to a mechanical momentum
change in Eq. (3.287)2. Moreover, the electric current produces the Joule heating
leading to a temperature increase. There occurs a significant increase in the temper-
ature, especially near to the anodes. We have simulated the walls of the cyrolite bath
as efficient insulators to present this effect. In reality, the cyrolite bath is cooled down
outside the walls in order to hold the electrolyte at the optimum temperature. The
hydrostatic pressure remains the same throughout the simulation indicating that the
motion of the fluid is caused only by the electromagnetic interaction (Fig. 3.20).
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Fig. 3.20 The electric current as a color distribution and as white arrows are presented on the cut
plane. On the same cut plane the magnetic polarization is shown as colored arrows. The magnetiza-
tion and current are perpendicular to each other. The temperature distribution is shown in grayscale.
All quantities are presented at 1000s

The geometry can be received from [1]. In order to solve in multiple processors
we converted the mesh into another format by using the following code:

1 from f e n i c s import
2 mesh = Mesh ( geo/CR20 smelting aluminum . xml )
3 c e l l s = MeshFunction( s i z e t ,mesh , geo/

→ CR20 smel t ing a luminum phys ica l reg ion . xml )
4 f a c e t s = MeshFunction( s i z e t ,mesh , geo/

→ CR20 smelt ing a luminum facet reg ion . xml )
5 hdf = HDF5File (mesh . mpi comm ( ) , geo/CR20 smelting aluminum . h5

→ , w )
6 hdf . wr i t e (mesh , /mesh )
7 hdf . wr i t e ( c e l l s , / c e l l s )
8 hdf . wr i t e ( f a c e t s , / f a c e t s )

Afterward by using

1 mpirun −n 2 python CompReal20 smelting . py

we started a parallel computation in two processors with the code below:
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1 ””” Computational r e a l i t y 20 , e l e c t r i c smel t ing ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU G en e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 proces s ID = MPI. rank ( mpi comm world ( ) )
9 #u n i t s : m, kg , s , V , K

10 de l ta = Id en t i t y (3)
11 ep s i l on = as t en s o r ( [ ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,(0 , −1 ,0) ) , (

→ (0 ,0 , −1) , ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) ) , ( ( 0 , 1 , 0 ) ,( −1 ,0 ,0)
→ , ( 0 , 0 , 0 ) ) ] )

12
13 t = 0 .0
14 tMax = 1000.
15 Dt = 50 .
16
17
18 2D 1 ”anode”
19 2D 2 ” cathode”
20 2D 3 ” wa l l s ”
21 2D 4 ” top”
22
23 3D 1 ” c y r o l i t e ”
24
25
26 mesh = Mesh ( )
27 hdf = HDF5File (mesh . mpi comm ( ) , geo/CR20 smelting aluminum .

→ h5 , r )
28 hdf . read (mesh , /mesh , Fal s e )
29 c e l l s = Cel lFunct ion ( s i z e t , mesh )
30 hdf . read ( c e l l s , / c e l l s )
31 f a c e t s = FacetFunction ( s i z e t , mesh )
32 hdf . read ( f a c e t s , / f a c e t s )
33
34 Sca l a r = FunctionSpace (mesh , P , 1)
35 Vector = VectorFunctionSpace (mesh , P , 1)
36 Space = MixedFunctionSpace ( [ Sca lar , Vector , Sca lar , Vector ,

→ Sca l a r ] ) #ph i , A , p , v , T
37 da = Measure ( ds ) [ f a c e t s ]
38 dv = Measure ( dx ) [ c e l l s ]
39
40 n = FacetNormal (mesh )
41
42 dunkn = Tria lFunct ion ( Space )
43 t e s t = TestFunction ( Space )
44 unkn = Function ( Space )
45 unkn0 = Function ( Space )
46 unkn00 = Function ( Space )
47
48 de l ph i , del A , de l p , de l v , del T = s p l i t ( t e s t )
49 phi ,A, p , v ,T = s p l i t ( unkn)
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50
51 f = Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) )
52 r = Constant ( 0 . 0 )
53 Tref = 960. #i n K
54 p r e f = 1E5 #i n Pa
55 Tamb = Tref
56 eps 0 = 8.85E−12 #i n A s / (V m)
57 mu 0 = 12.6E−7 #i n V s / (A m)
58 h = 0.1 #i n J / ( s mˆ2 K)
59
60 varsigma = 3.95E2 exp ( −1192./T)
61 pi = −1.28E−3 #V/K
62 kappa = 0.8 #i n W/ (m K)
63 chi mag = 2.2E−5
64 mu mag rel = chi mag + 1 .
65 cp = 394 . 7/(209 . 9413E−3) #i n J / ( kg K)
66 c4 = 2.259E−7 #i n m3/ ( kg K)
67 v o l r e f = 1.891E−4 #i n m3/ kg
68 c5 = 1E2
69 mu = 2.5E−2 #i n Pa s
70 l a = mu 1E3 #i n Pa s
71
72 #bounda r y c o n d i t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 ph i i n = Expres s ion ( 4 . 0E−3 t , t=0. )
74 phi out = Expres s ion ( 0 . 0 )
75 bc = [ ]
76 # e l e c t r i c p o t e n t i a l on anode and c a t h o d e
77 bc . append( DirichletBC ( Space . sub (0) , ph i i n , f a c e t s , 1 ) )
78 bc . append( DirichletBC ( Space . sub (0) , phi out , f a c e t s , 2 ) )
79 #r e f e r e n c e p on th e top o p e n i n g
80 bc . append( DirichletBC ( Space . sub (2) , pre f , f a c e t s , 4 ) )
81 #z e r o v e l o c i t y on t h e w a l l s o f t h e b a t h
82 bc . append( DirichletBC ( Space . sub (3) . sub (2) , Constant ( 0 . 0 ) ,

→ f a c e t s , 4 ) )
83 bc . append( DirichletBC ( Space . sub (3) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,

→ f a c e t s , 3 ) )
84 #z e r o v e l o c i t y on anode , c a t h o d e
85 bc . append( DirichletBC ( Space . sub (3) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,

→ f a c e t s , 1 ) )
86 bc . append( DirichletBC ( Space . sub (3) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,

→ f a c e t s , 2 ) )
87
88 # i n i t i a l v a l u e s f o r ph i , A , p , v , T −−−−−−−−−−−−−−−−−−−−−−−
89 unkn in i t = Expres s ion ( ( 0 . , 0 . , 0 . , 0 . , p r , 0 . , 0 .

→ , 0 . , T r ) , T r=Tref , p r = p r e f )
90 unkn00 = i n t e r p o l a t e ( unkn in i t , Space )
91 unkn0 . a s s i gn ( unkn00 )
92 unkn . as s i gn ( unkn0)
93 phi0 ,A0 , p0 , v0 ,T0 = s p l i t ( unkn0)
94 phi00 , A00 , p00 , v00 , T00 = s p l i t ( unkn00 )
95
96 i , j , k , l = i n d i c e s (4 )
97
98 #e l e c t r o m a g n e t i c f i e l d s −−−−−−−−−−−−−−−−−−−−−−−−−
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99 E = −grad ( phi ) − (A−A0) /Dt
100 E0 = −grad ( phi0 ) − (A0−A00)/Dt
101 B = as t en s o r ( ep s i l on [ i , j , k ] A[ k ] . dx ( j ) , ( i , ) )
102 B0 = as t en s o r ( ep s i l on [ i , j , k ] A0 [ k ] . dx ( j ) , ( i , ) )
103 EE = as t en s o r ( E[ i ] + ep s i l on [ i , j , k ] v [ j ] B[ k ] , ( i , ) )
104
105 #c o n s t i t u t i v e e q u a t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 D = eps 0 E
107 D0 = eps 0 E0
108 H = 1./mu 0 B
109 H0 = 1./mu 0 B0
110 m = as t en s o r ( −1./2. d e l ta [ j , i ] (H[ k ] B[ k]+D[ k ] E [ k ] ) + H[ i

→ ] B[ j ] + D[ j ] E [ i ] , ( j , i ) )
111
112 mD = D
113 mD0 = D0
114 GG = as t en s o r ( ep s i l on [ i , j , k ] mD[ j ] B[ k ] , ( i , ) )
115 GG0 = as t en s o r ( ep s i l on [ i , j , k ] mD0[ j ] B0 [ k ] , ( i , ) )
116 MM = chi mag/mu 0/mu mag rel B
117 MM0 = chi mag/mu 0/mu mag rel B0
118 dsigma = as t en s o r ( −MM[ i ] B[ j ] + l a v [ k ] . dx (k ) de l ta [ j , i ] +

→ 2 . mu sym( grad (v ) ) [ i , j ] , ( j , i ) )
119 eta = as t en s o r ( cp ln (T/Tref ) − c4 (p−p r e f+MM[ i ] B[ i ] ) , ( ) )
120 eta0 = as t en s o r ( cp ln (T0/Tref ) − c4 (p0−p r e f+MM0[ i ] B0 [ i ] ) ,

→ ( ) )
121 vol = a s t en s o r ( v o l r e f + c4 (T−Tref ) + c5 (p−p r e f + MM[ i ] B[

→ i ] ) , ( ) )
122 vol0 = as t en s o r ( v o l r e f + c4 (T0−Tref ) + c5 (p0−p r e f + MM0[ i

→ ] B0 [ i ] ) , ( ) )
123 rho = 1 ./ vol
124 rho0 = 1 ./ vol0
125 JJ f r = as t en s o r ( varsigma pi T. dx ( i ) + varsigma EE[ i ] , ( i , )

→ )
126 J f r = a s t en s o r ( JJ f r [ i ] + mD[ j ] . dx ( j ) v [ i ] , ( i , ) )
127 q = as t en s o r (−kappa T. dx ( i ) + varsigma pi EE[ i ] , ( i , ) )
128 Phi = q/T
129 Sigma = as t en s o r (−q [ i ] /T/T T. dx ( i ) + 1 ./T ( dsigma [ j , i ]+MM[ i

→ ] B[ j ] ) v [ i ] . dx ( j ) + 1 ./T JJ f r [ i ] EE[ i ] , ( ) )
130
131 #weak f o rms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132
133 F phi = (−(mD−mD0) [ i ] d e l ph i . dx ( i ) − Dt J f r [ i ] d e l ph i . dx ( i

→ ) ) dv (1) \
134 + n [ i ] Dt ( J f r [ i ] + ep s i l on [ i , j , k ] MM[ k ] . dx ( j ) ) d e l ph i (

→ da (3)+da (4) ) #w a l l s and t op
135
136 F A = ( eps 0 (A−2. A0+A00) [ i ] /Dt/Dt del A [ i ] + 1 . / mu 0 A[ i ] .

→ dx ( j ) del A [ i ] . dx ( j ) −J f r [ i ] del A [ i ] + ep s i l on [ i , j , k
→ ] MM[ k ] del A [ i ] . dx ( j ) ) dv (1)

137
138 F p = ( ( rho−rho0 ) + Dt rho . dx ( i ) v [ i ] + Dt rho v [ i ] . dx ( i ) )

→ de l p / rho dv (1)
139
140 F v = ( ( rho v [ i ] − rho0 v0 [ i ] + GG[ i ] − GG0[ i ] ) d e l v [ i ] +
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→ Dt rho . dx ( j ) v [ i ] v [ j ] d e l v [ i ] + Dt rho v [ i ] . dx ( j ) v [
→ j ] d e l v [ i ] + Dt rho v [ i ] v [ j ] . dx ( j ) d e l v [ i ] + Dt p .
→ dx ( i ) d e l v [ i ] + Dt (m[ j , i ]+dsigma [ j , i ] ) d e l v [ i ] . dx ( j
→ ) − Dt rho f [ i ] d e l v [ i ] ) dv (1)

141
142 F T = ( rho ( eta−eta0 ) del T − Dt eta ( rho v [ i ] del T ) . dx ( i )

→ − Dt Phi [ i ] del T . dx ( i ) − Dt rho r /T del T − Dt Sigma
→ del T ) dv (1) \

143 + Dt/T h (T−Tamb) del T ( da (1)+da (2)+da (3)+da (4) ) # a l l
144
145 Form = F phi + F A + F p + F v + F T
146 Gain = de r i v a t i v e (Form , unkn , dunkn)
147
148 pwd = / c a l c u l /CR20/
149 f i l e p h i = F i l e (pwd + phi . pvd )
150 f i l e A = F i l e (pwd + A. pvd )
151 f i l e p = F i l e (pwd + p . pvd )
152 f i l e v = F i l e (pwd + v . pvd )
153 f i l e T = F i l e (pwd + T. pvd )
154 f i l e J = F i l e (pwd + J . pvd )
155 f i l e B = F i l e (pwd + B. pvd )
156
157 t i c ( )
158 while t < tMax :
159 t += Dt
160 ph i i n . t = t
161 i f proces s ID == 0 : print time : , t , a f t e r , toc ( ) ,

→ s econds
162 t i c ( )
163
164 s o l v e (Form== 0 , unkn , bc , J=Gain , \
165 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
166 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

167 unkn00 . a s s i gn ( unkn0)
168 unkn0 . a s s i gn (unkn )
169
170 f i l e p h i << ( unkn . s p l i t ( ) [ 0 ] , t )
171 f i l e A << ( unkn . s p l i t ( ) [ 1 ] , t )
172 f i l e p << ( unkn . s p l i t ( ) [ 2 ] , t )
173 f i l e v << ( unkn . s p l i t ( ) [ 3 ] , t )
174 f i l e T << ( unkn . s p l i t ( ) [ 4 ] , t )
175 f i l e J << ( p r o j e c t ( JJ f r , Vector ) , t )
176 f i l e B << ( p r o j e c t (B, Vector ) , t )

To-do

Metal smelting is a highly complex phenomenon attracting much interest in the
literature. Search for simulations of other smelting processes such as:

• Electric smelting,
• electrorefining,
• flash smelting.
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Appendix

A.1 Quick Introduction to Programming

The whole book is set up first to discuss the governing equations and then to solve
them numerically by programming. As an engineer one needs to fulfill three tasks:
Applying theoretical approaches to model the physical phenomenon, solving the
model by using appropriate numerical techniques, evaluating and interpreting solu-
tions. The first task is discussed in the underlying book. In every section the theory
results in a weak form. This integral form can be solved numerically. For the second
task we get use of the open-source codes developed under the FEniCS project.1 We
simply utilize FEniCS as a calculator for integral forms. In order to access the func-
tionality of FEniCS we need to write a script either in C++ or in Python. We code in
Python.

Installing FEniCS

Follow the instructions in http://fenicsproject.org/ for installing all necessary pack-
ages. Please remember that this is a developing code such that there might be small
changes in the commands we have used. All presented codes in this book have been
tested with the version 1.6, i.e., if a code does not work, take a look at the changes
in the methods used in. For the installation under Ubuntu just add the repository and
install the latest stable version by running the following commands:

1The name of the project might be an acronym of Finite Elements of nonlinear iterative Computa-
tional Science.

© Springer Nature Singapore Pte Ltd 2017
B.E. Abali, Computational Reality, Advanced Structured Materials 55,
DOI 10.1007/978-981-10-2444-3
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Under Windows and MacOS the codes can be run in a so-called container in the
Docker platform. First, theDocker toolbox needs to be installed. Then the latest stable
version can be downloaded by running the following line in the Docker toolbox:

Docker is a virtual box with a machine running FEniCS on Ubuntu. If we run in the
Docker terminal

then a machine starts and we have a terminal like in a working Ubuntu with FEniCS
installed on it. The easiest way to work is to create a directory and bind the directory
shared in that container. Under Windows for the user nerd we create a directory
under

and then start a machine in the Docker terminal as follows

where the directory shared in the container is connected to the compreal inWindows.
If the directory compreal contains a code, for example,CompReal01.py then this code
can be run as follows

Python

Basically we use Python for programming in Unified Form Language (UFL) for
FEniCS. Some basic Python knowledge might help. Go to the terminal and start a
python interface

now we may try the conventional first line
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or even use a sequence

which is a list of letters

like a list of numbers

They are all objects and the good thing about programming in Python is that we never
need an initializer, constructor, or destructor. We just code anything in the logical
way without caring about the memory usage. Python knows the correct type of its
arguments without decleration

Every object has its functions (methods) according to its class, ask the possible
functions and use one of them as follows

Let us start with FEniCS by importing all functions into cache
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First, we create a finite element mesh on 2D square and plot it with Viper

There is also a documentation of the function under the fenics class or namespace (in
Python no strict differentiation is made between class and namespace, also between
function, method, and definition), which is accessed via (use q to quit)

which provides some useful information. The same documentary can be found online
under http://fenicsproject.org/documentation/

Gedit

If the code is more than a few lines, it is a good idea to save it in a file, for example
code.py and run it by typing

in the shell. One of the simplest and yet powerful text editor is Gnome project text
editor. It is inUbuntuGnome included and can be installed underWindows orMacOS
for free via http://projects.gnome.org/gedit/

You may try under Edit/Preferences/Font&Colors/Color Scheme: Oblivion for a
darker background during “long coding nights.”

Spyder

A quite nice Scientific PYthon Development EnviRonment (Spyder) is included in
Ubuntu packages, see http://pythonhosted.org/spyder/ for instructions to install it
under other operating systems. It has nice debugging options and also shows the
documentary during coding.

ParaView

For postprocessing (visualizing) Viper may be limited in some features, ParaView is
a very powerful tool, get it from http://www.paraview.org

http://fenicsproject.org/documentation/
http://projects.gnome.org/gedit/
http://pythonhosted.org/spyder/
http://www.paraview.org


Appendix 297

Ready to go?

A.2 Solvers in FEniCS

Solvers and its arguments can be listed by using

A.3 Complicated Geometries in FEniCS

The geometry and mesh can be automatically acquired by using BoxMesh() in FEn-
iCS. For more advanced geometries we need to use a CAD or CAE (Computer
Aided Design or Engineering) program and a preprocessor for meshing. There are
different scenarios for importing an advanced geometry into FEniCS. One quite
straight-forward way is to use the open-source CAE platform Salome2 version7.5
for preprocessing. We will explain these steps in Salome version7.5.

The geometry can be established by using Salome or can be imported from another
program. If it shall be created in Salome, there is a nice feature called notebook. In
notebook parameters can be declared, like a = 100 and b = 10 and then these
parameters can be used by creating a 3D body, like a box of a × b × b. If then the
parameters have been changed, the geometry can be updated. Slightly different to
the most CAD programs; in Salome the geometry is directly created in 3Dmodeling.
There are basic elements like box, cylinder, sphere, which can be created and added
together by using boolean operations, like fuse, common, cut. Consider a plate with
a hole in it. Instead of a 2D sketch of a rectangle including a hole, box is used for the
plate and a cylinder is subtracted from the plate. Any other program like FreeCAD3

can also be used to create a geometry and import into Salome by using STEP file
format.

2http://www.salome-platform.org/
3http://www.freecadweb.org/

http://www.salome-platform.org/
http://www.freecadweb.org/
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We assume that the model consists of 3 parts out of different materials. Different
parts will have unmatched meshes, therefore, the adjacent faces have to be stitched
together. This can be done by using partition in the geometry module. All parts will
be collected under one partition named Partition. In the object browser all parts and
partition can be seen separately. Partition will be used further, since it includes all
parts as joined together. The difference to fuse is that a partition preserves the infor-
mation of different parts. Hence we use partition for collecting different materials
in one geometry leading to matching meshes.

In order to distinguish between different parts in FEniCSwewill use groups under
Salome to mark them. By create groups in geometry module we can create 3 vol-
ume groups for 3 different parts. Moreover, for boundary conditions we can create
surface groups. Later in FEniCS we will use these groups for applying a Dirichlet
condition on a specific surface group or applying a boundary integral only on the
chosen surface group for applying a Neumann boundary condition by integrating
over the marked surface.

After creating groups in the geometry module we switch to mesh module and
create mesh on the Partition. A Mesh object is created in the object browser. It is
important to recall that the part Partition includes different parts and groups. FEniCS
can work with tetrahedron elements such that we choose mesh type: tetrahedral and
algorithm: NetGen 1D2D3D. Other algorithms can be tried, too. NetGen algorithm4

is quite stable and powerful. Some parameters can be changed for manipulating the
total number of nodes. For creating the elements choose compute. The mesh has
solely the information of nodes and connectivity, but not the topology (geometrical
connectivity). In order to pass the knowledge of the created groups in the geometry
module we use create groups from geometry, choose all groups under Partition in
the object browser, and apply it. Then the groups can be seen under the mesh, too.

Select Mesh in the object browser and export as .med file by using export. Now
the .med file shall be opened in Gmsh5 and saved as a .msh file by using save mesh.
This is an Ascii file such that it can be opened in an editor. In the very beginning the
groups with their enumerations can be seen, for example suppose we see

4https://sourceforge.net/projects/netgen-mesher/
5http://geuz.org/gmsh/

https://sourceforge.net/projects/netgen-mesher/
http://geuz.org/gmsh/
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for a partition denoted by 3 for 3Dwith three parts, namely, steel, alu, pvc, marked as
1, 2, 3, respectively; and two faces denoted by 2 for 2D as bottom and topmarkedwith
1 and 2, respectively. These numbers are the key to use them correctly in FEniCS.
The .msh file needs to be converted by using the command:

into the FEniCS compatible .xml file. The dolfin-convert produces

• example.xml, including positions of nodes and connectivities of elements,
• example_facet_region.xml, including the information of elements’ faces belong-
ing to the chosen faces for boundary conditions,

• example_physical_region.xml, including the information of elements belonging
to the parts.

These files can then be applied as follows

Now, in the Form, dA(1) let us integrate over bottom since all facets6 belonging to
bottom are marked with 1. Integration over a part of boundary is useful for imple-
menting a Neumann or Robin boundary condition. We can also apply a Dirichlet
boundary condition for example on top by writing

Analogously we can integrate over a part of the volume. Consider that we have differ-
ent material parameters and thus stresses for three materials such that we implement
a Form such that:

The primitive variables, in this example the deformation, will be computed for the
wholePartition. If wewant to compute the distribution of equivalent stress according
to von Mises then we need to calculate it for each part separately

6Facet is a FEniCS specific terminology meaning a face for a tetrahedron element and a line for a
triangle element. Facet is a synonym for element boundaries and they are one dimension less than
the element itself.
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and open all three files under ParaView to get the whole Partition.
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Transferring the mesh from Salome to FEniCS can be accelerated by using a bash
script

By saving this script in a file med2xml in the same directory as the .med file and
setting the permission of it as executable, we can run in terminal

The script produces .msh and all .xml files.

A.4 Objective Time Rate of Strain Tensor

The generic formulation of the objective time rate can be found in [1]. Here we want
to derive a special case applied to the strain. Therefore, we need to introduce a new
concept. Consider a continuum body expressed in Cartesian coordinates. We mark
on the body the lines of the coordinate system. Since we use a Cartesian coordinate
system, the lines on the body compile an orthogonal grid. Subject to a deforma-
tion the lines bend such that the grid is curvilinear and oblique. We can visualize
this deformation as an evolution of the coordinate system and introduce a convected
coordinate system deforming with the continuum body.

We introduce two coordinate systems for two instants of time. At the initial time
we may use Cartesian coordinates. After deformation at another time instant we
have to use curvilinear and oblique coordinates. The transformation between them is
the deformation of the underlying body. The intuitive formulation is that the Carte-
sian coordinates deform and the body in the current frame is in the curvilinear and
oblique coordinates. However, evaluation in curvilinear and oblique coordinates can
be unpractical. It is muchmore easier to evaluate in Cartesian coordinates. Therefore,
we introduce two coordinate systems, a Cartesian for the current frame, xi = xi ,
and a general (a curvilinear and oblique) coordinate system for the initial frame,
Zi �= Zi . The initial coordinate system denotes again to particles, in other words,
the coordinates for a particle remains the same but the metric changes in time. The
transformation between Cartesian (current frame) and general (initial frame) repre-
sents the deformation.

Despite the expectation, not much will change in the formulation. Two neighbor-
ing particles, dxi , have an initial distance dS that changes due to the deformation
to ds as
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( ds)2 = dxi dxi = δi j dxi dx j , ( dS)2 = dZi dZi = gi j dxi dx j (A.1)

where gi j represents the metric tensor and gi j g jk = δik . In other words, the deforma-
tion is the deviation from the Cartesian system given by the metric tensor:

gi j = ∂xk
∂Zi

∂xk

∂Z j
, gi j = ∂Zi

∂xk

∂Z j

∂xk
. (A.2)

The metric tensor is symmetric, gi j = g ji . The neighboring particles in the initial
frame, dZi , can be transformed by a mapping between the coordinate systems:

dxi = ∂xi

∂Z j
dZ j , dxi = ∂Z j

∂xi
dZ j ,

Fi
j = ∂xi

∂Z j
, (F−1)

j
i = ∂Z j

∂xi
, Fi

j (F
−1)

j
k = δik ,

(A.3)

we call F the deformation gradient. The inverse metric tensor reads

gi j = (F−1)ik(F−1)
j
k . (A.4)

It can easily be associated with the left Cauchy–Green deformation tensor. Hence,
without further ado we observe from Eq. (1.53)

gi j = δi j − 2ei j . (A.5)

The time rate of length difference:

(( d�)2)• = (
( ds)2 − ( dS)2

)•
, (A.6)

will result in an identity that we are searching for. We start by using Eq. (A.5) that
leads to

(
( ds)2 − ( dS)2

)• = (
(δi j − gi j ) dxi dx j

)• = (
2ei j dxi dx j

)• =
= 2

(
(ei j )• dxi dx j + ei j dwi dx j + ei j dxi dw j

)
.

(A.7)

Generally speaking, the Cartesian coordinates in the current frame may be moving
with a velocity of wi , so we allow ( dxi )• = dwi . This velocity is independent of the
underlying continuum body. The term, dwi , needs a special attention. First we show
that

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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δ
j
k = ∂Z j

∂Zk
= ∂Z j

∂xi
∂xi

∂Zk
,

(
∂Z j

∂xi
∂xi

∂Zk

)•

= (δ
j
k )

• = 0 ,

(
∂Z j

∂xi

)• ∂xi

∂Zk
= −∂Z j

∂xi

(
∂xi

∂Zk

)•

= −∂Z j

∂xi
∂wi

∂Zk
,

(A.8)

since Zi denotes to particles, thus, (Zi )• = 0. Secondly, we obtain by using the above
relation

dwi = ( dxi )
• =

(
∂Z j

∂xi
dZ j

)•

=
(

∂Z j

∂xi

)•

dZ j ,

dwi
∂xi

∂Zk
= −∂Z j

∂xi
∂wi

∂Zk
dZ j ,

dwi
∂xi

∂Zk

∂Zk

∂xl
= −∂Z j

∂xi
∂wi

∂Zk
dZ j

∂Zk

∂xl
,

dwl = −∂Z j

∂xi
∂wi

∂xl
dZ j = −∂wi

∂xl
dxi .

(A.9)

By introducing comma for the partial derivative, we acquire

(
( d�)2

)• = 2
(
(ei j )• − el jwi

,l − eilw j
,l

)
dxi dx j . (A.10)

Moreover, a metric tensor depends only on the coordinates such that it has no partial
time derivatives:

g•
i j = ∂gi j

∂t
+ gi j;m(x•)m = gi j;mwm . (A.11)

According to Ricci’s theorem7 the covariant derivative of the metric tensor vanishes
such that

g•
i j = gi j;mwm = 0 . (A.12)

We want to calculate the rate of length, (( d�)2)•. Although it is counterintuitive,
we introduce the same Cartesian coordinate system at each time instant. Hence, the
distance in current frame remains the same, ( ds)• = 0, leading to

(( d�)2)• = (
( ds)2 − ( dS)2

)• = −(
( dS)2

)• =
= −(

gi j d(ui + Zi ) d(u j + Z j )
)• =

= −gi j (( dui )
• dx j + dxi ( du j )

•) ,

(A.13)

since the coordinates of the particle remains constant, too. By using the same steps
as in Eq. (A.9) we obtain

7It is named after Gregorio Ricci-Curbastro.
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dv j = ( du j )
• = − ∂vi

∂u j
dui = − ∂vi

∂(u j + Z j )
d(ui + Zi ) = − ∂vi

∂x j
dxi . (A.14)

Hence, we acquire

(( d�)2)• = gi j
(∂vk

∂xi
dxk dx j + dxi

∂vk

∂x j
dxk

)
= ∂vk

∂x j
dxk dx j + dxi

∂vk

∂xi
dxk =

= ∂vk

∂x j
dxk dx j + ∂v j

∂xk
dx j dxk = 2dkj dxk dx j ,

(A.15)
where the symmetric part of velocity gradient is used

di j = ∂v(i

∂x j)
. (A.16)

Therefore, finally we acquire by using Eq. (A.10) for the general case:

(
( d�)2

)• = 2dkj dxk dx j = 2
(
(ei j )• − el jwi

,l − eilw j
,l

)
dxi dx j . (A.17)

Since dxi can be chosen arbitrarily we conclude

(ei j )• = di j + el jwi
,l + eilw j

,l . (A.18)

This relation is a definition for the objective time rate of a contravariant tensor of rank
two, herein, of the nonlinear strain measure. For the specific case without velocity
of the domain, wi = 0, in other words, for a fixed frame we obtain

(ei j )• = di j . (A.19)

A.5 Time Discretization

Time is a scalar quantity, thus, it has a simple transformation property and can be
approximated with a truncated Taylor expansion for an arbitrary variable, A,

A(xk, t
0) = A(xk, t

0 + Δt − Δt) = A(xk, t − Δt) =
= A(xk, t) − ∂A

∂t
(xk, t)Δt + O(Δt2) ,

∂A

∂t
(xk, t)Δt ≈ A(xk, t) − A(xk, t − Δt) .

(A.20)
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We can rewrite the latter in a simplified notation

∂A

∂t
= A − A0

Δt
, (A.21)

which is widely known as backward Eulermethod. Since the derivative in the series
in Eq. (A.20) is evaluated at the current time instant, t , the time integration is implicit.
This implicit time integration is conditionally stable. The condition vanishes for a
real valued differential equation. We use only real valued systems, thus it is always
stable, not depending on the time step size Δt . Here, it is important to distinguish
stability and reliability. If the time steps have been chosen too big, caused by the
truncation error, solution may land far from the exact solution. Error will grow in
each time step successively, however, the solution will be found, while the time
discretization is stable. Therefore, we use only implicit time integration technique
and eliminate any discussion about stability conditions8 for the sake of the time step.
If the problem is nonlinear, then a linearization method finds the nearest root (since
the form is quadratic, it is the minimum). Hence we need to use small time steps to
“land on” the correct solution upon the linearization. The approach for linearization
has been discussed in Sect. 1.8 on p.86.

A.6 Gauge Freedom in Electromagnetic Fields

We can use the ansatz functions:

Ei = − ∂φ

∂xi
− ∂Ai

∂t
, Bi = εi jk

∂Ak

∂x j
, (A.22)

in order to solve the following Maxwell equations:

∂Bi

∂xi
= 0 ,

∂Bi

∂t
+ εi jk

∂Ek

∂x j
= 0 . (A.23)

It is obvious that the proposed ansatz functions do solve the latter equations since
εi jk = −ε j ik such that from Eq. (A.23)1 we acquire

εi jk
∂2Ak

∂xi∂x j
= 0 , (A.24)

moreover, by using Schwarz’s rule

8Especially in fluid dynamics there are many difficulties due to the time stability measured by the
Peclet number or eliminated by satisfying the Courant- Friedrichs- Lewy condition.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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εi jk
∂2Ak

∂t∂x j
− εi jk

∂2φ

∂x j∂xk
− εi jk

∂2Ak

∂x j∂t
= 0 . (A.25)

Hence, the electric potentials, φ, Ai , are formal solutions of the twoMaxwell equa-
tions.

In order to see the gauge freedom we need to remember the decomposition of any
rank two tensor into a spherical and a deviatoric part:

∂Ak

∂x j
= ∂A|k

∂x j |
+ 1

3

∂Al

∂xl
δk j . (A.26)

However, by multiplying with the Levi-Civita symbol

Bi = εi jk
∂Ak

∂x j
= εi jk

∂A|k
∂x j |

+ 1

3
εi jk

∂Al

∂xl
δk j , (A.27)

we see that the second term vanishes, since

εi jkδ jk = εi j j = 0 , (A.28)

nomatter what the divergence of Ai is. In otherwords, we can freely choose ∂Ai/∂xi .

In order to present the second gauge freedom, we take the time rate of Eq. (A.23)2
and then utilize Eq. (A.22) into it

∂2Bi

∂t2
+ εi jk

∂2Ek

∂t∂x j
= 0 ,

εi jk
∂3Ak

∂t2∂x j
− εi jk

∂3φ

∂t∂x j∂xk
− εi jk

∂3Ak

∂t∂x j∂t
= 0 ,

−εi jk
∂2

∂x j∂xk

(∂φ

∂t

)
= 0 ,

(A.29)

where we have used Schwarz’s rule twice. Since the second derivation in x j and xk
is symmetric, its multiplication with the antisymmetric Levi-Civita tensor vanishes
for any values of∂φ/∂t . In otherwordswe can choose∂φ/∂t aswe like, the equations
are still fulfilled.
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Maxwell’s reciprocal relation, 132, 145,

155, 218, 254
Material system, 37, 141
Matter and field, 213
Mechanical equilibrium, 128, 217, 252

N
Navier–Stokes’s equation, 79, 89, 135
Neo-Hookean energy density, 29
Nominal stress tensor, Pi j , 21, 29, 100, 142

O
Ohm’s law, 170, 187, 220
Open system, 86, 141

P
Polarization current, 185

S
Stefan–Boltzmann law, 122
SecondPiola–Kirchhoff stress tensor, Si j ,

22, 29, 144
Strain tensor, εi j , 5, 42
St.Venant–Kirchhoff constitutive

model, 22
Summation convention, 4

T
Thermal equilibrium, 128, 217, 252
Thermodynamical fluxes and forces, 134,

147, 219, 258, 275
Total energy density, 112, 215

V
Voigt notation, 6, 8, 261

Y
Yield criterion, 62, 63, 68, 157
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