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Preface

This book as titled is prepared with a clear aim to bridge exiting representative
theoretical results to the development of design prototype, algorithms, and appli-
cations. The readers/users are targeted for a wide range of groups from university,
research, and development institute to industry, but for the reference of top aca-
demic peers to write their theoretical papers. It is not our intention to cover all
disciplines of electrical engineering systems of recent control-related contributions,
but priority has been placed on the application of recently reported techniques on
sliding mode techniques, their significant impact on stability robustness, and their
challenges over the last decade. The integrated approaches on sliding model control
contribute to some sort of a state of the art in modeling and controlling of complex
dynamic systems with feasible and concise solutions. This book is made of 16
invited chapters have been written by leading researchers covering recent theoret-
ical developments and applications of the sliding mode techniques to class of
systems from the electrical engineering fields.

The book presents theoretical explorations on several fundamental problems for
several kinds of systems. By integrating fresh concepts and state-of-the-art results to
form a systematic approach for controlling complex systems, fundamental theo-
retical approaches and practical framework have been established.

This book is intended for readers from a wide spectrum of specialties in elec-
trical engineering fields and shall educate them about the fundamental advances in
SMC techniques. It is expected that the readers will require limited background
knowledge to understand various concepts and results outlined in the book.
Furthermore, a notable feature of this book is to provide not only theoretical results
and techniques, but also experimental case study on a test bed of robotic system,
which is anticipated to highly motivate young students and researchers.

The book has been organized into the following chapters which are regrouped
into three parts.

• The first part contains four chapters detailing fundamentals of sliding mode
control. Then, the book is opened with a review chapter presenting a state of the
art of the sliding mode control (SMC) techniques by providing some
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generalities, notions, and classifications of different SMC control strategies
accompanied with explanatory examples and detailed discussion. The rest of the
chapters covers a broad scope of topics in sliding modes from theoretical
investigations to significant applications. Chapter 2 presents disturbance rejec-
tion for discrete first, second order and repetitive sliding mode controllers.
Chapter 3 gives robust exponential higher-order sliding mode controllers. The
interest of chapter concerns four sliding functions using LMIs approach for
time-delay systems.

• The second part is dedicated to sliding mode controller applied to robotic sys-
tems. It contains six chapters. Chapter 5 applies the sliding mode control to
underactuated quadrotor. Chapter 6 applies the sliding mode control of an
inverted pendulum. Chapter 7 considers the autonomous surface vessel. Chapter
8 consists to apply the first and the second order sliding mode controls with
time-delay control for robot manipulators. Chapter 9 is an application of sliding
mode control for a 5DOF serial robot for tele-echography. Chapter 10 applies
the sliding mode control for an active exoskeleton robot. Chapter 11 is an
application to multiagent systems

• The third part consists to apply the sliding mode control to power systems.
Chapter 12 considers the application of this technique to photovoltaic power
systems. Chapter 13 considers the sliding bifurcations for a two-cell DC/DC
buck converter. Chapter 14 applies the control by sliding mode of induction
motor drives. Chapter 15 applies the sliding mode control for a fault induction
machine. Finally, Chap. 16 studies an electrohydraulic system controlled by
sliding mode control.

We wish to express our sincere gratitude to many colleagues who have con-
tributed to this book. First of all, we are particularly indebted to our colleagues who
have contributed their excellent research in order to bring the valuable materials for
graduate students, researchers, and practitioners. We greatly appreciate the con-
tributors to this book for their patience and time taken to collaborate with us to
finally complete this book. Next, particular thanks go to students and colleagues
who helped engaging in the preparation and assisted us to improve this book.
Finally, we would like to sincerely express our deepest gratitude to the Springer
editorial staff for their continuous support, assistance, and significant improvement
in the manuscript. Without their help, the book would not be published as
scheduled.

Sfax, Tunisia Nabil Derbel
Urbain Nord, Tunisia Jawhar Ghommam
Bristol, UK Quanmin Zhu
October 2016
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Chapter 1
On the Sliding Control

Ahmed Said Nouri, Fatma Abdelhedi Bouazi and Nabil Derbel

Abstract In this chapter, we give an overview of the sliding mode control. Firstly,
We are interested to the sliding mode control and different solutions for reducing the
chattering phenomenon have been given. Then, we have introduced the generalized
sliding mode control where the discontinuity is applied to the highest derivative of
the control if the system presents zero dynamics. Finally, we present the high order
slidingmode control as a solution to reduce the chattering phenomenonwhile keeping
the robustness against external disturbances and parametric variations compared to
that provided by the first order sliding mode control approach.

Keywords Sliding mode · Generalized sliding mode · High order sliding mode ·
Chattering · Robustness

1.1 Introduction

Variable Structure Systems (VSS) have been introduced after 1950 in the Soviet
Union after the works of Filippov (1960) and Popovski (1950) on differential equa-
tions with discontinuous second member. Since the 60th years, the VSS have been
exploited by Emelyanov et al. (1970), Utkin (Emelyanov et al. 1970; Utkin 1972)
and Neymark (1957) for controlling discontinuous dynamic systems or accepting
discontinuous inputs.

Controller parameters of variable structure systems can vary allowing under cer-
tain conditions, to maintain in the phase space, the evolution of the system on a

A.S. Nouri (B)
Research Unit CONPRI, ENIG, University of Gabes, Gabes, Tunisia
e-mail: ahmedsaid.nouri@enig.rnu.tn
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2 A.S. Nouri et al.

hypersurface a priori chosen. The closed loop system is evolving in sliding mode
on the considered hypersurface. In this situation, the system becomes insensitive
to external disturbances and to variations of system parameters (Lopez and Nouri
2006).

This type of control has proven itself in both stabilization and trajectory
tracking problems (Emelyanov 1967; Lopez and Nouri 2006; Utkin 1978). But it has
been often criticized because of the chattering problem caused by the discontinuous-
type control. Improvements have been proposed: the equivalent control (Utkin 1978,
1992), the continuous function in a band around the surface (Slotine and Li 1991),
the generalized control (Fliess 1990; Lopez and Nouri 2006) and the control whose
structure and sliding mode are of higher order (Fridman and Levant 1999; Levant
1993; Lopez and Nouri 2006).

The insensitivity of the sliding mode control with respect to parameter variations
and external disturbances is valid only if the invariance condition called matching
condition is verified (Utkin 1978) when the phase trajectory is on the sliding surface,
that is to say that the system is in sliding mode, in contrary to the reaching phase
surface, the control is sensitive.

Several research studies have been developed to reduce the time of the reaching
phase by imposing of the reachability time, the sliding function is a solution of
a differential equation of the first order (Sira-Ramirez et al. 1992); by a change
in the surface slope (case of a second order system) (Medhafar et al. 2005) or by
choosing a nonlinear sliding surface starting from the initial point (the sliding surface
is composed of several segments).

This chapter consists of 3 parts. In the first part, we introduce different notations
and definitions of slidingmodes.We present the sliding conditions and the invariance
conditions. Different forms of sliding surfaces and of control laws with sliding mode
existing in the literature are also presented.

In the second part, we explain the generalized sliding modes considered as
a solution to reduce the reluctance phenomenon by applying the discontinuity on
the highest control derivative. The effective control is obtained after several integra-
tions making the signal virtually continuous.

In the third part, the Higher Order Sliding modes are introduced. In addition to
the sliding function, the higher order sliding modes (of order r) allow to keep equal
to zero successive derivatives of the sliding function (until the derivative (r − 1)),
the control is obtained after (r − 1) integrations.

1.2 Classical Sliding Mode

For differential equations with discontinuous second members (Lopez and Nouri
2006), the theory of ordinary differential equations ceases to be valid since it no
longer checks the classical conditions of existence and uniqueness of solutions of
the Cauchy–Lipschitz theorem. This has been caused by the existence of the discon-
tinuity.



1 On the Sliding Control 3

1.2.1 Notion of Sliding Mode

Consider a single input–single output dynamic system, linear in the input (affine
nonlinear system), described by the following equation:

ẋ(t) = f (x, t) + g (x, t) u(x, t) (1.1)

where:

• t ∈ R is the time,
• x ∈ R

n is the state vector,
• u ∈ R presents the control vector,
• f and g are vector fields.

Assume that the control variable u(x, t) undergoes a discontinuity on the sliding
surface: S(x) = 0.

u(x, t) =
∣
∣
∣
∣
∣

u+ (x, t) si S(x) > 0

u− (x, t) si S(x) < 0
(1.2)

Definition 1 The system defined by (1.1) and (1.2) is called a variable structure
system.

If the control variable u(x, t) further satisfies the attractiveness condition
S(x)Ṡ(x) < 0, the control is said in sliding mode.

Definition 2 A sliding mode exists on S(x) = 0 if and only if the phase trajectory
is on the sliding surface and the attractiveness condition is verified, i.e.:

x(t) ∈ {x/S(x) = 0} and S(x)Ṡ(x) < 0

The sliding mode is said ideal if S(x) = 0 and Ṡ(x) = 0. In the case where only the
attractiveness condition is verified (S(x)Ṡ(x) < 0), the sliding is said real.

1.2.1.1 Ideal Sliding Mode and Equivalent Control

The equivalent control is defined as the control allowing to have an ideal sliding
mode i.e., it satisfies the condition S(x) = 0 et Ṡ(x) = 0.

In the following,we assume the general case of a sliding ‘hypersurface’ depending
on the state and on the time, which is denoted by S(x, t).
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By considering the ideal sliding conditions, we have:

Ṡ (x, t) =
(

∂S

∂x

)T dx

dt
+ ∂S

∂t

Using the system state Eq. (1.1) and replacing u(x, t) by ueq(x, t), we get:

Ṡ (x, t) =
(

∂S

∂x

)T
[

f (x, t) + g (x, t) ueq (x, t)
]+ ∂S

∂t
= 0

if

(
∂S

∂x

)T

g(x, t) is non singular, the equivalent control is:

ueq (x, t) = −
[(

∂S

∂x

)T

g (x, t)

]−1 {(
∂S

∂x

)T

f (x, t) + ∂S

∂t

}

(1.3)

Physically, the equivalent control represents the average value of the control variable
u(t) that maintains the system state on the sliding surface S(x, t) = 0.

Remark

If the hypersurface is independent of time and if we assume that f = (f1, . . . , fn)T

and g = (g1, . . . , gn)
T , the equivalent control will be expressed as:

ueq (x) = −
[(

∂S

∂x

)T

g (x, t)

]−1 {(
∂S

∂x

)T

f (x, t)

}

= −

n∑

i=1

∂S

∂xi
fi (x, t)

n∑

i=1

∂S

∂xi
gi (x, t)

if
n
∑

i=1

∂S

∂xi
gi (x, t) �= 0 (1.4)

The equation of the ideal mode may be deduced by replacing ueq(t) in Eq. (1.1)
in the case of a time dependent surface:

ẋ(t) =
⎡

⎣I − g(x, t)

[(
∂S

∂x

)T

g(x, t)

]−1 (
∂S

∂x

)T
⎤

⎦ f (x, t)

−g(x, t)

[(
∂S

∂x

)T

g(x, t)

]−1 (
∂S

∂t

)T

(1.5)
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If the sliding surface is independent of time, the sliding mode dynamics is
described by:

ẋ(t) = f (x, t) + g(x)

n∑

i=1

∂S(x)

∂xi
fi(x, t)

n∑

i=1

∂S(x)

∂xi
gi(x, t)

(1.6)

1.2.1.2 Application to Linear Systems

Consider a linear system defined in the state space by:

ẋ(t) = Ax(t) + Bu(t) (1.7)

with A ∈ R
nxn and B ∈ R

n.
The surface is selected linear and defined by:

S(x, t) = Cx(t) = 0 ∀t ≥ t0 (1.8)

where t0 is the time for which the sliding mode is reached.
The equivalent control is deduced from Eq. (1.4) as:

Ṡ (x, t) =
(

∂S

∂x

)T

Ax(t) +
(

∂S

∂x

)T

B ueq(t) = 0

Ṡ (x, t) = CA x(t) + CB ueq(t) = 0

If CB �= 0, then the equivalent control becomes:

ueq(t) = − (CB)−1 CA x(t) (1.9)

The dynamical behavior of the closed loop system in sliding mode is described by
the following differential equation:

ẋ(t) = [I − B (CB)−1 C
]

A x(t) (1.10)

1.2.2 Invariance Terms of the Sliding Mode

The essential property of the sliding mode operating is its insensitivity and its robust-
ness against a certain class of modeling errors or disturbances. The system is called
invariant if the dynamic of the closed loop system in the sliding mode is independent
of modeling errors and external disturbances.
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Invariance conditions are given for an external disturbance in the case of systems
which are linear with respect the control input, and other invariance conditions in
the case of parametric variations for linear systems (Utkin and Li 1986). We give
below invariance conditions in the case of a disturbed linear system affected by a
parametric variation. Therefore, consider the following linear system:

ẋ(t) = (A + ΔA) x(t) + B u(t) + h(t) (1.11)

where x(t) ∈ R
n represents the system state, u(t) ∈ R is the control variable, A ∈

R
n×n is the state matrix, ΔA ∈ R

n×n is the uncertainty of the state matrix, B ∈ R
n is

a column vector and h(t) is an external perturbation.
The invariance property of the sliding mode is ensured if certain assumptions

called ‘matching conditions’ are verified with respect to external disturbances and
parametric variations.

Definition 3 ΔA and h(t) verify the matching conditions if it exists ΔĀ ∈ R
n×n and

Δh̄ ∈ R
n such as:

ΔA = B ΔĀ h(t) = B Δh̄ (1.12)

In other words, the sliding mode is invariant if external disturbances and parametric
variations belong to the space generated by B, i.e.:

ΔA ∈ Span(B), h(t) ∈ Span{B} (1.13)

1.2.2.1 Application to an Additive Disturbance

Consider the following nonlinear system:

{

ẋi = xi+1 i = 1 . . . n − 1
ẋn = f (x, t) + g (x, t) u (x, t) + h (x, t)

(1.14)

where x = (x1, . . . , xn)
T ∈ R

n represents the system state, u ∈ R is the control vari-
able, f and g are nonlinear functions and h is a bounded disturbance such as:

|h (x, t)| ≤ H

Let us choose a linear sliding surface described by:

S (x) =
n
∑

i=1

cixi ; cn = 1

An adequate control satisfying the attractiveness condition of the surface and pro-
viding a sliding mode for the non perturbed system can be taken as:
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u (x, t) = ueq (x, t) − K sign (S(x))

The equivalent control ensures an ideal slidingmode on S(x) = 0 of the non perturbed
system. Suppose that:

Ṡ (x) =
n−1
∑

i=1

cixi+1 + f (x, t) + g (x, t) ueq(t) = 0

Then, if g(x, t) �= 0:

ueq (x, t) = 1

g (x, t)

[

−
n−1
∑

i=1

cixi+1 − f (x, t)

]

Let us now seek adequate conditions for which this control variable is robust
with respect to the additive disturbance h(x, t). Then, it is sufficient to determine the
attractiveness conditions for the perturbed system, either:

S (x) Ṡ (x) = S (x)

[
n−1
∑

i=1

cixi+1 + f (x, t) + g (x, t) u (x, t) + h (x, t)

]

= S (x)
[−K sign (S(x)) + h (x, t)

]

= −K|S(x)| + S(x)h(x, t)

≤ −K|S(x)| + |S(x)| × |h(x, t)| ≤ −K|S(x)| + |S(x)|H
≤ −|S(x)|(K − H)

So if K > H, the attractiveness condition of the area is fulfilled.

In the case of an additive disturbance, the sliding mode is invariant (robust with
respect to the additive disturbance) if the discontinuous part gain K exceeds the
upper bound of the disturbance.

1.2.2.2 Example

Consider the following example:

{

ẋ1(t) = x2(t)
ẋ2(t) = −3x1(t) − 4x2(t) + u(t) + ε(t)

where ε(t) is a sinusoidal disturbance type defined by ε(t) = sin 10t.
For this example, the system is a second order one, and the sliding surface is chosen

linear whose equation is S(x) = 6 x1 + x2. The control variable is
u(t) = −M sign (S(x)) with M = 10.
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Based on the previous paragraph results, the control is robust if the gainM exceeds
the additive perturbation magnitude, either in our example, the control is robust if
M > 1. Simulation results are given in Figs. 1.1 and 1.2.

Figure1.1 represents the trajectory evolution in the phase plane and Fig. 1.2
shows the evolution of the sliding function. Note that for an amplitude perturba-
tion (εmax ≤ 10), the answer is unchanged and the controller is robust against the
additive disturbance, but in the case where the disturbance amplitude becomes larger
than the gain M = 10 (εmax = 11 > 10), the controller becomes sensitive to this
disturbance.

Fig. 1.1 Trajectory evolution in the phase plane

Fig. 1.2 Evolution of the sliding function with respect to time
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1.2.3 Reaching Phase and Sliding Phase

The evolution of the state trajectory is divided into two parts:

• from the initial state to the intersection with the sliding surface, this part is called
“the reaching phase”,

• from the intersection with the sliding surface to the origin, this part is called “the
sliding phase”.

Both phases are represented by Fig. 1.3 in the case of a second order system.
During the reaching phase, the attractiveness condition of the sliding surface

Ṡ(x)S(x) < 0 is verified. This condition is global but it does not guarantee a finite
sliding time.

To ensure a finite sliding time, the condition becomes:

Ṡ(x)S(x) < −ε if S(x) �= 0 and ε > 0 (1.15)

This sliding time can be imposed by choosing a sliding surface, that is a solution
of a differential equation (Sira-Ramirez et al. 1992) of the form:

Ṡ(x) = −μS(x) − μΩ sign (S(x)) (1.16)

The convergence of S(x) to zero is done in a finite time tg (cf. Fig. 1.3):

tg = 1

μ
ln

(

1 + |S0|
Ω

)

(1.17)

where S0 is the value of S(x) at t = 0.
During the sliding phase (S(x) = 0 and Ṡ(x)S(x) < 0), the closed loop system

has the same behavior than S(x) = 0.

Fig. 1.3 Reaching and
sliding phases
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If S is a linear state function, and during the sliding phase, the closed loop system
will have the same behavior as a linear system of a free and reduced order.

For a system of order n which described in the state space by:

{

ẋi = xi+1 i = 1, . . . , n − 1
ẋn = f (x, t) + g(x, t)u(t)

(1.18)

the linear sliding surface according to the state has the form:

S(x) = Cx =
n
∑

i=1

cixi, (cn = 1) (1.19)

In the sliding phase, the closed loop systemwill have the same behavior as the system
described by:

⎧

⎨

⎩

ẋi = xi+1 i = 1, . . . , n − 2

ẋn−1 = −
n−1∑

i=1
cixi

(1.20)

This is a linear system of order (n − 1). The equation ẋn−1 = −
n−1∑

i=1
cixi constitutes

a linear feedback with sliding mode (Lopez and Nouri 2006).

Remark

In the literature, there are other forms of the sliding surface:

• A nonlinear function of the state (Hamerlain 1993):

S(x) = xn + H (x1, x2, . . . , xn−1) (1.21)

H is a nonlinear fonction.
• A sliding function in 3 or 4 parts in the case of a second order system (Lopez and
Nouri 2006):

Fig. 1.4 Sliding surface in 4
parts
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Fig. 1.5 Variable slope
sliding surface

– A part S1 with a constant acceleration defined by: S1(x) = αx22 + x1 − x0
– A part S2 with a constant speed defined by: S2(x) = x2 − V
– A part S3 with a constant deceleration defined by S3(x) = −α x22 + x1
– A part S4 with a conventional sliding mode for a second order system defined
by S4(x) = c1x1 + x2

• A variable slope sliding function (in the case of a second order system) (Lopez
and Nouri 2006), this variation can be performed by a fuzzy supervisor (Medhafar
et al. 2005) (Figs. 1.4 and 1.5).

1.2.4 Synthesis of the Sliding Mode Control

The synthesis of the slidingmode control is accomplished by satisfying the attractive-
ness condition. The used condition will be selected depending on the desired sliding
time. In several cases, it is interesting to impose a control structure and to determine
adequate parameters while respecting the adequate attractiveness condition.

The most used structures are the following:

• Relay control: the control form is (Lopez and Nouri 2006):

u(x, t) =
{

u+(x, t) if S(x) > 0
u−(x, t) if S(x) < 0

The most commonly used form is u = −M sign (S(x)), where M is determined to
verify the selected attractiveness condition.

• Linear feedback with switched gains: the control form is given byVernhes (1971):

u(x, t) = ψ(x) x(t) with ψi(x) =
∣
∣
∣
∣

αi if S(x)xi > 0
βi if S(x)xi < 0

Parameters αi and βi are selected so that an attractiveness condition is verified.
• Control variable ueq + Δu: the control form is given by Utkin (1992):

u(x, t) = ueq + Δu
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where ueq the equivalent control giving an ideal sliding mode. The term Δu is a
discontinuous term of high frequencies which may take the following different
classical forms:

1. Δu = −k sign (S), (Utkin 1978)

2. Δu = −k sat

(
S

φ

)

, (Slotine and Coestsee 1986) where:

sat

(
S

φ

)

=

∣
∣
∣
∣
∣
∣
∣

S

φ
if |S| ≤ φ

sign
(

S
φ

)

if |S| > φ

3. Δu = −k cont

(
S

φ

)

, with:

cont

(
S

φ

)

=

∣
∣
∣
∣
∣
∣
∣
∣

S

|S| + δ
if |S| ≤ φ

sign

(
S

φ

)

if |S| > φ

(1.22)

and:

δ=
∣
∣
∣
∣

0 if |S| > φ
δ0 + |η| if |S| ≤ φ

η=
∣
∣
∣
∣

0 if |S| > φ

η0 + ∫ t
0 S dτ if |S| ≤ φ

4. Another expression has been proposed for u in the phase space, in order to reduce
the steady state error by introducing an integral form: (Asada and Slotine 1986)

Δu = −k sign (S) (1.23)

with:

S =
(

d

dt
+ λ

)n (∫ t

0
x (τ ) dτ

)

(1.24)

or:

S =
(

d

dt
+ λ

)n−1

x (1.25)



1 On the Sliding Control 13

1.3 Generalized Sliding Mode

In this paragraph, we are interested in the problem of the discontinuous control
with sliding mode of nonlinear systems, whose dynamic is described using the con-
trol concept and the generalized observability canonical forms introduced by Fliess
(1990) and Sira-Ramirez (1988).

1.3.1 Feedback Linearization

Consider a single input–single output dynamic system (where u represents the input
and y is the output) of dimension m, which is represented by the following open-loop
system equations:

{ dη

dt
= f (η, u)

y = h (η)
(1.26)

where η refers to the state with m state variables (η1, η2,…,ηm). f = (f1,
f2, . . . , fm)T is a vector field; y ∈ R and u ∈ R; η and f ∈ R

m.
The nonlinear state representation (1.26) can be transformed, using the formalism

of implicit equations, around a non-singular point of the state space, into a system
of three equations: the first one describes the dynamics of the non observable part;
the second one represents observable states as a function of inputs, outputs and their
derivatives; and the third equation describes the external dynamic system behavior.
Assuming that the observable part of the system (1.26) is of dimension n, its exter-
nal dynamics can also be represented by the implicit differential equation (1.27)
involving the input as well as the output and their derivatives:

c
(

y, ẏ, . . . , y(n), u, u̇, . . . , u(α)
) = 0 (1.27)

(If the system is without zero dynamics α = 0).
Equations (1.26) and (1.27) can be studied by several approaches which are spe-

cific for nonlinear systems (Lyapunov 1966; Mira 1990). Another approach consists
in combining these equations of explicit generalized canonical forms, that generalize
the Kalman form because they keep, a priori, a nonlinear character (Fliess 1990).
These canonical forms are well adapted to the local description of the operation
of the system in the state space and easily lead to the development of a feedback
linearization via correctors that allow to enslave the system output.
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1.3.2 Observable Single Input–Single Output Systems Case
with Zero Dynamics

Using the differential algebra formalism, we have defined a generalized dynamic,
associated with (1.26) which is assumed to be as single input–single output observ-
able, and characterized by the two canonical forms which are valid at least locally.
Suppose that:

x1 = y x2 = ẏ . . . xn = y(n−1)

and by using the theorem of implicit functions, we can obtain:

(GOCF)

⎧

⎨

⎩

ẋi = xi+1 i = 1, . . . , (n − 1)
ẋn = C

(

x1, . . . , xn, u, u̇, . . . , u(α)
)

}

(GCCF)

y = x1
(1.28)

The first and the second equations of this system give the generalized controllabil-
ity canonical form (GCCF). With the third equation, the generalized observability
canonical form (GOCF) is obtained. Equation (1.28) defines a generalized dynamic
that can be associatedwith system (1.26) assuming its locally open loop observability
(Messager 1992). This dynamic is called non-degenerate when the input derivatives
involved.

1.3.2.1 Continuous Feedback Linearization

From the explicit generalized canonical forms (1.28), Fliess introduced feedback
loops that linearize the closed loop system dynamic (Fliess 1990).

For example, consider a feedback linearization type:

C
(

x1, . . . , xn, u, u̇, . . . , u(α)
) =

n
∑

i=1

aixi +
α
∑

j=1

bj v
(j) (1.29)

where ai, bj are coefficients and v is a new control variable. If there is a command
u(t) solution of Eq. (1.29), then the closed loop system dynamic is linearized and is
written as: ⎧

⎪⎪⎨

⎪⎪⎩

ẋi = xi+1 i = 1, . . . , (n − 1)

ẋn =
n∑

i=1
aixi +

α∑

j=1
bj v

(j)

y = x1

(1.30)

The closed loop system is described firstly by Eq. (1.29) which expresses the
control variable u(t) (this equation appears as the corrector equation) and secondly
by Eq. (1.30) that reflects the new dynamic of the closed loop system: so there are
changes in the dynamic behavior by the feedback linearization since the system



1 On the Sliding Control 15

dynamic is replaced due to the feedback loop by the dynamic (1.30). We note that
the closed loop system presents (with such a feedback linearization), the same order
as the original dynamic open loop system.

Consider the following non-degenerate single input–single output system of
dimension n:

ẋn = C
(

x1, . . . , xn, u, u̇, . . . , u(α)
) = f (x) + g(x) h(u, u̇, . . . , u(α)) (1.31)

where functions f (x), g(x) and h(.) can be nonlinear. Consider that:

h(u, u̇, . . . , u(α)) = g (x)−1

⎛

⎝

α
∑

j=1

bj v
(j)(x) − f (x)

⎞

⎠

The generalized canonical form is written as:

⎧

⎪⎪⎨

⎪⎪⎩

ẋi = xi+1 i = 1, . . . , (n − 1)

ẋn =
α∑

j=1
bj v

(j)(x)

y = x1

(1.32)

The closed loop system shows now the linearized and canonical dynamic of order n
that is described by (1.32), the control variable u given as a solution of the feedback
loop equation yields:

α
∑

j=1

bj v
(j)(x) = f (x) + g (x) h(u, u̇, . . . , u(α)) (1.33)

If we set:
α
∑

j=1

bj v
(j)(x) = −k0 x1 − k1 x2 − · · · − kn−1 xn

the closed loop system is linear, free and of order n. The stability is ensured if the
roots of the characteristic polynomial P(p):

P (p) = pn + kn−1pn−1 + · · · + k1p + k0

have negative real parts. This requires a suitable choice of gains ki. The transmittance
of the closed loop system F(p) is:

F(p) = 1

pn + kn−1pn−1 + · · · + k1p + k0



16 A.S. Nouri et al.

There is new dynamical behavior without modifying the order by the feedback loop.
Remember that the open loop dynamic is described (cf. Eq. (1.28)) by the following
equations:

⎧

⎨

⎩

ẋi = xi+1 i = 1, . . . , (n − 1)
ẋn = f (x) + g (x) h(u, u̇, . . . , u(α))

y = x1
(1.34)

Several types of feedback linearization are proposed in the literature (Fliess and
Messager 1991;Slotine andLi 1991).Thenewdynamic resulting from these feedback
loops presents the order of the system to be controlled.

In the next paragraph, a linearizing loop allowing to have a linear closed loop
system of an order lower than that of the open loop system is proposed.

1.3.2.2 Feedback Linearization with Sliding Mode and Discontinuous
Control (Variable Structure)

The feedback linearization with the sliding mode mode decreases the order of the
closed loop system, due to the introduction of a sliding surface in the state space.

Introduction of a Sliding Surface

The stability of the closed loop system should be ensured. Then, consider the classical
presentation (Fliess and Messager 1990; Utkin 1978) in the state space(x1,…, xn),
and in particular, consider the case of the phase space with the state: (y, ẏ,…, y(n−1)).

Consider a surface defined in the phase space by the sliding function:

S(x) = CT x =
n
∑

i=1

cixi (1.35)

where CT = (c1, c2, . . . , cn) and x = (x1, x2, . . . , xn)
T . Suppose that cn = 1.

The surface S(x) = 0 may be linear or nonlinear (Mira 1990; Lopez and Nouri
2006; Utkin 1992). In this case, linear surfaces defined in the phase space have been
considered.

The introduction of the sliding function and the discontinuity of the control can
be considered in several ways:

• S(x) is a solution of a differential equation in S (Sira-Ramirez 1990),
• Ṡ(x) = −ksign (S(x)) (Lopez and Nouri 2006),
• by introducing the concept of ueq (Lopez and Nouri 2006).

In the dynamic approach used by Sira-Ramirez (1990), the sliding function S(x) is a
solution of the following differential equation:

Ṡ(x) + μS(x) = −μΩ sign (S(x)) (1.36)
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where:

sign (S) =
∣
∣
∣
∣
∣
∣

+1 if S(s) > 0
0 if S(x) = 0

−1 if S(x) < 0

The first convergence of S(x) towards zero (the trajectory x(t) starting from the initial
state x0(t = 0)) is done in a finite time tg whose expression is:

tg = μ−1 ln

(

1 + |S(0)|
Ω

)

(1.37)

This reaching time tg, (Slotine and Coestsee 1986), the sliding time (cf. Fig. 1.3),
or the required time to reach the surface S(t, x) = 0, corresponds to the duration of
the transient mode from initial conditions until the beginning of the actual sliding.

The S(x) derivative can be written as:

Ṡ(x) = ẋn +
n−1
∑

i=1

ci xi+1

replace the derivative of S(x) by its expression in Eq. (1.36):

ẋn +
n−1
∑

i=1

ci xi+1 = −μS(x) − μΩ .sign (S(x)) (1.38)

By substituting to S(x) its expression (1.35), it results for ẋn an expression which
is function of the (sign(S(x))):

ẋn = −
n−1
∑

i=1

ci xi+1 − μ

n
∑

i=1

ci xi − μΩ. sign (S(x)) (1.39)

Control Equation Ensuring the Sliding Mode

Equations (1.28) and (1.39), expressing ẋn, from the system representation or based
on the sliding function, a feedback linearization with variable structure is deduced:

C
(

x1, . . . , xn, u, u̇, . . . , u(α)
)

= −
n−1
∑

i=1

cixi+1 − μ

[
n
∑

i=1

ci xi + Ω sign (S)

]

(1.40)

This differential equation gives a variable structure control. Equation (1.40) corre-
sponds to a discontinuous feedback loop with a dynamic state feedback. The knowl-
edge of function C

(

x1, . . . xn, u, . . . u(α)
)

resulting from the modeling of the system,
allows the resolution of this differential equation with respect to the control u.

The convergence of the state to the sliding surface verifies S Ṡ < 0 (Utkin 1972).
The open-loop dynamic system described by the system (GCCF, GOCF) described
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by Eq. (1.28), with the feedback linearization defined by Eq. (1.40) becomes the
reduced dynamic system (of order n − 1). It is defined in the phase space by:

⎧

⎪⎪⎨

⎪⎪⎩

ẋi = xi+1, i = 1, . . . , (n − 2)

ẋn−1 = xn = −
n−1∑

i=1
ci xi

y = x1

(1.41)

The control variable u(t) is the solution of the differential equation (1.40).

Thus, when the sliding mode is reached, the operating point stays on the surface
S(x) = 0. Therefore, the closed loop system becomes insensitive to parameter vari-
ations, and its behavior is defined by Eq. (1.41), and depend only on coefficients ci.
Equations (1.41) are equivalent to the equation of the surface S(x) = 0. The discon-
tinuity is applied on the highest derivative of the controller. The control is obtained
after (α) integrations giving practically a continuous signal.

1.4 Higher Order Sliding Mode

The major drawback of the sliding mode control is the chattering phenomenon.
Among several proposed solutions to overcome this problem, we present in this
section the higher order sliding control, which consists in moving the discontinuity
on the highest control derivatives.

This concept has been introduced by Levantovsky (1986) and Emelyanov et al.
(1986). Other works have been proposed and several applications have proved the
robustness of the control with respect to the reduction of the chattering phenomenon.

1.4.1 Position of the Problem

Consider a dynamic system described by:

ẋ(t) = f (t, x, u) (1.42)

where:

• x = [x1, . . . , xn]T ∈ X ⊂ R
n represents the state vector,

• u ∈ R is the control variable, t ∈ R presents the time,
• f is a sufficiently differentiable function.

Consider a sliding function S(t, x), which is r − 1 times differentiable with respect
to time (r is an integer number).
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The objective is to synthesize a higher order sliding mode control law enabling
the system trajectory to evolve on the sliding surface and to maintain S(x) and its
successive (r − 1) derivatives equal to zero. For a sliding order r, it is necessary that:

S(t, x) = Ṡ(t, x) = S̈(t, x) = · · · = S(r−1)(t, x) = 0

In the case where r = 1, the slidingmode corresponds to the classical ideal sliding
mode.

1.4.2 Principle

The standard sliding mode is based on annulling the first derivative with respect
to time of the sliding function. A sliding mode of order r acts on the (r − 1) first
successive derivatives of the sliding function. In this case, the convergence of the
system is provided with a precision of order r. The calculation of the successive
derivatives of the sliding variable S(t, x) results in a discontinuity for the order
r derivation. Then, it is possible to classify sliding modes of higher order by r
successive derivatives of the surface. This determines the smoothness degree of the
system. The rth order of the system is determined by the equation:

S(t, x) = Ṡ(t, x) = · · · = S(r−1)(t, x) = 0 (1.43)

One of the major problems of the implementation of the r-sliding algorithms is
that required information increase proportionally with the sliding mode order. For
example, when using a sliding algorithm of order 3 with respect to S(t, x), it is
required to have the knowledge of S(t, x), Ṡ(t, x) and S̈(t, x). The Twisting and the
Super Twisting algorithms, which are second order sliding modes (Emelyanov et al.
1986; Levantovsky 1985), and which require only the knowledge of the function
S(t, x), have been proposed as solutions to this issue.

In Emelyanov et al. (1986) and Levantovsky (1985), several examples ensuring
second order sliding concepts for the system (1.42) can be found. In the following,
we present the algorithm proposed by Levantovsky (1985) and Emelyanov et al.
(1986):

1.4.3 The “Twisting” Algorithm

The goal is to force the sliding function to satisfy the condition S(x) = 0. Then,
consider the following conditions:

• Regarding the sliding function and system (1.42),we assume that |u| ≤ K , function
f is a continuously differentiable function, the sliding function is twice continu-
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ously differentiable and the state belongs a variety X. Each solution of Eq. (1.42)
is defined for a continuous control variable u(t) satisfying |u(t)| ≤ K for all t.

• Suppose that there exists u1 in [0,1] such that for every continuous function u(t)
with |u(t)| > u1 for all t, then we have S(x)u(t) > 0 for a finite set of time t.

• There exists positive constants α0, Km, KM , u0 with u0 < 1 such that:

If |S(x)| < σ0 Then ∀u : 0 < Km ≤ ∂S

∂u
≤ KM

|u| > u0 ⇒ Ṡ u > 0

Levantovsky (1985) has shown that the following algorithm (twisting type) ensures
the convergence of the sliding function and its derivative to zero in a finite time.

u̇ =
∣
∣
∣
∣
∣
∣

−u if |u| > 1
−αmsign [S(x)] if S(x)Ṡ(x) ≤ 0 and |u| ≤ 1
−αMsign [S(x)] if S(x)Ṡ(x) > 0 and |u| ≤ 1

(1.44)

where αM > 0 and αm > 0 satisfying:

αm > 4Km/σ0, αm > C0/Km, et KmαM − C0 > KMαm + C0

This algorithm uses the derivative of the sliding function. In the following, we con-
sider another algorithm ensuring a second order sliding without considering the
model of the system (Levantovsky 1985):

u = u1 + u2 (1.45)

u̇1 =
∣
∣
∣
∣

−u if |u| > 1
−α sign (S(x)) if |u| ≤ 1

u̇2 =
∣
∣
∣
∣

−λ |S0|ρ sign (S(x)) if |S(x)| > S0
−λ |S|ρ sign (S(x)) if |S(x)|S(x)| ≤ S0

where α and λ are strictly positive and with η ∈ [0 1]. The initial condition u1(t0)
is chosen such that

|u| = |u1(t0) + u2(t0, x0)| ≤ K .

Remark:

• For the generalized higher order sliding modes, the discontinuity is applied at the
highest derivative of the control variable.

• For the higher order control (of order r) in a finite time, we have:

S = Ṡ = · · · = S(r−1) = 0
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The operating point remains on the surface and the convergence is done in a finite
time.

• For the generalized sliding mode, the required condition is Ṡ(x)S(x) < 0 in order
to obtain an asymptotic convergence.

1.4.4 Second Order Sliding Mode Control

The second order sliding control (r = 2) (called 2-sliding) allows to eliminate or to
reduce the chattering phenomenon. Its main purpose is to generate a second order
sliding mode on a selected sliding surface S(t, x). This can be done by imposing:

S(t, x) = Ṡ(t, x) = 0

This is achieved by considering a second order system whose states are the sliding
function S(t, x) and its derivative Ṡ(t, x). To have a second order sliding mode, i.e.
S(t, x) = 0 and Ṡ(t, x) = 0, a sliding mode control is applied to this new second
order system. Therefore, we obtain the finite time convergence of S(t, x) and of its
derivative Ṡ(t, x) to zero.

Consider a dynamic system described by Eq. (1.42) expressed by:

ẋ(t) = f (t, x, u)

The derivative of S(t, x) is written as:

d

dt
S(t, x) = ∂

∂t
S(t, x) + ∂

∂x
S(t, x)

∂x

∂t

Then:

Ṡ(t, x) = ∂

∂t
S(t, x) + ∂

∂x
S(t, x)f (t, x, u) (1.46)

The second derivative of S(t, x) is written as:

d

dt
Ṡ(t, x) = ∂

∂t
Ṡ(t, x, u) + ∂

∂x
Ṡ(t, x)

∂x

∂t
+ ∂

∂u
Ṡ(t, x)

∂u

∂t

This gives:

d

dt
Ṡ(t, x) = ∂

∂t
Ṡ(t, x, u) + ∂

∂x
Ṡ(t, x)f (t, x, u) + ∂

∂u
Ṡ(t, x)u̇(t) (1.47)
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Suppose that:
⎧

⎪⎨

⎪⎩

θ(t, x) = ∂

∂t
Ṡ(t, x, u) + ∂

∂x
Ṡ(t, x)f (t, x, u)

ς(t, x) = ∂

∂u
Ṡ(t, x)

(1.48)

Consider now the new system in which state variables are the sliding function S(t, x)
and its derivative Ṡ(t, x) which are noted respectively by y1(t, x) and y2(t, x):

{

y1(t, x) = S(t, x)
y2(t, x) = Ṡ(t, x)

(1.49)

Using Eqs. (1.48) and (1.49), we obtain:

{

ẏ1(t, x) = y2(t, x)
ẏ2(t, x) = θ(t, x) + ς(t, x)u̇(t)

(1.50)

The system described by (1.50) is a second order one.We propose for this new system
a new sliding function:

σ(t, x) = y2(t, x) + αy1(t, x) = Ṡ(t, x) + αS(t, x) (1.51)

The systemwhose input is u̇(t) and whose output is σ(t, x) is of relative degree ‘one’,
so a sliding mode can exist on σ(t, x) (Sira-Ramirez 1990). So the input u̇(t) can be
taken as:

• u̇(t) = −M sign (σ(t, x)).
• u̇(t) = u̇eq(t) − k sign (σ(t, x)).

The term u̇eq(t) is obtained by:

σ̇(t, x) = ẏ2(t, x) + αẏ1(t, x) = S̈(t, x) + αṠ(t, x) (1.52)

with: S̈(t, x) = CT ẍ(t).

ẍ(t) is deduced from the derivative of the controlled system:

ẍ(t) = ∂

∂t
f (t, x, u) + ∂

∂x
f (t, x, u)ẋ(t) + ∂

∂u
f (t, x, u)u̇(t) (1.53)

Then, the equivalent control variable for the new system is:

u̇eq(t) = 1

CT
∂

∂u
f (t, x, u)

(

CT ∂

∂t
f (t, x, u) + CT ∂

∂x
f (t, x, u)ẋ + αṠ(t, x)

)

(1.54)
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The control expression of the new system is:

u̇(t) = u̇eq(t) + u̇dis(t) (1.55)

where:

u̇eq(t) = 1

CT
∂

∂u
f (t, x, u)

(

CT ∂

∂t
f (t, x, u) + CT ∂

∂x
f (t, x, u)ẋ + αṠ(t, x)

)

u̇dis(t) = −k sign (σ(t, x))

It is the integral of this control variable that must be applied to the system to be
controlled:

u(t) =
∫

[u̇eq(t) + u̇dis(t)]dt (1.56)

If we consider a system with a relative order equal to 1 with respect to S(t, x), the
control algorithm is convergent if there exists Γm, ΓM , Φ and S0, positive constants,
such that in a neighborhood |S(t, x)| ≤ S0, the following conditions are satisfied:

0 < Γm ≤ ς(t, x) ≤ ΓM

|θ(t, x)| ≤ Φ
(1.57)

1.4.5 Example

Consider the following linear system:

⎧

⎨

⎩

ẋ1 = x2
ẋ2 = −a1x1 − a2x2 + u
y = x1

The desired output yd is constant.
Letting e1 = y − yd , we can obtain the following error system:

⎧

⎨

⎩

ė1 = e2
ė2 = −a1e1 − a2e2 + u + a1yd

e1 = y − yd

where a1 = 8.86 and a2 = 2.58.
The aim is to synthesize a second order sliding mode control law in order to have

the convergence of S(e) and Ṡ(e) to zero in a finite time. The sliding function S(e)
is chosen as:
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S(e) = c1e1 + e2 c1 = 2.

Twisting Algorithme

This algorithm has been described by Eq. (1.44):

u̇ =
∣
∣
∣
∣
∣
∣

−u if |u| > 1
−αm sign (S(e)) if S(e)Ṡ(e) ≤ 0 and |u| ≤ 1
−αM sign (S(e)) if S(e)Ṡ(e) > 0 and |u| ≤ 1

where: αm = 5 and αM = 20.

Algorithm 2-sliding

This algorithm has been described in the previous paragraph, which has been applied
to a linear second order system.

In this case,we define the new systemwhose state variables are the sliding function
S(e) and its derivative Ṡ(e):

{

y1(t, e) = S(e)
y2(t, e) = Ṡ(t, e)

This gives:
{

ẏ1(t, e) = y2(t, e)

ẏ2(t, e) = S̈((t, e) = c1ë1 + (−a1ė1 − a2ẋ2 + u̇)

which can be written as:
{

ẏ1(t, e) = y2(t, e)
ẏ2(t, e) = θ(t, e) + ς(t, e)u̇

where:
θ(t, e) = c1ë1 − a1ė1 − a2ẋ2 ς(t, e) = 1

For this new system, we associate a new sliding function σ(t) defined by:

σ(t) = ηy1 + y2

The chosen control variable for this new system is of the form −M sign (σ(t)). So
we have:

u̇ = −M sign (σ(t)) ⇒ u(t) =
∫

u̇dt

In this case, we have η = 10 and M = 1.
Simulation results of the two control types (Twisting and 2-sliding) are given in

Figs. 1.6 and 1.7.
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(a) (b)

Fig. 1.6 Second order sliding mode. Case of a non perturbed system. a Evolution of the sliding
function. b Evolution of the sliding function derivative

(a) (b)

Fig. 1.7 Second order sliding mode. Case of an non perturbed system. a Evolution of the output.
b Evolution of the control variable

(a) (b)

Fig. 1.8 Second order slidingmode. Case of a perturbed system. a Evolution of the sliding function.
b Evolution of the sliding function derivative

According to these figures, it is notable that results of the 2-sliding mode con-
troller present less oscillations compared to those achieved by theTwisting algorithm.
However, for these algorithms, the convergence is performed in a finite time.

To test the robustness of these algorithms, a sinusoidal noise (0.1 sin t) has been
added to the input. Simulation results presented in Fig. 1.8 show better robustness of
the 2-sliding control law compared to those of the twisting type.
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1.5 Conclusion

In this chapter, a reminder about different aspects of the variable structure control
and the sliding mode control in the continuous domain for single input–single output
systems has been presented. Sliding modes are detailed in the classical formalism
(invariance conditions, different control forms and sliding functions are given), in the
formalism of differential algebra (generalized sliding mode control) and the higher
order sliding modes (essentially the second order sliding mode controller).
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Chapter 2
Conditions of Disturbances Rejection
for Discrete First, Second Order
and Repetitive Sliding Mode Controllers

Khadija Dehri, Majda Ltaief and Ahmed Said Nouri

Abstract Harmonic disturbance rejection is an important field of control theory
and applications. In this paper a discrete first and second order sliding mode control
for multivariable systems are investigated. The necessary conditions of harmonic
disturbances rejection using first and second order sliding mode control laws are
elaborated. In order to improve the performances of sliding mode control in peri-
odic disturbances rejection, a discrete repetitive sliding mode control is presented.
A necessary condition for the choice of the discontinuous terms in discrete repeti-
tive sliding mode control is then developed. The different proposed control strategies
have been tested on numerical simulation example. The obtained results are very sat-
isfactory in terms of compensation of periodic disturbances using discrete repetitive
sliding mode control.

Keywords Conditions of disturbances rejection · Discrete sliding mode control ·
Second order sliding mode control · Repetitive sliding mode control ·Multivariable
control systems · Rejection of periodic disturbances

2.1 Introduction

Due to the development and the progress of technology, many industrial processes
are became more complex (multivariable, non linear, with parameter uncertainties
and external disturbances, . . .). Then, the representation of such systems by an exact
mathematical model and the development of an adequate control law are extremely
difficult.
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To overcome this problem, various control strategies have been proposed in the
last two decades. SlidingMode Control (SMC) as a Variable Structure System (VSS)
has been widely used in different engineering fields and carried out excellent per-
formances in many industrial applications (Lopez and Nouri 2006; Yu and Kaynak
2009). The SMC is known by its robustness against uncertainties and external distur-
bances. The main idea behind SMC is to use a discontinuous control input to drive
state trajectories towards desired sliding surface in finite time and maintain them
on it. Nevertheless, the main drawback of the sliding mode control is the chattering
phenomenon caused by the discontinuous part of the control law. The phenomenon
of chattering is a harmful phenomenon and it often leads to undesirable results.

Due to the development of computer and the use of digital control, discrete sliding
mode control (DSMC) has become more important research in many theoretical and
practical control systems (Gao et al. 1995; Bartoszewicz 1998; Stoica 2008). How-
ever, the properties of continuous SMC is not available in the case of DSMC because
of the finite sampling rate (Young et al. 1999). Then, the problem of chattering phe-
nomenon is more difficult in discrete sliding mode control. Several methods have
been proposed to reduce this problem. One solution is to replace the signum function
by a smoother function in the boundary layer such as the saturation function. Another
solution is to use a high order sliding mode control (HOSMC) (Mihoub et al. 2009;
Romdhane et al. 2015; Cavallo and Natale 2004).

Another problem of the DSMC is its sensitivity to external disturbances. In a
variety of industrial processes, these disturbances are, often, periodic signals (robotic,
rotating machine tools, active noise control . . .). In electrical networks, non-linear
devices are themain source of harmonic disturbances.All power electronic converters
can generate harmonic disturbances by injecting harmonic currents in the power
system (Zhou and Wang 2003). Under the effect And turning fields, the couple
can cause mechanical vibration in rotating machinery. For example, in the hard
disk drives, the periodic disturbances are caused by the eccentricity on the track
at the frequency of rotation of the disk (Chang et al. 2006). In the robot-assisted
laparoscopic surgery of the digestive system, physiological movements caused by
breathing and heartbeat can be considered as a periodic disturbances (Ginhoux 2003),
etc.

In order to resolve this problem, several proposals have been made to modify
the discrete classical sliding mode control. Bartoszewicz et al. (Ginhoux 2003) pro-
posed a new non-switching reaching law for periodic review inventory systems.
In (Mihoub et al. 2011), a multimodel discrete second order sliding mode con-
trol for non stationary system was formulated. Young et al. (Young et al. 1999)
proposed a discrete sliding mode control with delayed disturbance compensator.
In (Yan et al. 2013), a discrete sliding mode control with decoupled perturba-
tion estimator based on computation time delay was developed. A discrete slid-
ing mode control with a nonlinear observer is designed to estimate non measurable
states and perturbation and applied to induction motors in (Castillo-Toledoa et al.
2008). Bandyopadhyay et al. (Bandyopadhyay and Fulwani 2009) proposed a non-
linear sliding surface and disturbance observer to design sliding mode control for
discrete multiple-input multiple-output linear systems with matched perturbations.
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In parallel a discrete adaptive slidingmode controller have been developed (Monsees
2002; Chan 1997).

Nevertheless, the use of disturbance observer can make control system more
complex. Another approach is to combine the sliding mode control with repetitive
control (Dehri et al. 2011, 2012a, b).

Repetitive control (RC) is one of the most common approach in dealing with the
periodic disturbance rejection (Arimoto et al. 1984; Xuan et al. 2013). It has been
investigated in the continuous and discrete time domain and in different engineering
areas (robots (Xuan et al. 2007; Fateha et al. 2013), hard disk drives (Chang et al.
2006), pulse width modulation inverters (Zhou andWang 2003), etc.). The main idea
behind repetitive control is to remove errors that occur at the fundamental and har-
monics frequency of the periodic signal. This control is based on the Internal Model
Principle (IMP) (Francis andWonham 1976) which consists in simply incorporating
the model of the disturbance into the controller configuration. A periodic signal can
be generated by a delay block with a positive feedback loop. However, the repetitive
control is confronted with several problems: such as the problem of stability and
the inability to take into account certain characteristics of processes (Doh and Ryoo
2006).

In order to resolve these problems, we have proposed to combine the repetitive
control with the sliding mode control for discrete multivariable systems (Dehri et al.
2011, 2012a, b).

This work focuses on the synthesis of a necessary condition to reject periodic
disturbances formultivariable systems using discrete first, second order and repetitive
sliding mode controllers.

This paper is organized as follows. The synthesis of a necessary condition for
rejection external disturbances using classical discrete multivariable sliding mode
control is presented in Sect. 2.2. In Sect. 2.3, a necessary condition for rejection
external disturbances in discrete second order sliding mode control for multivariable
systems is developed. A necessary condition for rejection periodic disturbances of
discrete repetitive slidingmode control is then proposed in Sect. 2.4. Section2.5 gives
the simulation results of the discrete first, second order and repetitive sliding mode
controllers for a chemical reactor model subjected to periodic disturbances.

2.2 Conditions of Disturbances Rejection in Discrete
Multivariable Sliding Mode Control

Consider a linear multivariable discrete-time system:

x(k + 1) = Ax(k) + Bu(k) (2.1)

where x(k) and u(k) are respectively the state and input vectors:



32 K. Dehri et al.

x(k) = [

x1(k) . . . xn(k)
]�

u(k) = [

u1(k) . . . um(k)
]�

A and B are respectively n × n and n × m known constant matrices. We suppose that
the matrix B is of full rank.

The sliding function is defined as:

S(k) = Cx(k) = [ s1(k) · · · sm(k)]� (2.2)

where C is an (m, n) matrix chosen using the pole assignment method (Chang and
Chen 2000).

The reaching law can be written as follows (Bartoszewicz 1998):

S(k + 1) = ΦS(k) −

⎡

⎢
⎢
⎢
⎣

m1sign(s1(k))
m2sign(s2(k))

...

mmsign(sm(k))

⎤

⎥
⎥
⎥
⎦

(2.3)

where Φ (Φ ∈ �m×m) is a diagonal matrix such
0 ≤ Φi, i < 1, ∀ i = 1 . . .m and mi (mi ∈ �) is a positive gain.
And sign is the signum function defined as:

sign(si(k)) =
{−1 si si(k) < 0

1 si si(k) > 0
; i ∈ [

1 . . . m
]

Using the considered reaching law, the sliding mode control law can be expressed
as:

u(k) = (CB)−1 [−CAx(k) + ΦS(k)] − (CB)−1

⎡

⎢
⎣

m1sign(s1(k))
...

mmsign(sm(k))

⎤

⎥
⎦ (2.4)

To study the robustness of the control law, we suppose that the system is subject to
external disturbances as follows:

x(k + 1) = Ax(k) + Bu(k) + f (k) (2.5)

where f (k) is the external disturbances vector.
Suppose the following matching condition is satisfied:
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f (k) = Bd(k); d(k) =

⎡

⎢
⎢
⎢
⎣

d1(k)
d2(k)

...

dm(k)

⎤

⎥
⎥
⎥
⎦

(2.6)

Then, the system (2.5) is equivalent to:

x(k + 1) = Ax(k) + B[u(k) + d(k)] (2.7)

Conditions of Disturbances Rejection

By applying the sliding control law (2.4) to the system (2.5), the sliding functions
vector is given by:

S(k + 1) = Cx(k + 1) = CAx(k) + CBu(k) + CBd(k)

= ΦS(k) −

⎡

⎢
⎢
⎢
⎣

m1sign(s1(k))
m2sign(s2(k))

...

mmsign(sm(k))

⎤

⎥
⎥
⎥
⎦

+ CBd(k)

A necessary and sufficient condition for the existence of a quasi sliding mode is
defined as (Sarpturk et al. 1987):

|si(k + 1)| < |si(k)| , ∀ i = 1 . . .m (2.8)

The previous condition is equivalent to:

{

(si(k + 1) − si(k))sign(si(k)) < 0, ∀ i = 1 . . .m
(si(k + 1) + si(k))sign(si(k)) > 0, ∀ i = 1 . . .m

Suppose that:
d̄(k) = CBd(k) = [

d̄1(k) d̄2(k) . . . d̄m(k)
]�

We have:

si(k + 1) = Φi, isi(k) − misign(si(k)) + d̄i(k), ∀ i = 1 . . .m

Case si(k) > 0:
In this case, the conditions of existence of a quasi-sliding mode are:

{

si(k + 1) − si(k) < 0
si(k + 1) + si(k) > 0

or
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si(k + 1) − si(k) = −(1 − Φi,i)si(k) − mi + d̄i(k)

then:

si(k + 1) − si(k) = (Φi,i − 1)si(k) − mi + d̄i(k) < 0 ⇒ mi > (Φi,i − 1)si(k) + d̄i(k)

We have:
si(k + 1) + si(k) = (1 + Φi,i)si(k) − mi + d̄i(k)

then:

si(k + 1) + si(k) = (Φi,i + 1)si(k) − mi + d̄i(k) > 0 ⇒ mi < (Φi,i + 1)si(k) + d̄i(k)

Case si(k) < 0:
The conditions of existence of a quasi-sliding mode are:

{

si(k + 1) − si(k) > 0
si(k + 1) + si(k) < 0

or
si(k + 1) − si(k) = −(1 − Φi,i)si(k) + mi + d̄i(k)

then

si(k + 1) − si(k) = (Φi,i − 1)si(k) + mi + d̄i(k) > 0 ⇒ mi > −(Φi,i − 1)si(k) − d̄i(k)

We have:

si(k + 1) + si(k) = (Φi,i + 1)si(k) + mi + d̄i(k) < 0 ⇒ mi < −(Φi,i + 1)si(k) − d̄i(k)

Theorem 1 The discrete sliding mode control law defined in (2.4) allows the rejec-
tion of the external disturbances if and only if the gains mi satisfy:

(Φi,i − 1) |si(k)| + d̄i(k) sign(si(k)) < mi < (Φi,i + 1) |si(k)| + d̄i(k) sign(si(k))

(2.9)

According to this condition, it is noted that the rejection of external disturbances
is possible only if we know exactly these disturbances. If the disturbances are not
known, an estimation phase is required.

Also, the minimum quasi-sliding mode band 2μi depends on the maximum norm
of the disturbances:

2μi >
2mi

1 − Φi,i
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Consequently, if these disturbances are relatively important, a large amplitude oscil-
lations is appeared which can excite the high frequencies and damage the controlled
system.

To resolve this problem, the discrete second order sliding mode control is
described in the following paragraph.

2.3 Conditions of Disturbances Rejection in Discrete
Multivariable Second Order Sliding Mode Control

Discrete second order sliding mode control (2-DSMC) is a major approach being
used of higher order sliding mode control. It consists in force the the state to move
on the sliding surface and to keep it first derivative null.

There are some works, in literature, which used 2-DSMC for multiple-input
multiple-output (MIMO) systems because it is well known that the control problems
of MIMO systems are very difficult (Chang 2002; Romdhane et al. 2015; Monsees
2002; Dehri et al. 2011, 2012a, b; Chang and Chen 2000).

In the case of the multivariable second order sliding mode control, the sliding
functions vector is selected as follows (Mihoub et al. 2011):

σ(k) = S(k) + βS(k − 1) = [

σ1(k) . . . σm(k)
]�

(2.10)

where β is an (m,m) diagonal matrix.
The equivalent control law is obtained if the following relation is verified:

σ(k + 1) = σ(k) = 0

Then, the expression of the equivalent control law can be calculated as:

ueq(k) = (CB)−1 [−βS(k) − CAx(k)]

The robustness is ensured by the addition of a discontinuous term udis(k) such as:

udis(k) = udis(k − 1) − (CB)−1Te

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m
′
1sign(σ1(k))

...

m
′
isign(σi(k))

...

m
′
msign(σm(k))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= udis(k − 1) − (CB)−1
[

m
′′
1sign(σ1(k)) . . . m

′′
msign(σm(k))

]�

with Te is the sampling time.
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The discrete second order sliding mode control is then expressed as:

u(k) = ueq(k) + udis(k) (2.11)

Conditions of Disturbances Rejection

Using (2.5) and (2.11), the sliding functions vector S(k + 1) can be written as:

S(k + 1) = Cx(k + 1) = −βS(k) + CBd(k) + CBudis(k)

Based on the last relation and (2.10), the sliding functions vector σ(k + 1) can be
written as:

σ(k + 1) = σ(k) + CB(d(k) − d(k − 1))

− [

m
′′
1sign(σ1(k)) . . . m

′′
msign(σm(k))

]�

A necessary and sufficient condition for the existence of a quasi sliding mode in the
case of discrete second order sliding mode control is defined as:

|σi(k + 1)| < |σi(k)| , ∀ i = 1 . . .m (2.12)

The previous inequality is equivalent to the following two inequalities:

{

(σi(k + 1) − σi(k))sign(σi(k)) < 0
(σi(k + 1) + σi(k))sign(σi(k)) > 0

Suppose that:

d̃(k) = CBd(k) − CBd(k − 1) = [

d̃1(k) d̃2(k) . . . d̃m(k)
]�

We have:
σi(k + 1) = σi(k) − m

′′
i sign(σi(k)) + d̃i(k), ∀ i = 1..m

Case σi(k) > 0:
The conditions of existence of a quasi-sliding mode becomes:

{

σi(k + 1) − σi(k) < 0
σi(k + 1) + σi(k) > 0

We have
σi(k + 1) − σi(k) = −m

′′
i + d̃i(k)

So:

σi(k + 1) − σi(k) = −m
′′
i + d̃i(k) < 0 ⇒ mi

′′
> d̃i(k)
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Using the following equality:

σi(k + 1) + σi(k) = 2σi(k) − m
′′
i + d̃i(k)

We obtain:

σi(k + 1) + σi(k) = 2σi(k) − mi
′′ + d̃i(k) > 0 ⇒ mi

′′
< 2σi(k) + d̃i(k)

Case σi(k) < 0:
The conditions of existence of a quasi-sliding mode are:

{

σi(k + 1) − σi(k) > 0
σi(k + 1) + σi(k) < 0

which yields

σi(k + 1) − σi(k) = mi
′′ + d̃i(k) > 0 ⇒ mi

′′
> −d̃i(k)

σi(k + 1) + σi(k) = 2σi(k) + mi
′′ + d̃i(k) < 0 ⇒ mi

′′
< −2σi(k) − d̃i(k)

Theorem 2 The discrete second order sliding mode control law defined in (2.11)
allows the rejection of the external disturbances if and only if the gains m

′′
i satisfy:

d̃i(k) sign(σi(k)) < mi
′′
< 2 |σi(k)| + d̃i(k) sign(σi(k)) (2.13)

We can conclude that the discrete second order sliding mode control is able to reduce
the chattering phenomenon and to reject constant disturbances without necessity of
estimating them by the integration of the discontinuous term.

Also, the minimum quasi-sliding mode band depends on the maximum norm of
the derivative of disturbances.

Conditions of Rejection of Periodic Disturbances

The disturbance vector is given as follows:

d(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nd∑

j=0
a1j cos(jwk) + b1j sin(jwk)

...
Nd∑

j=0
aij cos(jwk) + bij sin(jwk)

...
Nd∑

j=0
amj cos(jwk) + bmj sin(jwk)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.14)
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The difference between d(k) and d(k − 1) can be majored as:

|d(k) − d(k − 1)| ≤ wTe

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nd∑

j=0

∣
∣a1j

∣
∣ + ∣

∣b1j
∣
∣

...
Nd∑

j=0

∣
∣aij

∣
∣ + ∣

∣bij
∣
∣

...
Nd∑

j=0

∣
∣amj

∣
∣ + ∣

∣bmj
∣
∣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ wTedmax

with dmax = sup(d(k)) = [

d1max . . . dmmax
]�

The condition of periodic disturbances rejection in discrete second order sliding
mode control is formulated as:

− wTedimax < mi
′′
< 2 |σi(k)| + wTedimax (2.15)

The discrete sliding mode control can reject periodic disturbances if the period of
these disturbances is very high.

A solution for this problem was proposed in (Dehri et al. 2011, 2012a, b) by
combining the discrete sliding mode control and the repetitive control.

2.4 Conditions of Disturbances Rejection in Discrete
Multivariable Repetitive Sliding Mode Control

In the presence of periodic disturbances, the discrete multivariable first and second
order sliding mode control performances are decreased considerably. In order to
overcome these problems, we propose to use the discrete multivariable repetitive
sliding mode control.
We suppose that the disturbances vector d(k) is periodic with the period N :

d(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1(k)
...

di(k)
...

dm(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1(k − N)
...

di(k − N)
...

dm(k − N)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= d(k − N) (2.16)

The difference between s(k + 1) and s(k + 1 − N) can be calculated as:
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s(k + 1) − s(k + 1 − N) =
[

CAx(k) + CBu(k) + CBd(k)
−CAx(k − N) − CBu(k − N) − CBd(k − N)

]

Using the last relation and (2.3), the discrete repetitive sliding mode control law for
multivariable systems subjected to periodic disturbances can be expressed as:

u(k) = u(k − N) − (CB)−1CA(x(k) − x(k − N))

− (CB)−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1sign(s1(k))
m2sign(s2(k))

...

misign(si(k))
...

mmsign(sm(k))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ (CB)−1(Φs(k) − s(k + 1 − N))

(2.17)

Conditions of Disturbance Rejection

Replacing the control law by its expression (2.17), the sliding functions vector is
then given as follows:

S(k + 1) = Cx(k + 1) = CAx(k) + CBu(k) + CBd(k)
= CAx(k) + CBu(k − N) − CA(x(k) − x(k − N)) + ΦS(k) − S(k + 1 − N)

−

⎡

⎢
⎢
⎢
⎣

m1sign(s1(k))
m2sign(s2(k))

...

mmsign(sm(k))

⎤

⎥
⎥
⎥
⎦

+ CBd(k)

= ΦS(k) −

⎡

⎢
⎢
⎢
⎣

m1sign(s1(k))
m2sign(s2(k))

...

mmsign(sm(k))

⎤

⎥
⎥
⎥
⎦

+ CB(d(k) − d(k − N))

A necessary and sufficient condition for the existence of a quasi sliding mode is
defined by (2.8).

Suppose that:

d−(k) = CB(d(k) − d(k − N)) =
[

d−1
(k) d−2

(k) . . . d−m
(k)

]�

We have:

si(k + 1) = Φi, isi(k) − misign(si(k)) + d− i
(k), ∀ i = 1 . . .m
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Case si(k) > 0:
In this case, the conditions of existence of a quasi-sliding mode are:

{

si(k + 1) − si(k) < 0
si(k + 1) + si(k) > 0

then:

si(k + 1) − si(k) = (Φi,i − 1)si(k) − mi + d−i
(k) < 0 ⇒ mi > (Φi,i − 1)si(k) + d−i

(k)

si(k + 1) + si(k) = (Φi,i + 1)si(k) − mi + d−i
(k) > 0 ⇒ mi < (Φi,i + 1)si(k) + d−i

(k)

Case si(k) < 0:
The conditions of existence of a quasi-sliding mode becomes

{

si(k + 1) − si(k) > 0
si(k + 1) + si(k) < 0

Which gives:

si(k + 1) − si(k) = (Φi,i − 1)si(k) + mi + d−i
(k) > 0 ⇒ mi > −(Φi,i − 1)si(k) − d−i

(k)

si(k + 1) + si(k) = (Φi,i + 1)si(k) + mi + d−i
(k) < 0 ⇒ mi < −(Φi,i + 1)si(k) − d−i

(k)

Theorem 3 The discrete multivariable repetitive sliding mode control law defined
in (2.17) allows the rejection of the external disturbances if and only if the gains mi

satisfy:

(Φi,i − 1) |si(k)| + d− i
(k) sign(si(k)) < mi < (Φi,i + 1) |si(k)| + d− i

(k) sign(si(k))

(2.18)

We remark that the discrete multivariable repetitive sliding mode control is able to
reject periodic disturbances without necessity of estimating them.

Also, the minimum quasi-sliding mode band depends on the maximum norm of
the difference of disturbances between instances k and k − N .

2.5 Simulation Results

Consider the mathematical model of a chemical reactor (Stoica 2008):

x(k + 1) = Ax(k) + Bu(k) + Bd(k)
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where:

A =

⎡

⎢
⎢
⎣

0.9580 0 0 0
0 0.9418 0 0
0 0 0.9048 0
0 0 0 0.9277

⎤

⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎣

0.25 0
0.25 0
0 0.5
0 0.5

⎤

⎥
⎥
⎦

with

x(k) =

⎡

⎢
⎢
⎣

x1(k)
x2(k)
x3(k)
x4(k)

⎤

⎥
⎥
⎦

; u(k) =
[

u1(k)
u2(k)

]

; d(k) =
[

d1(k)
d2(k)

]

The periodic disturbances vector is chosen as:

{

d1(k) = 0.1 + 0.5 sin
(
2πk
N

) + 0.2 cos
(
2πk
N

)

d2(k) = 0.2 + 0.4 sin
(
2πk
N

) + 0.3 cos
(
2πk
N

) ; N = 30

The retained synthesis parameters are:

Φ1, 1 = Φ2, 2 = 0.1; C =
[

286.7629 −282.7629 16.9876 −16.9876
−12.6797 12.6797 −96.1930 98.1930

]

The evolution of disturbances d1(k) and d2(k) is given in Fig. 2.1.
In this section, three kinds of controllers are considered: the first order discrete

multivariable sliding mode control (DSMC), the second order discrete multivariable
slidingmode control (2-DSMC) and the discretemultivariable repetitive slidingmode
control (DRSMC).

Firstly, a first order discrete multivariable sliding mode control is used.
The simulation results are shown in Figs. 2.2, 2.3 and 2.4. Figure2.2 gives the

evolutions of the states. Figure2.3 presents the evolutions of the control signals
u1(k) and u2(k). The evolution of the sliding surfaces s1(k) and s2(k) is illustrated
by Fig. 2.4.

It can be noted that all the states and sliding functions track the originwith periodic
error due to the presence of external periodic disturbances. As a conclusion, the first
order DSMC is not able to reject effectively the considered periodic disturbances.

This is proved by Theorem 1. Indeed, the selected gains are not satisfied the
condition (2.9) without knowing perfectly the considered disturbances.

For classical discrete sliding mode control, it was noted:

• the presence of chattering phenomenon.
• the rejection of constant or harmonic disturbances is only possible when these
disturbances are known or estimated.
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Fig. 2.1 Evolutions of periodic disturbances d1(k) and d2(k)

Secondly, in order to ameliorate the performance of the first order discrete multi-
variable sliding mode control, we use the discrete multivariable second order sliding
mode control.

The simulation results are shown in Figs. 2.5, 2.6 and 2.7. The evolution of the
states is given in Fig. 2.5. Figure2.6 shows the evolutions of the inputs u1(k) and
u2(k). The evolution of sliding surfaces is presented in Fig. 2.7.

We observe that the presence of periodic disturbances can cause periodic errors
at sliding surfaces. Also, it can be seen that a minor periodic errors are obtained
using 2-DSMC as shown by comparing Figs. 2.2 and 2.5. This is due to the ability
of discrete second order sliding mode control to reject constant terms of external
disturbances.

Thirdly, the discrete multivariable repetitive sliding mode control (2.17), which
is a combination between DSMC and repetitive approach, is used in order to reject
periodic disturbances.

The simulation results of the system with the considered control law are shown
in Figs. 2.8, 2.9 and 2.10. Figure2.8 gives the evolutions of the states x1(k), x2(k),
x3(k) and x4(k),. Figure2.9 presents the evolutions of the inputs u1(k) and u2(k).
The evolution of the sliding functions s1(k) and s2(k) is presented in Fig. 2.10. These
figures proves that a relatively satisfactory performances are recorded in terms of
rejecting periodic disturbances.
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Fig. 2.2 Evolutions of the states x1(k), x2(k), x3(k) and x4(k) (DSMC)
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Fig. 2.3 Evolutions of the control signals u1(k) and u2(k) (DSMC)
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Fig. 2.4 Evolutions of the sliding functions s1(k) and s2(k) (DSMC)
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Fig. 2.5 Evolutions of the states x1(k), x2(k), x3(k) and x4(k)(2-DSMC)
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Fig. 2.6 Evolutions of the control signals u1(k) and u2(k) (2-DSMC)
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Fig. 2.7 Evolutions of the sliding functions σ1(k) and σ2(k) (2-DSMC)
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Fig. 2.8 Evolutions of the states x1(k), x2(k), x3(k) and x4(k) (DRSMC)
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Fig. 2.9 Evolutions of the control signals u1(k) and u2(k) (DRSMC)
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Fig. 2.10 Evolutions of the sliding functions s1(k) and s2(k) (DRSMC)
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Fig. 2.11 Evolutions of the states x1(k), x2(k), x3(k) and x4(k)
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Fig. 2.12 Evolutions of the sliding functions s1(k) and s2(k)

A comparison between the three kinds of sliding mode controllers: DSMC, 2-
DSMCandDRSMC, as shown by Figs. 2.11 and 2.12, reveals that the use of DRSMC
strategy reduce effectively the periodic disturbances.

2.6 Conclusion

In this paper, the problem of rejecting external disturbances in the discrete sliding
mode control is studied. A solution to reject constant disturbances can be given
by the discrete multivariable second order sliding mode control. To reject periodic
disturbances, the discrete multivariable repetitive sliding mode control is proposed.
Also, a necessary conditions of disturbances rejection in first, second order and
repetitive sliding mode controllers has been developed for a discrete multivariable
systems.

The effectiveness of the multivariable repetitive sliding mode control was val-
idated through numerical simulation for a chemical reactor model. A comparison
between the results obtained by the three kinds of sliding mode controllers showed a
good rejection of periodic disturbances of the discrete multivariable repetitive sliding
mode control.
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Chapter 3
Output Feedback Robust Exponential Higher
Order Sliding Mode Control

Abdelhak Msaddek, Abderraouf Gaaloul and Faouzi M’sahli

Abstract The higher order sliding mode controller (HOSMC) is a robust control
scheme used to overcome the chattering phenomenon which appears, generally, with
standard slidingmode controller (SMC). In this chapter, a novel techniqueofHOSMC
for uncertain nonlinear systems is presented. The proposed controller allows obtain-
ing an exponential stability as well a finite time convergence to the sliding surface
and guarantees robustness against uncertainties and external matched disturbances.
Furthermore, the synthesis of the control law depends explicitly on the states of the
system. But, in practice, most of systems admit one or more unknown states. Such
problem represents a serious drawback when implementing the controller in real
time. To solve this problem we incorporate a High Gain Observer (HGO) into the
controller to estimate the missing states. These techniques of control and observation
are applied to an induction motor system. Numerical simulations are developed to
show the effectiveness of the resulting controller.

Keywords Nonlinear systems · Robustness ·Higher order · Sliding mode control ·
High gain observer · Induction motor

3.1 Introduction

The sliding mode control (SMC) has demonstrated its effectiveness in main areas
of application including robotics and electrical machinery (Defoort et al. 2007b;
Ghanes 2005; Traore et al. 2012; Msaddek et al. 2014). This control approach is well
knownby its robustness against externalmatched disturbances, parametric variations,
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modeling uncertainties and nonlinearities (hysteresis, friction, etc.) that often char-
acterize the real systems. Indeed, Utkin (1992) demonstrated the robustness property
of SMC achieved using a high frequency switching to steer the states of a system
into the sliding surface. However, the high-frequency switching leads, generally, to
the appearing of an undesirable chattering phenomenon. This leads to the dissipation
of a large quantity of energy in electric actuators and a rapid wear of mechanical
actuators. This limits seriously the implementation of SMC in real time. To overcome
this deficiency, several solutions have been proposed in the literature. Among them,
the “sign” function is replaced by a smooth similar function such as the saturation
function or the sigmoid function. Furthermore, some non conventional techniques
such as fuzzy logic (FL) and neural networks were combined together with SMC
(Roopoei and Zalghadri 2009; Tay et al. 2012; Golea et al. 2012; Jie et al. 2012;
Nayak et al. 2013; Zhao et al. 2013; Msaddek et al. 2015b).

The most interesting way to get rid of the chattering phenomenon consists of
enforcing a higher-order sliding mode (HOSM). The main objective of SMC of
order ρ (called ρ-SMC) is to obtain a finite time convergence onto the manifold
Sρ = {s = ṡ = s̈... = s(ρ−1)}, where s is the sliding variable. So, the philosophy of
HOSMC consists of enforcing the sliding variable and its ρ − 1 first time derivatives
to zero in finite time (Levant 1993). In Levant (2005), author proposed the so-called
quasi-continuous SMCwhere the control input is chattering free except on the sliding
surface.

Laghrouche et al. (2007) developed another approach of HOSMC based on the
minimization of a quadratic criterion using the concept of SMC with integral action.
This allows stabilizing in finite time a system of high order on the sliding surface.
Besides, it permits to choose in advance the convergence time to the sliding sur-
face. Although these algorithms are general, a priori accurate knowledge of the
initial conditions of the system limits seriously the applicability of this approach.
Recently, Defoort et al. (2006, 2007a, b, 2009), proposed a finite time HOSMC for
a class of multivariable nonlinear systems. In these works, the drawbacks devoted
in Laghrouche et al. (2007) are removed and a simple method for adjusting the syn-
thesis parameters of the control law is presented. However, this controller contains
necessarily a discontinuous part to reject the effect of disturbances and requires the
knowledge of the maximum amplitude of the disturbances.

Mondal and Mahanta (2011) proposed a second order sliding mode controller
based on a nonlinear sliding surface to control uncertain linear systems with matched
uncertainty. Likewise, another approach ofHOSMCpresented inLing et al. for uncer-
tain nonlinear systems with relative degree three. The stability on the sliding surface
is guaranteed and the chattering is reduced using these controllers. Nevertheless,
these two approaches are applicable only for uncertain systems with relative degree
two and three, respectively. In reality these strategies of control by HOSMC allow
solving partially the problem of chattering phenomenon. However, this solution can
not remove totally the discontinuous oscillations of the control signal especiallywhen
the sliding surface is reached.

In this work, we present a new technique of HOSMC (Msaddek et al. 2013, 2014)
characterized by its exponential stability and its robustness against external matched
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disturbances, parametric variations and modeling uncertainties. Furthermore, the
proposed approach is independent of the initial conditions and depends explicitly
on the whole system state. However, in real application most of industrial processes
admit one or more unknown states. This deficiency becomes a serious problem when
implementing the controller in real time. In this paper, we present an efficient solution
to overcome such drawback through the incorporation of a High Gain Observer
presented in Farza et al. (2004) into the controller proposed inMsaddek et al. (2014).

The induction motor (IM) is widely used in industry, mainly due to its rigidness.
Also, its maintenance is free operation, and relatively low cost. However, induction
motors represent a theoretically challenging control problem since the dynamical
system is nonlinear. The technique of vector control by indirect field oriented applied
to inductionmotors permitted to have better performances comparable to DCmotors.
Nevertheless, it is very sensitive to parametric variations and external disturbances.
To solve this problem, we apply the novel robust higher order sliding mode control
combined with a high gain observer. Simulations results developed in this work show
the effectiveness of the proposed output feedback controller.

This chapter is organized as follows. The next section is devoted to the presentation
of the new HOSMC. In Sect. 3.3, we incorporate the HGO into the HOSMC. In
Sect. 3.4, we present an application of the resulting controller to the model of the
induction motor. Conclusions are reported in the last section of this work.

3.2 Higher Order Sliding Mode Control

3.2.1 Problem Formulation

Consider a nonlinear dynamical system described by

x = f (x, t) + g(x, t)u + p(t)

s = s(x, t)
(3.1)

where x = [x1 x2 . . . xn]� ∈ X ⊂ R
n is the state variable of the system with X an

open set of Rn and the control input u ∈ U ⊂ R is a feature possibly discontinuous
and bounded, depending on time and the system state, with U is an open set of R,
f (x, t) and g(x, t) are sufficiently differentiable vector fields.

Assumption 1: System (3.1) admits a ρ ∈ N constant and known relative degree
with respect to the sliding variable s(x, t). The system (3.1) can be written as follows
(Laghrouche et al. 2007):
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⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż1 = z2
ż2 = z3

...

żρ−1 = zρ
żρ = φ(x, t) + ϕ(x, t)u

(3.2)

where:

z =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

z1
z2
...

zρ−1

zρ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s
ṡ
...

s(ρ−2)

s(ρ−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with: {

φ = φ + δφ

ϕ = ϕ + δϕ

where φ and ϕ are nominal known parts, δφ and δϕ are unknown parts, including
disturbances and uncertainties.

Assumption 2: The nominal part ϕ is assumed invertible.

The objective of the different techniques of higher order sliding mode control is to
obtain a finite time convergence onto the manifold Sρ = {s = ṡ = · · · = sρ−1 = 0}.

3.2.2 Control Design

Consider a chain of integrators, defined by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż1 = z2
ż2 = z3

...

żρ−1 = zρ
żρ = zρ+1 = w(z)

(3.3)

Theorem 1: (Msaddek et al. 2014) To stabilize exponentially the system (3.3) in
presence of uncertainties on Sρ, we propose the following control law.

w(z) = −α
a1z1 + a2z2 + · · · aρzρ

b1|z1| + b2|z2| + · · · bρ|zρ| (3.4)

with α > 0, ai > 0, bi > 0, (1 ≤ i ≤ ρ) and the polynomial P(p) = a1 +
a2p + · · · aρpρ−1 is Hurwitz.
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Proof: Equation (3.4) can be written as follows:

a1s + a2ṡ + · · · aρs
ρ = f (t) (3.5)

with

f (t) = −żρ
b1|z1| + b2|z2| + · · · bρ|zρ|

α
(3.6)

The Laplace Transform applied to (3.6) gives

(

a1 + a2p + · · · aρp
ρ−1) S(p) = F(p) (3.7)

As P(p) = a1 + a2p + · · · aρpρ−1 is Hurwitz, the solution of (3.5) is stable.

Proof: of the convergence of z to the zero vector of Rρ. Assume that the states of
system are not in the manifold Sρ. One has:

zρ+1 = w(z) = −α
a1z1 + a2z2 + · · · aρzρ

b1|z1| + b2|z2| + · · · bρ|zρ| (3.8)

In other words, one obtains

βzρ+1 = a1z1 + a2z2 + · · · aρzρ (3.9)

with ∀t > 0:

β = − b1|z1| + b2|z2| + · · · bρ|zρ|
α

So, (3.9) is assumed a linear differential equation with second member. The equa-
tion without second member is given by:

a1z1 + a2z2 + · · · aρzρ = 0 (3.10)

The roots of the polynomial P(p) have a strictly negative real part. So, the poly-
nomial which is given by

P(p) = a1 + a2p + · · · aρp
ρ−1 (3.11)

can be rewritten as follows

P(p) =
r

∏

i=1

(p − λi)
ηi ,

∑

ηi = ρ − 1 , �e(λi) < 0

with λi are the roots of the polynomial P(p) with multiplicity degree ηi.
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Therefore, the homogeneous solution of (3.9) is of the form

z1(t) =
r

∑

i=1

qi(t)e
λi t (3.12)

with qi(t) are polynomials of degree ηi − 1.
Also, one notes that the null function z1 = 0 is a solution of the Eq. (3.9). Indeed

if z1 = 0 ∀t, then β = 0 ∀t. So, one can take it as a particular solution of (3.9).
Consequently, the general solution of (3.9) is given by (3.12).

Coefficients of qi(t) are fixed using initial conditions. So the zi = zi−1
1 , (1 ≤ i ≤ ρ)

converge exponentially to zero of Rρ whatever the initial conditions are chosen.

Proof of robustness: Suppose that the control is affected by the disturbances as
follows:

p1(t)zρ+1 + p2(t) = −α
a1z1 + a2z2 + · · · aρzρ

b1|z1| + b2|z2| + · · · bρ|zρ| (3.13)

where zρ+1 = żρ, p1(t) and p2(t) are two bounded disturbances.
Equation (3.13) can be rewritten as follows

β
[

p1(t)zρ+1 + p2(t)
] = a1z1 + a2z2 + · · · aρzρ (3.14)

The homogeneous solution of the Eq. (3.14) takes the form of (3.12), and z1 = 0
is a particular solution of (3.14). So the general solution of (3.14) is given by (3.12).

So, zi = zi−1
1 , (1 ≤ i ≤ ρ) converge exponentially to zero of Rρ. Therefore, the

proposed controller ensures the robustness against bounded disturbances. Now, con-
sider system (3.2) which can be rewritten as follows (Defoort et al. 2007b):

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż1 = z2
ż2 = z3

...

żρ−1 = zρ
żρ = ν(x, t) + [1 + ζ(x, t)]w

(3.15)

with:

u = ϕ−1(w − φ)

ν = δφ − δϕϕ−1φ

ζ = δϕϕ−1

Functions ν(x, t) and ζ(x, t) and may include the uncertainties of the system.

Assumption 3: Functions ν(x, t) and ζ(x, t) are bounded. In addition, there is a
positive function a(x) and a positive constant b (0 < b ≤ 1), such that:



3 Output Feedback Robust Exponential … 59

{ |ν(x, t)| ≤ a(x)
|ζ(x, t)| ≤ 1 − b

(3.16)

Now consider the control law:

u = ϕ−1[w(z) − φ] (3.17)

where ϕ and φ are obtained according to (3.2) and is given by (3.4).

Theorem 2: (Msaddek et al. 2014) The controller (18) ensures a sliding mode of
order ρ with respect to s(x, t) provided that assumptions (3.2) and (3.3) are verified.

Proof: Using (3.13) in the equation system (3.15), one has:

żρ = ν(x, t) + [1 + ζ(x, t)]w (3.18)

If Assumption (3.3) is verified, one can write (3.18) as follows

w(z) = [1 + ζ(x, t)]−1[żρ − ν(x, t)]
= [1 + ζ(x, t)]−1żρ − [1 + ζ(x, t)]−1ν(x, t) (3.19)

Now, applying our approach (3.13) to (3.19) one obtains:

p1(t)zρ+1 + p2(t) = −α
a1z1 + a2z2 + · · · aρzρ

b1|z1| + b2|z2| + · · · bρ|zρ| (3.20)

with:

p1(t) = [1 + ζ(x, t)]−1 (3.21)

p1(t) = −[1 + ζ(x, t)]−1ν(x, t) (3.22)

Now, using the proof of robustness presented above, one can conclude that the
control law (3.17) allows stabilizing exponentially the uncertain system (3.1) on the
sliding surface.

3.3 Output Feedback Control

The higher order sliding mode control previously presented is based on the assump-
tion that all system states are known.

Nevertheless, in practice and for economic or technological reasons, this assump-
tion is, generally, not true. So, to overcome this problem, we proposed an output
feedback control which it is synthesized using the system outputs and unknown
states are estimated using high gain observer.
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Assumption 4: There exists a lipschitzian diffeomorphism that permit to put the
system (3.1) under the following form used by Farza et al. (2004):

ẋ = F(s, x)x + G(u, s, x) + ε(t)
y = Cx

(3.23)

where the state:

x =

⎡

⎢
⎢
⎢
⎣

x1

x2

...

xq

⎤

⎥
⎥
⎥
⎦

with xk ∈ R
nk , k = 1, 2 · · · q and p = n1 ≥ n2 ≥ · · · ≥ nq,

q∑

k=1
nk = n, the input u ∈

U, U a compact subset of Rm, the output y ∈ R
p, s(t) is a known signal:

ε =
⎡

⎢
⎣

0
...

ε(t)

⎤

⎥
⎦ ; ε =

⎡

⎢
⎣

ε1
...

εnq

⎤

⎥
⎦ ; C = [

In1 On1×n2 On1×n3 · · · On1×nq

]

with each εi, i = 1, · · · , nq being an unknown bounded function and In1 is the identity
matrix and On1×nk is the n1 × nk null matrix, k = 2, · · · q,

F(s, x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 F1(s, x1) 0 · · · 0

0 0 F2(s, x1, x2)
. . .

...
...

... 0
. . . 0

0 0
... 0 Fq−1(s, x1, · · · , xq−1)

0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a block matrix with each Fk , k = 1 · · · q denoting a nk × nk+1 rectangular matrix,
and

G(u, s, x) =

⎡

⎢
⎢
⎢
⎣

G1(u, s, x1)
G2(u, s, x1, x2)

...

Gq(u, s, x)

⎤

⎥
⎥
⎥
⎦

The synthesis of the high gain observer necessitates some assumptions:

Assumption 5: There exist two positive constants α and β such that ∀k = 1, · · ·
q − 1, ∀x ∈ R

n, ∀t ≥ 0, one has:

0 < α2Ink+1 ≤ Fk(s, x)
�Fk(s, x) ≤ β2Ink+1
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Assumption 6: Function ε(t) is bounded.

Assumption 7: Signals s(t) and ṡ(t) are bounded.
For the nonlinear system class (3.23), Farza et al. (2004) proposed a HGO given

by the following form:

˙̂x = F(s, x̂)̂x + G(u, s, x̂) − ϑΛ+(s, x̂)Δ−1
ϑ S−1C�C(̂x − x) (3.24)

where x̂ is the system estimated states, Λ+(s, x̂) is the left inverse of the matrix
Λ(s, x̂) given by:

Λ+(s, x̂) = diag

⎡

⎣In1 , F1[s(t), ξ], F1[s(t), ξ] × F2[s(t), ξ], · · · ,

q−1
∏

i=1

Fi[s(t), ξ]
⎤

⎦ (3.25)

Δϑ is a diagonal matrix defined by:

Δϑ = diag

[

In1 ,
1

ϑ
In1 , · · · ,

1

ϑq−1
In1

]

(3.26)

The matrix S is the unique solution of the following algebraic Lyapunov equation:

S + A�S + SA − C�C = 0 (3.27)

The solution of (3.27) is symmetric positive definite and it can be obtained by this
matrix relation:

S−1C� = diag
[

C1
q In1 , C

2
q In1 , · · · ,Cq

qIn1
]�

Matrices A and C are done by:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 In1 0 · · · 0

0 0 In1
. . .

...
...

...
. . .

. . . 0

0 0 0
. . . In1

0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C = [

In1 On1 · · ·On1

]

If we choose ϑ sufficiently big, the estimation error e = (̂x − x) converges expo-
nentially to zero. So, e is infinitely differentiable and ideally their derivatives con-
verge exponentially to zero, in particular for s = y − yd and y = h(x). When using
the HGO to synthesize the control law one has:

ŝ = ŷ − yd = h(̂x) − yd



62 A. Msaddek et al.

So, one obtains

ẑ =

⎡

⎢
⎢
⎢
⎣

ẑ1
ẑ2
...

ẑρ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ŝ
˙̂s
...

ŝ(ρ−1)

⎤

⎥
⎥
⎥
⎦

and

zρ+1 = w(̂z) = −α
a1̂z1 + a2̂z2 + · · · aρ̂zρ

b1 |̂z1| + b2 |̂z2| + · · · bρ |̂zρ| (3.28)

Authors in Farza et al. (2004) demonstrated that:

lim
ϑ−→+∞

e = 0 =⇒ lim
ϑ−→+∞

x̂ = x, lim
ϑ−→+∞

ẑ = z

Then:

lim
ϑ−→+∞

w(̂z) = w(z), lim
ϑ−→+∞

φ(̂x, t) = φ(x, t), lim
ϑ−→+∞

ϕ(̂x, t) = ϕ(x, t)

Thus, with a proper choice of ϑ, we can obtain a resulting control which may
stabilize the real states of the system on the sliding surface. In other words, we must
choose ϑ to get a convergence time of the observer faster than the convergence time
of the control and the dynamics of the system. Thus, the resulting output feedback
controller based on high gain observer for the nonlinear systems class (3.1) is given
by the following expression:

u = ϕ−1(̂x, t)[w(z) − φ(̂x, t)] (3.29)

3.4 Application to Induction Machine

3.4.1 Mathematical Model of the Induction Motor

The modeling of the induction machine (IM) described in the repository Park is
given in the following system of equations (Alvarez-Salas 2002; Hirokazu et al.
2002; Mezouar et al. 2007; Traore et al. 2012; Msaddek et al. 2014).
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disd
dt

= −L2
srRr + L2

r Rs

σLsL2
r

isd + LsrRr

σLsL2
r

φrd + ωaisq + 1

σLs
usd

disq
dt

= −L2
srRr + L2

r Rs

σLsL2
r

isq − pLsr
σLsLr

ω φrd − ωaisd + 1

σLs
usq

dφrd

dt
= −Rr

Lr
φrd + LsrRr

Lr
isd

dω

dt
= Tem

J
− Tr

J
− f

J
ω

dθ

dt
= ω

(3.30)

where Rr and Rs are rotor and stator resistances, Lr and Ls are rotor and stator
inductances, Lsr is themutual inductance, θ is the rotor position,ω is the rotor angular
velocity, p is the number of pole pairs, J is the inertia of the rotor, f is the coefficient
of viscous friction, Tr is the load torque, φrd is the rotor flux linkage, isd and isq stand

for the d − q axis currents, usd and usq are the d − q axis voltages, σ = 1 − L2
sr

LsLr
is

the dispersion coefficient of Blondel, Tem = pLsr
Lr

φrd isd is the electromagnetic torque

and ωa = pω + LsrRr

Lrφrd
isd .

The model of IM (3.30) can be written as follows:

ẋ = f (x, t) + g(x, t)u + p(t)

with:

x =

⎡

⎢
⎢
⎣

isd
isq
φrd

ω

⎤

⎥
⎥
⎦

, f (x, t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−L2
srRr + L2

r Rs

σLsL2
r

isd + LsrRr

σLsL2
r

φrd + ωaisq

−L2
srRr + L2

r Rs

σLsL2
r

isq − pLsr
σLsLr

ω φrd − ωaisd

−Rr

Lr
φrd + LsrRr

Lr
isd

Tem
J

− fω

J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

g(x, t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

σLs
0

0
1

σLs
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, p(t) =

⎡

⎢
⎢
⎢
⎣

0
0
0

−Tr
J

⎤

⎥
⎥
⎥
⎦

, u =
[

usd
usq

]

So, this model (3.30) belongs to the nonlinear systems class (3.1) for which we
can apply the proposed HOSMC.
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3.4.2 Controllers Synthesis

The control objective is to enforce the rotor angular position θ and the rotor flux
linkage φrd to track a desired trajectory θref and φrd,ref , respectively. So, we consider
the following sliding variable

s =
[

s1
s2

]

=
[

θ − θref
φrd − φrd,ref

]

(3.31)

So, we have: [ ...
s 1

s̈2

]

= φ(x, t) + ϕ(x, t)u

where:

φ(x, t) =
[

φ1(x, t)

φ2(x, t)

]

=
[

α11i2sd + α13isdφrd + α23isqφrd + α33φ
2
rd + α4ω − ...

θ ref

β1isd + β2isq + β3φrd + β4ω − φ̈rd,ref

]

(3.32)

with:

α11 = pL2
srRr

JL2
r

, α13 = −pLsr
JLr

(
Rr

Lr
+ f

J
+ L2

srRr + L2
r Rs

σLsL2
r

)

α23 = pLsr
JLr

ωa , α33 = pL2
srRr

σJLsL3
r

, α4 =
(
f

J

)2

and:

β1 = −RrLsr
L2
r

(

Rr + RrL2
sr + RsL2

r

σLsLr

)

, β2 = LsrRr

Lr
ωa

β3 =
(
Rr

Lr

)2 (

1 + L2
srRr

σLsLr

)

, β4 = 0

where:

ϕ(x, t) =
[

0 λ1

λ2 0

]

, Δϕ =
[

0 0
0 0

]

, Δφ =
[

0
0

]

with:

λ1 = pLsr
σLsLrJ

φrd , λ2 = LsrRr

σLsLr
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So, a third and a second order SMC are used, respectively, to control the rotor
angular position θ and the rotor flux linkage φrd .

From the expression of the matrix ϕ(x, t), one can show that u1 = usd depends
only on s1 and its first derivatives. Besides, u2 = usq depends only on s2, ṡ2 and s̈2,
so the control law to applied to the IM is of the following expression.

u =
[

usd
usq

]

= ϕ−1
[

w(z) − φ
]

with

w(z) =
[

w1(z1)

w2(z2)

]

=

⎡

⎢
⎢
⎣

−α1
a11z11 + a21z21 + a31z31

b11|z11| + b21|z21| + b31|z31|
−α2

a12z12 + a22z22
b12|z12| + b22|z22|

⎤

⎥
⎥
⎦

(3.33)

where

w1(z1) = −9.5 × 104
20z11 + 2000z21 + 0.5z31

3000|z11| + 48.5|z21| + |z31|
obtained for α1 = 9.5 × 104, a11 = 20, a21 = 2000, a31 = 0.5, b11 = 3000, b21 =
48.5 and b31 = 1; and:

w2(z2) = −104
2.15z12 + z22
10|z12| + |z22|

obtained for α2 = 104, a12 = 2.15, a22 = 1, b12 = 10, b22 = 1, where

z =
[

z1
z2

]

, z1 =
⎡

⎣

z11
z21
z31

⎤

⎦ =
⎡

⎣

s1
ṡ1
s̈1

⎤

⎦ , z2 =
[

z12
z22

]

=
[

s2
ṡ2

]

.

For this application, we assume
...
θ ref = ω̈ref = 0 and φ̈rd,ref = 0.

To minimize the cost of the control implementation, we propose to insert a high
gain observer which allows estimating the rotor flux linkage φrd and the rotor angular
velocity ω. So the rotor angular position θ = ∫

ωdt. So, we can see that the model
(3.30) of the IM can be written under the form (3.23) where:

C =
[

1 0 0 0
0 1 0 0

]

, x1 =
[

isd
isq

]

, x2 = φrd , x3 = ω

F1(s, x1) =
⎡

⎣

ωa

−L2
srRr + L2

r Rs

σLsL2
r

⎤

⎦ , F2(s, x1, x2) = −Rr

Lr
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Using the Eq. (3.24), we synthesized the following high gain observer for the IM
(Msaddek et al. 2015a):

d̂isd
dt

= −L2
srRr + L2

r Rs

σLsL2
r

îsd + LsrRr

σLsL2
r

φ̂rd + ω̂aîsq + 1

σLs
usd − 3ϑ(̂isd − isd)

d̂isq
dt

= −L2
srRr + L2

r Rs

σLsL2
r

îsq − pLsr
σLsLr

ω̂φ̂rd − ω̂aîsd + 1

σLs
usq− 3ϑ(̂isq − isq)

dφ̂rd

dt
= Rr

Lr

(

Lsr îsd − φ̂rd
) + 3ϑ2

b

[

−ω̂a(̂isd − isd) + L2
srRr + L2

r Rs

σLsL2
r

(̂isq − isq)

]

dω̂

dt
= T̂em

J
− Tr

J
− f

J
ω̂ + ϑ3 Lr

bRr

[

ω̂a(̂isd − isd) − L2
srRr + L2

r Rs

σbLsL2
r

(̂isq − isq)

]

dθ̂

dt
= ω̂

with:

T̂em = pLsr
Lr

φ̂rd îsd

ω̂a = pω̂ + LsrRr

Lrφ̂rd
îsd

ŷ = Cx̂ =
[

îsd

îsq

]

The control law applied to the IM model (3.30) is given by:

u =
[

usd
usq

]

= ϕ−1(̂x, t)
[

w(̂z) − φ(̂x, t)
]

where w(̂z) is given by (3.31) and:

ŝ =
[

ŝ1
ŝ2

]

=
[

θ̂ − θref
φ̂rd − φrdref

]

, ẑ =
[

ẑ1
ẑ2

]

, ẑ1 =
⎡

⎣

ŝ1˙̂s1¨̂s1

⎤

⎦ , ẑ2 =
[

ŝ2˙̂s2
]

.

First, we consider the case where noises are absents. So the load torque
Tr(t) = 0. Simulation results plotted on Figs. 3.1, 3.2 and 3.3 show that estimated
states converge to the simulated states. Moreover, the control objective is fulfilled
with high performances.

Now, we consider that the IM is affected by external disturbance. So, the load
torque varies randomly as plotted onFig. 3.4. Simulation results depicted onFigs. 3.5,
3.6 and 3.7 show the robustness of the proposed approach against external distur-
bances.
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Fig. 3.7 Tracking performances under disturbances using the resulting controller, a: ω, ω̂ and ωref ,
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Table 3.1 Characteristics and parameters of the induction motor

Nominal power 1.5kW Rs 8�

Voltage 220/380V Rr 4�

Nominal current 6.4/3.7A Ls 0.47H

Number of pole pair P = 2 Lr 0.47H

Frequency 50Hz Lsr 0.44H

Rated speed 1410 rpm J 0.04kgm2

Power factor 0.83 f 0.002Nm/rad

3.5 Conclusion

In this chapter,wehaveproposed anoutput feedback controller for a class of nonlinear
uncertain systems. This is achieved by the combination of higher order sliding mode
controller together with a high gain observer to estimate the missing states of the
system. The resulting controller has been applied to control the angular position of
an induction motor. Simulation results show the performances and the robustness of
such control strategy against external matched disturbances.

Nomenclature See Table3.1.
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Chapter 4
Synthesis of an Optimal Sliding Function
Using LMIs Approach for Time Delay
Systems

Houda Romdhane, Khadija Dehri and Ahmed Said Nouri

Abstract During the reachability phase, the sliding mode control is sensitive to
external disturbances and uncertainties. In this paper, we propose to determine coef-
ficients of the sliding function using the technique of Linear Matrix Inequalities
(LMIs) for single-input single-output time delay systems. This technique leads to
an optimal choice of the sliding function to reduce the reachability phase. Using the
proposed sliding function, a discrete second order sliding mode control is presented.
The control law is based on an input–output model. Simulation results demonstrate
that the proposed strategy leads to an optimal performance in terms of reduction of
the reachability phase as well as the chattering phenomenon.

Keywords Discrete second order sliding mode control · Input time delay systems ·
Input–output model · Linear matrix inequalities · Reachability phase

4.1 Introduction

Sliding Mode Control (SMC) has been widely used in the literature. This success is
due to its simplicity and robustness against both external disturbances and parametric
uncertainties (Emelyanov 1967; Lopez andNouri 2006; Perruquetti andBarbot 2002;
Utkin 1992; Vecchio 2008). Sliding Mode Control consists of, firstly, bringing an
arbitrary point to a specific surface called “sliding surface”, which is the reachability
phase. Secondly, ensuring the maintenance and the sliding along this surface until
reaching the origin of the phase plane, which is the sliding phase.
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During the reachability phase, the slidingmode control is sensitive to external dis-
turbances and uncertainties (Emelyanov 1967; Lopez and Nouri 2006; Utkin 1992).
Hence, many researchers have been interested in solving this problem. One of the
solutions was the choice of coefficients of the sliding function in an optimal way.
Therefore, several methods are available to calculate these coefficients such as, the
pole placement method (Dehri et al. 2011, 2012a, b), the Linear Matrix Inequalities
(LMIs) approach (Abdnnabi and Nouri 2012a, b; Chaker et al. 2013; Lin et al. 2011;
Silva and Edwards 2009; Silva et al. 2008, 2009; Wang and Yu 2013; Yadav and
Singh 2012), etc.

The (LMIs) technique has become the most important technique in modern meth-
ods of automatic control (Boyd et al. 1994). Many problems can be formulated as
convex optimization problems under LMI constraints. Such a formulation is very
advantageous because it allows to solve optimization problems that appear difficult
or even impossible to solve analytically (Gahinet et al. 1995; Sandberg 1965). An
important result in convex optimization came from the introduction of the interior
point methods initially developed byKarmarkar (1984) for linear programming. This
method has been then extended in the space of definite positive matrix by Nesterov
and Nemiroviskii (1993).

In the last few years, the LMIs technique has been used in the synthesis of the
sliding mode control (Abdnnabi and Nouri 2012a, b; Chaker et al. 2013; Lin et al.
2011; Silva and Edwards 2009; Silva et al. 2008, 2009; Wang and Yu 2013; Yadav
and Singh 2012). This technique allows an optimal determination of coefficients of
the sliding function, so that it reduces the time of the reachability phase. Therefore,
the sliding mode is reached quickly and the control law becomes robust since the
initial instant.

In this context, a linear sliding function based on the LMIs has been proposed in
Lin et al. (2011). An algorithm for designing a non linear sliding function vector for
multivariables systems (MIMO) has been presented in Yadav and Singh (2012). The
authors, in Chaker et al. (2013), proposed a method to select a sliding function and to
synthesize a slidingmode control for a class of discrete-time linear saturated systems.
A slidingmode control algorithm has been developed for a class of uncertain discrete
network systems (Wang and Yu 2013). A discrete second order sliding mode control
for the linear uncertain system with state delay has been presented in Abdnnabi and
Nouri (2012a, b). In all of the above works, the sliding function based on LMIs has
been developed with state space model.

However, in the literature, there are many systems which are described by their
transfer functions i.e only their inputs and outputs are known. That’s why, in our
work, we are interested, in a first time, in synthesizing of a discrete second order
sliding mode control via input output model (Romdhane et al. 2013a, b, 2014a, b)
and in a second time, in the determination of sliding function’s coefficients using the
LMIs approach (Romdhane et al. 2015).

In this paper, firstly, we propose to synthesize a discrete second order sliding
mode control via input output model for single-input single-output systems with
input delay, then, to calculate sliding function’s coefficients using LMIs approach in
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order to reduce the reachability phase. A comparison between the results obtained
by the pole placement method with those obtained by the LMIs approach is given.

This paper is organized as follows. Section4.2 presents a discrete second order
sliding mode control for input time delay systems using the pole placement method.
In Sect. 4.3, a discrete second order sliding mode control using an optimal sliding
function is developed for such systems. This optimal sliding function is synthesized
using the LMIs approach. Simulation results are given in Sect. 4.4. Section4.5 con-
cludes the paper.

4.2 Discrete Second Order Sliding Mode Control

Consider the discrete-time delay system described by the following model:

A(q−1)y(k) = q−d B(q−1)u(k − 1) (4.1)

where y(k), u(k) and d (d ≥ 0) are respectively the output, the input and the constant
delay. A(q−1) and B(q−1) are two polynomials defined as:

A
(

q−1
) = 1 + a1q

−1 + · · · + anAq
−nA

B
(

q−1) = b0 + b1q
−1 + · · · + bnBq

−nB

In the case of second order sliding mode control, the sliding function is defined by:

σ (k) = S (k) + βS (k − 1) (4.2)

with

• β was chosen in the interval ] 0, 1 [ in order to ensure the convergence of the
sliding function vector σ (k).

• S (k) is the sliding function in the classical sliding mode control case. It is defined
by:

S(k) = C(q−1)(y(k) − r(k)) (4.3)

where:

– C
(

q−1
)

is a polynomial defined as follows:

C(q−1) = 1 + c1q
−1 + · · · + cnC q

−nC

– r(k) is the desired trajectory.
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In the case of time delay systems, the equivalent control can be calculated from:

σ (k + d + 1) = σ (k + d) = 0 (4.4)

The sliding function at instant k + d + 1 is given by:

σ (k + d + 1) = S (k + d + 1) + βS (k + d)

= C
(

q−1
)

(y (k + d + 1) − r (k + d + 1)) + βS (k + d)

After calculation, the sliding function becomes:

σ (k + d + 1) = E
(

q−1
)

F
(

q−1
)

B
(

q−1
)

u (k) + G
(

q−1
)

y (k + 1)
−C

(

q−1
)

r (k + d + 1) + βS (k + d)
(4.5)

with F
(

q−1
)

and G
(

q−1
)

are two polynomials solution of the diophantine polyno-
mial equation:

C
(

q−1) = A
(

q−1) E
(

q−1) F
(

q−1) + q−dG
(

q−1) (4.6)

where

F
(

q−1
) = 1 + f1q

−1 + · · · + fnF q
−nF ; nF = d − 1

G
(

q−1
) = g0 + g1q

−1 + · · · + gnGq
−nG ; nG = sup(nc − 1, nA)

E
(

q−1) = 1 − q−1

Therefore, the equivalent control law can be written as:

ueq (k) = − [

E
(

q−1) F
(

q−1) B
(

q−1)]−1
βS (k + d)

− [

E
(

q−1
)

F
(

q−1
)

B
(

q−1
)]−1

G
(

q−1
)

y (k + 1)

+ [

E
(

q−1
)

F
(

q−1
)

B
(

q−1
)]−1

C
(

q−1
)

r (k + d + 1) (4.7)

The discontinuous term is defined as follows:

udis (k) = udis (k − 1) − [

E
(

q−1
)

F
(

q−1
)

B
(

q−1
)]−1

TeM sign [σ (k)] (4.8)

with Te is the sampling rate, M is the discontinuous gain and sign is the signum
function defined as:

sign [σ (k)] =
∣
∣
∣
∣

−1 if σ (k) < 0
1 if σ (k) > 0
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Then, the global discrete second order sliding mode control can be expressed by:

u (k) = ueq (k) + udis (k) (4.9)

4.3 Discrete Second Order Sliding Mode Control
Using LMIs Approach

In this section, we consider the system previously used in Sect. 4.2.
An extended state space representation for the input–output model defined by

(4.1) can be obtained by taking as the state vector present and past values of system’s
inputs and outputs (Granado et al. 2005) such that:

x (k) = [y (k) y (k − 1) · · · y (k − nA + 1)

u (k − d − 1) u (k − d − 2) · · · u (k − d − nB)]� (4.10)

Therefore, an equivalent state space representation is given by:

{

x (k + 1) = Ar x (k) + Br u (k − d)

y (k) = F x (k)
(4.11)

where

Ar =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a1 −a2 · · · −anA−1 −anA b1 · · · bnB−1 bnB

1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Br = [b0 0 0 · · · 0 1 0 · · · 0]�

F = [1 0 0 · · · 0 0 0 · · · 0]

we assumed that the pair (Ar , Br ) is controllable.
In order to simplify the development of the sliding mode control law, the system

(4.11) can be written in a regular form. There exists a transformation matrix T1 such

that T1Br can be written as follows T1Br =
[

Br1
Br2

]

with Br2 is a non-zero constant.



78 H. Romdhane et al.

To make the system in a regular form, we use the following transformation (Wang
and Yu 2013; Yadav and Singh 2012):

z (k) = T x (k) =
(

In−1 − Br1B
−1
r2

0 B−1
r2

)

x (k) (4.12)

where n = nA + nB .
Therefore, system (4.11) becomes:

{

z (k + 1) = Ãz (k) + B̃u (k − d)

y (k) = F̃ z (k)
(4.13)

with:

z (k) =
[

z1 (k)
z2 (k)

]

; Ã = T ArT−1 =
[

A11 A12

A21 A22

]

B̃ = T Br =

⎡

⎢
⎢
⎢
⎣

0
...

0

⎫

⎪⎬

⎪⎭

n − 1

1

⎤

⎥
⎥
⎥
⎦

; F̃ = FT−1

Therefore, system (4.13) can be rewritten as follows:

⎧

⎨

⎩

z1 (k + 1) = A11z1 (k) + A12 z2 (k)
z2 (k + 1) = A21 z1 (k) + A22 z2 (k) + u (k − d)

y (k) = F̃ z (k)
(4.14)

where z1 (k) ∈ R n−1 and z2 (k) ∈ R.
In the case of state space model, the classical sliding function is defined as :

S (k) = C̄z (k) = [Cr 1] z (k) = Cr z1 (k) + z2 (k) (4.15)

with C̄ = [Cr 1] and Cr ∈ R1×(n−1).

In sliding mode, we have:

Cr z1 (k) + z2 (k) = 0 ⇒ z2 (k) = −Cr z1 (k) (4.16)

The ideal sliding mode is governed by the following reduced system:

{

z1 (k + 1) = A11z1 (k) + A12z2 (k)
z2 (k) = −Cr z1 (k)

(4.17)
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The reduced closed loop system can be written as follows:

z1 (k + 1) = (A11 − A12Cr ) z1 (k) (4.18)

The synthesis of a sliding mode control law thus results in determining a state feed-
back Cr which stabilizes the reduced system (4.18).

The determination of the state feedback Cr is essentially based on resolving the
linear matrix inequality (LMI) cited in the following theorem.

Theorem 1 The reduced system (4.18) is asymptotically stable if there exists a sym-
metric definite positive matrix P = P� > 0 and a matrix W such that the following
LMI (4.19) is satisfied:

( −Q ∗
A11Q − A12W − Q

)

< 0 (4.19)

where

• Q = P −1

• W = Cr P −1

(∗) denotes the transposed elements in the symmetric position:
(A11Q − A12W )�

Proof Let’s consider the following Lyapunov function:

v (k) = z�
1 (k) P z1 (k)

with P is a symmetric definite positive matrix.
To ensure the convergence of system (4.18), it is necessary to satisfy the condition

Δv (k) = v (k + 1) − v (k) < 0.

Δv (k) = z�
1 (k + 1) P z1 (k + 1) − z�

1 (k) P z1 (k)

= ((A11 − A12Cr ) z1 (k))�P ((A11 − A12Cr ) z1 (k)) − z�
1 (k) P z1 (k)

= z�
1 (k)

(

(A11 − A12Cr )
�P (A11 − A12Cr ) − P

)

z1 (k)

Then, the reduced system (4.18) is asymptotically stable if and only if:

(A11 − A12Cr )
�P (A11 − A12Cr ) − P < 0 (4.20)

Using the Schur complement, the inequality (4.20) is equivalent to:

( −P ∗
A11 − A12Cr − P−1

)

< 0 (4.21)
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(∗) denotes the transposed elements in the symmetric position: (A11 − A12Cr )
�

To express the last inequality as a LMI, we perform a pre- and post-multiplication
of inequality (4.21) by diag{P−1, I } and we take Q = P −1 and W = Cr P −1,
therefore, inequality (4.21) becomes:

( −Q ∗
A11Q − A12W − Q

)

< 0 (4.22)

Hence, Theorem 1 is verified and the reduced system (4.18) is asymptotically stable.

Once, we obtain the coefficients of the classical sliding function S(k), we can express
the sliding function σ(k) such that in (4.2) recalled bellow:

σ (k) = S (k) + β S (k − 1)

with S(k) is the sliding function defined in (4.15).
Therefore, the equivalent control law ueq (k), obtained from the condition
σ (k + d + 1) = 0, can be written as follows:

ueq (k) =
(

C̄ B̃
)−1 (−β S (k + d) − C̄ Ãz (k + d)

)

(4.23)

where
(

C̄ B̃
)

is assumed to be non-singular matrix.

The discontinuous term can be expressed as:

udis (k) = udis (k − 1) −
(

C̄ B̃
)−1

TeM sign (σ (k)) (4.24)

with Te is the sampling rate.
Then, the global discrete second order sliding mode controller is given by:

u (k) = ueq (k) + udis (k) (4.25)

4.4 Simulation Example

In this section, a real discrete-time delay system is used in order to prove the effec-
tiveness of the proposed method. The system consists of two masses and a spring as
shown in Fig. 4.1.

Fig. 4.1 Two-masses-spring
system
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By taking k = 1, the discrete-time input–output representation of the considered
system with the sampling rate Te = 0.1 is given by:

A
(

q−1
)

y (k) = q−d B
(

q−1
)

u (k − 1)

with:

• A
(

q−1
) = 1 − 4q−1 + 6.2q−2 − 4.4q−3 + 1.2q−4

• B
(

q−1
) = 0.0001

• d = 3

The desired trajectory r(k) is chosen equal to zero.
The synthesis parameters are chosen as:

β = 0.1 , M = 0.001

In the next subsections,we use for the determination of sliding function’s coefficients,
in the first time, the pole placement method and, in the second time, the LMIs
approach. Then, we apply the proposed discrete second order sliding mode control
to the considered system. Finally, we compare the obtained results.

4.4.1 Synthesis of Sliding Function’s Coefficients Using Pole
Placement Method

In this case, the polynomial C
(

q−1
)

is chosen as:

C
(

q−1
) = 1 + 0.2q−1 − 0.24q−2

Simulation results are shown in Figs. 4.2, 4.3 and 4.4. Figure4.2 shows the evolution
of the output y(k), Fig. 4.3 presents the evolution of the controller u(k) and Fig. 4.4
illustrates the evolution of the sliding surface σ(k).

Fig. 4.2 Evolution of the
output y(k) (2-DSMC with
pole placement method)

5 10 15 20 25 30 35 40
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0.2

0.3

k

y (k )
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Fig. 4.3 Evolution of
control input u(k) (2-DSMC
with pole placement method)
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Fig. 4.4 Evolution of the
sliding function σ(k)
(2-DSMC with pole
placement method)
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It is clear that the sliding mode control is achieved after a few moments. During
this time, the robustness of the sliding mode control law is not guaranteed. For this
reason, we propose to synthesize coefficients of the sliding function with LMIs.

4.4.2 Synthesis of Sliding Function’s Coefficients Using
LMIs Approach

The resolution of the LMI gives the following parameters:

P =
⎡

⎣

26.0021 0.0105 −0.0102
0.0105 38.7353 −0.0026

−0.0102 −0.0026 61.4095

⎤

⎦

C̄ = [−3.3342 5.1683 − 3.6678 1]

Simulation results of the discrete second order sliding mode control using LMI
approach are shown in Figs. 4.5, 4.6 and 4.7. Figure4.5 presents the evolution of the
output y(k), Fig. 4.6 illustrates the evolution of the controller u(k) and Fig. 4.7 shows
the evolution of the sliding surface σ(k).

We observe that the LMIs approach gives optimal values of sliding function’s
coefficients allowing the reduction of the reachability phase duration.
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Fig. 4.5 Evolution of the
output y(k) (2-DSMC with
LMI)

5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3
y (k )

k

Fig. 4.6 Evolution of
control input u(k) (2-DSMC
with LMI)
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Fig. 4.7 Evolution of the
sliding function σ(k)
(2-DSMC with LMI)
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In order to prove the effectiveness of the proposed method, a comparison between
simulation results obtained using the LMI technique with those obtained by the pole
placement method is given in Figs. 4.8 and 4.9.

We note, according to the simulation results, that when we choose coefficients
of the sliding function using the pole placement method, the system converges to
zero but the sliding mode is achieved after a few moments. During this time, the
robustness of the sliding mode control law is not guaranteed. However, if we choose
coefficients of the sliding surface using the LMIs technique, we obtain optimal values
of these coefficients allowing the reduction of the duration of the reachability phase
and ensuring the convergence of the output in finite time.
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Fig. 4.8 Evolution of the
output y(k) (2-DSMC)
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Fig. 4.9 Evolution of the
sliding function σ(k)
(2-DSMC)
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4.5 Conclusion

In order to reduce the reachability phase duration, we proposed to determine sliding
function’s coefficients using the LMIs approach for time delay systems. This tech-
nique gives optimal values of these coefficients. To prove the effectiveness of the
proposed strategy, we compared the results obtained using the LMIs approach with
those given by the pole placement method. Good performances are obtained in terms
of the reduction of the reachability phase.
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Chapter 5
Robust Flight Control of an Underactuated
Quadrotor via Sliding Modes

Chih-Chen Yih

Abstract An underactuated quadrotor has four actuators and six degrees of free-
dom to be controlled. Nevertheless, by deliberately controlling the velocities of the
four propellers, the underactuated quadrotor can track the desired position trajec-
tory and maintain the correct attitude during flight. To improve the robustness and
performance of the underactuated quadrotor system, we propose two sliding mode
control to deal with the parametric variations and the external disturbances. We first
establish the quadrotor model in terms of the translational and rotational dynamics
along with the disturbances and the model uncertainties. By specifying the desired
pitch and roll angle as the virtual control, we then design dual sliding modes: one
for the translational and the other for the rotational dynamics. Our Lyapunov-based
stability analysis shows that the proposed control schemes can guarantee the asymp-
totical stability of the error dynamics for the position and attitude control of the
underactuated quadrotor. Numerical simulations also indicate that the sliding mode
control can effectively follow the desired trajectory and maintain the proper attitude
in the presence of parametric variations and external disturbances.

Keywords Quadrotor · Sliding mode · Underactuated systems · Robust control

Nomenclature

B ≡ quadrotor body
Pi ≡ propeller i
Fw ≡ inertia world frame
FB ≡ body frame
FPi ≡ i th propeller frame
RT ≡ transform matrix from body angular rates to Euler ones
p ≡ position of B in Fω
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q ≡ Euler angle of B in Fω

ωRB ≡ rotation matrix from FB to Fω
B RPi ≡ rotation matrix from FPi to FB

ωi ≡ i th propeller spinning velocity about ZPi
ωPi ≡ angular velocity in the i th propeller frame
TPi ≡ force in the i th propeller frame
ωB ≡ angular velocity of B in FB

τB ≡ torque in FB

τPi ≡ torque in FPi
τdi ≡ i th propeller air drag torque about ZPi
Ti ≡ i th propeller thrust along ZPi
τωi ≡ motor torque along ZPi
m ≡ total quadrotor mass
IPi ≡ inertia of the i th propeller Pi
IB ≡ inertia of the quadrotor body B
k f ≡ propeller thrust coefficient
km ≡ propeller drag coefficient
L ≡ distance of FPi to FB

g ≡ gravity constant

5.1 Introduction

In recent years, small quadrotors have attracted much attention in the field of
research on unmanned aerial vehicles (UAV).Due to the simplemechanical structure,
researchers have been using microprocessors and micro-electro-mechanical sensors
to stabilize the attitude and the altitude of the quadrotor. With the aid of GPS or the
lightweight camera, quadrotor UAVs can easily hover and delicately fly in indoor or
outdoor environment. The control of the quadrotor is accomplished by varying the
pitch or speed of one pair or two pairs of symmetrically positioned propellers to gen-
erate the lifting force or the turning torque (Mahony et al. 2012;Mellinger et al. 2012;
Xilun and Yushu 2013; Hyon et al. 2012; Hoffmann et al. 2007; Nonami et al. 2010).

An underactuated quadrotor has four actuators and six degrees of freedom to
be controlled. By deliberately controlling the velocities of the four propellers, the
underactuated quadrotor can track the desired position trajectory and maintain the
correct attitude during flight. Nevertheless, the robust flight control is essential for
a quadrotor subject to uncertainties such as varying payloads, external disturbances,
model inaccuracies, and actuator dynamics.

Researchers have been proposing several approaches to the problem of quadrotor
control. These approaches can be roughly categorized according to their different
control design: PID control (Alexis et al. 2011a; Bouabdallah et al. 2004), feedback
linearization (Mokhtari et al. 2006b; Lee et al. 2009; Das et al. 2009b), optimal con-
trol (Satici et al. 2013; Raffo et al. 2010; Alexis et al. 2012), back-stepping (Das
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et al. 2009a; Madani and Benallegue 2006; Bouabdallah and Siegwart 2005; Young–
Cheol and Hyo–Sung 2015), sliding mode control (Xu and Özgüner 2006; Derafa
et al. 2012; Besnard et al. 2012), robust control (Cabecinhas et al. 2015; Alexis
et al. 2011b; Islam et al. 2015), and fuzzy/neural control (Dierks and Jagannathan
2010; Byung et al. 2013; Rabhi et al. 2011). Due to its capability to deal with uncer-
tainties, the sliding mode control has become one of the most researched nonlinear
control methods (Utkin 1992; Shtessel et al. 2014). For example, Xu and Özgüner
(2006) presented a sliding mode control based on a simplified dynamic model for
the stabilization of a quadrotor. The quadrotor system is divided into a fully-actuated
subsystem and an underactuated subsystem. With a specific coordinate transform,
one can arrange the underactuated subsystem as a cascaded subsystem, and design
a sliding mode control accordingly. They also use a continuous approximation to
reduce chattering associated with the discontinuous sign function.

To alleviate the undesired chattering and to maintain the robust performance of
the first-order sliding mode control, researchers have proposed second order slid-
ing mode control schemes such as the super twisting control algorithm (Levant
1993, 2001, 2007; Utkin 2003). This algorithm can improve robustness to modeling
inaccuracies and external disturbances, and avoid the chattering induced by the con-
ventional sliding mode control. Research works in Moreno and Osorio (2012), Pico
et al. (2013), Utkin (2003) have shown, by Lyapunov stability analysis, the stability
and finite-time convergence of the super twist control algorithm for single-variable
systems.

Derafa et al. (2012) used the super twisting algorithm for the attitude tracking con-
trol of a quadrotor UAV. Their theoretical and experimental work demonstrated the
effectiveness and robustness of the proposed attitude control under bounded exter-
nal disturbances. Several control schemes combined with sliding mode disturbance
observers (Mokhtari et al. 2006a; Beballegue et al. 2008) have been proposed for
quadrotor control. For instance, Besnard et al. (2012) designed an observer-based
sliding mode control to deal with model uncertainties and wind disturbances. Their
proposed slidingmode observer is based on the super twist algorithm, and a low-pass
filter is used to smooth the discontinuous term in the slidingmode control. In addition,
the authors considered the feedback loop for the speed control of the four rotors.

This chapter exploits the structure of the quadrotor dynamics and uses the concept
of virtual control to recast the underactuated as a fully-actuated one and design the
sliding mode control accordingly. We propose two sliding mode control to improve
the robustness and performance of the underactuated quadrotor system in the pres-
ence of the parametric variations and the external disturbances. We first establish the
translational and rotational dynamics of the quadrotor. Using the desired pitch and
roll angle as the virtual control, we propose the sliding mode attitude and position
control scheme. Our Lyapunov-based stability analysis shows that the proposed con-
trol schemes can guarantee the asymptotical stability of the error dynamics for the
position and attitude control of the quadrotor. From numerical simulation results, we
can conclude that the proposed sliding mode control can effectively track the desired
trajectory and retain the proper attitude under parametric variations and external
disturbances.
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This chapter is organized as follows: Sect. 5.2 discusses the quadrotor dynamics
and properties. Section5.3 presents the proposed slidingmode and the stability analy-
sis. In Sect. 5.4, the proposed sliding mode control scheme is applied to a quadrotor
for numerical simulation. Section5.5 presents some conclusions.

5.2 Dynamic Model

In this section, we formulate the dynamicmodel fromNewton-Euler equations. First,
we derive the nonlinear model of the quadrotor including rotational and translational
dynamics. Then, we present some properties associated with the rotational dynamics
to facilitate the stability analysis in the later section.

5.2.1 Dynamics

The rotational dynamics of the quadrotor shown in Fig. 5.1 is:

τB = IB ω̇B + ωB × IBωB +
4

∑

i=1

B RPi τPi (5.1)

where:

τPi = IPi ω̇Pi + ωPi × IPiωPi − τdi (5.2)

τdi = [

0 0 − kmω2
i sign(ωi )

]T
(5.3)

Fig. 5.1 The model of the quadrotor
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We define:

sign(x) =
∣
∣
∣
∣
∣

1 if x > 0

−1 if x < 0

ω1 < 0, ω3 < 0 (clockwise along the positive ZPi axis)
ω2 > 0, ω4 > 0 (counter-clockwise along the positive ZPi axis)

The angular velocity in the propeller frame is

ωPi = B RPi ωB + [0 0 ωi ]T (5.4)

and the toque in body frame is:

τB =
4

∑

i=1

BOPi ×B RPi TPi (5.5)

and the force in the propeller frame is:

TPi =
[

0 0 k f ω
2
i

]T
(5.6)

The transformation between body angular rates to the Euler rates is:

q̇ = RTωB (5.7)

Taking derivative of (5.7) and ignoring IPi in (5.2), we have:

q̈ = ṘT R
−1
T q̇ + RT I

−1
B

(

τB − ωB × IBωB +
4

∑

i=1

B RPi τdi

)

(5.8)

We define:

τ =
4

∑

i=1

BOPi ×B RPi TPi +
4

∑

i=1

B RPi τdi (5.9)

and
Ψ = R−1

T (5.10)

It follows from (5.7) and (5.8) that:

ωB = Ψ q̇ (5.11)

Ψ T IBΨ q̈ = −Ψ T IBΨ̇ q̇ − Ψ TωB × IBωB + Ψ T τ

= −[

Ψ T IBΨ̇ + Ψ T (Ψ q̇ × IBΨ )
]

q̇ + Ψ T τ (5.12)

Adding the disturbance torque, we obtain:
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M(q)q̈ + C(q, q̇)q̇ = Ψ T (τ + τd) (5.13)

whereq = [φθ ψ]T ∈ R
3 is the attitude vector of the roll, the pitch, and the yawangle.

M(q) ∈ R3×3 is the symmetric and positive definite inertia matrix, C(q, q̇)q̇ ∈ R
3

is the vector of centrifugal and Coriolis forces and τ = [τφ τθ τψ] ∈ R
3 is the vector

of torques. Ψ is the transformation matrix and τd is the disturbance torque. In (5.13),
we have:

M(q) = Ψ T IBΨ (5.14)

and:
C(q, q̇) = [Ψ T IBΨ̇ + Ψ T (Ψ q̇ × IBΨ )] (5.15)

The matrix of Ψ (q) is:

Ψ (q) =
⎡

⎣

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

⎤

⎦ (5.16)

Denoting sqi = sin qi and cqi = cos qi , we have the inertia matrix M :

M11 = Ix , M12 = 0, M13 = −Ix sθ
M22 = Iyc

2
φ + Izs

2
φ, M23 = cθcφsφ(Iy − Iz)

M33 = Ix s
2
θ + Iyc

2
θs

2
φ + Izc

2
θc

2
φ

The matrix of C(q, q̇) can be expressed as:

C11 = 0, C12 = −Ix ψ̇cθ + (Iy − Iz)(θ̇sφcφ + ψ̇cθs
2
φ − ψ̇cθc

2
φ)

C13 = −Iyψ̇c
2
θsφcφ + Izψ̇c

2
θsφcφ

C21 = Ix ψ̇cθ − (Iy − Iz)(θ̇sφcφ + ψ̇cϑs
2
φ − ψ̇cθc

2
φ)

C22 = (Iz − Iy)φ̇sφcφ

C23 = −Ix ψ̇sθcθ + Iyψ̇sθcθs
2
φ + Izψ̇sθcθc

2
φn

C31 = −Ix θ̇cθ + (Iy − Iz)ψ̇c
2
θsφcφ

C32 = Ix ψ̇sθcθ + (Iz − Iy)[θ̇sθsφcφ + φ̇cθ(s
2
φ − c2φ)] − (Iys

2
φ + Izc

2
φ)sθcθ

C33 = (Ix − Iys
2
φ − Izc

2
φ)θ̇sθcθ + (Iy − Iz)φ̇c

2
θsφcφ

Now, consider the translational dynamics of the quadrotor:

m p̈ = [0 0 − mg]T + W RB

4
∑

i=1

B RPi TPi (5.17)

B RPi = RZ (βi ) (5.18)
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with:

RZ (βi ) =
⎡

⎣

cosβi − sin βi 0
sin βi cosβi 0
0 0 1

⎤

⎦ , βi = (i − 1)
π

2
, i = 1, 2, 3, 4.

Considering the disturbance force, we have the translational dynamics:

m p̈ =
⎡

⎣

cφsθcψ + sφsψ
cφsθsψ − sφcψ

cφcθ

⎤

⎦ f −
⎡

⎣

0
0
mg

⎤

⎦ + ud (5.19)

where m is the mass of the quadrotor and p = [x y z]T ∈ R
3. f ∈ R is the lifting

force, g is the gravity constant and ud ∈ R
3 is the disturbance force.

The vector of the force and the torque in (5.13) and (5.19) can be expressed by:

⎡

⎢
⎢
⎣

f
τφ

τθ

τψ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

k f k f k f k f

0 Lk f 0 −Lk f

−Lk f 0 Lk f 0
km −km km −km

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤

⎥
⎥
⎦

(5.20)

where ωi is the i th propeller spinning velocity.

5.2.2 Properties

We can state several fundamental properties of the attitude dynamic equation of
motion. Let us use λM(A) and λm(A) for the largest and smallest eigenvalue of a
matrix A. We denote the Euclidean norm for an n × 1 vector x by ||x || = √

xT x .
Property 2.1: The inertia matrix is symmetric, positive definite, and is bounded by:

0 < λm(M) < ||M(q)|| < λM(M)

Property 2.2: The matrix Ṁ(q) − 2C(q, q̇) is skew symmetric.

5.3 Sliding Mode Flight Control

A sliding mode control refines the dynamics of a nonlinear system by applying a
discontinuous control signal to force the system to slide along an intersection of the
system’s nominal operation. In accordance to the current location in the state space,
a sliding mode control inherently possesses a variable structure because it switches
from one continuous structure to another. In this section, we first present a conven-
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tional slidingmode control that exploits the structure of the rotational dynamics and a
chattering suppression scheme to reduce the switching gain. Thenwe proposed a sec-
ond order sliding mode control for the translational dynamics to avoid the chattering
problem.

5.3.1 Sliding Mode Attitude Control

Denoting M̂ and Ĉ as the nominal matrix of M and C , we define M̃ = M − M̂ and
C̃ = C − Ĉ . We can express the rotational dynamics as follows:

M̂(q)q̈ + Ĉ(q, q̇)q̇ = Ψ T (τ + τd) + h1(q, q̇, q̈) (5.21)

with:

h1(q, q̇, q̈) = −M̃(q)q̈ − C̃(q, q̇)q̇

Define
q̇r = q̇d − Λ1(q − qd) (5.22)

and:
s1 = q̇ − q̇r = q̇ − q̇d + Λ1(q − qd) (5.23)

where Λ1 is a positive and diagonal matrix and q̇d is the desired velocity. Taking the
derivative of s1, we have

ṡ1 = q̈ − q̈r = q̈ − q̈d + Λ1(q̇ − q̇d) (5.24)

Setting ṡ1 to be zero, we can obtain the equivalent control for sliding mode motion.
Define:

s1 = [s11 s12 s13]T (5.25)

sign(s1) = [sign(s11) sign(s12) sign(s13)]T (5.26)

Now, we propose the control:

τ = Ψ −T
[

M̂q̈r + Ĉq̇r − K1sign(s1) − K3s1 − K4q̃
]

(5.27)

where K1, K3 and K4 are diagonal matrices.
Define the Lyapunov function:

V1 = 1

2
sT1 M(q)s1 + 1

2
q̃T K4q̃ (5.28)
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The derivative of the Lyapunov function is:

V̇1 = sT1 M(q)ṡ1 + 1

2
sT1 Ṁ(q)s1 + q̃T K4 ˙̃q

= −sT1 M̃q̈r − sT1 C̃q̇r − sT1 K1sign(s1) − sT1 K3s1 − q̃TΛ1K4q̃ (5.29)

If the switching gain satisfies the following condition:

λm(K1) ≥ (||M̃|| ||q̈r || + ||C̃ || ||q̇r || + ||τd ||
) + γ1 (5.30)

from (5.29), we have:

V̇1 ≤ −γ1s
T
1 sign(s1) − sT1 K3s1 − q̃T K4q̃ < 0 (if s1 �= 0) (5.31)

where γ1 is a positive constant.
As a result, the controller carries the system towards the sliding surface s1 = 0.

To avoid the system chattering that may excite unmodeled dynamics, in practice, one
can use the continuous term s1 with a boundary layer (Slotine 1991) to replace the dis-
continuous term sign(s1). Recently developed higher-order sliding mode (Bartolini
et al. 2003; Emelyanov et al. 1996; Bartolini et al. 1998) and adaptive sliding mode
(Utkin 2003; Plestan et al. 2010; Utkin and Poznyac 2013) can also be employed
to suppress the chattering phenomenon. In this chapter, we use the gain-adaptation
method developed by Lee and Utkin (2007) to decrease the switching gain that is a
function of the equivalent control.

For example, K1 = diag([k1 k2 k3]) is replaced by the adaptation law:

ki (t) = kci |ηi | + kmi (5.32)

where kci > 0, kmi > 0 and ηi is obtained by filtering the sign(s1i ) using a low-pass
filter:

ζi η̇i + ηi = sign(s1i ), ηi (0) = 0 (5.33)

where ζi is a positive constant.

5.3.2 Sliding Mode Position Control

The transitional dynamics can be expressed by

p̈ = 1

m
u + μ (5.34)

where the virtual control u is:
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u =
⎡

⎣

ux

uy

uz

⎤

⎦ =
⎡

⎣

cφdsθdcψd + sφdsψd
cφdsθdsψd + sφdcψd

cψdcθd

⎤

⎦ f −
⎡

⎣

0
0
mg

⎤

⎦ (5.35)

and the uncertain term μ is:

μ =
⎡

⎣

cφsθcψ + sφsψ
cφsθsψ + sφcψ

cψcθ

⎤

⎦
f

m
−

⎡

⎣

cφdsθdcψd + sφdsψd
cφdsθdsψd + sφdcψd

cψdcθd

⎤

⎦
f

m
+ ud

m
(5.36)

The nominal transitional dynamics can be expressed as

p̈ = 1

m̂
u + μ̂ (5.37)

where m̂ denotes the nominal mass and μ̂ = 0 for the nominal model.
Define the sliding surface s2 ∈ R

3:

s2 = ṗ − ṗd + Λ2(p − pd) (5.38)

where Λ2 is a positive and diagonal matrix and ṗd is the desired velocity.
Taking the derivative of s2 and using (5.37), we obtain:

ṡ2 = 1

m̂
u − p̈d + Λ2( ṗ − ṗd) (5.39)

The second derivative of s2 is:

s̈2 = 1

m̂
u̇ − ...

pd + Λ2[ṡ2 − Λ2( ṗ − ṗd)] (5.40)

Define the Lyapunov function:

V2 = 1

2
sT2 Λ3s2 + 1

2
ṡT2 ṡ2 + αsigns2 (5.41)

where: α = [α1 α2 α3], αi > 0 for i = 1, 2, 3.
The derivative of the Lyapunov function is:

V̇2 = ṡT2
(

s̈2 + Λ3s2 + Λsign(s2)
)

(5.42)

where Λ4 is a diagonal matrix with diagonal elements [α1 α2 α3]. It follows that if
we choose:

s̈2 + Λ3s2 + Λ4sign(s2) = −K2ṡ2 (5.43)

then:
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V̇2 = −ṡT2 K2ṡ2 (5.44)

Using (5.40) and (5.43), we have:

u̇ = m̂
(

− (K2 + Λ2)ṡ2 − Λ3s2 − Λ4sign(s2) + ...
pd + Λ2

2( ṗ − ṗd)
)

(5.45)

Substituting s2 into (5.44) yields the nominal virtual control:

u̇ = −(K2 + Λ2)u + m̂
[

(K2 + Λ2) p̈d + ...
pd − K2Λ2( ṗ − ṗd)

−Λ3s2 − Λ4sign(s2)
]

(5.46)

It follows from (5.43) that ṡ2 −→ 0, s̈2 −→ 0. From (42), we have

Λ3s2 = −Λ4sign(s2) (5.47)

which ensures that:
s2 = 0 (5.48)

It can be shown through the robustness analysis that the nominal control proposed
in (5.46) can deal with bounded uncertain terms in (5.34), given the switching gain
Λ4 is large enough. The criteria to select Λ4 can be determined analytically through
the robustness analysis. Nevertheless, notice that the analysis only provides a suffi-
cient condition; therefore, in practice, one can always determine this switching gain
numerically.

The real control input can be computed as follows:

f =
√

u2x + u2y + (uz + mg)2 (5.49)

The desired roll and pitch angle are:

φd = sin−1 uxsψd − uycψd
√

u2x + u2y + (uz + mg)2
(5.50)

θd = tan−1 uxcψd + uysψd
uz + mg

(5.51)

Notice that the maximum desired roll and pitch angles φd and θd are limited for a
quadrotor. In the extreme case of ux = 0, uy = 0 and uz = −mg, we can see that the
force f is zero from (5.49) and therefore the desired roll and pitch angles in (5.50)
and (5.51) are undefined and meaningless due to the lack of lifting force ( f = 0).
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Fig. 5.2 The quadrotor control scheme

The vector of the squared speed for each rotor is:

⎡

⎢
⎢
⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

k f k f k f k f

0 Lk f 0 −Lk f

−Lk f 0 Lk f 0
km −km km −km

⎤

⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎣

f
τφ

τθ

τψ

⎤

⎥
⎥
⎦

(5.52)

The attitude and the position control scheme of the quadrotor is shown in Fig. 5.2.

5.4 Numerical Simulation

In order to illustrate the design of the proposed scheme, we give an example of a
quadrotor to numerically evaluate the robustness under the presence of the parameter
change and the external disturbance.

5.4.1 Simulation Parameters

The following parameters of the quadrotor for the simulation are used:m = 2 kg, L =
0.275m, Ix = 0.025kgm2, Iy = 0.025kgm2, Iz = 0.040kgm2, k f = 9.3 × 10−5

Ns2, km = 1.1 × 10−6 Ns2, g = 9.81m/s2.
We use the following initial conditions: [x(0) y(0) z(0)] = [0 0 0] and the final

desired positions (expressed inm) [xd(t f ) yd(t f ) zd(t f )] = [20 10 5]where t f = 10s.
The desired yaw angle is ψd = 0.
The desired position trajectories (expressed in m) are:

xd(t) = 0.2t3 − 0.03t4 + 0.0012t5

yd(t) = 0.1t3 − 0.015t4 + 0.0006t5

zd(t) = 0.05t3 − 0.0075t4 + 0.0003t5
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Now, the design parameters are chosen as follows: Λ1 = 100I2, Λ2 = 100I3,
Λ3 = 100I3,Λ4 = 1.0I3, K1 = 2I3, K2 = 10I3, K3 = 40I3, K4 = 100I3, kci = 4I3,
kmi = 0.1I3 (i = 1, 2, 3).

5.4.2 Simulation Results

The simulation results of the proposed sliding mode attitude and position control are
shown in Figs. 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8. Figures5.8 and 5.4 present the attitude
and position trajectory of the quadrotor under the parametric variations (increasing
the body weight to 125%). The propelling forces generated by the four rotors of
the quadrotor are shown in Fig. 5.5. From the simulation results in Fig. 5.3, 5.4 and
5.5, we can see that the proposed sliding mode control can successfully control
the quadrotor from the initial position, via the desired trajectory, and to the final
destination while maintaining the desired attitude.

As the stability analysis in the previous section demonstrates the robustness with
respect to the parametric uncertainties and external disturbances, we now further
evaluate the effects of the external disturbances on the quadrotor. We use the distur-
bance force and torque exerting on each attitude angle and each axis of movement
(2 sin 4t N and 0.1 sin 4t Nm) for the simulation. As shown in Figs. 5.6, 5.7 and
5.8, we can see that the disturbance has little effects on the sliding mode control
due to its capability to reject disturbance and to pull the state variables back to the

Fig. 5.3 The attitude trajectory under parametric variations
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Fig. 5.4 The position trajectory under parametric variations

Fig. 5.5 The propelling force under parametric variations
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Fig. 5.6 The attitude trajectory under parametric variations and disturbances

Fig. 5.7 The position trajectory under parametric variations and disturbances
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Fig. 5.8 The propelling force under parametric variations and disturbances

sliding surface. The improvement of robustness offered by sliding mode control is
expected because sliding mode has nonlinear terms to counter the effects of varying
parameters and bounded disturbances.

5.5 Conclusions

In this chapter, we propose two sliding mode control to deal with the parametric
variations and the disturbances and to improve the robustness and performance of the
quadrotor.UsingLyapunov-based stability analysis,we have shown that the proposed
control schemes can guarantee the asymptotical stability of the error dynamics for
the position and attitude control of the underactuated quadrotor.

From the simulation results, we demonstrate that conventional first-order sliding
mode, coupled with a scheme to reduce the switching gain and to suppress the
chattering, can successfully solve the control problem for an underactuated quadrotor.
Moreover, we show the alternative control design of a second-order sliding mode via
the Lyapunov stability analysis to get rid of the chattering. In the future, we will work
on the experimental evaluation of the proposed sliding mode control and integrate
the control schemes in the fault-tolerant flight control system.
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Chapter 6
Sliding Mode Control of an Inverted
Pendulum

Olfa Jedda, Jalel Ghabi and Ali Douik

Abstract This paper presents solutions to attenuate the chattering phenomenon
raised by the classic sliding mode control. The first solution consists in approximat-
ing the discontinuity in the control law, origin of chatter effect, by using a continuous
function. Another solution is to use the second order sliding mode control. Subse-
quently, these different algorithms will be applied to an inverted pendulum in order
to achieve dynamic output tracking. Simulation results are presented to illustrate the
efficiency of these algorithms.

Keywords Sliding mode control · Chattering phenomenon · Saturation function ·
Twisting algorithm · Super-twisting algorithm · Inverted pendulum

6.1 Introduction

Since the late 1970s, sliding mode control (SMC) has attracted a significant interest
from the control research community, and this is due to its insensitivity tomodel para-
metric uncertainties and external disturbances (Bandyopadhyay et al. 2009; Utkin
1977; Young et al. 1999). Indeed, the SMC design consists of two basic steps: select-
ing a stable sliding surface on the basis of control objectives and desired properties
of the closed loop system, and synthesizing a discontinuous control law in such a
way that the state trajectory of the system reaches the sliding surface in finite time
and then remains there (Bandyopadhyay et al. 2009; Bregeaut 2010). Yet, in practice
and in the presence of switching imperfections, the control cannot switch at a very
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high frequency, and then the discontinuity in the control law yields to the so-called
chattering phenomenon.

This phenomenon can actuate disregarded high-frequency dynamics, degrade
system performances and even cause mechanical damages (Perruquetti and Bar-
bot 2002). In this regard, several approaches have been proposed in the literature
in order to overcome this problem such as the one proposed by Slotine and Sastry
(1983), which consists in substituting the signum function, origin of the discontinuity
in the control law, by a smooth function like saturation function (Hung et al. 1993;
Perruquetti and Barbot 2002; Slotine 1984; Slotine and Li 1991). Actually, the state
trajectory will evolve inside a thin boundary layer neighboring the switching surface
and then the chatter effect will be attenuated close to this surface.

Another approach, introduced by Levant (2003), the higher-order sliding mode
control (HOSMC), consists in constraining the state trajectory to reach in finite time
the sliding set defined by:

Sr = {

x ∈ R
n : s = ṡ = s̈ = ... = s(r−1) = 0

}

(6.1)

In addition to the chatter elimination, HOSMC ensures a better accuracy and resolves
the problem of the restriction to a relative degree one, while preserving the main
features of the standard sliding mode (Levant 2003; Perruquetti and Barbot 2002). In
this study, only second-order sliding mode control (SOSMC) and specially twisting
and super-twisting algorithms (Emelyanov et al. 1996; Levant 1993; Perruquetti and
Barbot 2002; Shtessel et al. 2014) will be demonstrated for the control of the inverted
pendulum as a nonlinear and unstable system.

In Sect. 6.2, we represent the first order slidingmode theory. Section6.3 is devoted
to second order sliding mode algorithms. In Sect. 6.4, Simulations results for both
first and second order sliding mode algorithms applied to the inverted pendulum will
be shown. Finally, concluding remarks will be given in Sect. 6.5.

6.2 First Order Sliding Mode Control

Well known for its high accuracy and robustness against parametric variations and
external disturbances, the slidingmode control consists, by means of a discontinuous
control, in constraining the system states to reach, in finite time, and then to evolve
onto a sliding manifold defined by:

S = {

x ∈ R
n : s = 0

}

(6.2)

Hence, the design of SMC involves two major steps: the first is to select a stable
surface depending upon desired system dynamics, and the second is to synthesize
a control law so that the system state trajectory evolves onto the chosen surface
(Bregeaut 2010; Levant 2003).
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Consider a single input nonlinear system as

ẋ = f (x) + b (x) u (6.3)

where x ∈ R
n is the state vector and u ∈ R is the control input. The control law of

the sliding mode controller is expressed as follows:

u = ueq + ud (6.4)

with ueq is the equivalent control and ud is the discontinuous control. Using the
equivalent control approach (DeCarlo et al. 1988; Gao and Hung 1992; Utkin 1992),
ueq is obtained by setting ṡ = 0. It ensures the maintain of the state trajectory onto
the switching surface s = 0 during the sliding mode (Bandyopadhyay et al. 2009;
Hung et al. 1993; Perruquetti and Barbot 2002).

For the system (6.3), the first time derivative of the sliding variable s = s (x) is
given by:

ṡ = ∂s

∂x
( f (x) + b (x) u) (6.5)

Assuming that
(

∂s
∂x b (x)

)

is invertible, the equivalent control law is expressed by:

ueq = −
(

∂s

∂x
b (x)

)−1 ∂s

∂x
f (x) (6.6)

Yet, a η-reachability condition defined in (Bandyopadhyay et al. 2009; Edwards and
Spurgeon 1998; Perruquetti and Barbot 2002) as follows:

sṡ ≤ −η |s| , η > 0 (6.7)

must bemet in order to ensure a finite time convergence to the sliding surface. Hence,
the classic sliding mode control that satisfies the above condition is given by Riachy
(2008):

u = −
(

∂s

∂x
b (x)

)−1 (
∂s

∂x
f (x) + k sign (s)

)

(6.8)

where k is a positive constant that verifies

sṡ = s (−k sign (s)) = −k |s| ≤ −η |s| ⇔ k ≥ η (6.9)

and sign is the signum function defined by

sign(s) =
∣
∣
∣
∣
∣
∣

1 if s > 0
0 if s = 0

−1 if s < 0
(6.10)
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Fig. 6.1 Chattering
phenomenon

Nevertheless, the discontinuity of the signum function in the vicinity of the sliding
surface s = 0 involves an infinite frequency commutation of the control law which
cannot exist in practice because of switching imperfections. This leads to the so-called
chattering phenomenon (Fig. 6.1) which can degrade performances of the controlled
system, excite disregarded high-frequency dynamics and even deteriorate the control
member.

To attenuate the chatter effect, several approaches were proposed in literature.
The main idea of the first approach is to substitute signum function by a continuous
one such as saturation function defined by:

sat(s,ϕ) =

∣
∣
∣
∣
∣
∣
∣
∣

s

ϕ
if

∣
∣
∣
∣

s

ϕ

∣
∣
∣
∣
≤ 1

sign(s) if

∣
∣
∣
∣

s

ϕ

∣
∣
∣
∣
> 1

(6.11)

The continuous function will ensure the convergence of system state trajectory to a
thin boundary layer in the vicinity of the sliding surface. Consequently, the chatter
effect will be reduced to the detriment of optimum accuracy and robustness of sliding
mode.

The above restrictions were removed with the higher order sliding mode control
which satisfies a finite time convergence of not only the sliding variable to zero, but
also of a finite number of its time derivatives. In other words, for a relative degree
r > 1, i.e. ∂

∂u s
(i) = 0 (i = [|1, r − 1|]) and ∂

∂u s
(r) �= 0, it is necessary to ensure, for

stability reasons, the following equalities:

s = ṡ = s̈ = · · · = s(r−1) = 0 (6.12)

Hence, HOSMC removes another drawback of classic sliding mode: the restriction
to a relative degree one. However, this will require an additional information about
the (r − 1) time derivatives of s. In what follows, only second order sliding mode
algorithms will be treated.
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6.3 Second Order Sliding Mode Control

The second order sliding mode controller consists on forcing the system state trajec-
tories to evolve in finite time onto the second order sliding set defined by:

S2 = {

x ∈ R
n : s = ṡ = 0

}

(6.13)

Return to the system
ẋ = f (x) + b (x) u

s = s(x)
(6.14)

with x ∈ X = {x : |xi | ≤ xi max, i ∈ [|1, n|]} and u ∈ U = {u : |u| ≤ umax}.
Let the relative degree be equal to one, differentiating the sliding variable s twice

yields to the following relation:

s̈ = ∂ṡ

∂x
( f (x) + b (x) u) + ∂ṡ

∂u
u̇ = α (x) + β (x) u̇ (6.15)

It is assumed that if |s (x)| < s0 then there are positive constants Φ, Γm and ΓM such
that

|α (x)| < Φ

0 < Γm ≤ β (x) ≤ ΓM
(6.16)

Subsequently, Only Twisting and Super-Twisting algorithms will be studied.

6.3.1 Twisting Algorithm

The twisting algorithm, one of the first known second order sliding mode algorithms,
ensures a finite time convergence of the state trajectory to the origin of the phase
plane (s, ṡ) after executing a certain number of rotations around it (Fig. 6.2), and this
is due to the commutation of the control between two values.

For a relative degree 1, the control algorithm is defined by the following control
law:

u̇Tw =

∣
∣
∣
∣
∣
∣
∣

−u if |u| > umax

−kmsign(s) if sṡ ≤ 0 and |u| ≤ umax

−kMsign(s) if sṡ > 0 and |u| ≤ umax

(6.17)

The sufficient conditions that ensure a finite time convergence to the second order
sliding set are:

kM > km > 0, km >
4ΓM

s0
, km >

Φ

Γm
, ΓmkM − Φ > ΓMkm + Φ (6.18)
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Fig. 6.2 Twisting algorithm
phase trajectory

Fig. 6.3 Super-twisting
algorithm phase trajectory

6.3.2 Super-Twisting Algorithm

Unlike twisting algorithm, this algorithm is only able to stabilize in finite time
(Fig. 6.3) systems whose relative degree is equal to one and then it does not require
information about the time derivative of the sliding variable.

The control law is given by:

uST = −α|s|ρsign (s) + u1
u̇1 = −w sign (s)

(6.19)

and the corresponding sufficient conditions are:

w >
Φ

Γm
, α2 ≥ 4Φ

Γm
2

ΓM (w + Φ)

Γm (w − Φ)
, 0 < ρ ≤ 0.5 (6.20)

Choosing ρ = 0.5 ensures the achievement of real second-order sliding mode.
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6.4 Application to an Inverted Pendulum

The inverted pendulum is an interesting classic systemwhich consists of a pendulum
attached by a rotation joint to a cart. This cart, driven by a DCmotor, can move along
a horizontal guide rail in order to maintain the pendulum in its vertical balance. This
system has two degrees of freedom whose generalized coordinates are: x for the
horizontal cart movement and θ for the pendulum rotation (Fig. 6.4).

Let x = [

x1 x2
]� = [

θ θ̇
]�

be the state vector and u be the force applied to the
cart, the dynamic equations of the inverted pendulum are:

{

ẋ1 = x2
ẋ2 = f (x1, x2) + b(x1, x2)u

(6.21)

with:

f (x1, x2) = (M + m) g sin x1 − mlx22 sin x1 cos x1
4
3 (M + m) l − ml cos2 x1

b (x1, x2) = cos x1
4
3 (M + m) l − ml cos2 x1

such that M = 1 kg is the cart mass, m = 0.1 kg is the pendulum mass, l = 0.5m is
the half length of the pendulum, g = 9.8 m/s2 is the acceleration of gravity (Wang
1994).

6.4.1 Application of First Order Sliding Mode Control

6.4.1.1 Classic Sliding Mode Control

By referring to Slotine and Li (1991), the sliding function is chosen as:

Fig. 6.4 Schematic of the
inverted pendulum system
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s = λ e + ė (6.22)

where e = x1 − xd1 is the tracking error and λ is a positive constant. The first time
derivative of s is:

ṡ = λ (x2 − ẋd1) + ( f − ẍd1) + b u
= h + b u

(6.23)

Using (6.8) and (6.23), the control law of the classic sliding mode controller is
expressed as:

u = −b−1 (h + k sign (s)) (6.24)

For simulation results, the design parameters are chosen as follows: λ = 5 and k =
18. The reference signal and the initial conditions are respectively xd1 = π

30 sin t and
x0 = [0.2 0]�. Thus, by applying the classic sliding mode to the inverted pendulum,
we obtain results shown in Fig. 6.5.

Figure6.5 shows clearly the chattering phenomenon present in the control input.
Thus, in the next step, the signum function will be replaced by the saturation function
in order to attenuate the chatter effect.

6.4.1.2 Sliding Mode Control with Saturation Function

Substituting the signum function by the saturation function defined in (6.11) in the
control law (6.24) yields to:

u = −b−1 (h + k sat (s,ϕ)) (6.25)

where ϕ is chosen to be equal to 0.5. Simulation results are shown in Fig. 6.6.
These results show the efficiency of this approach in reducing the chatter effect.

However, the existence of the boundary layer neighboring the sliding surface may
affect the main characteristics of the sliding mode control such as robustness.

6.4.2 Application of Second Order Sliding Mode Control

6.4.2.1 Twisting Algorithm

Using (6.23), the second time derivative of the sliding function is given by:

s̈ = λ ( f + b u − ẍd1) + (

ḟ + ḃ u− ...
xd1

) + b u̇ = d + b u̇ (6.26)

where d and b must verify relations given in (6.16).
Then, using (6.17) the control law of twisting algorithm is expressed as:
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Fig. 6.5 a Control input, b angular displacement, c sliding function, d angular velocity for classic
SMC

u̇ = b−1 (−d + u̇Tw) (6.27)

By fulfilling the necessary conditions (6.16) and the sufficient conditions (6.18), the
optimum value of km and kM , chosen after some trials, are respectively 7 and 35.
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Fig. 6.8 Twisting algorithm
phase trajectory
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Figure6.7 shows that the twisting Algorithm reduces the chattering phenomenon
while Fig. 6.8 shows that the system state trajectory converges to the origin of the
phase plane (s, ṡ).

6.4.2.2 Super-Twisting Algorithm

Using (6.19) and (6.23), the control law for the super-twisting algorithm is given by:

u = b−1 (−h + uST ) (6.28)

In accordance with the conditions given in (6.16) and (6.20), and after performing
some simulations, we choose w = 8, α = 2 and ρ = 0.5.

Both Figs. 6.9 and 6.10 show that the super-twisting algorithm ensures a finite time
convergence of the system trajectory to the origin of the phase plane. In addition,
by comparing to Figs. 6.7a and 6.9a, we can conclude that super-twisting algorithm
is better than twisting algorithm with regards to the reduction of chattering effect in
the control input.

6.5 Conclusion

This paper has proposed some solutions to attenuate chattering phenomenon present
in classic sliding mode control. At first, a continuous approximation has been made
in the vicinity of the sliding surface by using the saturation instead of the signum
function. However, this introduces a boundary layer that may affect the main fea-
tures of sliding mode such as robustness. Then, a second order sliding mode control
algorithms: twisting and super-twisting algorithms, have been applied to the inverted
pendulum system. The simulations results have shown their efficiency in attenuating
chatter effect while ensuring a finite time convergence and high accuracy.



6 Sliding Mode Control of an Inverted Pendulum 117

−0.1

−0.05

0

0.05

0.1

0.15

0.2(b)

−0.2

0

0.2

0.4

0.6

0.8

1

s

(c)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5

u

(a)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

(d) x2

xd2

x1

xd1

Fig. 6.9 a control input, b angular displacement, c sliding function, d angular velocity for super-
twisting algorithm



118 O. Jedda et al.

Fig. 6.10 Super-twisting
algorithm phase trajectory
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Chapter 7
Robust Adaptive Manoeuvering Control
of an Autonomous Surface Vessel
in the Presence of Ocean Currents
and Parametric Model Uncertainty

Jawhar Ghommam and Faiçal Mnif

Abstract This chapter considers the problem of path-following control of
autonomous surface vessels in the presence of ocean currents and parametric model
uncertainty. The problem at hand consists of steering a vehicle surface ship along
a geometric path with a desired speed profile. The Lyapunov technique is used to
derive a robust architecture. To ensure path-following of the surface vessel, robust
controller is designed based on adaptive sliding mode control in combination with
the radial basis function neural network (RBFNN) to suppress the effect of parame-
ter variations and external disturbances. Closed-loop tracking errors are shown to be
asymptotically stable. Simulation results show that the proposed control algorithm
attains a satisfied performance and is robust against parameter variations and external
disturbances.

Keywords Distributed sliding motion control · Path following · Surface vessels ·
Backstepping design · Radial basis function neural network (RBFNN)

7.1 Introduction

Over the last decade, trajectory tracking and path following issues of autonomous
marine vehicles have received a lot of attention from the control community. Trajec-
tory tracking refers to the case where the autonomous vehicle must track a reference
trajectory generated by a suitable virtual vehicle. The problem of path following is
concerned with forcing the vehicle to follow a given path, which is not necessarily
generated by the suitable virtual model. In this chapter, the latter control problem is
considered.
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Indeed, the path-following control for marine autonomous vehicles is function-
ally divided into three subsystems in marine engineering: navigation, guidance and
control (Fossen 1994). Navigation consists in operating the vehicle so as it points
out to a given direction. This operation is usually executed through a simple program
implemented using the nautical instrument onboard. Guidance on the other hand is
a system that provides the desired reference used in the control derivation. Finally,
control is the action of determining the necessary control orders to be provided by
actuators onboard.

Considerable research has been conducted to address the path following control
problem for autonomous marine vehicles, and various robust control strategies have
been proposed in the literature. An outstanding research was conducted by (Skjetne
et al. 2004), the authors proposed a framework for output maneuvering control for
a class of strict feedback nonlinear systems and applied to maneuver fully actuated
ships. The underlying assumption in this framework for path-following is that the
vehicle’s forward speed is bounded to track a specified desired speed profile, while
the controller acts on the vehicle’s orientation to drive it to the path. The authors in
(Aguiar and Hespanha 2007) addressed the control problem of the path-following for
more general class of autonomous vehicles in the presence of possibility largemodel-
ing parametric uncertainty. The authors in this work proposed an adaptive switching
supervisory control to solve this kind of problem. In (Ihle et al. 2007) a passivity
based controller is developed tomake fully actuated ships follow parameterized paths
while path following of fully actuated ships in presence of parameter uncertainties
is addressed in (Kaminer et al. 2005). Also the authors in (Zereik et al. 2013) intro-
duced the Jacobian task priority-based approach to solve the path following control
problem. To account for uncertainties such as the disturbance forces and modeling
errors, the authors in (Zhang et al. 2000) proposed a path following controller for
an autonomous ship in restricted waters using sliding mode techniques to ensure
the system’s robustness and better performance. Constructive maneuvering control
design for uncertain autonomous vehicles was presented in (Skjetne and Teel 2004)
where sliding mode technique was shown to be effective with respect to additive and
multiplicative structural uncertainties that affect the autonomous marine vehicle.
However, in practical control implementation, the standard sliding mode controller
may suffer from high frequency oscillations due to the discontinuous switching con-
trol action. In order to decrease this high frequency oscillations (most often called
chattering phenomena), some control structures are introduced in (Slotine 1984) and
(Utkin and Shi 1996). None of these alleviating algorithms have been applied to
maneuvering of autonomous marine vehicles.

Among the aforementioned controllers the radial basis function neural network
has attracted attention due to its superior ability to approximate nonlinear continuous
function with certain precision. Moreover, it is characterized by less computational
burden compared tomultilayer perceptron since only the connectiveweights between
the hidden layer and the output layer of the network are adjusted during training. The
use of the approximation-based control for fully actuated ocean vessels in handling
uncertainties had gained recognition in thework of (Tee andGe 2006) and (Zhao et al.
2014). Motivated by the use of the RBFNN and slidingmode techniques, this chapter
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proposes a robust maneuvering control technique for a fully actuated autonomous
marine vehicle that combines the advantage of the integral sliding mode control
method, RBFNN and the backstepping procedure. In the first stage, the kinematic
model of the autonomous vehicle is considered, an adaptive backstepping control is
proposed to suppress the effect of the unknown ocean current. In the second stage
based on the virtual control designed previously, an integral sliding surface is defined
and integrated along with the RBFNN in the backstepping procedure to ensure robust
estimation of the hydrodynamics uncertainties. The stability of the closed loop system
is proved based on Lyapunov stability theory.

The reminder of the chapter is as follows: Sect. 7.2 presents some mathematical
notions related to RBFNN. Section 7.3 briefly describes the fully autonomousmarine
vehicle by its kinematics and dynamics. Section 7.4 formulates the control objective
of the paper. Section 7.5 gives details about the robust backstepping procedure that
solves the maneuvering control problem for the autonomous fully actuated marine
vehicle. Section 7.6 shows some numerical simulations to validate the proposed
approach. Finally Sect. 7.7, concludes the paper.

7.2 Preliminaries

7.2.1 Notations

Throughout this chapter, |.| denotes the absolute value of a scalar and ‖.‖ denotes
the Euclidean norm of a vector. For a matrix X ∈ R

n×n, tr denotes its trace with the
property tr(X�X) = ‖X‖2.

7.2.2 RBFNN Approximation

Consider a function f (x) : Rm → R. Suppose that f (x) is unknown smooth nonlinear
function and it can be approximated over a compact set Ω ⊆ R

m with the following
RBFNN:

f (x) = W ∗�
φ(x,θ∗) + δf (x) (7.1)

where the node number of the NN is l. More nodes mean more accurate approxima-
tion. W ∗ ∈ R

l represents the optimal weight vector, which is defined by

W ∗ = argmin
Ŵ

{

sup
x∈Ω

|f (x) − Ŵ�φ(x,θ)|
}

(7.2)

where Ŵ represents the estimate ofW ∗, φ(x,θ) = [φ1,φ2, . . . ,φl]� : Ω → R
l rep-

resents the radial basis function vector, the element ofwhich is chosen as theGaussian
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function:

φ(x,θ) = exp

[−(x − θi)
�(x − θi)

σ2

]

(7.3)

where θ = [θ1, θ2, . . . , θl]� is the center vector of the Gaussian basis function, and
σ is the spread of the Gaussian basis function. δf (x) is the approximation error that
is bounded over Ω , such that |δf (x)| ≤ δ̄f , where δ̄f is an unknown constant.

7.3 Vehicle Model

The autonomous surface vessel model is shown in Fig. 7.1, which is discussed in two
reference frames (1) the inertial coordinate frame denoted by {I} and (2) the body-
fixed coordinate framewith its origin at the center of mass of the surface vessel and is
denoted by {B}. The generalized position of the vehicle isη = [x, y,ψ]� ∈ R

3 where
(x, y) are the coordinates of the origin of {B} in {I} and ψ is the orientation of the
vehicle that defines the rotation matrix R(ψ) which transforms the body coordinates
into inertial coordinates.

R(ψ) =
⎡

⎣

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ (7.4)

Denote by ν = [u, v, r]� ∈ R
3 the generalized velocity of the vehicle relative to {I}

and expressed in {B}, where u is the surge velocity, v is the sway velocity and r is
the yaw rate. The ocean current velocity in the inertial frame {I} is denoted by V c =
[Vcx, Vcy]� ∈ R

2 and assumed to be constant and irrotational. The ocean current

Fig. 7.1 Inertial and
body-fixed coordinate
frames

xB

yB

OB

u

v

ψ

xI

yIOI

νc {B}

{I}
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velocity in the body frame {B} denoted by νc = [uc, vc, 0]� ∈ R
3 is obtained from

νc = R(ψ)�[V �
c , 0]�. Since the ocean current is assumed irrotational and constant

then V̇ c = 0 which also implies that ν̇c = [rvc,−ruc, 0]�. In navigation problems
of autonomous surface vessels involving ocean currents, most often the kinematic
model is expressed in terms of relative velocity between the vessel and the ocean
current. Let the vector νr = ν − νc = [ur, vr, r]� denotes is the relative velocity of
the vehicle defined in the body fixed frame {B}. Thus the following kinematic for
the surface vessel model applies

η̇ = R(ψ)νr + [V �
c , 0]� (7.5)

Ṙ(ψ) = rR(ψ)S (7.6)

where S is the skew symmetric matrix such that

S =
⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ , S� = −S

In the following a 3-DOF manoeuvering dynamic equations of motion for a fully
actuated autonomous surface vessel is considered (Fossen 1994)

Mν̇r = τ − C(νr)νr + f (νr) (7.7)

where M = M� ∈ R3×3 is the mass and inertia matrix which also includes hydrody-
namic added mass. The matrix C(νr) ∈ R

3×3 is the Coriolis and centripetal matrix,
τ = [τu, τv, τr]� ∈ R

3 is the generalized control input consisting of forces τu, τv

and torque input τr . The vector f (νr) denotes the hydrodynamic damping forces and
torques acting on the body. Using semi-empirical methods or hydrodynamic com-
putation programs, the coefficients in M and C(νr) are determined quite accurately
(Sun and Ge 2014). There exists difficulty however in finding the coefficients in
f (νr) therefore they should be considered as unknown or uncertain and have to be
estimated by an RBFNN adaptive controller to be designed.

The overall equation of motion of the autonomous surface vessel subject to a
constant ocean current can be written as

η̇ = R(ψ)νr + Φ1 (7.8)

Mν̇r = τ − C(νr)νr + Φ2 (7.9)

where Φ1 = [V �
c , 0]� and Φ2 = f (νr) are compound uncertainties, which contain

parameter variations andunknownocean currents, thatwill be estimated in the control
design. The following Assumption will be useful for the stability analysis of the
chapter.

Assumption 1 The uncertainties in the autonomous surface vessel dynamic model
(7.8)–(7.9) satisfy ‖Φk‖ ≤ ϕk , where ϕk is an unknown constant, k = 1, 2.
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7.4 Problem Statement

The path manoeuvering control problem is primarily concerned with the design
of control law that is able to steer a marine vehicle to reach then keep following a
geometric path (see Fig. 7.2) without a temporal law as opposed to trajectory tracking
control problem (Aguiar and Hespanha 2007). Once in the path, the vehicle should
follow it with a desired speed profile. By using the convenient task classification
scheme of (Skjetne et al. 2004), the path following problem can be split into two
distinct task objectives: The geometric task where the position of the surface vessel
is required to converge to and follow a desired geometric path and the dynamic Task
where the speed of the vehicle is required to converge to and track a desired speed
assignment.

The problem at hand can be formally formulated to tackle as follows:

Path-Following Control Problem

Let ηd(γ) ∈ R
3 be a desired path parameterized by a continuous variable γ ∈ R and

vd(t) ∈ R is the desired speed profile for the autonomous surface vessel. Suppose also
that ηd(γ) is sufficiently smooth and its derivatives with respect to γ are bounded.
Design a path following controller τ such that all closed loop signals are bounded,
the geometric as well as the dynamic tasks are satisfied, that is:

lim
t→∞ ‖η(t) − ηd(γ(t))‖ = 0 (7.10)

lim
t→∞ |γ̇(t) − vd(t)| = 0 (7.11)

Note that the parameterizing variable γ in this case of application is chosen to be the
arc length of the path. Some other parametrization can also be selected.

Remark 1 The path following control problem 1 has been solved by many authors
(see for instance (Aguiar and Hespanha 2007; Almeida et al. 2010; Ghabcheloo et al.
2007)) to name a few.Most of the outstanding work in the aforementioned references
either estimated the ocean current using simple kinematic observer or resorting to an
adaptive scheme. In this chapter however we propose instead a compensation term
that is able to suppress the effect of this ocean current.

Fig. 7.2 Path-following
concept for the autonomous
surface vessel

RealSurfaceVessel

Virtual Target
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7.5 Control Design

7.5.1 Path Following Control Design

The path following controller proposed in this section is mainly inspired by the
work of (Almeida et al. 2010). However, it differs in the control scheme. In our
approach, the RBFNN and adaptive sliding mode control are introduced to increase
robustness of the backstepping procedure against parameter variations and external
disturbances. In contrast to (Almeida et al. 2010), our control approach allows to
efficiently reduce the control efforts.

The backstepping procedure for the path following of the autonomous surface
vessel is designed following three steps:

Step 1: Consider the first equation of the dynamic model (7.8), then define the
position error in the body-fixed frame as z1 = R(ψ)�(η − ηd), the dynamic equation
of z1 is given as

ż1 = Ṙ(ψ)�(η − ηd) + R(ψ)�(η̇ − η
γ
d γ̇)

= −rSṘ
�
(ψ)(η − ηd) + R(ψ)�(R(ψ)νr + Φ1 − η

γ
d γ̇)

= −rSz1 + νr − R(ψ)�η
γ
d γ̇ + R(ψ)�Φ1 (7.12)

where we have defined η
γ
d = ∂ηd

∂γ
. Furthermore, let the along-path speed tracking

error be represented as � = γ̇ − vd(γ), with vd(γ) being the desired speed profile
on the path. The dynamic of z1 rewrites

ż1 = −rSz1 + νr − R(ψ)�η
γ
dvd(γ) + R(ψ)�Φ1 − R(ψ)�η

γ
d� (7.13)

At this level we regard νr as a control input to stabilize z1. Define the velocity error
z2 = νr − αr , where αr is the stabilizing function chosen as follows:

αr = −K1z1 + R(ψ)�η
γ
dvd(γ) − ues (7.14)

where K1 is a diagonal positive gain matrix and ues is the estimation of uncertainty
R(ψ)�Φ1 and is composed of an RBFNN estimator ues1 and a robust term ues2 to
confront the approximation error ε1 = R(ψ)�Φ1 − ues1. The auxiliary control input
ues is therefore given as follows:

ues = W�
1 φ(z1,θ1)

︸ ︷︷ ︸

ues1

+ ε̂21z1
ε̂1‖z1‖ + a1exp(−a2t)
︸ ︷︷ ︸

ues2

(7.15)

where W1, θ1 and the estimated value ε̂1 of ε1 are calculated as follows:
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Ẇ1 = λ1φ(z1,θ1)z�
1

θ̇1 = λ2(z�
1 W

�
1 φ

′
(z1,θ1))

� (7.16)
˙̂ε1 = κ1‖z1‖, κ1 > 0

where φ
′
(z1,θ1) denotes the partial derivative of φ(z1,θ1) with respect to θ1 and

λ1,λ2 are learning rates. For convenience of the development, we will drop the
argument of the partial derivative of φ(z1,θ1). The uncertainty function R(ψ)�Φ1

can be written as
R(ψ)�Φ1 = W ∗�

1 φ(z1,θ
∗
1) + δΦ1(z1) (7.17)

Define the estimate error W̃1 = W ∗
1 − W1, the error of the center values as θ̃1 =

θ∗
1 − θ1 and ε̃1 = ε̂1 − ε1. The RBFNN approximation error can be calculated as

follows:

R(ψ)�Φ1 − ues1 = W ∗�
1 φ(z1,θ

∗
1) + δΦ(z1) − W�

1 φ(z1,θ1)

= W̃�
1 φ(z1,θ1) + W�

1 φ
′
θ̃1 + �(z1, θ̃1) (7.18)

where W̃1 = W ∗
1 − W1, θ̃ = θ∗

1 − θ and �(z1, θ̃1) encompasses some bounded terms
and is given as �(z1, θ̃1) = W̃�

1 φ
′
θ̃1 + W ∗�

1 o(z1, θ̃) + δΦ1(z1). With o(z1, θ̃) being
a higher order term of the Taylor expansion of φ(z1,θ

∗). It is further shown that
�(z1, θ̃1) is bounded, with ‖�(z1, θ̃1)‖ ≤ ε1.

To study the stability of z1-dynamics (7.12) with (7.14) being the stabilizing
function, we consider the following Lyapunov function candidate:

V1 = 1

2
z�
1 z1 + 1

2λ1
tr
(

W̃�
1 W̃1

) + 1

2λ2
θ̃

�
1 θ̃1 + 1

2κ1
ε̃2 + a1

a2
exp−a2t (7.19)

where ε̃1 = ε̂1 − ε1. Taking the time derivative of (7.19) along the solutions of (7.13)
and (7.16) and using the expression (7.18) results in:

V̇1 = z�
1 ż1 − 1

λ1
tr
(

W̃�
1 Ẇ1

) − 1

λ2
θ̃

�
1 θ̇1 + 1

κ1
ε̃1 ˙̃ε1 − a1exp(−a2t)

= z�
1

( − rSz1 − K1z1 − ues1 − ues2 + z2 + R(ψ)�Φ1
)

− 1

λ1
tr
(

W̃�
1 Ẇ1

) − 1

λ2
θ̃

�
1 θ̇1 + 1

κ1
ε̃1 ˙̃ε1 − a1exp(−a2t)

− z�
1 R(ψ)�η

γ
d�

= z�
1

( − rSz1 − K1z1 − ues2 + z2 + W̃�
1 φ(z1,θ1) + W�

1 φ
′
θ̃1

+ �(z1, θ̃1)
) − tr

(

W̃�
1 φ(z1,θ1)z�

1

) − θ̃
�
1 z�

1 W
�
1 φ

′�

+ ε̂1‖z1‖ − ε1‖z1‖ − a1exp(−a2t) − z�
1 R(ψ)�η

γ
d�

= z�
1

( − K1z1 − ues2 + z2 + �(z1, θ̃1)
) + ε̂1‖z1‖

− ε1‖z1‖ − a1exp(−a2t) − z�
1 R(ψ)�η

γ
d�
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where we made use of the fact that z�
1 Sz1 = 0 for all z1 and the fact that

z�
1 W̃

�
1 φ(z1,θ1) = tr

(

W̃�
1 φ(z1,θ1)z1

)

. Further manipulation of the above equation
by noticing the following

z1��(z1, θ̃1)−ues2 + ε̂1‖z1‖ − ε1‖z1‖ − a1exp(−a2t) ≤
− ε̂21z1

ε̂1‖z1‖ + a1exp(−a2t)
− ε̂1‖z1‖ − a1exp(−a2t) ≤ 0

implies the following

V̇1 ≤ −z�
1 K1z1 + z�

1 z2 − z�
1 R(ψ)�η

γ
d� (7.20)

It becomes apparent from (7.20) that if z2 converges to zero and the last term of
(7.20) vanishes then the tracking error z1 asymptotically converges to zero despite
the presence of unknown ocean current.

Step 2: To ensure the last term of (7.20) vanishes we need to define a feedback law
for γ̈ which implicitly sets up the dynamic task required for the autonomous surface
while traversing its path. Augmenting the Lyapunov function V1 by the following:

V2 = V1 + 1

2k1β
�2 (7.21)

where k1 and β are positive constants. Taking its time derivative along the solutions
of (7.20) gives

V̇2 = V̇1 + 1

k1β
��̇

≤ −z�
1 K1z1 + z�

1 z2 − z�
1 R(ψ)�η

γ
d� + 1

k1β
��̇

≤ −z�
1 K1z1 + z�

1 z2 + �

(
1

k1β
�̇ − z�

1 R(ψ)�η
γ
d

)

(7.22)

By imposing given dynamic profile for the along-path speed tracking error �, we
implicitly set a desired motion dynamic along the path for the autonomous surface
vessel following (Skjetne et al. 2004) a filtered-gradient law can be designed as
follows

�̇ = −k1� + k1βz�
1 R(ψ)�η

γ
d (7.23)

Since by definition γ̇ = � + vd(γ), then the feedback control law for γ̈ is given as

γ̈ = −k1� + k1βz�
1 R(ψ)�η

γ
d + vd(γ)γγ̇ (7.24)

substituting (7.23) into (7.22) results in
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V̇2 ≤ −z�
1 K1z1 − 1

β
�2 + z�

1 z2 (7.25)

Clearly from (7.25), if z2 tends to zero asymptotically then z1 and� converge asymp-
totically to zero.

Step 3: In aid of the sequel development, we need an analytic differentiation of the
virtual control αr . Its much difficult however to obtain such analytic differentiation.
To facilitate the subsequent development and as to avoid analytic differentiation, a
robust differentiator is then introduced to overcome this problem:

D
{

ζ̇1� = −μ1�|ζ1� − αr�|0.5sign(ζ1� − αr�) + ζ2�
ζ̇2� = −μ2�sign(ζ2� − αr�)

where αr = [αr�]�=1,...,3 and μ1�,μ2� are positive gains. It has been proven that
the differentiatorD can exactly approximate the first derivative of αr�, � = 1, . . . , 3
within a finite time (Levant 2003). Therefore in the subsequent development, the first
derivative of αr will be substituted by ζ = [ζ21, ζ22, ζ23]�. The dynamic equation of
z2 is then

Mż2 = Mνr − Mα̇r

= Mνr − Mζ (7.26)

= τ − C(νr)νr + Φ2 − Mζ

In this step, the actual control will be designed tomake the tracking error z2 converges
asymptotically to zero. To chase away the parameters variation in the model as well
as the external disturbances, A sliding surface will be employed in the design.

Define the integral sliding surface as follows:

s = Mz2 + λ3

∫

z2dσ (7.27)

where λ3 > 0 is a gain controller that adjusts the bandwidth of the error state s. Based
on (7.27) the actual control τ can be designed as follows:

τ = C(νr)νr + Mζ − λ3z2 − ρsgn(s) + udes (7.28)

where ρ is a positive gain, sgn(s) = [sgn(s1), sgn(s2), sgn(s3)]� and is defined as

sgn(si) =
⎧

⎨

⎩

−1, si < 0
0, si = 0
1, si > 0

(7.29)

the auxiliary input udes is designed to estimate the uncertainty Φ2 and has the fol-
lowing expression

udes = W�
2 φ(z2,θ2) (7.30)
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where W2,θ2 are computed according to the the following update laws

Ẇ2 = λ4φ(z2,θ2)s� (7.31)

θ̇2 = λ5
(

s�W�
2 φ

′
(z2,θ2)

)�

and where λ4 > 0 and λ5 > 0 are learning coefficients. Adopting the same notation
as in step 1, the uncertainty Φ2 can be rewritten as

Φ2 = W ∗�
2 φ(z2,θ

∗
2) + δΦ2 (7.32)

The residue �̄(z2,θ2) due to the difference between the uncertainty and its estimator
is defined as �̄(z2,θ2) = W̃�

2 φ
′
θ̃2 + W ∗�

2 o(z2, θ̃2) + δΦ2 and verifies ‖�̄(z2,θ2)‖ ≤
ε2.

Based on this design, we can now state our main theorem of the control design
for the path following problem.

Theorem 1 Consider an individual smooth path ηd parameterized by a variable γ,
let the autonomous surface vessel be described by the equation of motion (7.9). The
control law (7.28) together with the update laws (7.16), (7.31) and (7.24) solve the
path following control problemdefined in (7.10)–(7.11). In particular, the trajectories
of the system closed-loop are exponentially convergent and the sliding surface s = 0
is reachable. Furthermore the the position of the surface vessel η asymptotically
follows the desired parameterized path ηd with speed assignment γ̇ = vd(γ).

Proof To show Theorem 1, let first rewrite the closed loop system dynamics in terms
of the variable states z1, z2 and �:

ż1 = −K1z1 + z2 − rSz1 + R(ψ)�Φ1 − ues − R(ψ)�η
γ
d�

�̇ = −k1� + k1βz�
1 R(ψ)�η

γ
d (7.33)

Mż2 = Φ2 − λ3z2 − ρsgn(s) + udes

It is clear from (7.33), that the closed loop system has a cascaded form. Consider the
Lyapunov function V2 defined in (7.21) for the first two equations of (7.33), Its time
derivative along the solutions of the above two first equations yields:

V̇2 ≤ −z�
1 K1z1 − 1

β
�2 + z�

1 z2

≤ −z�
1 (K1 − ςI3×3)z1 − 1

β
�2 + 1

4ς
z�
2 z2, ς > 0

= −qmin‖q‖2 + 1

4ς
‖z2‖2, ∀‖q‖ >

1

2

√

1

ςqmin
‖z2‖ (7.34)
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where I3×3 is a 3 by 3 identity matrix, qmin = min

(

λmin
(

K1 − ςI3×3
)

, 1
β

)

and q =
[z�

1 ,�]�. Then, the subsystem formed by the two first equations of (7.33) is (Input to
State Stable) w.r.t. z2 (Khalil 2002), which essentially expresses that for any bounded
input z2, the states z1 and � will be ultimately bounded by a class K function
of supt>0 ‖z2‖. If furthermore z2 converges asymptotically to zero, then z1 and �
converge to zero as well (Khalil 2002). In the sequel, we will prove effectively that
z2 converges asymptotically to zero.

Consider the last equation of (7.33). To show that z2 asymptotically converges to
zero, we will consider two cases: the first case is when s�sgn(s) �= 0 and the second
case is when s�sgn(s) = 0. For the first case, let the following Lyapunov function
candidate:

V3 = s�s + 1

2λ4
tr
(

W̃�
2 W̃2

) + 1

2λ5
θ̃

�
2 θ̃2 (7.35)

Taking the time derivative of (7.35) along the solutions of (7.33) and (7.31) results
in:

V̇3 = s�ṡ − 1

λ4
tr(W̃�

2 Ẇ2) − 1

λ5
θ̃2�θ̇2

= s�(

Mż2 + λ3z2
) − tr(W̃�

2 φ(z2,θ2)s�) − θ̃
�
2

(

s�W�
2 φ

′
(z2,θ2)

)�

= s�(

Φ2 − ρsgn(s) + udes
) − tr(W̃�

2 φ(z2,θ2)s�)

− θ̃
�
2

(

s�W�
2 φ

′
(z2,θ2)

)�

= s�(

W̃�
2 φ(z2,θ2) + �̄(z2,θ2) − ρsgn(s)

) − tr(W̃�
2 φ(z2,θ2)s�) (7.36)

Noticing that s�W̃�
2 φ(z2,θ2) = tr

(

W̃�
2 φ(z2,θ2)s�)

, it follows from (7.36) that

V̇3 = s�(

�̄(z2,θ2) − ρsgn(s)
)

≤ ε2s�sgn(s) − s�ρsgn(s)

≤ −(ρ − ε2)s�sgn(s) (7.37)

wherewe have used the fact that s��̄(z2,θ2) ≤ ε2‖s‖. If ρ is selected such that ρ > ε2,
then there exists c0 > 0 such that:

V̇3 ≤ −(ρ − ε2)(s�s)
1
2 ≤ −c0V

1
2
3 ≤ 0 (7.38)

From (7.38), it can be concluded that the sliding surface reaches zero within a finite

time tf = 2V3(0)
1
2

c0
and thus the path following control design satisfies the sliding

condition.
In the second case, if s�sgn(s) = 0, it can be inferred from Theorem 1 in (Plestan

et al. 2010) that the control law (7.28) can guarantee the states of the system (7.33)
stay on the sliding surface s = 0.
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From the two cases studied above, it can be concluded that the trajectories of
the closed loop system (7.28) are asymptotically convergent and the sliding surface
s = 0 is reachable. This concludes the proof.

7.6 Numerical Simulations

The main purpose of this section is to illustrate the effectiveness of the stabilisation
and tracking control laws presented above via simulation example. The model ship
used in simulation is CybershipII (Skjetne et al. 2004).

The matrices M and C(νr) are given by:

M =
⎡

⎣

m − Xu̇ 0 0
0 m − Yv̇ mxg − Yṙ
0 mxg − Nv̇ Iz − Nṙ

⎤

⎦ , C(νr) =
⎡

⎣

0 0 c13(ν)

0 0 c23(ν)

−c13(ν) −c23(ν) 0

⎤

⎦

where c13(ν) = −(m − Yv̇)v − (mxg − Yṙ)r and; c23(ν) = (m − Xu̇)u and theunknown
hydrodynamic damping forces f (νr) expression is given by

f (νr) =
⎡

⎣

d11(ν) 0 0
0 d22(ν) d23(ν)

0 d32(ν) d33(ν)

⎤

⎦

where d11(ν) = −Xu − X|u|u|u| − Xuuuu2, d22 = −Yv − Y|v|v|v| − Y|r|v|r|, d23
(ν) = −Yr − Y|v|r |v| − Y|r|r |r|, d32(ν) = −Nv − N|v|v|v| − N|r|v|r| and d33(ν) =
−Nr − N|v|r |v − N|r|r |r|. The coefficients X{�},Y{�},N{�} are the hydrodynamic para-
meters. Only the coefficients in M and C(ν) are determined quite accurately using
semi-empirical methods, or system identification, whereas f (νr) contains the uncer-
tain (non-identified) constant parameters. The physical parameters of the vessel are
given (Fossen 1994).

In the simulation, the desired path is generated based on polynomial inter-
polation. We assume that the surface vessel starts at the following initial posi-
tion x(0) = −40m, y(0) = 20m and ψ(0) = 0 rad, it’s initial velocity is u(0) =
0m/s, v(0) = 0m/s and r(0) = 0 rad/s. The initial value forγ isγ(0) = 0, the desired
speed assignment is set to vd(γ) = v0 ∗ (1 − �1exp−�2(t−t0))exp(−�3‖z1‖), where
v0 �= 0, �i > 0, i = 1, 2, 3 and �1 < 1. This choice for the speed assignment has the
feature that when the path following error z1 is large, the virtual target will wait
for the real ship and when the z1 is small the virtual target will move along the
path at the speed close to v0. The ocean current is set to V c = [1,−1, 0]� m/s.
The controller gains are K1 = diag([10, 10, 10]),λ1 = 10,λ2 = 10,λ3 = 10,λ4 =
10,λ5 = 10κ1 = 20, k1 = 15,β = 5,μ1� = 30,μ2� = 30, ρ = 10. Simulations are
carried out in the presence of noise, all signalsmeasured by the controller are affected
by disturbed additive gaussian white noise. Figure7.3 illustrates the convergence of
the vehicle to its desired path despite the presence of uncertainties and external per-
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Fig. 7.3 Desired and actual vehicle paths

Fig. 7.4 Backstepping error variables

turbation. This can also be seen in Figs. 7.4 and 7.5 where the backstepping errors
state variables as well as the position and orientation errors given by ‖η − ηd‖ and
ψ − ψe converge robustly to the origine respectively as shown formally in Theorem1.
The control inputs applied to the vehicle are represented in Fig. 7.6.
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Fig. 7.5 Position and orientation error

Fig. 7.6 Temporal evolution of the control inputs

7.7 Conclusion

In this paper a robust adaptive slidingmode control system is proposed for themaneu-
vering control of fully actuated surface vessel subjected to unknown but constant
ocean currents and parametric model uncertainty. The path-following controller was
designed based on a compensation term plus anRBFNNestimator that suppresses the
effects of unknown constant ocean currents and parametricmodel uncertainty. Stabil-
ity and asymptotic convergence of the closed-loop system were formally proved and
are guaranteed for any set of initial conditions based on Lyapunov-based techniques.
Illustrative example for maneuvering an autonomous surface vessel along a compli-
cated path has been shown and discussed. Further research directions is to extend
the results obtained to under-actuated vehicles under the influence of time-varying
ocean currents and model uncertainties.
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Chapter 8
Sliding Mode with Time Delay Control
for Robot Manipulators

Yassine Kali, Maarouf Saad, Khalid Benjelloun
and Mohammed Benbrahim

Abstract This chapter introduces two controllers design for the trajectory tracking
of robot manipulators with unknown dynamics and external disturbances, including:

• First Order Sliding Mode with Time Delay Control (FOSMTDC),
• Second Order Sliding Mode with Time Delay Control (SOSMTDC).

For both proposed controllers, the Lyapunov function are invoked to establish the
stability of the closed loop system and finite time convergence. Simulation results are
presented to show the effectiveness of the proposed controllers, regarding particularly
the unknown dynamics and external disturbances and the chattering reduction on
control input.
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8.1 Introduction

Robot manipulator dynamics are governed by a set of highly nonlinear and strongly
coupled second order differential equations which exhibit numerous problems, such
as a variety of external disturbances and/or nonlinear unknown dynamics. Thus it is
well known that accurate robotmotion control requires complex nonlinear controllers
based on the mathematical model which is always an approximation of reality. In
literature, we can find many nonlinear control techniques such as fuzzy feedback
linearization (Park and Cho 2007), backstepping (Zhou and Wen 2008), Sliding
Mode Control (SMC) (Liu and Wang 2012; Utkin 1992; Utkin et al. 1999), etc.

The SMC is a robust technique used for uncertain robot manipulators. This tech-
nique is based on the design of a high-speed switching control law that drives the
system’s trajectory onto a user-chosen hyperplane in the state space, also known as
sliding surface. However, its design requires that the switching gain should be larger
than the superior bound of unknown dynamics and disturbances, but the problem is
that this bound is always overestimated, which makes the choice of the switching
gain excessive. Then, the major drawback of SMC, the well-known chattering phe-
nomenon (Boiko and Fridman 2005; Fridman 2001) will be important and couldn’t
be accepted by the actuators and may deteriorate the controlled systems if the control
has any physical sense. In order to avoid this phenomenon, some works have consid-
ered continuous functions (Liu and Wang 2012) instead of the signum one, but the
provided results lead to a large steady state error while others proposed the use of
higher order sliding mode (HOSM) controller (Fridman and Levant 2002). Even for
these approaches, the knowledge of the superior bound of the unknown dynamics
and disturbances is always required.

Another solution have been presented, it consists on using adaptive sliding mode,
which provide an adaptation of the control gain to be as small as possible and suf-
ficient to eliminate the effect of unknown dynamics and external disturbances, but
this solution didn’t take into account the chattering phenomenon (Sastry and Bod-
son 1994). Furthermore, the necessity to cancel unknown dynamics and unexpected
disturbances has led to the introduction of sliding mode observers and sliding mode
disturbance observers (Shtessel et al. 2014), therefore the unknown dynamics and
unexpected disturbances are supposed to be bounded and a prior of these bound
is also required here. Otherwise, a combination of SMC with intelligent controller
as neural-network and fuzzy logic have been considered (Jezernik et al. 1997; Palm
1992). These techniques can approximate unknowndynamics and disturbances; how-
ever, they introduce a number of parameters or fuzzy rules which are difficult to
implement and they don’t guarantee a good tracking performance or overestimate
the switching gains.

The objective of this chapter is to discuss two techniques for independent joint
control of robot manipulators with unknown dynamics and external disturbances.
They consist on controlling each joint as a Single-Input-Single-Output (SISO) sys-
tem without a prior knowledge of the model. Each SISO subsystem is treated as a
linear system and the coupling effects are treated as disturbances. The first controller
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is a combination of First Order Sliding Mode (FOSM) and Time Delay Control
(TDC) (Youcef-Toumi and Ito 1990) while the second is a combination of Second
Order Sliding Mode (SOSM) (Cherrid et al. 2000) and TDC. The choice of these
combinations is related to the fact that the Time Delay Estimation (TDE) can esti-
mate unknown dynamics and disturbances simply under the assumption that these
unknown dynamics do not vary largely for a sufficient small time. The TDE uses
time delayed signals of control inputs and states. Furthermore, the TDE is very fast
but introduces a time delay estimation error which will be removed by SMC and
SOSM.

The rest of the chapter is structured as follows. In Sect. 8.2, the robot model is pre-
sentedwith some assumptions. The first proposed technique is proposed in Sect. 8.3.1
and a stability analysis based on Lyapunov method is provided in Sect. 8.3.2.
Section8.4 introduces the second method with stability analysis in Sect. 8.4.2. The
Sect. 8.5 contains four simulations on ANAT robot 3-DOF, the Sect. 8.5.4 shows the
simulation results and a comparative study between the conventional SMC and the
proposed controllers, respectively. Finally, Sect. 8.6 concludes the chapter.

8.2 System Description

Consider the dynamics of robot manipulators given by the well-known equation for
rigid manipulators:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) = τ + τd (8.1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity and acceleration vectors, respec-
tively, M(q) ∈ Rn×n is symmetric positive definite inertia matrix such as M(q)−1

always exists, C(q, q̇)q̇ ∈ Rn is Coriolis and centrifugal forces vector, G(q) ∈ Rn

is the gravitational forces vector, F(q̇) ∈ Rn is the frictional forces, τd ∈ Rn is the
disturbance vector and τ ∈ Rn is the torque input vector.

For ease of control design, denote x1 = q, x2 = q̇, we rewrite the Eq. (8.1) into
the following form:

{

ẋ1 = x2
ẋ2 = f (x, t) + g(x, t)u(t)

(8.2)

where x = [

xT1 xT2
]T

is the state variable, g(x, t) = M(q)−1 is the control matrix,
f (x, t) = M(q)−1[τd − C(q, q̇)q̇ − G(q) − F(q̇)] is the nonlinear dynamics which
may be uncertain and u(t) = τ is the control input. We can rewrite the model in Eq.
(8.2) as:

{

ẋ1 = x2
ẋ2 = h(t) + ḡu(t)

(8.3)
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where h(t) = f (x, t) + (g(x, t) − ḡ)u(t) and ḡ is a constant diagonal (n × n) matrix
(Determination of ḡ is discussed in (Youcef-Toumi and Ito 1990; Hsia and Gao
1991)).

The control objective is to ensure that the joint position x1 tracks a desired tra-
jectory x1d even in the presence of unknown dynamics and external disturbances. In
what follows, we will design the controller and carry out its stability analysis based
on the following assumptions:

• Assumption 1. The system states and their derivatives are measurable.
• Assumption 2. h(t) and its time derivative d

dt [h(t)] are globally lipschitz functions.

8.3 First Order Sliding Mode with Time Delay

8.3.1 Design of Controller

For the design of FOSMTDC, we consider the system in (8.3). The first step in this
method is to choose the switching function S in terms of the tracking error. The
choice of S in the case of second-order nonlinear system (Kali et al. 2015) is:

S = ė + λe (8.4)

where e = x1 − x1d is the tracking position error with x1d is the desired trajectory, ė
is the tracking velocity error and λ = diag(λ1,λ2, . . . ,λn) with λi for i = 1, . . . , n
are positif constants.

The next step would be to find the control law u(t) that will allow error vector
(e, ė) to reach the sliding surface. To achieve this objective, the control law should
be designed such as the reaching condition is fulfilled (Utkin et al. 1999):

ST Ṡ < 0 (8.5)

In order to satisfy condition (8.5), Ṡ is chosen as:

Ṡ = −K sign(S) (8.6)

where K = diag(k1, k2, . . . , kn) with ki for i = 1, . . . , n are positif constants (deter-
mination ofK will be discussed in the Sect. 8.3.2) and the signum function sign(S) =
[sign(S1), . . . , sign(Sn)]T is defined as:

sign(Si) =
⎧

⎨

⎩

1, if Si > 0
0, if Si = 0

−1, if Si < 0
for i = 1, · · · , n. (8.7)
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Therefore, the time derivative of S is:

Ṡ = ë + λė

= ẋ2 − ẋ2d + λė

= h(t) + ḡu(t) − ẋ2d + λė (8.8)

From Eqs. (8.6) and (8.8), we get the controller as:

u = ḡ−1 (−h(t) + ẋ2d − λė − K sign(S)) (8.9)

As h(t) has unknown parts, the control law given by Eq. (8.9) can’t be used for
systems given by Eq. (8.3). Then, if Assumption 2 given in Sect. 8.2 is verified, we
estimate h(t) by using a TDE (Youcef-Toumi and Ito 1990):

ĥ(t) ∼= h(t − L)

= ÿ(t − L) − ḡu(t − L) (8.10)

where L is the estimation time delay. Clearly the accuracy of ĥ(t) improves as L
decreases. In practice, the smallest achievable L is the sampling period.

Finally, replacing h(t) in Eq. (8.9) by its estimate ĥ(t) given in Eq. (8.10). Then,
with sufficient condition given in the next Subsection, the FOSMTDC is obtained
as:

u(t) = u(t − L) + ḡ−1 (−ẋ2(t − L) + ẋ2d − λė − K sign(S)) (8.11)

8.3.2 Stability Analysis

For the stability analysis of the overall system, the method of Lyapunov is used. We
select the Lyapunov function as:

V = 1

2
STS (8.12)

Therefore, its time derivative is:

V̇ = ST Ṡ

= ST (h(t) + ḡu(t) − ẋ2d + λė) (8.13)

Replacing u(t) by its expression given in Eqs. (8.11) and (8.13), we obtain:

V̇ = ST (h(t) − h(t − L) − K sign(S))



140 Y. Kali et al.

=
n

∑

i=1

[SiΔhi − kiSisign(Si)]

≤
n

∑

i=1

|Si|(|Δhi| − ki) (8.14)

To ensure V̇ is a negative-definite function, the following condition is needed:

ki > |Δhi|, for i = 1, . . . , n (8.15)

where Δhi = hi(t) − hi(t − L) is the term due to TDE error. Otherwise, as h(t) is a
Lipschitz function, then:

|Δhi| = |hi(t) − hi(t − L)|
≤ ci|(t) − (t − L)|
≤ ciL (8.16)

where ci > 0 is the Lipschitz constant. Hence, for ki > ciL, the stability of the closed
loop system is proven. The finite-time convergence of the sliding surfaces can be
shown by recalling that:

n
∑

i=1

SiṠi ≤
n

∑

i=1

|Si|(|Δhi| − ki)

≤
n

∑

i=1

|Si|(ciL − ki) (8.17)

Then, dividing by |Si| and integrating both sides between 0 and t gives:

∫ t

0

Si
|Si| Ṡidt ≤

∫ t

0
(ciL − ki)dt

|Si(t)| − |Si(0)| ≤ (ciL − ki)t (8.18)

Hence, by considering tr the time required to hit Si and noting that |Si(tr)| = 0,
one has:

tr ≤ |Si(0)|
ki − ciL

, for i = 1, . . . , n (8.19)

which guarantees the convergence of the sliding surfaces in a time smaller than
|Si(0)|/(ki − ciL).
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8.3.3 Effect of Switching Action

Even if the switching gains are small, the proposed FOSMTDC still have chattering
in the control input. This is why instead of the sign(S) function, we use saturation
function sat(S) = [sat(S1), . . . , sat(Sn)]T defined as:

sat(Si) =
{
sign(Si) if |Si| > ϕi
Si
ϕi

if |Si| ≤ ϕi
for i = 1, . . . , n. (8.20)

where ϕi is a positive constant that defines the thickness of the boundary layer. Then,
the FOSMTDC with saturation function is as follows:

u = u(t − L) + ḡ−1 (−ẋ2(t − L) + ẋ2d − λė − Ksat(S)) (8.21)

By using saturation function, we can expect that the chattering is reduced but the
tracking error increases.

8.4 Second Order Sliding Mode with Time Delay

8.4.1 Design of Controller

The sliding set of order r − th associated to manifold is defined in (Shtessel et al.
2014) by:

S = Ṡ = S̈ = · · · = S(r−1) = 0 (8.22)

Note that Eq. (8.22) represents an r-dimensional condition on the state of the
corresponding dynamic system. The HOSM needs a large number of information,
which may not always be at our disposal. Due to the low information requirement of
SOSM, we choose it instead of HOSM. For our system, the switching function and
its first time derivative are defined as in Eqs. (8.4) and (8.8), respectively. Therefore,
the second time derivative of S is:

S̈ = e(3) + λë

= ẍ2 − ẍ2d + λë

= d

dt
[h(t)] + d

dt
[ḡ]u(t) + ḡu̇(t) − ẍ2d + λë (8.23)

and since ḡ is a constant matrix, then d
dt [ḡ] = 0.
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Now, let’s define a new system formed by z1 = S and z2 = Ṡ, then:

{

ż1 = Ṡ
ż2 = d

dt [h(t)] + ḡu̇(t) − ẍ2d + λë
(8.24)

In Eq. (8.24), the time derivative u̇(t)would be designed to act on the second order
derivative of the sliding surface. Here, the time derivative, u̇(t) would be designed
as a discontinuous signal, but its integral u(t) would be continuous by eliminating
the high frequency chattering.

To determine a high order sliding mode control, a novel sliding surface is defined
for the system given in Eq. (8.24) as:

σ = z2 + βz1 (8.25)

where β = diag(β1, . . . ,βn) and βi for i = 1, . . . , n are positive constants and σ
satisfies:

σ̇ = −K sign(σ) (8.26)

whereK = diag(k1, . . . , kn) is the switchinggainmatrixwith ki > 0 for i = 1, · · · , n.
Differentiating Eq. (8.25) and using Eqs. (8.24) and (8.26), u̇(t) is expressed as:

u̇(t) = ḡ−1

(

− d

dt
[h(t)] + ẍ2d − λë − βṠ − K sign(σ)

)

(8.27)

As h(t) has unknown parts, then d
dt [h(t)] has also unknown parts, the control law

given byEq. (8.26) can’t be used for systems given byEq. (8.3). Then, if Assumption
2 given in Sect. 8.2 is verified, we estimate d

dt [h(t)] by using a TDE as follows:

d

dt
[ĥ(t)] ∼= d

dt
[h(t − L)]

= ẍ2(t − L) − ḡu̇(t − L) (8.28)

Finally, replacing
d

dt
[h(t)] in Eq. (8.26) by the estimates

d

dt
[ĥ(t)] given in Eq.

(8.28), then, with sufficient condition given in the next Subsection, the SOSMTDC
is obtained as:

u̇(t) = u̇(t − L) + ḡ−1
(−ẍ2(t − L) + ẍ2d − λë − βṠ − K sign(σ)

)

(8.29)

where ẍ2(t − L) is given by numerical differentiation as:

ẍ2(t − L) = 1

L
[ẋ2(t) − ẋ2(t − L)] (8.30)
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8.4.2 Stability Analysis

For the stability analysis of the overall system, we have to ensure that σ goes to zero,
the method of Lyapunov is used and the Lyapunov function is given by:

V = 1

2
σTσ (8.31)

Its time derivative is as follows:

V̇ = σT σ̇

= σT

(
d

dt
[h(t)] + ḡu̇(t) − ẍ2d + λë + βṠ

)

(8.32)

By replacing u̇(t) by its expression given in Eq. (8.29) in the time derivative of
the Lyapunov function in Eq. (8.32), we obtain:

V̇ = σT

(
d

dt
[h(t)] − d

dt
[h(t − L)] − K sign(σ)

)

=
n

∑

i=1

[σiΔHi − kiσisign(σi)]

≤
n

∑

i=1

|σi|(|ΔHi| − ki) (8.33)

To ensure V̇ is a negative-definite function for Lyapunov stability, the following
condition must be verified:

ki > |ΔHi|, for i = 1, . . . , n (8.34)

where ΔHi = d
dt [hi(t)] − d

dt [hi(t − L)] is the term due to TDE error.
Otherwise, as h(t) is a Lipschitz function, then:

|ΔHi| = | d
dt

[hi(t)] − d

dt
[hi(t − L)]|

≤ li|(t) − (t − L)|
≤ liL (8.35)

where li > 0 is the Lipschitz constant. Hence, for ki > liL, the stability of the closed
loop system is proven. The finite-time convergence of the tracking error can be shown
by using that:
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Fig. 8.1 ANAT robot arm

n
∑

i=1

σiσ̇i ≤
n

∑

i=1

|σi|(|ΔHi| − ki)

≤
n

∑

i=1

|σi|(liL − ki) (8.36)

Then, dividing by |σi| and integrating both sides between 0 and t gives:

∫ t

0

σi

|σi| σ̇idt ≤
∫ t

0
(liL − ki)dt

|σi(t)| − |σi(0)| ≤ (liL − ki)t (8.37)

Hence, by considering again that |σi(tr)| = 0, one has:

tr ≤ |σi(0)|
ki − liL

, for i = 1, . . . , n (8.38)

which guarantees the convergence of the tracking error in a time smaller than
|σi(0)|/(ki − liL).

8.5 Simulation Examples

This section contains four simulations using theMATLAB software. The simulations
use designs performed on the robot arm ANAT with 3-DOF (Fallaha et al. 2011)
shown in Fig. 8.1 of conventional SMC and the presented theory given in Sects. 8.3.1,
8.3.3 and 8.4.1.
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The dynamic of the robot arm ANAT with 3-DOF is given by:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x4
ẋ2 = x5
ẋ3 = x6

ẋ4 = h1(t) +
3∑

i=1
ḡ1iui

ẋ5 = h2(t) +
3∑

i=1
ḡ2iui

ẋ6 = h3(t) +
3∑

i=1
ḡ3iui

(8.39)

The disturbances are considered here as:

τd =
⎡

⎣

0.3e−5(t−5)2 sin(4πt)
0.15e−6(t−6)2 sin(5πt)
0.09e−8(t−8)2 sin(6πt)

⎤

⎦ . (8.40)

The model of the ANAT robot given in Eq. (8.35) satisfies all the assumptions
given in Sect. 8.2. The parameter initiation vector and dynamic parameters of the
robot, are mentioned in Table8.1.

The objective is to ensure that the joint position x1, x2 and x3 tracks respectively the
desired trajectories x1d , x2d and x3d even in the presence of unknown dynamics and
external disturbances. To this end, let define the tracking error for each joint as ei =
xi − xid for i = 1, 2, 3, where xid is obtained with a smooth fifth-order polynomial
as:

xid = axi5t
5 + axi4t

4 + axi3t
3 + axi2t

2 + axi1t + axi0 (8.41)

where:

axi5 = 6(xifd − xi0d)

t51
, axi4 = 15(xifd − xi0d)

t41
, axi3 = 10(xifd − xi0d)

t31
. (8.42)

and axi2 = axi1 = axi0 = 0; xi0d and xifd are respectively the desired initial and final
position of link i, and t1 is the time required for the reference trajectory to reach xifd
starting from xi0d . The desired trajectory parameters are given in Table8.2.

Table 8.1 Joints initiations
and parameters

Joint Initial
position (rad)

Mass (kg) Length (m)

1 x1(0) = 0 0.9 0.16

2 x2(0) = 0 0.9 0.16

3 x3(0) = 0 0.9 0.16
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Table 8.2 Desired trajectory parameters

t1 x10d x20d x30d x1fd x2fd x3fd

5 s 0 rad 0 rad 0 rad 1.3 rad −1.3 rad 1.3 rad

8.5.1 Conventional SMC Simulated on Robotic Arm

A complete study of conventional sliding-mode theory can be found in (Utkin 1992).
The control law for the ANAT robot is given as:

u(t) = g(x, t)−1 (−f (x, t) + ẋ2d − λė − K sign(S)) (8.43)

where g(x, t) is assumed to be smooth and the uncertain dynamics f (x, t) is bounded
for all x. That is ‖f (x, t)‖ < F, here F ∈ R is an overestimated positive constant
and the switching gain matrix K = diag(k1, k2, k3) is chosen such as ki > F for
i = 1, 2, 3. The parameters used in the simulation are λ = diag(10, 10, 10), K =
diag(15, 15, 15).

The simulation results are shown in Figs. 8.2 and 8.3.

8.5.2 FOSMTDC Simulated on Robotic Arm

The FOSMTDC simulated on the ANAT robot is given in Eq. (8.11) with λ =
diag(10, 10, 10),K = diag(1, 1, 1) and L = Ts = 0.03s.While the FOSMTDCwith
saturation function applied to the robot is given in Eq. (8.11) with the same parame-
ters.

The simulation results of FOSMTDC are shown in Figs. 8.4 and 8.5 while the
results of FOSMTDC with saturation function are depicted in Figs. 8.6 and 8.7.

8.5.3 SOSMTDC Simulated on Robotic Arm

The SOSMTDC simulated on the ANAT robot is given in Eq. (8.29) with λ =
diag(10, 10, 10), β = diag(5, 5, 5), K = diag(1, 1, 1) and L = Ts = 0.03s.
The desired trajectory is obtained by the same smooth fifth-order polynomial in
Eq. (8.41).

The simulation results are shown in Figs. 8.8 and 8.9.
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(a) joint 1 (b) joint 1

(c) joint 2 (d) joint 2

(e) joint 3 (f) joint 3

Fig. 8.2 Tracking position and error with SMC
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(a) joint 1

(b) joint 2

(c) joint 3

Fig. 8.3 Control input with SMC
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(a) joint 1 (b) joint 1

(c) joint 2 (d) joint 2

(e) joint 3 (f) joint 3

Fig. 8.4 Tracking position and error with FOSMTDC
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(a) joint 1

(b) joint 2

(c) joint 3

Fig. 8.5 Control input with FOSMTDC
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(a) joint 1 (b) joint 1

(c) joint 2 (d) joint 2

(e) joint 3 (f) joint 3

Fig. 8.6 Tracking position and error with FOSMTDC using (sat) function
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(a) joint 1

(b) joint 2

(c) joint 3

Fig. 8.7 Control input with FOSMTDC using (sat) function
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(a) joint 1 (b) joint 1

(c) joint 2 (d) joint 2

(e) joint 3 (f) joint 3

Fig. 8.8 Tracking position and error with SOSMTDC
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(a) joint 1

(b) joint 2

(c) joint 3

Fig. 8.9 Control input with SOSMTDC
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Table 8.3 Comparative study

Control Convergence time tr(s) Chattering

SMC ∞ excessive

FOSMTDC 5 still present

FOSMTDC with (sat) function 13 eliminate

SOSMTDC 1 reduced

8.5.4 Simulation Results and Discussion

Conventional SMC: The states x1, x2 and x3 shown respectively in Fig. 8.2a, c, e
did not follow their desired references properly. In addition, Fig. 8.3 shows that the
chattering phenomenon is very important due to the choice of the switching gain,
which is excessive and do not have any physical sense.

FOSMTDC: The positions depicted in Fig. 8.4a, c, e follow their desired references
in a finite time even if the dynamics is completely unknown and the presence of dis-
turbances. However, the chattering still present on control input as shown in Fig. 8.5,
which let the tracking error oscillate around the origin.

FOSMTDCwith saturation function: Figure8.7 shows that the chattering is elim-
inated in control input, but the system deals with a large steady state error as depicted
in Fig. 8.6b, d, f.

SOSMTDC: The simulation results show the effectiveness of this method, since the
convergence of the states x1 Fig. 8.8a, x2 Fig. 8.8c and x3 Fig. 8.8e in finite time, the
chattering reduction as shown in Fig. 8.9.

A comparative study between the four techniques simulated is summarized in
Table8.3.

From the above comparative study, SOSMTDC shows the superiority such that
the steady state error converges to zero in a finite time unlike with FOSMTDC with
saturation function. The chattering is still present in FOSMTDC, which can damage
the controlled robot, while is reduced in SOSMTDC and FOSMTDCwith saturation
function.

8.6 Conclusion

In this chapter, two controllers FOSMTDC and SOSMTDC for robot manipulators
with unknowndynamics and external disturbances have been presented to achieve our
control objective. According to Lyapunov stability, the resulting closed loop in both
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cases are stable. Furthermore, it has been proven that the tracking error converges in
finite time. Due to the chattering effect on FOSMTDC as seen in simulation results,
the second controller showed his superiority and seemed to be excellent for tracking
control of robot manipulators with unknown dynamics and unexpected disturbances.

In the further research,wewill implemented the controllers on real systems andwe
hope tomake the second controller better in theway that high frequency uncertainties
may cause complication.

Acknowledgments The authors is grateful to Jawhar Ghommam, Nabil Derbel and Quan Zhu for
the opportunity to contribute to the Applications of Sliding Mode Control Lecture Notes.
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Chapter 9
Kinematics and a Comparison Between Two
SM Control Strategies for a 5DOF Serial
Robot for Tele-Echography

Amina Jribi, Fatma Abdelhedi, Yassine Bouteraa and Nabil Derbel

Abstract This paper presents the kinematic structure and the design of a robust
control strategy for a 5 Degree Of Freedom (DOF) serial robot for tele-echography.
According to themanipulator kinematics, the dynamicmodel is formulated in the task
space by using the Lagrangian formalism. Based on the system dynamics, a classical
sliding mode control scheme based on the contour error is proposed to implement a
performant trajectory tracking motion control. Additionally, a second order sliding
mode control is applied to provide robustness in the face of uncertainties and to
minimize the chattering effect caused by discontinuous control signals. The stability
proof of the suggested scheme is analyzed in terms of the Lyapunov function which
proves that, the system output and its second order derivative converge to the origin
in a finite time. Simulation results indicate the effectiveness of the adopted controller
and demonstrate satisfactory tracking performances compared to the conventional
controller in the face of uncertain system parameters and external disturbances.
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9.1 Introduction

Among several types of medical equipments, ultrasound tele-echography robots are
widely used due to their important role in the medical field. The tele-echography
system concept allows expert physicians to realize a remote echo examination so
that peoples who live in isolated locations, far from medical centers and experts, can
benefit from this review. The constraints of the remote tele-echography procedure
led to the development of a 5-DOF serial robot (Protech). This robot is composed
of two subsystems placed on two distant sites: the master site where the expert is
located and the slave site where the robot is positioned and held by an assistant on
the patient’s body. The master subsystem is composed of a haptic device connected
to a computer workstation, this device is manipulated by the expert as a virtual
ultrasound probe to control the real one. In the other hand, the real probe is placed on
the slave subsystem which is composed of the ultrasound system and of a robot, both
connected to a second computer workstation. The slave robot executes orders sent
from the master site. Both subsystems include an audio-video conference system. In
this way, the expert can see the patient, communicate with him or with the non-expert
operator which is located close to the patient, and then to visualize ultrasound images
(Vilchis et al. 2001).

The Protech robot is used to perform tele-echography acts via a satellite link and to
eliminate the problem of singularity which is faced by several tele-ultrasound robotic
systems. Indeed, the presence of singular points can provide ultrasound return images
that temporarily does not correspond to the set desired by the expert. Moreover,
its rigidity and accuracy quickly deteriorate and its behavior becomes dangerous.
In order to solve such problems and realize potential advantages of the Protech
robot, an efficient control algorithm is introduced. Generally, classical proportional-
differential (PD) and augmented PD controllers are the most used control schemes in
actual manipulators, (Kelly et al. 2005). However, they cannot always ensure better
controller performances because of the presence of high nonlinearity aspects in such
complex systems, (Duchaine et al. 2007). For this reason, several advanced control
algorithms have been recently developed and have led to efficient results. One of
the most famous nonlinear robust control is the sliding mode controller. This theory
was first proposed in the early 1950 by Emelyanov and several co-workers. Since
then, it has been widely developed with the invention of high speed control devices,
(Walker et al. 2005). The Classical sliding mode control has long proved its interests,
that are presented in invariance to matched uncertainties, the relative simplicity of
design and robustness against perturbations, (Iordanov and Surgenor 1997; Boiko
et al. 2007), etc. However, this control scheme suffers from several problems, mainly
from the chattering phenomenon that is presented as high frequency oscillations in the
controller output, (Fridman 2001). This phenomenonmay cause dangerous problems
such as saturation and heat of mechanical parts of the robotic system. To overcome
such difficulties, a second order sliding mode approach has been considered. Its
basic idea is to change the dynamics in a small vicinity of the discontinuity surface
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in order to keep system states away from the real discontinuity and to maintain
principal properties of the whole system.

The first step in the actual work is to present the mechanical structure of the Pro-
tech robot and to establish its dynamic and kinematics formulation. The second step
is to develop the concept of the classical and that of the second order sliding mode
controller. Obtained tracking performances of these controllers are then compared.
Based on the control evaluation indices, simulation results demonstrate the superi-
ority of the second order sliding mode approach compared to the classical control
concept performances.

9.2 Preliminaries

9.2.1 Mechanical Structure of the Robot

In this study, simulations are based on a serial Protech robot manipulator having five
degrees of freedom with three separate modules. Figure9.1 shows the structure of
this robot.

The first module has a degree of freedom corresponding to a prismatic joint
allowing the end effector of the robot to move along the axis y0. The second module
has three degrees of freedom composed of revolute joints. The role of this module is
to reproduce the orientation of the virtual probe which is manipulated by the expert.
All the rotation axis (corresponding to each joint) are intersected in a same point,
forming a remote center of rotation. So, they form a spherical wrist with concurrent
axes. The angleα between joints is equal to 30◦. Finally, the thirdmodule is presented
as a prismatic joint. It allows a translation of the end effector along the rotation axis
of the fourth joint. This translation keeps the ultrasonic probe in contact with the
patient’s skin and apply the same force as that practiced by the doctor on the virtual
probe. Figure9.2 shows the kinematics representation of the robot.

Fig. 9.1 Protech robot
structure
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Fig. 9.2 Robot kinematics
structure −→z 0−→x 0

−→y 0

−→z 2

−→z 3−→z 4

−→z 5

−→z 1

−→y 1

−→x 1

−→x 2 −→y 2

−→x 4 −→y 4

−→x 5

−→y 5

−→x 3

−→y 3α

Module 3

Module 2

Module 1

9.2.2 Kinematics of the Protech Robot

In order to analyse the kinematics of the Protech robot, several methods have been
proposed. The most commonly used is the Denavit–Hartenberg method because
of its flexibility and simplicity for modelling any number of joints and links in a
manipulator, (Khalil and Kleinfinger 1986). This formalism allows the obtention
of a homogeneous description for both structures, simple and complex, of articu-
lated mechanical systems with a minimum number of parameters. Table9.1 lists the
Denavit–Hartenberg parameters of the considered robot whose axes normalization
that is associated with each joint is shown in Fig. 9.2.

The homogeneous transformation matrix 0T5, that represents the kinematic robot
model is the product of transformation matrices:

0T5 = 0T1
1T2

2T3
3T4

4T5 (9.1)

Table 9.1 Parameters of
Denavit–Hartenberg of the
robot

i σi αi di θi ri

1 1 π
2 0 0 r1

2 0 − π
2 0 ϕ1 0

3 0 −α 0 ϕ2 0

4 0 α 0 ϕ3 0

5 1 0 0 0 r5
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0T5 =

⎛

⎜
⎜
⎝

sx nx ax px
sy ny ay py
sz nz az pz
0 0 0 1

⎞

⎟
⎟
⎠

(9.2)

where:

sx = C2C13 − CαS2S13 − S1S
2
αS3(1 − C2)

nx = −C2S13 − CαS2C13 − S1S
2
αC3(1 − C2)

ax = Sα(C1S2 − S1Cα(1 − C2))

px = axr5
sy = C2S13 + CαS2C13 + C1S

2
αS3(1 − C2)

ny = C2C13 − CαS2S13 + C1S
2
αC3(1 − C2)

ay = Sα(S1S2 + C1Cα(1 − C2))

py = ayr5 − r1
sz = Sα(−S2C3 + CαS3(1 − C2))

nz = Sα(S2S3 + CαC3(1 − C2))

az = 1 − S2α(1 − C2)

pz = azr5 (9.3)

where Ci = cosϕi , Si = sinϕi , Ci j = cos(ϕi + ϕ j ), Si j = sin(ϕi + ϕ j ), Cα =
cosα and Sα = sinα for i, j = 1, 2, 3.

The position vector of matrix 0T5 is used to calculate cartesian coordinates of the
robot end effector in the original reference R0 in terms of its joint coordinates. The
orientation matrix 0A5 connects the base (x5, y5, z5) which is related to the robot
end effector, to the base (x0, y0, z0) that is connected to the support of the robot, as
follows:

(x0, y0, z0)
T = 0A5.(x5, y5, z5)

T (9.4)

The expression of the robot joint coordinates thatwewant to achieve are calculated
by the following equations:

cosϕ2 = az − cos2 α

sin2 α

cosϕ1 = sin2 α sin φ2.ax + cosα(1 − az).ay
sinα(1 − a2z )

sinϕ1 = − cosα(1 − az).ax + sin2 α sin φ2.ay
sinα(1 − a2z )

cosϕ3 = − sin2 α sin φ2.sz + cosα(1 − az).nz
sinα(1 − a2z )
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sinϕ3 = cosα(1 − az).sz + sin2 α sin φ2.nz
sinα(1 − a2z )

r5 = Pz
az

r1 = ayr5 − Py (9.5)

These equations show two singularities for az = ±1.

• The caseaz = −1 corresponds to the angle θ = πwhich is an unreachablemechan-
ical configuration.

• The case az = 1 corresponds to a joint angle ϕ2 = 0. The axis z1 and z3 are
confused. This indicates that rotations ϕ1 and ϕ3 are carried on the same axis. So
it is impossible to calculate independently its two angles. The following equations
are obtained when ϕ2 = 0:

cos(ϕ1 + ϕ3) = sx
sin(ϕ1 + ϕ3) = sy (9.6)

9.2.3 Dynamic of the Protech Robot

The dynamic analysis has a double role in robotics, in such a way that it can be
used both in modeling and control of robot mechanisms, (Groover et al. 2008).
The dynamic model of the robotic system has been derived using the Lagrange
formulation, motion equations can be then derived in a systematic way independently
of the reference coordinate frame (Al Bassit 2005). The dynamic equation of the
proposed manipulator can be generally written as:

Γi = d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
(9.7)

where Γi is the generalized force associated with the joint variables qi , and L is the
Lagrangian of the mechanical system. The Lagrangian expression can be defined as:

L = U + T (9.8)

with T and U are the kinetic and the potential energies of the mechanical system,
there are expressed as:

T =
∑ 1

2
(ΩT

i IGi Ωi + miV
T
Gi
VGi ) , i = 1..5

U =
∑

migzi , i = 1..5 (9.9)
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where:

• Ωi represents the angular velocity of the i th body.
• IGi is the inertia matrix of the i th body, relatively to a reference whose origin
is the center of gravity of the body. The inertia tensor is constant seen that it is
expressed in a reference related to the rigid body. In the case of symmetric bodies,
it is expressed by:

IGi /Ri =
⎛

⎝

Ii1 0 0
0 Ii2 0
0 0 Ii3

⎞

⎠ (9.10)

• mi is the mass of the i th body.
• VGi represents the velocity of the gravity center of the i th body which is defined
as:

VGi = d
−−−→
O0Gi

dt
(9.11)

Further calculations of the kinetic and the potential energies of the system, we
find the following result:

U = aṙ1
2 + bϕ̇1

2 + cϕ̇2
2 + dϕ̇3

2 + eṙ5
2 + f ϕ̇1ϕ̇2

+ gϕ̇1ṙ5 + hϕ̇2ṙ5 + iϕ̇1ṙ1 + jϕ̇2ṙ1 + kṙ1ṙ5
+ lϕ̇3ϕ̇1 + mϕ̇3ϕ̇2 + nϕ̇3ṙ5

T = l1 + l2 sinϕ2 + l3 cosϕ2 + L4r5 + l5r5 cosϕ2

(9.12)

Coefficients of the kinetic energy (a, b, c, . . . , n) are expressed in terms of the joint
coordinates. The resulting torque equation yields the following equation:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ (9.13)

where:

• q, q̇, q̈ ∈ R
n are joint positions, velocities and accelerations, respectively.

• M(q) is a positive definite symmetric matrix of inertial accelerations.
• C(q, q̇) is the matrix of forces / torques due to the Coriolis and centrifuged accel-
erations.

• G(q) represents the vector of pairs of joints which equilibrates the gravity forces
when the robot is at rest and in the absence of forces.

• Γ is the equivalent generalized forces/torques applied by the probe on the patient’s
skin.

The parameter values corresponding to the adopted Protech robotmanipulator system
are given in Table9.2.
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Table 9.2 Parameters of the robot

Link i mi (kg) Li (m) li (m) Ri (m)

Link 1 0.4 0.5 0.2 0.1

Link 2 0.4 0.5 0.2 0.1

Link 3 0.4 0.5 0.2 0.1

Link 4 0.4 0.5 0.2 0.1

Link 5 0.4 0.5 0.2 0.1

9.3 Control Design

9.3.1 Classical Sliding Mode Control

Sliding Mode Control is known as one of the most powerful nonlinear conventional
controller due to its robustness properties, relative simplicity of design and stability.
The object of sliding mode control is to restrict the system trajectories to reach and
stay on a given sliding surface in the state space after a finite time, (Emelyanov et al.
1986). When confined with the sliding surface, the system dynamic is connected to
the discontinuous part which describes an optimum sliding motion and denotes the
controlled system behavior, (Vecchio 2008).

Let us consider a nonlinear system described by the following state equation:

ẋ = f (x) + g(x)u (9.14)

where x and u are the state and the control variables, and g(x) has a full rank. Define
the sliding surface as:

s(x) = h(x) − h(xd) (9.15)

with xd is a desired trajectory. The sliding mode controller for this system could be
written as follow:

u = ueq + δu (9.16)

where the equivalent control ueq represents the required control to reach and to remain
on the sliding surface, (Utkin 1992). The corrected term δu is required to guarantee
the remaining on the surface s(x) = 0. The equivalent control can be designed as
follows: when the system remains on the sliding surface, we have s(x) = 0, then
ṡ(x) = 0. Consequently:
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ṡ(x) = dh

dx

[

f (x) + g(x)u

]

− dh

dxd
ẋd

= A(x, xd) + B(x)u (9.17)

This yields the following expression of the equivalent control:

ueq =
[
dh

dx
g(x)

]−1[ dh

dxd
ẋd − dh

dx
f (x)

]

= −[B(x)]−1A(x, xd) (9.18)

The term δu can be expressed as:

δu = −u0sign
[

BT (x)s(x)
]

(9.19)

In order to prove the stability of the proposed controller, we consider the Lyapunov
function V (x) = 1

2 s
T s. Its differential with respect to time is expressed as:

V̇ = sT ṡ

= −sT B(x)sign
[

BT (x)s(x)
]

< 0 (9.20)

Thus, according to the Lyapunov theory, the sliding mode control law is able to
guarantee the stability of the closed loop control system.

9.3.2 Second Order Sliding Mode Control

The classical SMC lawpresents oscillations at high frequencies leading to the appear-
ance of a chattering phenomenon, which reflects the discontinuous nature of the con-
trol. In order to eliminate the chattering action, the sign function can be replaced by
an approximation such as sat or tanh, however this method may present steady state
errors and deteriorate system performances, (Slotine and Li 1991). In this study, we
are interested in the second order sliding mode control approach, (Bartolini et al.
1998). This methodology consists in considering the derivatives of the sliding vari-
able s in order to eliminate or to minimize oscillations around the sliding surface,
(Levant 1993). Then, the control action guarantees the finite time convergence of the
state to the sliding manifold s = ṡ = 0, (Levant and Fridman 1996). To design the
adequate controller, it is useful to observe the expression of the first sliding surface
derivative ṡ = σ, that gives the following control law:
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u = −[B(x)]−1A(x, xd) + [B(x)]−1σ

= ueq +
[
dh

dx
g(x)

]−1

σ (9.21)

The adequate system representation becomes:

{

ṡ = σ
σ̇ = −h0 s − h1 σ + v

(9.22)

where v is a control variable, h0 and h1 are positive scalars that can be deduced from
the following Hurwitz polynomial (its roots have negative real parts) H(p):

H(p) = p2 + h1 p + h0
= (p + η)2 (9.23)

System (9.22) can be then represented by the following form:

Ṡ = ψS + Λ v (9.24)

where:

S =
[

s
σ

]

, ψ =
[

0 1
−h0 − h1

]

, Λ =
[

0
1

]

The characteristic equation of matrix ψ is H(p) = 0. Accordingly, all eigenvalues
of matrix ψ have negative real parts. For that reason, ψ represents a Hurwitz matrix.
Consequently, there exists two positive definite matrices P and Q such that:

Pψ + ψT P = −Q (9.25)

We recommend the following adequate choices:

P =
[

3η2 η
η 1

]

, Q = 2 η

[

η2 0
0 1

]

(9.26)

The control term v is defined by:

v = −v0sign(Λ
T PS) (9.27)
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• Stability analysis:

In order to prove the stability of the proposed controller, the following stability
theorem is considered:

Theorem: Consider a nonlinear uncertain dynamical system represented by
(9.13). If the second order slidingmode control shown in (9.21) is applied, asymptotic
robust stability of the closed-loop system is guaranteed.

Proof : Let’s consider the positive Lyapunov function candidate:

V = 1

2
ST PS (9.28)

Differentiating the previous Lyapunov expression (9.28) with respect to time, gives:

V̇ = ṠT PS + ST P Ṡ (9.29)

= ST (ψT P + Pψ)S + 2vΛT PS

= −ST QS − 2v0|w| < 0

Thus, the second order slidingmode control law guarantees the stability of the closed
loop control system.

9.4 Simulation Results

In this section, in order to verify the performance comparison of the classical sliding
mode and the second order sliding mode strategies, simulations of the trajectory
tracking task performed by a 5 DOF Protech robot are carried out in two cases of
simulation: with or without external disturbances.

We have selected the vector of reference trajectories in the joint space which is
noted qd(t) as follows:

qd(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1 sign(1 − t)
π

6
cos(πt)

π

8
sin(2πt)

π

4
cos(

π

2
t)

0.2 sign(1 − t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.30)

Initial conditions of the robot are given in Table9.3.
Control parameter values have been chosen as indicated in Table9.4.
Simulation results concerning the classical SMC and the second order SMCwith-

out external disturbances are shown in Figs. 9.3, 9.4, 9.5 and 9.6.



168 A. Jribi et al.

Table 9.3 Initial conditions of the robot

q1(0) q2(0) q3(0) q4(0) q5(0) q̇1(0) q̇2(0) q̇3(0) q̇4(0) q̇5(0)

−0.3 −0.2 −0.1 0 0 0 0 0 0 0

Table 9.4 Control
parameters

Control parameters Values

λ 10

v0 10

η 5

Fig. 9.3 Simple SMC torques
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Fig. 9.4 Second order SMC torques

By making a torque comparison between Figs. 9.3 and 9.4, it is obvious that the
second order SMC can considerably reduce the chattering phenomenon.

In fact, Fig. 9.4 shows a reduction of the commutation frequencies level in the
second order sliding mode control input compared to that produced by the classical
SMC. Besides, the evolution of the trajectory tracking motion with respect to time
of the classical SMC and the second order SMC are shown in Fig. 9.5.

Compared to the simpler controller, an improved tracking behavior which is per-
formed by the second order SMC can be clearly observed. Indeed, the higher order
controller follows the desired trajectory in the absence of disturbing fluctuations
in the control torques while realizing a rapid and efficient trajectory tracking task.
Tracking errors are demonstrated through Fig. 9.6, where obtained curves rapidly
converge to zero.
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Fig. 9.5 Reference and actual trajectories

Fig. 9.6 Tracking error
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Fig. 9.7 Simple SMC torques in presence of external disturbances

Fig. 9.8 Second order SMC torques in presence of external disturbances
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Fig. 9.9 Reference and actual trajectories in presence of external disturbances

Fig. 9.10 Tracking error in presence of external disturbances
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Simulation results concerning the classical SMC and the second order SMC in
the presence of external disturbances are shown in Figs. 9.7, 9.8, 9.9 and 9.10. The
position state vector is afflicted by 10% measured errors.

Figure9.7 shows that the classical SMC in presence of external disturbances
causes high level commutation frequency in the control signal. This important switch-
ing frequency appears through the strong disturbance oscillations. Concerning the
second order SMC torques in Fig. 9.8, we noted that the behavior of this controller
has not changed despite the appearance of external disturbances.

So, it is clear that the proposed second order SMC provides good robustness prop-
erties. Figure9.9 shows that the trajectory tracking motion keeps same behaviors of
those presented without external disturbances. Consequently, the trajectory tracking
task of the classical SMC and the second order SMC are indifferent to any change of
environmental conditions. Figure9.10 shows that the tracking error of the classical
SMC and the second order SMC present small parasitic effects in the form of small
disturbance oscillations.

Therefore, we can deduce that the second order SMC is the best approach to
considerably reduce the chattering effect relatively to the classical SMC. The second
order SMC improves the system response quality and provides a superior tracking
performance of the closed-loop control system.

9.5 Conclusion

This paper illustrates the contribution of the second order sliding mode control as a
stabilizing control law for nonlinear systems. The objective of this controller consists
to minimize the oscillations in the output of the actuators by reducing considerably
the level of the control and the chattering phenomenon. The stability analysis of the
first order and the second order sliding mode controllers is proved via Lyapunov
methodology. Performances of the second order SMC have been compared with a
first order SMC, applied to the nonlinear model of a five link robot. We conclude that
the second order SMC gives the best simulation results and shows a great robustness,
best performances and higher accuracy even in presence of external disturbances.
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Chapter 10
Estimated Model-Based Sliding Mode
Controller for an Active Exoskeleton Robot

Yassine Bouteraa and Ismail Ben Abdallah

Abstract This paper presents a new design of a robot elbow rehabilitation:
Wireless Remote Control Arm exoskeleton (WRCAE). The robot is designed for
the upper limb therapy. The developed system is an exoskeleton with two degrees
of freedom that can be used for the treatment, evaluation and reinforcement. The
exoskeleton actuates the bothmovements: flexion/extension for the elbow and prona-
tion/supination for the forearm. Angles limits (max and min) should be introduced
by the physiotherapist through a Human-Machine Interface (HMI). Desired angles
of the both movements (elbow flexion/extension or forearm pronation/supination)
are sent remotely via the ZigBee protocol (xbee-pro communication). A kinematic
model has been developed based on Denavit–Hartenberg approach to make first
tests. A sliding mode robust law control has been implemented. A kinect camera
was built to detect different measures of flexion/extension and send feedback to
the controller. The Lyapunov-based approach has been used to establish the system
asymptotic stability. Experimental results are provided to demonstrate performances
of the developed robot of upper limb remote rehabilitation.
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10.1 Introduction

10.1.1 General Introduction

Ability to move is so necessary to perform basic activities of daily living. Motor
disability reduces significantly the quality of the patient life. A disabled member
specifically lost its independence. Motorization repetitive exercises of the human
joint is proven as an effective solution for the lost motion recovery. Recent techno-
logical advances have focused on the functional movement recovering of the upper
and lower extremities. Patient population needing physical rehabilitation of the upper
extremity was dramatically increased. This phenomenon has automatically led to an
increase in the number of therapists and caregivers assisting physically disabled indi-
viduals at home, which can become serious problem in the near future. Rehabilitation
robotic systems can be considered a highly effective solution for these kind of prob-
lem. However, the Availability of these devices is still limited, a field to work more.
Provide robotic solutions for the upper limb rehabilitation by trying to improve the
existing, is the main purpose of this work.

10.1.2 Motivation

Indeed, having a positive outcome of physical rehabilitation, mainly in the case of
neurologically based disorders, is in strong relationship with the patient’s health con-
dition (Patton et al. 2008), its resistance, treatment duration, exercises intensity and
orientation trainings (Feys et al. 2004). However Intense repetitions of coordinated
motor activities is almost the most effective solution to improve and restore lost
functions (Platz 2003; Feys et al. 2004; Patton et al. 2008). However this intense
repetition is a huge burden for physiotherapists. Automate the motor activities can
be a very effective solution that can lighten the physical doctors tasks. The main
Goal is to develop a robotic system able to move the upper limb in repetitive actions
for both motions of the elbow and the forearm. This robotic system can also be a
platform with pre programmed scenarios for rehabilitation movements which will
be applied according to the state of the patient in question. The developed robotic
assistive rehabilitation device would be used to provide repeated motor practice in
an effort to promote neurological recovery and improve functional use of the upper
extremity. The proposed exoskeleton can be used to support upper extremity reha-
bilitation in individuals who sustain neurological impairments such as cervical level
spinal cord injuries (SCI), acquired brain injuries (ABIs) or stroke. Have such sys-
tems will not only produce a more easy rehabilitation process, fast and efficient
but also have an impact on the good management in health facilities. Indeed, these
devices are affordable and may be for domestic use. A procedure that will greatly
alleviate rehabilitation hospital stays. Even in health facilities, through these kind
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of equipment, physical therapists can take care of several patients at once, which
significantly decreases the waiting time at the physical rehabilitation service.

10.1.3 Previous Works

Several approaches to restore the functionality of the upper extremity. Orthotics can
be a solution to solve the problems in the upper limbs disability. Electrical stimula-
tion is also among the techniques used for the treatment and rehabilitation. Physical
therapy is still among the most effective techniques to deal with disability problems.
Various works have been focused on the upper limb rehabilitation (Masiero et al.
2011; Varalta et al. 2013; Gijbels et al. 2011; Bovolenta et al. 2011; Morales et al.
2011; Culmer et al. 2011; Pignolo et al. 2012; Klein et al. 2010). Further researches
have been specialized only in the rehabilitation of the elbow (Cozens 1999; Cheng
et al. 2003;Mavroidis et al. 2005; Sulzer et al. 2007; Song et al. 2008; Oda et al. 2009;
Vanderniepen et al. 2009; Pylatiuk et al. 2009; Rosen et al. 2001; Stein et al. 2007;
Stein 2009) or hand (Sale et al. 2012; Vanoglio et al. 2013; Palsbo and Hood-Szivek
2012; Parrinello et al. 2013; Ho et al. 2011). In order to overcome the problems of
sensory processing deficit, an innovative integrated setup which provides the user
with an EMG-based visual-haptic biofeedback, is presented in Casellato et al. (2013).
In Sale et al. (2012), authors propose a clinical evidence about the robotic contri-
bution in the hand motor recovery improvement for acute stroke patients. A new
design of a rehabilitation exoskeleton with multidisciplinary support and specific
rehabilitation exercises dedicated to the paretic upper limb after stroke is developed
in ARAMIS (Automatic Arm Mobility Integrated System) project (Pignolo et al.
2012). Robotic technology efficacy is explored in improving handwriting in chil-
dren cases having impaired motor skills (Palsbo and Hood-Szivek 2012). In Cheng
et al. (2003) authors present an assistive torque system with an homogeneic surface
electromyogram (EMG) signals in order to improve the elbow torque capability of
stroke patients. An EMG-based robotic hand device is conceived to provide training
on impaired hand for person after stroke (Ho et al. 2011). Supinator Extender (SUE),
a 2 DOF serial pneumatically actuated robot is a developed to measure and assist
forearm supination-pronation and wrist flexion-extension (MasAllingtoniero et al.
2011). A clinical experience brief report about the improvement provided by robot
aided therapy for upper limbs dedicated to patients with stroke-related lesion is pre-
sented in Parrinello et al. (2013).Modelling, design and control of 2DOF exoskeleton
robot (ExoRob) to rehabilitate the elbow and forearm movements of physically dis-
abled individuals with impaired upper-limb function is developed in Rahman et al.
(2010, 2011, 2012). Based on servo motor to apply torque about the elbow, a simple
system was developed by Cozens in Cozens (1999), proved that the mean range of
active extension flexion was increased for every patient of a group of ten. Authors in
Mavroidis et al. (2005) introduce a new design of smart and portable rehabilitation
devices with real time monitoring where the recovery process could be dramatically
improved.
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10.1.4 Comparison and Contribution

Control point of view, compared to recent studies showing elbow rehabilitation pro-
totypes (Vanderniepen et al. 2009; Oda et al. 2009; Pylatiuk et al. 2009) with an
on-off control strategy, the proposed exoskeleton takes into consideration the system
dynamics and presents a robust nonlinear control lawwhich ensures the device stabil-
ity. In contrast of similar studies usingDCmotors as actuators (Mali andMunih 2006;
Mavroidis et al. 2005; Oda et al. 2009), the developed system is closed loop con-
trolled. Compared to recent works in the field (Vanderniepen et al. 2009; Mavroidis
et al. 2005; Mali and Munih 2006), the developed solution provides the velocity
control during operation of the rehabilitation process operation. Some works control
the system dynamics (Rahman et al. 2011, 2012). Compared these architectures, the
developed strategy incorporates a robust velocity observer. Compared to all cited
works, it can be considered as a first prototype that incorporates Kinect solution
for the feedback information. The Kinect sensor has shown great efficiency and
great accuracy in measuring of the human joints. Also in relation to previous works,
including the most recent (Casellato et al. 2013; Rahman et al. 2012; Vanoglio et al.
2013; Varalta et al. 2013; Pignolo et al. 2012; Klein et al. 2010; Gijbels et al. 2011;
Bovolenta et al. 2011; Morales et al. 2011; Masiero et al. 2011), we present in this
work a wireless remote controlled rehabilitation robot. We can summarize the major
contributions of this work in the following points:

• The proposed work, offers a remotely controlled exoskeleton.
• The developed communication solution is a wireless technology and does not
consume energy (battery life: years).

• The mechatronics design brings to a low cost production.
• The system software part presents an extensible Human-Machine Interface that
facilitates the work of physiotherapist.

• The rehabilitation system of the device incorporates Kinect technology to have a
very effective measure of elbow angles.

• This work also focuses on themodeling and control of the proposed system device.
Indeed, a kinematic model has been developed based on Denavit–Hartenberg
approach.

• The exoskeleton control system is equipped by a nonlinear robust controller.

The present paper is organized as follows: In Sect. 10.2, we present the rehabilitation
robotic device mechatronic design. The control law and the system stability study
are detailed in Sect. 10.3. In Sect. 10.4, Human-Machine Interface is presented as
well as experiments. Finally, we conclude with a work summary.

10.2 Mechatronic Design

The design of the elbow-forearm exoskeleton should be have the same human arm
shape and mainly should not compromise the natural arm motion and the opera-
tor workspace. The basic kinematic structure of the Wireless Remote Control Arm
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Fig. 10.1 Kinematic model
of the elbow-forearm
movement

Table 10.1 Control and
coupling gains

Joint Torque limits
(N · m)

Workspace limits (degree)

Elbow 55 Flex : 90 Ext : 0
Forearm 5.08 Supinat : 90 Pronat : 90

exoskeleton is depicted in Fig. 10.1. The exoskeleton is comprised of a revolute joint
at the elbow and a revolute joint for forearm rotation. Axes 0 and 1 represent elbow
rotation and forearm rotation respectively.

The device should also have torque capabilities to match and enhance human abil-
ities. The Elbow-Forearm rehabilitation system workspace and torque capabilities
are shown in Table10.1.

The WRCAE architecture system basically consists of 4 components (see
Fig. 10.2): First, The exoskeleton, with its structure, sensors and actuators. Second,
The control board is the interface between the CPU and actuators. Third, the CPU
containing the control and supervision interface. This Human Machine Interface
(HMI) allows robot control and feedbacks visualization (numerical values of the
angles, movement curve). The last, the kinect sensor supposed to detect the angles
of each joint and communicate information to the supervision interface (Fig. 10.4).

From a mechanical standpoint, the rehabilitation robot is composed essentially
by the following parts:

Upper-limb support: It is an exoskeleton fitting part on the human arm. The hold of
this piece guaranteed the proper functioning of the entire robot. Indeed, it should be
fixed either on the fixed support or directly to the triceps with scratches on one side
and metal plates to the other side. Having an arc structure, the stainless steel plates
take the triceps shape.

Wrist Handle: Forming a sliding connection with the spindle, this piece fits with
the size of the patient’s arms which gives some flexibility to the system. In addition,



180 Y. Bouteraa and I. Ben Abdallah

Fig. 10.2 WRCAE architecture system

Fig. 10.3 3D design of Elbow-Forearm rehabilitation device

Fig. 10.4 Microsoft kinect sensor

wrist handle is necessary to perform themovement of pronation-supination. Patient’s
hand should be hold on the wrist handle.

Connecting Spindle is the main component of pronation-supination exercise.
Indeed, attached directly to the motor shaft, the spindle provides the second degree
of freedom: the pronation-supination joint movement. Moreover, this part provides
the connection between Intermediate metal plate link and the Wrist Handle.
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Fig. 10.5 Appropriate use of rehabilitation robot

Intermediatemetal plate: Themain function of this portion is the binding of the two
supports: upper limb support and forearm support, providing a rotation movement
between the both parts (flexion/extension).

How to use: We have more than mode of using (Fig. 10.5): 1. Portable mode with a
bag on his back. The bag encompasses the electronic control board and it is connected
to the charger (power from battery is possible as a solution).
2. Sitting position: user sitting on chair and the rehabilitation exoskeleton is fixed
on a supporting holder with a flexible length. A small box placed on the supporting
base containing the PCB connected to the electrical outlet.

10.3 Kinematic Measurement

Over the last years, controlling systems using gestures has become a common prac-
tice in our daily lives. Various works in literature deal with gesture recognition
from human body using video cameras (Weinland et al. 2011; Turaga et al. 2008).
However, the cameras-based control approaches was found to be significantly dif-
ficult and subsequently they are used mainly in certain well-dedicated applications.
Recently, the judgment that fear the difficulty of the cameras-based solutions devel-
opment becomes obsolete with the wide availability of new 3D depth cameras, such
as Microsoft Kinect (see Fig. 10.4). Indeed, Microsoft Kinect as a 3D depth cam-
era promotes the development of natural interaction applications in many domains
among much larger audiences (Ibanez et al. 2014). Composed of a Red-Green-Blue
camera coupled with a Depth Sensor and a processing module, kinect sensor is
able to estimate various body parts movements (Fig. 10.7). The 3D position of body
joints, RGB-D camera and microphones are accessible in real time thanks to Several
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Fig. 10.6 3D skeleton display

Fig. 10.7 Joints detected by kinect

SDKs (Software Development Kits), such as Microsoft Kinect SDK2, OpenNI 3 and
OpenKinect. Indeed, The Kinect for Windows Software Development Kit (SDK)
enables developers to create applications that support gesture and voice recognition.
Kinect depth camera, called RGB-D sensor, couples RGB images with depth data.
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Since 2010 (first release of Microsoft Kinect depth camera), kinect sensor gathered
the scientific community attention as a vision system with a low price and a high
precision (Fig. 10.4).

10.4 Control Design

Based on Lagrangian formulation, the exoskeleton robot dynamic is described as
follow

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (10.1)

where q = [q1, q2]T ; τ = [τ1, τ2]T . Let qd(t) denoted the desired trajectory. The
tracking error is defined as: e = qd(t) − q(t).

Define
q̇r = qd + λ(qd − q) (10.2)

where λ is definite positive matrix.
According to the linear characteristic of robotics, we obtain

M̂(q)q̇r + Ĉ(q, q̇)q̇r + ĝ(q) = Y(q, q̇, q̇r, q̈r)P̂ (10.3)

where P is a robot estimated parameters vector and Y(q, q̇, q̇r, q̈r) is a regressor
matrix.

Define M̃(q) = M(q) − M̂(q); C̃(q, q) = C(q, q) − Ĉ(q, q); g̃(q) = g(q) −
ĝ(q);

Let’s define the sliding variable as:

s = ė + λe (10.4)

We design the sliding mode controller as the following

τ = M̂(q)q̈r + Ĉ(q, q̇)q̇r + ĝ(q) + τs (10.5)

where τs is the robustness component.

Define: ¯̃Pi such ∀i | P̃i |≤ ¯̃Pi; Yij such ∀i | Ỹij |≤ ¯̃Yij.
Theorem The proposed controller (10.5) guarantees the asymptotic stability of the
system (10.1).

Proof Select the LFC as:

V = 1

2
sTM(q)s (10.6)
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Differentiating with respect to time, yields:

V̇ = sTM(q)ṡ + 1

2
sT Ṁ(q)s (10.7)

= sTM(q)ṡ + sTC(q̇, q)s

= sT
[

M(q)(q̈r − q̈) + C(q̇, q)(q̇r − q̇)
]

= sT
[

M(q)q̈r + C(q̇, q)q̇r + G(q) − τ
]

(10.8)

From Eqs. 10.5 and 10.7, the time derivative of the Lyapunov-candidate-function can
be written as:

V̇ = sT
[

M(q)q̈r + C(q̇, q)q̇r + G(q) − M̂(q)q̈r − Ĉ(q̇, q)q̇r − Ĝ(q) − τs

]

= sT
[

M̃(q)q̈r + C̃(q̇, q)q̇r + G̃(q) − τs

]

= sT
[

Y(q, q̇, q̇r, q̈r)P − τs
]

(10.9)

Let’s select the robustness element τs as

τs = ksign(s) + s

τs =
[

k1sign(s)
k2sign(s)

]

(10.10)

where ki =
4∑

j=1
Ȳij

¯̃Pj, i = 1, 2. Further calculation, yields

V̇ (t) =
2

∑

i=1

4
∑

j=1

siYijP̃j −
2

∑

i=1

sikisign(si) −
2

∑

i=1

s2i

=
2

∑

i=1

4
∑

j=1

siYijP̃j −
2

∑

i=1

| si | Ȳij ¯̃Pj −
2

∑

i=1

s2i

≤ −
2

∑

i=1

s2i ≤ 0 (10.11)

which proves the asymptotic system stability.
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10.5 Experimental Results

We further carried out experiments on the designed robot (Fig. 10.8). The user inter-
face called HMI Elbow Rehabilitation is developed on the Labview IDE. Actually
this control software is developed to serve the physiotherapist. The Human-Robot
Interface contains two screens. The first screen (see Fig. 10.10) shows the user video
and the skeleton display. The second screen (see Fig. 10.11) represents the hardware
setup and joints curves. The user behaviors and its skeleton image, both are transmit-
ted in real time to the physician interface. Before starting the rehabilitation session,
the physiotherapist can choose the desired iteration member in each exercise. He
has also the opportunity to precise the delay extension/flexion time. Some hardware
setup are already set like the kind of connection and communication. The numerical

Fig. 10.8 The designed robot: portable version

Fig. 10.9 The designed robot: sitting version
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Fig. 10.10 Motion capture using joint skeleton tracking

Fig. 10.11 User interface and experimental results

data about the acquired measurement of the flexion/extension behaviors and prona-
tion/supination movements are displayed in real time. The same acquired data are
graphically displayed as curves representing the various joints as a function of time.
The robot is wireless controlled through a ZigBee standard protocol. The choice of
the xbee solution is motivated by the low energy consumption (Fig. 10.9).
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10.6 Conclusion

The stroke is a disease that leads to a large disability and even death, according
to the world health organization. One of the main benefits of the physical therapy
automation process is the relief and release of physiotherapist from such annoying
physical tasks including repeatability, continuously monitoring and patient guide.
In this context, our project focuses on the design and development of upper limb
rehabilitation robot. The elbow rehabilitation robot is remotely controlled through
a ZigBee protocol. The pronation/supination angles limits and the flexion/extension
joints bornes, the both are remotely sent by the physiotherapist through a wireless
communication. The angles made by the subject are picked up by a kinect camera
and sent to the doctor interface for display and recording.
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Chapter 11
An Adaptive Finite-Time Consensus Control
for Higher-Order Nonlinear Multi-agent
Systems

Sanjoy Mondal, Jawhar Ghommam and Maarouf Saad

Abstract This chapter presents a finite-time consensus problem of higher-order
nonlinear multi-agent systems (MAS) in the presence of bounded disturbances.
The nominal control is designed by homogeneous finite-time technique to track the
desired target trajectories. The chattering is mitigated by designing an integral slid-
ing surface using adaptive super twisting algorithm (STA). The design parameters of
super twisting controller are estimated adaptively without knowing the bounds a pri-
ori. The finite time convergence of the consensus protocol for the higher-order MAS
is presented using Lyapunov analysis. Simulation results shows the effectiveness of
the proposed homogeneous adaptive sliding mode control for the MAS.

Keywords Higher-order sliding mode · Multi-gent system · Finite-time conver-
gence · Reference tracking · Matched uncertainty · Adaptive super twisting algo-
rithm

11.1 Introduction

Recently, network cooperative control design of multi-agent systems (MAS) has
received significant attention from various scientific and research communities and
emerged as a challenging new research area. In coordination control a common
agreement is achieved by interacting with each other. Thus the application of the
network consensus is widely used in satellite formation flying (Li et al. 2010; Canale
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et al. 2015), cooperative control of unmanned air vehicles (Pack et al. 2009; Ghom-
mam and Saad 2014), congestion control of communication networks (Li and Zhang
2010), robotic systems (Mehrjerdi et al. 2011), synchronized control ofmobile robots
(Zhao et al. 2011), air traffic control and urban traffic control (Weigang et al. 2008),
autonomous underwater vehicles (Yoon and Qiao 2011) and so on.

Among many other formation control the leader-follower technique for MAS is
explicitly studied due to its vast applications in engineering background, physical
meaning and simplicity (Dimarogonas et al. 2009; Hong et al. 2007; Lin and Jia
2009; Ghommam et al. 2013). In this formation, the leader is usually independent of
its followers, but can affect the follower’s behaviours (Consolini et al. 2008). While
the leader’s behaviour can easily be controlled to achieve the desire control objective.
This type of consensus protocol can simplify the implementation, system design and
reduce control energy and cost (Guo et al. 2011). The past decade has witnessed the
dramatic progresses in the endeavor of asymptotic consensus problems for various
agent dynamics and graph topologies (Canale et al. 2013; Ghommam et al. 2013;
Zhang and Wang 2015). Compared with the asymptotical control method, a finite-
time control approach demonstrates higher control accuracy, stronger robustness
and disturbance rejection properties besides a faster convergence rate (Moulay and
Perruquetti 2008; Ghasemi and Nersesov 2014; Ghasemi et al. 2014b). Therefore,
many results related to finite-time consensus of MAS, have been developed in recent
years from different perspectives.

Among other robust control strategies, the sliding mode control technique is an
effective and popular robust control strategy for controlling systems affected by
uncertainties and external disturbances. The major drawback of sliding mode control
is chattering,the high frequency switching in the control input. Which makes it very
difficult to implement in real time applications. Sliding mode control method com-
bined with Finite-time consensus problem have been adopted in many cases (Khoo
et al. 2009; Ghasemi et al. 2014a, b; Ghasemi and Nersesov 2014; He et al. 2014;
Yu and Long 2015). In Khoo et al. (2009), He et al. (2014), Ghasemi et al. (2014b)
the use of sliding mode control is discussed in formation control to achieve the finite
time convergence of the agents. But these methods are restricted to the second order
agent dynamics only, suffers significantly with the high frequency chattering. As
the control input is in the direct influence of the switching function. So the use of
terminal sliding mode in consensus control is also affected with chattering. Which is
again a main drawback while considering it in practical applications. As it can easily
damage the actuators.

The high-order sliding mode (HOSM) control is developed with higher accuracy,
robustness and reduction of the chattering phenomenon (Levant 1993, 2001).

In Zuo (2015) a fixed-time consensus tracking problem for second-order MAS is
developed to estimate the convergence time off-line. An integral slidingmode control
for double integrator MAS is recently reported in Yu and Long (2015). All these new
consensus control techniques can only be usedwhen the agent dynamics are of second
order,i.e. double integrators only. In many practical cases, this assumption can be
very restrictive as the agent dynamics can be of any order and can have dynamics
also (Zhang and Wang 2015). So designing a more general finite time controller
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for higher order agent dynamics is still a considerable challenge. To the best of the
authors’ knowledge, the sliding mode technique has not been addressed for more
general nonlinear high order MAS.

In this chapter we proposed an integral adaptive super twisting control technique
for a more general nonlinear higher order MAS. The use of adaptive law gives us
the flexibility of tuning the parameter automatically without knowing the bounds
of the disturbances a priori. Thus the proposed controller is more generalized can
be effectively implemented to any higher order linear or nonlinear agent dynamics.
Therefore the original contribution of this paper is to propose a finite-time control
technique for more general higher order nonlinear agent dynamics. A new adaptive
homogeneous integral sliding surface is used to guarantee the finite time convergence
and chattering elimination for the MAS. The use of HOSM guarantees the higher
accuracy and robustness to uncertainties and external disturbances.

The main contributions are listed as follows:

• In coordination control the agent dynamics are generally considered as second
order i.e. the chain of integrators only (Khoo et al. 2009; Zhao et al. 2011; Ghasemi
et al. 2014a; He et al. 2014; Yu and Long 2015; Zuo 2015). Proposed technique
can easily be extended to a much more complex higher order nonlinear agent
dynamics.

• The consensus control is proposed for higher order agent dynamics with higher
relative degree more or equal to 2.

• The distributed consensus control law for each agent, as well as the over all control
protocol using the Laplacian matrix is proposed for the MAS.

• Integral sliding surface with adaptive super twisting algorithm is proposed for the
consensus protocol.

• The control protocol is more suitable to alleviate the chattering problem. Hence it
is more effective for electromechanical applications.

The rest of the paper is organized as follows. Sections11.2 and 11.3 includes the
mathematical preliminaries and problem formulation. The finite time consensus con-
trol are explained in Sect. 11.4. Section11.5 provides the illustrative examples. The
conclusions are given in Sect. 11.6.

11.2 Mathematical Preliminaries

In this section, we present some preliminary notations on graph theory, finite-time
stability and homogeneous finite-time consensus of MAS to be used throughout the
paper, and then formulate the finite-time consensus tracking problem of higher-order
MAS with external disturbances.

Lemma 1 Consider a system described with ẋ = f (x)with f (0) = 0 and there exists
a continuous differential positive-definite function V (x) : D → �, and β > 0, 0 <

η < 1, p, η ∈ � such that
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V̇ (x) + βV η(x) ≤ 0 ∀x ∈ D (11.1)

Then, the origin of the system is a locally finite-time stable (Moulay and Perruquetti
2008), with the settling time depending on the initial state x(0) = x0, satisfies

T(x0) ≤ V 1−η(x0)

β(1 − η)
(11.2)

Graph Theory

Consider a multi-agent system consisting of one leader and N followers. The com-
munication topology, i.e. the information exchange between agents, is modeled by a
weighted directed graph G = {ν, ε,A}, where ν = 0, 1, 2, . . . ,N is the vertex set of
the agents, node i represents the ith agent, ε = {(i, j) ⊆ ν × ν}, where ν is the set of
vertices while ε represents the set of edges respectively. The weight adjacencymatrix
A = (aij ≥ 0) ∈ �(N×1)×(N×1). (i, j) ∈ ε means that there is an directed information
flowbetween agent i and agent j. In otherway an edge denoted by an unordered pair of
agents (i, j) ∈ ε if and only if there is a communication link between i and j and there
is no self edge in the graph i.e. (i, i) /∈ ε. The adjacency elements are associated with
the edges are positive, i.e. (i, j) ∈ ε ⇔ aij = aji > 0, otherwise aij = aji = 0, aii =
0, ∀i ∈ ν because of (i, i) /∈ ε. For the leader-follower MAS, another graph Ḡ can
be considered to associate the system consisting of N followers with the leader. The
leader adjacencymatrix is defined as B̄ = [b1, b2, . . . , bN ]T ∈ �N with the adjacency
element bi > 0 if agent i is a neighbor of the leader, otherwise bi = 0. The followers
can receive information from the leader, but cannot send information to the leader.
LetD = diag(d0, d1, . . . , dN ) ∈R

N×N be a diagonal matrix, where di =∑n
j=0 aij for

i = 0, 1, . . . ,N . Laplacian of the weighted graph can be defined as

L = D − A (11.3)

Lemma 2 In a directed graph G = {ν, ε,A}, the Laplacian matrix L, has at least
one zero eigenvalue and all of the non-zero eigenvalues are in the open right-half
plane. AlongwithL has exactly one zero eigenvalue if and only ifG has a rooted span-
ning tree. Furthermore, Rank(L) = N if and only if L has a simple zero eigenvalue
(Ren and Beard 2005).

Let us consider Ḡ = {ν̄, ε̄, Ā} be the subgraph, which is formed by N followers

Ā =
⎛

⎜
⎝

a11 a12 · · · a1n
...

...
. . .

...

aN1 aN2 · · · aNn

⎞

⎟
⎠ (11.4)

Let D̄ = diag(d̄1, d̄2, . . . , d̄N ) be a diagonal matrix, d̄i =∑N
j=1 aij,∀i = 1, . . . ,N.

Then the Laplacian of graph L̄ is defined as
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L̄ = D̄ − Ā (11.5)

The Laplacian matrix L̄ is having the same properties of L i.e.

aij =
{

1, if (j, i) ∈ ε
0, otherwise

(11.6)

The connection weight between agent i and leader is represented by

bi =
{

1, if agent i is connected to the leader
0, otherwise

(11.7)

11.3 Problem Formulation

Suppose the ith follower is governed by nth order dynamics as,

ẋi = Fi(xi, t) + Gi(xi, t)ui i = 1, 2, . . . ,N

yi = hi(xi) (11.8)

where xi ∈ �n, ui ∈ �, and Fi(xi, t) = F0(xi, t) + ΔFi(xi, t) and Gi(xi, t) =
G0(xi, t) + ΔGi(xi, t) are n dimensional vector fields. It is assumed that F0(xi, t)
and G0(xi, t) are known functions, while ΔFi(xi, t) and ΔGi(xi, t) are unknown
bounded uncertainties.

The Lie derivative of the output function hi(xi) with respect to the vector field
Fi(xi, t) can be obtained as follows:

LFihi(xi) = ∂h

∂x
Fi(xi, t) (11.9)

Also the Lie derivative of LFihi(xi) with respect to the vector field Gi(xi, t) can be
defined as:

LGiLFihi(xi) = ∂

∂x
(LFihi(xi))Gi(xi, t) (11.10)

Since the follower (11.8) has a relative degree, r = n, therefore one can easily obtain:

LGiL
k−1
Fi

hi(xi) = 0 ∀k = 1, 2 . . . , n − 1

LGiL
n−1
Fi

hi(xi) 
= 0 (11.11)

Using above, the nth derivative of the output can be obtained as:

yni = Ln
Fi
hi(xi) + LGiL

n−1
Fi

hi(xi)ui (11.12)
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So the ith follower (11.8) can be transformed as:

ẋi1 = xi2
ẋi2 = xi3

...

ẋin = fi(xi) + gi(xi)ui i = 1, 2, . . . ,N

= fi0(xi, t) + gi0(xi, t)ui + Δfi(xi, t) + Δgi(xi, t)ui
︸ ︷︷ ︸

∇i

yi = xi1 (11.13)

where fi = Ln
Fi
hi and gi = LGiL

n−1
Fi

hi 
= 0 are the Lie derivatives. It is also assumed
that, fi(xi, t) = fi0(xi, t) + Δfi(xi, t) and gi(xi, t) = gi0(xi, t) + Δgi(xi, t).
Δfi(xi, t) and Δgi(xi, t) are unknown uncertainties and external disturbances, whose
upper bound is known. fi0(xi, t) and gi0(xi, t) are known nominal functions and avail-
able for feedback. gi0(xi, t) is invertible.

Now xi1 ∈ � is the output of the ith agent, xi = [xi1, xi2, . . . xin]T ∈ �n are the state
variables, ui ∈ � is the control input for the ith agent. ∇i = Δfi(xi, t) + Δgi(xi, t)ui
is the unknown disturbances and uncertainties of the ith agent. For further analysis
we assume, the disturbance is bounded and continuously differentiable.

The leader dynamics can be modeled as

ẋ01 = x02
...

ẋ0n = u0
y0 = x01 (11.14)

where x0 = [x01, . . . , x0n]T ∈ �n are the state vectors of the leader, y0 = x01 ∈ � is
the output. u0 ∈ � is the control input. Here the leader dynamics is considered as a
chain of integrators only, as the leader will act as a signal generators for the followers.

The homogenous MAS (11.13) is said to reach consensus in finite time, if for any
initial condition, there exists a finite-time such that limt→T0(xi1 − x01) = 0.

In this section, the finite-time consensus algorithm for nth order MAS with one
leader under the directed network topology is proposed. The dynamics of the follow-
ers and the single leader are given by (11.13) and (11.14). Let χ1 = [e11, . . . , e1N ]T ,
χ2 = [e21, . . . , e2N ]T and χn = [en1, . . . , enN ]T . Here for each follower, define the con-
sensus tracking errors

e1i =
N
∑

j=1,j 
=i

aij(xi1 − xj1) + bi(xi1 − x01)
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e2i =
N
∑

j=1,j 
=i

aij(xi2 − xj2) + bi(xi2 − x02)

...

eni =
N
∑

j=1,j 
=i

aij(xin − xjn) + bi(xin − x0n) (11.15)

The error dynamics can be written as,

χ̇1 = χ2

χ̇2 = χ3

...

χ̇n = (L̄ + B̄)f (χ) + (L̄ + B̄)g(χ)u + (L̄ + B̄)∇
︸ ︷︷ ︸

do

− B̄1̄u0 (11.16)

where f (χ) = [f10(x1), . . . , fN0(xN )]T , g(χ) = diag[g10(x1), . . . , gN0(xN )], u =
[u1, u2, . . . , uN ]T , 1̄ = [1, . . . , 1]T ∈ �N and ∇ = [∇1,∇2, . . . ,∇N ]T and do is the
over all uncertainty.

Let us consider the leader-follower system given by (11.13) and (11.14). Also let
the directed graph G has a directed spanning tree and χ1 = 0,χ2 = 0 and χn = 0,
then

[x11 . . . xN1]T = 1̄x01 (11.17)

[x1n . . . xNn]T = 1̄x0n (11.18)

Now e1i =∑N
j=1,j 
=i aij(xi1 − xj1) + bi(xi1 − x01), when χ1 = 0 it is easy to see that

(L̄ + B̄)

⎛

⎜
⎝

x11
...

xN1

⎞

⎟
⎠ = B̄1̄x01 (11.19)

Since L̄1̄ = 0, we have

(L̄ + B̄)

⎛

⎜
⎝

x11
...

xN1

⎞

⎟
⎠ = (L̄1̄ + B̄1̄)x01 = (L̄ + B̄)1̄x01 (11.20)
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We know the matrix (L̄ + B̄) is invertible (Khoo et al. 2009; Zhao et al. 2011; He
et al. 2014). Hence one can easily write

⎛

⎜
⎝

x11
...

xN1

⎞

⎟
⎠ = 1̄x01 (11.21)

Remark 1 Sometime fixed distances are expected to be maintained between the
leader and the followers. Then the consensus error can be defined by following way:

e1i =
N
∑

j=1,j 
=i

aij(xi1 + Δi − xj1 − Δj) + bi(xi1 + Δi − x01 − Δ0) (11.22)

where Δi represents the distance between the agent i and the leader in different
directions, i = 1, 2, . . . ,N (Khoo et al. 2009; Zhao et al. 2011).

Remark 2 The missing derivatives of eji, j = 1, . . . ,N and i = 1, . . . ,N, can be
estimated by means of the robust exact finite time convergent differentiator (Levant
2003).

11.4 Homogeneous Finite-Time Consensus Control
with Integral Sliding Mode Control

With the notations above, the control objectives can be summarized as: to develop
an adaptive control approach for nth order nonlinear MAS (11.13) with correspond-
ing stability analysis, and to make the leader-follower system finite-time stable. To
converge the error dynamics (11.16) in finite-time, let us consider an integral sliding
surface (Feng et al. 2014) is given by

s = χn +
∫ t

t0

{kn|χn|αn sign(χn) + kn−1|χn−1|αn−1sign(χn−1)

+ · · · + k1|χ1|α1sign(χ1)}dτ (11.23)

where kl and αl(l = 1, 2, . . . , n) are constants. kl can be found such ψ ∈ � the
polynomial

ψn + knψ
n−1 + · · · + k2ψ + k1 (11.24)

is Hurwitz, αl can be obtained satisfying the following conditions
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α1 = α, n = 1

αl−1 = αlαl+1

2αl+1 − αl
, l = 2, . . . , n ∀n ≥ 2 (11.25)

where αn+1 = 1, αn = α,α ∈ (1 − ε, 1), ε ∈ (0, 1).
When the ideal sliding-mode ṡ = 0 is reached, one can easily get

χ̇n + kn|χn|αn sign(χn) + kn−1|χn−1|αn−1sign(χn−1)

+ · · · + k1|χ1|α1sign(χ1) = 0

χ̇n = −kn|χn|αn sign(χn) − kn−1|χn−1|αn−1sign(χn−1)

− · · · − k1|χ1|α1sign(χ1) (11.26)

Hence the error dynamics (11.16) can be expressed as,

χ̇1 = χ2

...

χ̇n = −kn|χn|αn sign(χn) − kn−1|χn−1|αn−1sign(χn−1)

− · · · − k1|χ1|α1sign(χ1) (11.27)

which represents the establishment of the ideal sliding-mode s = 0, for system
(11.16). It can converge to its equilibrium point from any initial condition in finite-
time (Bhat and Bernstein 2005).

Theorem 1 The error dynamics (11.16) will converge to equilibrium in finite-time
along s = 0, if the sliding surface s is selected as (11.23) and the control law is
designed as follows:

u = [g(χ)(L̄ + B̄)]−1[unom + usw]
unom = B̄1̄u0 − (L̄ + B̄)f (χ) − kn|χn|αn sign(χn) − kn−1|χn−1|αn−1sign(χn−1)

− · · · − k1|χ1|α1sign(χ1)

usw = −λ|s|1/2sign(s) − κ

∫ t

0
sign(s)dτ (11.28)

where λ and κ are positive constants and and the inverse of g(χ)(L̄ + B̄) exists.

Distributed Format of the Control Law

For the ith agent (11.13) with error dynamics (11.15), the ith sliding variable can be
expressed as

si = eni +
∫ t

t0

{kin|eni |αin sign(eni ) + ki(n−1)|en−1
i |αi(n−1)sign(en−1

i )

+ · · · + ki1|e1i |αi1sign(e1i )}dτ (11.29)
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where kil and αil (∀i = 1, 2, . . . ,N and l = 1, . . . , n) are constants. kil can be found
such ψ ∈ � the polynomial

ψn + kinψ
n−1 + · · · + ki2ψ + ki1 (11.30)

is Hurwitz, αil ∀ l = 1, . . . n can be obtained satisfying the following conditions
(Defoort et al. 2009)

αil = α, n = 1, i = 1 . . .N

αi(l−1) = αilαi(l+1)

2αi(l+1) − αil
, l = 2, . . . , n ∀n ≥ 2, i = 1, . . . ,N (11.31)

where αi(n+1) = 1, αil = α,α ∈ (1 − ε, 1), ε ∈ (0, 1).
Matrix L̄ + B̄ has been proved invertible (Khoo et al. 2009; Zhao et al. 2011).

Note that L̄ + B̄ = D̄ + B̄ − Ā, therefore error dynamics (11.16) can be written as

χ̇1 = χ2

χ̇2 = χ3

...

χ̇n = (D̄ + B̄)f (χ) − Āf (χ) + (D̄ + B̄)g(χ)u

− Āg(χ)u + (D̄ + B̄ − Ā)∇ − B̄1̄u0 (11.32)

The error dynamics (11.32) of ith agent will converge to equilibrium in finite-time
along si = 0 within, if the sliding-mode surface si is selected as (11.23) and the
control is designed as follows:

u = [g(χ)(D̄ + B̄)]−1[unom + usw]
unom = B̄1̄u0 + Āg(χ)u + Āf (χ) − (D̄ + B̄)f (χ) − kn|χn|αn sign(χn)

−kn−1|χn−1|αn−1sign(χn−1) − · · · − k1|χ1|α1sign(χ1)

usw = −λ|s|1/2sign(s) − κ

∫ t

0
sign(s)dτ (11.33)

where the inverse of [g(χ)(D̄ + B̄)] exists.
So in distributed format the control law can be written as

ui =
⎧

⎨

⎩

⎛

⎝

N
∑

j=1,j 
=i

aij + bi

⎞

⎠ gi0

⎫

⎬

⎭

−1

[unomi + uswi ]

unomi = biu0 +
N
∑

j=1,j 
=i

aij(fj0(xj) + gj0(xj)uj) −
⎛

⎝

N
∑

j=1,j 
=i

aij + bi

⎞

⎠ fi0(xi)
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−kin|eni |αin sign(eni ) − ki(n−1)|en−1
i |αi(n−1)sign(en−1

i )

− · · · − ki1|e1i |αi1sign(e1i )

uswi = −λi|si|1/2sign(si) − κi

∫ t

0
sign(si)dτ (11.34)

where λi and κi are positive constants and (
∑N

j=1,j 
=i aij + bi)gi0 is invertible. uj is
the control information of the jth agent.

In the above control law the values of λi and κi must be known a priori.
For the error system (11.16) the sliding surface can be written as,

s = χn +
∫ t

t0

{kn|χn|αn sign(χn) + kn−1|χn−1|αn−1sign(χn−1)

+ · · · + k1|χ1|α1sign(χ1)}dτ

ṡ = (L̄ + B̄)f (χ) + (L̄ + B̄)g(χ)u + (L̄ + B̄)∇
︸ ︷︷ ︸

do

−B̄1̄u0 + kn|χn|αn sign(χn)

+ kn−1|χn−1|αn−1sign(χn−1) + · · · + k1|χ1|α1sign(χ1)

(11.35)

Using (11.28) one can easily obtain

ṡ = usw + do (11.36)

In the control design (11.28) the values of λ and κ must be known a priori. In this
work the proposed consensus algorithm, the values of λ and κ are chosen adaptively
to reject the perturbations and convergence the sliding surface in finite time.

Hence the switching control in (11.28) can be written as

usw = −λ̂φ1(s) −
∫ t

0
κ̂φ2(s)dτ (11.37)

where λ̂ and κ̂ are unknown adaptive parameters. φ1(s) and φ2(s) are related as,

φ1(s) = λ3s + |s|1/2sign(s)
φ2(s) = λ2

3s + 1/2sign(s) + 3/2λ3|s|1/2sign(s),λ3 > 0. (11.38)

Whenλ3 = 0 and λ̂ = λ and κ̂ = κ are constants, it is just like a simple super twisting
algorithm. Let us consider the disturbance is bounded and satisfies the following
equalities (Rath et al. 2015),

do(x, t) = d1o(x, t) + d2o(x, t)

|d1o(x, t)| ≤ �1|s| and |ḋ2o(x, t)| ≤ �2 (11.39)

where �1 and �2 are positive constants.
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The term λ3 is tuned in order to withstand the exciting perturbation terms.

Theorem 2 Considering the system (11.36) satisfying the conditions s(0) > μ1 and
|s| ≤ η̄1 and |ṡ| ≤ η̄2, is established if the adaptive gains are calculated as (Shtessel
et al. 2010, 2012),

˙̂
λ =

{

ω1

√
δ1
2 sign(|s| − μ1), if λ̂1 ≥ δm

ζ, λ̂1 < δm

κ̂ = 2ε∗λ̂ (11.40)

where ε∗, δ1,ω1,μ1, δm are arbitrary positive constants and and η̄1 ≥ μ1, η̄2 > 0.

Proof For finite time convergence the sliding surface dynamics can be simplified as,

ṡ = ρ − λ̂φ1(s) + d1o(x, t)

ρ̇ = −κ̂φ2(s) + ḋ2o(x, t) (11.41)

We consider a new state vector as,

γ =
[

γ1
γ2

]

=
[

φ1(s)
ρ

]

(11.42)

Its derivative can be written as,

γ̇ =
[

(λ3 + 1/2|s|−1/2)(ρ − λ̂φ1(s)) + d10
−κ̂φ2(s) + ḋ2o

]

=
(

λ3 + 1/2|s|−1/2

)(

A0γ +
[

d1o(s)
0

])

+
[

0
ḋ2o

]

(11.43)

where Ao is a Hurwitz matrix selected as,

A0 =
[−λ̂ 1

−κ̂ 0

]

(11.44)

To analyze stability of the system, a Lyapunov function chosen as,

V1(γ,λ, θ) = Vγ + 1

2δ1
λ̃2 + 1

2δ2
κ̃2 (11.45)

where λ̃ = λ̂ − λ and κ̃ = κ̂ − κ, i.e. estimated value minus the actual value. The
function Vγ is given by,
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Vγ = γTPγ (11.46)

P =
[

μ + 4ε2∗ −2ε∗
−2ε∗ 1

]

. (11.47)

where P is positive definite, for any μ > 0 and ε∗ > 0.

Where the time derivative of Vγ can be obtained as,

V̇γ =
(

λ3 + 1/2|s|−1/2

)(

γT
(

AT
0P + PA0

)

γ + 2γTP

[

d1o(s)
0

])

+ 2γTP

[
0
ḋ2o

]

(11.48)

Now ḋ20 = ρ2φ2. Thus it can be simplified as,

V̇γ =
(

λ3 + 1/2|s|−1/2

)(

γT
(

AT
0P + PA0

)

γ + 2γTP

[

ρ1γ
0

])

+
(

λ3 + 1/2|s|−1/2

)

2γTP

[

0
ρ2γ

]

(11.49)

Thus it can be simplified as,

V̇γ = −
(

λ3 + 1/2|s|−1/2

)

γTQγ < 0 (11.50)

where P and Q are related by

ATP + PA = −Q (11.51)

The symmetric matrix Q1 can be given as,

Q =
[

2(λ̂ − ρ1)(μ + 4ε2∗) − 4ε∗(κ̂ − ρ3) ∗
κ̂ − 2λ̂ε∗ + 2ε∗ρ1 − ρ3 − (μ + 4ε2∗) 4ε∗

]

If we choose

κ̂ = 2λ̂ε∗ (11.52)

and

λ̂ >
(2ε∗ρ1 + ρ3 − (μ + 4ε2∗))2

8ε∗(μ + 4ε2∗) − 32ε3∗
+ 8ε∗ρ1(μ + 4ε2∗) − 16ε2∗ρ3

8ε∗(μ + 4ε2∗) − 32ε3∗
(11.53)

then Q is positive definite. Since
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ξmin{P}||γ||2 ≤ γTPγ ≤ ξmax{P}||γ||2 (11.54)

From (11.42) we have,

||γ||2 = γ2
1 + γ2

2 ≥ λ2
3|s| (11.55)

and

|γ1| ≤ ||γ|| ≤ V 1/2

ξ
1/2
min{P} (11.56)

Thus we can conclude that,

V̇γ ≤ r1V
1/2
γ − r2Vγ (11.57)

where r1 = ν
ξmin(Q)

ξ
1/2
max(P)

λ2
3

2
and r2 = ν

ξmin(Q)

ξmax(P)
. where 0 < ν < 1 is a positive constant.

Taking the derivative of Now in view of the above analysis derivative of Lyapunov
function can be obtained as,

V̇1(γ, λ̂, κ̂) = γ̇TPγ + γTPγ̇ + 1

δ1
(λ̂ − λ)

˙̂
λ

1

δ2
(κ̂ − κ) ˙̂κ ≤ −rV 1/2

γ − r2Vγ − ω1√
2δ1

|(λ̂ − λ)|

− ω2√
2δ2

|(κ̂ − κ)| + 1

δ1
(λ̂ − λ)

˙̂
λ + 1

δ2
(κ̂ − κ) ˙̂κ

+ ω1√
2δ1

|(λ̂ − λ)| + ω2√
2δ2

|(κ̂ − κ)| (11.58)

Using Lemma 1 one can easily write

−r1V
1/2
γ − ω1√

2δ1
|(λ̂ − λ)| − ω2√

2δ2
|(κ̂ − κ)| ≤

−η1[V1(γ, λ̂, κ̂)]1/2 (11.59)

where η1 = min(r,ω1,ω2) Using the above inequities one can easily write,

V̇1(γ, λ̂, κ̂) ≤ −η1[V1(γ, λ̂, κ̂)]1/2 − r2Vγ

+ 1

δ1
(λ̂ − λ)

˙̂
λ + 1

δ2
(κ̂ − κ) ˙̂κ

+ ω1√
2δ1

|(λ̂ − λ)| + ω2√
2δ2

|(κ̂ − κ)| (11.60)
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Now let us assume that the adaptation law makes the adaptive gains bounded i.e.
(λ̂ − λ) < 0 and (κ̂ − κ) < 0. From the above assumptions one can write that

V̇1(γ, λ̂, κ̂) ≤ −η1[V1(γ, λ̂, κ̂)]1/2
−|(λ̂ − λ)|( ˙̂λ/δ1 − ω1/

√

2δ1)

−|(κ̂ − κ)|( ˙̂κ/δ2 − ω2/
√

2δ2) (11.61)

By selecting ˙̂
λ = ω1

√
δ1
2 and ˙̂κ = ω2

√
δ2
2 , one can easily get, ε∗ = ω2

ω1

√
δ2
δ1
. Thus it

follows that,

V̇1(γ1, λ̂, κ̂) ≤ −η1[V1(γ1, λ̂, κ̂)]1/2 − r2Vγ (11.62)

In order to achieve the finite time convergence it is necessary that λ̂ satisfies inequality

(11.53). It implies that λ̂ increases in accordance with ˙̂
λ = ω1

√
δ1
2 until (11.53) is

met which guarantees the positive definiteness of matrix Q.
In the condition when |s| < δ

˙̂
λ =

{

−ω1

√
δ1
2 if λ̂ ≥ δm

ζ, λ̂ < δm

(11.63)

V̇1(γ, λ̂, κ̂) ≤ −η1[V1(γ, λ̂, κ̂)]1/2

−2|(λ̂ − λ)|(1 − 1√
2δ1

) (11.64)

By selecting ˙̂
λ = −ω1

√
δ1
2 It can be deduced that second equation in (11.64) is valid

for a finite duration. As soon as λ becomes less than or equal to δm Then the equation
in (11.64) is valid. The derivative of the Lyapunov function becomes sign indefinite.
During the adaptation process the sliding variable reaches the domain in finite time.
It is however guaranteed that it always stays in a larger domain in the real sliding
mode.

11.5 Results

Example 1 Second order MAS A leader-follower system composed of five agents
was considered (Khoo et al. 2009; Zhao et al. 2011), where the leader was indexed
by 0, and the four followers were indexed by 1, 2, 3 and 4, respectively. The com-
munication topology graph is shown in Fig. 11.1.
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Fig. 11.1 The
communication graph

In this section, we consider the agent dynamics are of second order. As compared
to Khoo et al. (2009), Zhao et al. (2011) where agents dynamics were considered to
be simple double integrators only, here we added some input dynamics in the agent

ẋi1 = xi2
ẋi2 = x2i1 + xi2 cos(xi2) + ui + 0.01 sin(xi1) (11.65)

where i = 1, . . . 4. The term di = 0.01 sin(xi1) represents the uncertainty. The initial
conditions of the agents are taken as [x011 x012]T = [1 0]T ,[x021 x022]T = [1.2 0]T ,
[x031 x032]T = [2 0]T , [x041 x041]T = [−1.2 0]T .

The control objective is to track the leader whose dynamic equation is given by
Khoo et al. (2009), Zhao et al. (2011)

ẋ01 = ẋ02
ẋ02 = − sin(x01)/(1 + e−t) (11.66)

The initial conditions of the leader is [x001 x002]T = [π/2 0]T .
In order to obtain the finite time convergence and to mitigate the chattering, we

design an integral sliding mode controller using adaptive super twisting algorithm.
The sliding surface for the agents can be chosen as

s = χ2 +
∫ t

t0

{k2|χ2|α2sign(χ2) + k1|χ1|α1sign(χ1)}dτ (11.67)

k1 = diag([0.3, 0.3, 0.3, 0.3]), k2 = diag([0.45, 0.45, 0.45, 0.45]), α2 = 2/3,α1 =
1/2. The control law for each agent can be obtained from (11.28), where the design
parameters for the adaptive STA controller are selected as, ω1 = 100, ζ = 2, δm =
2, δ = 2,μ1 = 2 and ε = 0.02.
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Consensus tracking, control signal sliding surface and estimated adaptive para-
meters using the proposed method (11.28) are shown in Figs. 11.2, 11.3, 11.4 and
11.5. It is clear that, the outputs of the followers track accurately that of the leader.

The control input of each follower is provided in Fig. 11.3. Since the adaptive
super twisting algorithm is used hence the control signal is much more smooth and
it is more superior in eliminating chattering problem in the MAS.
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The convergence of sliding surfaces and estimated parameters are shown in
Figs. 11.4 and 11.5 respectively.

Example 2 Third order MAS The effectiveness of the proposed control technique
for higher-orderMAS, the following directed topologies Fig. 11.6,with five followers
and one leader are selected for the simulation.
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Fig. 11.6 The
communication graph

Now we consider the agent dynamics are of third order

ẋi1 = xi2
ẋi2 = xi3
ẋi3 = x2i2 + xi2xi3 + ui + di. i = 1, . . . n. (11.68)

where di 
= 0 are the uncertainties, chosen as:
d1=1.15 sin(0.3t + pi/3), d2 = 1.6 sin(0.1t + pi/6), d3=1.25 sin(0.4t + pi/3),
d4 = sin(0.5t + pi/2), d5 = 1.5 sin(0.6t + pi/2). Control objective is to design a
controller such that the agents follow the path of leader. The output of the leader is
considered as y0 = t. The initial conditions of the agents are taken as [x011 x012 x013]T =
[−2 0 0]T , [x021 x022 x023]T = [6 3 − 3]T , [x031 x032 x033]T = [3 0 3]T , [x041 x042 x043]T =
[−5 − 5 0]T , [x051 x052 x053]T = [5 0 0]T . The sliding surface chosen from (11.23) for
the agents are taken as

s = χ3 +
∫ t

t0
{k3|χ3|α3sign(χ3) + k2|χ2|α2sign(χ2) + k1|χ1|α1sign(χi1)}dτ

where α3 = 3/4,α2 = 3/5,α1 = 1/2, k1 = 1 × diag([2, 2, 2, 2, 2]), k2 = 1 ×
diag([3, 3, 3, 3, 3]), k3 = 1 × diag([4, 4, 4, 4, 4]). The control law for each agent
can be obtained from (11.28) where λ = 2.2 × diag([2, 2, 2, 2, 2]) and θ = 2.2 ×
diag([3, 3, 3, 3, 3]).

The design parameters for the adaptive STA controller are selected as, ω1 =
100, ζ = 2, δm = 2, δ = 2,μ1 = 2 and ε = 0.02.

Simulation results are shown in the Figs. 11.7, 11.8 and 11.9.
The consensus tracking performance of the MAS under the proposed consensus

protocol with different topologies are shown in Figs. 11.7, 11.8 and 11.9, fromwhich
it can be observed that the leader is accurately followed by the followers. From
the above two examples, it can be observed that the proposed method can realize
the globally finite-time stability of the nth-order MAS using a higher-order sliding
surface. In addition, the control signals are smooth, as shown in Fig. 11.3, which
means that the chattering problem in slidingmode control has been further attenuated.
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11.6 Conclusion

An adaptive finite time consensus protocol is developed for higher-order nonlinear
multi-agent systems(MAS) using higher-order integral sliding mode. The proposed
method shows the finite-time tracking of the agents. The consensus control law
generalizing the results to the systems of relative degree more or equal than two. The
switching control is obtained by using adaptive super twisting algorithm, h thus it
alleviates the chattering effectively. The adaptive tuning law estimates the bounds of
the uncertainties without knowing it a priori. The finite-time convergence analysis
of higher-order MAS is obtained by using strict Lyapunov function.
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Chapter 12
MPPT Controllers Based on Sliding-Mode
Control Theory and Fuzzy Logic
in Photovoltaic Power Systems:
A Comparative Study

Radhia Garraoui, Mouna Ben Hamed and Lassaad Sbita

Abstract In this chapter we will deal with a comparative study between two control
methods formaximumpower point tracking (MPPT) algorithms in photovoltaic (PV)
systems. The two MPPT controllers considered in this chapter are: the Fuzzy Logic
Controller (FLC) and the Sliding Mode Controller (SMC). The MPPT controller
based on the fuzzy-logic-algorithm uses directly the DC-DC converter duty cycle
as a control variable and it provides a fast response and good performances against
the climatic and load changes. The SMC exhibits a very fast response for tracking
the maximum power point (MPP) for photovoltaic systems. The input parameters
are the voltage and the current, the duty cycle is used to generate the optimal MPP
under different operating conditions. Simulation results show that both algorithms
can effectively perform the MPPT hence improving the efficiency of PV systems.
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Nomenclature

G : Global insulation (W/m2) α : Duty cycle
Gn : Reference insulation (W/m2) Kb : Boltzmann constant
T : Cell Junction temperature (◦C) Kb = 1.3806 × 10−23

Tr : Reference cell temperature (◦C) Eg : Band gap energy (eV)
i pv : Output PV current (A) q : Charge of an electron (C)
IL : Inductance current (A) C : Capacitors (F)
Iph : Light-generated current (A) L : Inductance (H)
Irr : Saturation current (A) at Tre f Ki : a Isc/T Coefficient (A/K)
Vpv : PV output voltage (V) rci : Parasitic resistance (Ω)

A : Ideality factor rl,pv : Parasitic resistance (Ω)

12.1 Introduction

Photovoltaic (PV) is amanner of converting solar energy into direct current electricity
using semi conducting materials that manifest the photovoltaic effect, a phenomenon
commonly studied in physics. A photovoltaic system employs solar panels composed
of a number of solar cells to supply usable solar power.

Generating power from solar PV has long been seen as a clean, sustainable energy
technology, which draws upon the planet’s most plentiful and widely distributed
renewable energy source which is the sun. The direct conversion of sunlight to elec-
tricity occurs without anymoving parts or environmental emissions during operation.
Conventional energy resources in the world are threatened.Moreover, they emit large
amounts of greenhouse gas emissions responsible for climate change.

Many pollution problems can be avoided if electrical power is generated from
renewable energy sources rather than traditional fossil fuels (Bose 2010). The use of
some types of renewable energy increased notably in recent years, with its advantages
of being pollution-free. In particular, wind, solar, and hydroelectric systems can
generate electricity without air pollution emissions (Ran and Boyce 1996; Young
1964) and can help to reduce energy prices in the future. For these reasons, renewable
energy resources are receiving increasing interest in recent years being photovoltaic
(PV) energy one of the most attractive sources due to its abundance.

PV generators have a nonlinear current-voltage or power-voltage characteristic
with a maximum power point (MPP) depending on the atmospheric conditions,
namely the irradiance and the temperature. Therefore, a maximum power point
tracking (MPPT) system is required to ensure that the PV always operates at its
MPP regardless of the temperature, insulation and load changes. The output of this
controller is fed-back to a DC-DC switching converter so that the array delivers a
maximum of energy.

Generally speaking, a PV system is composed of three key elements: The first one
consists of the PV array as a source of energy, the second one is the DC-DC converter
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Fig. 12.1 PV cell connecting

used as an interface which allows the adaptation of the energy flow between the PV
array and the load. The third block is the control system carrying the regulation of
some variables of interest with the aim to extract the MPP from the PV array. For
an appropriate operation of PV systems at maximum power, there are a variety of
methods that can be used (Koutroulis and Blaabjerg 2013).

12.2 Description of the PV System

A photovoltaic array called also a solar array consists of multiple photovoltaic mod-
ules, casually referred to solar panels, to convert solar radiation (sunlight) into usable
direct current (DC) electricity. In order to investigate the reliability of MPPT con-
trollers, a PV power system with a boost converter is considered. Solar PV modules
can be grouped together as an array of series and parallel connected modules to
provide any level of power requirements (Agorreta et al. 2013), from watts (W) to
kilowatt (KW) and megawatt (MW) size as shown in Fig. 12.1.

12.2.1 The Photovoltaic Effect

The photovoltaic effect is the basic process in which a solar cell converts sunlight
into electricity. The light is composed of tiny particles of electromagnetic energy
called photons. When photons are absorbed by a photovoltaic cell, which contains a
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Fig. 12.2 Photovoltaic system

Fig. 12.3 Model of a solar cell

semiconductor material such as silicon or platinum, the energy of the photon is trans-
ferred to an electron in an atom of the solar cell. The energized electron is then able
to escape its bond with the atom and generates an electric current. This leaves behind
a hole. Combined with a P-N junction, which is a layer within the photovoltaic cell
that is formed by the intimate contact of P-type and N-type semiconductors that cre-
ate an electric field, the holes move in the opposite direction from electrons, thereby
producing an electric current. The system under study is presented in Fig. 12.2.

We present also in Fig. 12.3 a proposition of an equivalent circuit model of a PV
cell which is composed of a light generator source, a parallel resistor expressing a
leakage current, a diode and a series resistor describing an internal resistance to the
current flow. The equivalent model of a PV cell can be described by the mathematical
expressions (12.1–12.3).

The parallel resistor Rp is neglected because of its large resistance and the series
resistor Rs is also neglected due to its very small resistance value. Neglecting these
two parameters simplifies significantly the numerical simulation without affecting
the accuracy. The first equation describes the output current of the cell:

ipv = Iph − Id

[

exp(
qVpv

kbT A
) − 1

]

(12.1)



12 MPPT Controllers Based on Sliding-Mode Control Theory … 219

Table 12.1 PV cell
parameters

q 1.6022.10−19 C Kb 1.3806.10−23 Tr 298 K

Eg 1.1557 (eV) Gn 1000 (W/m2) Iscr 3.45 A

Ki 0.60095 (A/K) Irr 5.98.10−8 A A 1.2

The equation of the PV current as a function of temperature and irradiance can be
written as follows:

Iph = G

Gn

[

Iscr + ki (T − Tr )
]

(12.2)

The saturation current equation is given by:

Id = Irr

[
T

Tr

]3

exp

(
qEg

kb A

[
1

Tr
− 1

T

])

(12.3)

The PV cell parameters used in this study are shown in Table12.1.

12.2.2 The Effect of Climatic Conditions on the PV Panel

Figures12.4 and 12.5 show the effect of varying weather conditions atMPP locations
at P-V curves. Figure12.4 shows that the open circuit voltage and the power increase
in the important solar irradiance value. It is thus observed that the reduction in the
intensity of irradiation involves a reduction in the power. According to the results
shown in the preceding Fig. 12.5, we note that, for the constant illuminations, while
the temperature increases, the open circuit voltage (Voc) will decrease. This is the
result of the reduction in the energy gap. The increase in the temperature causes
also a weak increase in the short circuit current. The fact that the reduction in the
open circuit voltage (Voc) is more significant with respect to the increase in the short
circuit current, the power production also will decrease.

The power production of the cell decreases gradually with the temperature and it
is proportional to the intensity of the incidental light. Thus we note that the effect of
the increase in solar cell’s temperature results a degradation of their performances.

12.3 Modeling the Boost Converter

Boost converters are appropriate to be used for performing MPPT in PV systems
because of their capability of delivering an output voltage larger than the low input
voltage of the PV panel. The DC/DC converters (Garraoui et al. 2013) is widely
used in regulating switch mode DC power supplies. The input of these converters
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Fig. 12.4 P-V
characteristics under
different irradiance
and T = 25 ◦C
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Fig. 12.6 Model of a boost converter

is an unregulated DC voltage, which is obtained by PV array and therefore it will
be fluctuated due to changes in radiation and temperature. In these converters the
average DC output voltage must be controlled to be equated to the desired value,
although the input voltage is changing. The conventional DC/DC boost converter
circuit is shown in Fig. 12.6.

From the energy point of view, output voltage regulation in the DC/DC converter
is achieved by constantly adjusting the amount of energy absorbed from the source
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Fig. 12.7 Boost converter operating principle with the switch closed

Fig. 12.8 Boost converter operating principle with the switch open

and that injected into the load, which is in turn controlled by the relative durations
of the absorption and injection intervals.

These two basic processes of energy absorption and injection constitute a switch-
ing cycle. The conventional DC-DC boost converter circuit is shown in Fig. 12.6.
Depending on the position of the switch Sw, the system has two operating topologies
as shown in Figs. 12.7 and 12.8:

By applying Kirchhoff’s voltage law, we get the mathematical model of the sys-
tem. When the switch is OFF, the dynamics of the circuit are governed by the
following equation:

⎧

⎪⎨

⎪⎩

I = 1
L

∫

Vdt

V0 = − 1
C

∫ (
V0

RLoad

)

dt
(12.4)

When the switch is ON, the circuit is described by:

⎧

⎪⎨

⎪⎩

I = 1
L

∫

(V−V0)dt

V0 = 1
C

∫ (

I − V0
RLoad

)

dt
(12.5)

The average model of the system is given by:

⎧

⎪⎨

⎪⎩

I = ∫
1
L [V + (1 − u)V0]dt

V0 = ∫
1
C

[

I (1 − u) − V0
RLoad

]

dt
(12.6)



222 R. Garraoui et al.

12.4 MPPT Controller

The extraction of themaximumof power from the PVgenerator is then indispensable.
Therefore, maximum power point tracking (MPPT) controller accuracy becomes a
key control in the device operation for successful PV applications. TheMPPT control
is a challenging, because the sunshine condition that determines the amount of sun
energy into the PVG may change at any time.

Therefore, the PV system can be considered as a non-linear complex system.
NumerousMPPTmethods havebeendeveloped and implemented in previous studies,
for instance, perturb and observe (PδO) (Femia et al. 2005), fractional open-circuit
voltage approaches. These techniques have high tracking accuracy under stable inter-
nal and external condition, but still reveal some tradeoff between tracks speed and
tracking reliability when load values or weather conditions rapidly changes. In this
chapter, we choose to work with two MPPT controllers based on fuzzy logic and
sliding mode control.

12.4.1 Fuzzy Logic MPPT Controller

The conventional control theory is based on the use of mathematical models of the
process to be controlled and specification about the expected closed loop behav-
ior. Under parametric changes, these performances can be degraded. Fuzzy logic
(Rekioua et al. 2009; Patcharaprakiti 2005; Ammasai et al. 2009) based control does
not require a mathematical model of the system.

It uses general information on the process to be controlled and the required per-
formances are achieved by establishing some rules in the form of if-then sentences
according to which the controller takes the appropriate decision. The process of
Fuzzy Logic Controller (FLC) can be subdivided into three steps: first, fuzzification,
then rule evaluation, and finally defuzzification.

FLC is applied in designing the MPPT controller in this section. The input vari-
ables of the FLC in this paper are the error and the change in error. The error is
calculated as the change in the PV power to the change in the PV voltage.

The Fuzzy inference is determined by usingMandamni’smethod, and the defuzzi-
fication uses the centre of gravity to compute the output of this FLC which is the
duty cycle u, the error e, the change in error Δe The control output variable (u) is
defined as the output for fuzzy controller, they are considered as a Fuzzy linguistic
variable. Each input and output variable is described by seven fuzzy sets: NB, NM,
NS, Z, PS, PM and PB (Table12.2).

The fuzzy logic controller is a rule-based controller and the rules are in the if-then
format, e.g. “If error isαi , and change in error isβi then output isψi”. The process of
Fuzzy Logic Controller (FLC) can be subdivided into three steps, first, fuzzification,
and then rule evaluation, and finally defuzzification. The general architecture of an
FLC is shown in Fig. 12.9.
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Table 12.2 Fuzzy set partition

NB Negative big

NM Negative medium

NS Negative small

Z Zero

PS Positive small

PM Positive medium

PB Positive big

Fig. 12.9 The FLC controller

Fuzzy logicwas applied in designing theMPPTcontroller. The error e is calculated
as the change in the PV power to the change in the PV voltage. The change in the
duty cycle is the output from FLC which is obtained by applying a set of linguistic
rules, the error e, the change in error Δe and the duty cycle u are represented as
follows:

e(k) = P(k) − P(k − 1)

V (k) − V (k − 1)
(12.7)

Δe = e(k) − e(k − 1) (12.8)

u = f (e,Δe) (12.9)

and the defuzzification uses the centre of gravity to compute the output of this FLC
which is the duty cycle:

u =

n∑

j=1
μ(u j ) − u j

n∑

j=1
μ(u j )

(12.10)
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Fig. 12.10 The Fuzzy stem rules

Fig. 12.11 Fuzzy logic control membership function for input and output

The duty cycles from 49 rules must be computed and combined for a specified
value. The fuzzy system rules can be designed as shown in Fig. 12.10. The control
rules are indicated in Fig. 12.10 with e and Δe as inputs and u as the output.

The fuzzy inference of the proposed FLC is based on theMamdani’s method. The
Fuzzy logic control memberships function for input and output take the following
form in Fig. 12.11.

12.4.2 MPPT Based on Sliding Mode Control Theory

Sliding Mode Control is known to be a robust control method appropriate for con-
trolling switched systems. High robustness are maintained against various kinds of
uncertainties such as external disturbances and measurement error (Il-Song 2007).
In traditional sliding mode control, or First Order Sliding Mode controller (SMC)
design, the sliding variable is selected such that it has relative degree one with respect
to the control. For the photovoltaic system the design procedure for a state based slid-
ing mode controller can be divided into two steps: Finding the switching function,
such that the internal dynamics in the sliding mode are stable. The sliding surface
will be selected by imposing the maximum power point identifier factor ∂P/∂I equal
to zero as shown in (12.11).
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∂P

∂ I
= I

(
∂V

∂ I
+ V

I

)

= 0 (12.11)

The non trivial solution of (12.11) is:
(
∂V
∂ I + V

I

)

= 0. Thus, a proper sliding man-

ifold in the state space can be defined as:

∑

=
{

x / S(t, x) = ∂V

∂ I
+ V

I
= 0

}

(12.12)

The surface 	 is called a switching surface. The most important task is to design a
control that will drive the plant state to the switching surface and maintain it there.
The switching control of the SMC is presented as follows:

ud =
∣
∣
∣
∣

u+ if S(z) > 0
u− if S(z) < 0

(12.13)

A simple sliding mode control design can be written as:

u = ueq + ud (12.14)

ueq is called equivalent control. Note that, under the action of the equivalent control
ueq any trajectory starting from the manifold S(z) = 0 remains on it, since Ṡ(z) = 0,
ueq is given by:

S(t, z) = Ṡ(t, z) = 0 (12.15)

This ensures the invariance of the sliding surface. The proposed discontinuous con-
trol, ud guarantees a convergence in finite time on the surface; it is defined as:

ud = M sign(S) (12.16)

Equation (12.15) determines the equivalent control of our PV system. It takes the
following forms:

Ṡ =
[

∂S

∂Z

]�
Ż =

[
∂S

∂Z

]�
(

φ(Z) + ψ(Z)ueq
) = 0 (12.17)

Now, clearly the equivalent control will be defined as:

ueq = −

[
∂S

∂Z

]�
φ(Z)

[
∂S
∂Z

]�
ψ(Z)

= 1 − Vpv

Vout
(12.18)

The real control signal is proposed as:
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u =
∣
∣
∣
∣
∣
∣

1 if ueq + M sign(S) > 1
ueq + M sign(S) if 0 < ueq + M sign(S) < 1

0 if ueq + M sign(S) < 0
(12.19)

12.4.3 Stability Analysis

To conduct stability analysis for the corresponding control, it is common to use
Lyapunov approach (Feng et al. 2009), which is adopted to identify this mission.
This Lyapunov function must be defined from the sliding surface already selected,
for sliding mode; the function V is generally defined by:

V = 1

2
S2 (12.20)

In this case, the sufficient condition is given by:

V̇ = SṠ < 0 (12.21)

In this way, an asymptotic convergence to the surface S = 0 is guaranteed. The
derivative of the surface is calculated as:

Ṡ =
[

∂S

∂Z

]�
Ż =

(

3
∂Rpv

∂ Ipv
+ Ipv

∂2Rpv

∂ Ipv
2

)(

−Vout

L
(1 − u) + Vpv

L

)

(12.22)

where:
∂Rpv

∂ Ipv
= ∂

∂ Ipv

[
Vpv

Ipv

]

= 1

Ipv

∂Vpv

∂ Ipv
− Vpv

Ipv2
(12.23)

and:
∂2Rpv

∂2 Ipv
= 1

Ipv

∂2Vpv

Ipv
2 − 2

Ipv
2

∂Vpv

∂ Ipv
+ 2Vpv

Ipv
3 (12.24)

On the other hand, the PV voltage is needed to be expressed in terms of mathematical
functions using the PV panel parameters as follows:

Vpv = KbT A

q
ln

(
Iph + Id − Ipv

Id

)

(12.25)

The first derivative of the voltage can be expressed by:

∂Vpv

∂ Ipv
= −KbT A

q

Id
Iph + Id − Ipv

< 0 (12.26)
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Clearly the first derivative of the voltage has a negative sign. Turning now to the
expression of the second derivative:

∂2Vpv

∂2 Ipv
= −KbT A

q

Id
(Iph + Id − Ipv)

2 < 0 (12.27)

It is obvious from (12.26) that the second voltage derivative also has a negative sign.
Moreover, the first derivative of the sliding surface can be presented as:

Ṡ =
[

∂S

∂Z

]�
Ż =

(

3
∂Rpv

∂ Ipv
+ Ipv

∂2Rpv

∂ Ipv
2

) (

−Vout

L
(1 − u) + Vpv

L

)

(12.28)

Denoting by “A” the following term:

A = 1

Ipv

∂Vpv

∂ Ipv
− Vpv

Ipv2
+ ∂2Vpv

∂ Ipv2
(12.29)

So:

Ṡ = A

(

−Vout

L
(1 − u) + Vpv

L

)

(12.30)

This term (12.29) has always a negative sign. In order to verify the stability, we
should ensure the inequality (12.21). We consider 0 < u < 1.

So:

Ż = −Vout

L
(1 − u) + Vpv

L
= −Vout

L

(

1 − ueq − ud
)

+ Vpv

L

= Vout

L

(

1 −
[

1 − Vpv

Vout

]

− ud

)

+ Vpv

L
= Vout

L
ud (12.31)

So, it is obvious that the derivative of the surface has been always opposite in sign
to the surface S. Moreover:

Ṡ = A Ż = A ud = A M sign(S) = N sign(S) (12.32)

And N = A.M is obviously considered as a negative quantity N < 0 so SṠ < 0. So
the system is stable.

12.5 Simulation of the Fuzzy Logic and the Sliding MPPT
Controllers and Results

Figure12.12 shows the functional diagram of the simulated photovoltaic system
using the two MPPT controllers under standard conditions: temperature (25 ◦C) and
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Fig. 12.12 The PV power (a), the duty cycle (b) and the output voltage (c) under standard climatic
conditions
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Fig. 12.13 The power under variable irradiance (a) and load change (b)
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Fig. 12.14 The duty cycle under variable irradiance (a) and load change (b)
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Fig. 12.16 The switching function under variable irradiance (a) and load change (b)

solar insolation (1000W/m2). Obviously, it can be deduced that the Sliding controller
is faster than the Fuzzy controller in the transitional state, but the Fuzzy presents a
much smoother signal with less fluctuations in steady state.

The irradiance profile used in this work takes the following form: it increases from
500 to 1000W/m2 in steps of 500 units every 0.06 s. We note the following answers
provided by the FLC and the SMC on the power, which is shown in Fig. 12.13a. The
photovoltaic system has responded correctly, the MPPT based on SMC provides the
fastest and most efficient response against trade lighting, the two MPPT algorithms
resisted with success the abrupt change of irradiance.

This is clear if we examine the nature of the generated duty cycle while observing
the simulation result in Fig. 12.14a. The influence of the good nature of command
generated by the FLC is clear at the output voltage Vout in Fig. 12.15a. It is also
confirmed by these plots that the MPPT based on FLC has a very small error due to
its special structure that is why it has the most precise response.

In addition, theMPPT based on SMC ensures a good dynamics around his switch-
ing surfacewhich is stable and attractive, as it is depicted in Fig. 12.16a. Now, assume
that R is suddenly changed from 50 to 100 � at 0.06 s, for such variation of R, the
MPPT system is simulated to obtain the result of power as shown in Fig. 12.13b.
Obviously, the MPPT system still holds on the power value of 60.27W during the
interval of R variation.

So, by using our twoMPPT controllers, the system still holds on the MPP in spite
of the variation of load resistance, and according to the responses on duty cycle and
output voltage presented respectively in Figs. 12.14b and 12.15b we could insure
this. But, if we pay attention to the difference between the natures of the responses
occurred by the FLC and the robust command based on the SMC, we can say that
the first order SMC is more robust against the load change because of its very low
sensitivity in comparison with FLC. But it provides a problemwhich is characterized
by the high oscillation frequency. This is clear when observing the plot of the sliding
function in Fig. 12.16b. However, the FLC seems to be the most precise one due to
its special structure.
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12.6 Conclusion

In this chapter, we have presented twoMPPT controllers which are the SlidingMode
Controller (SMC) and the Fuzzy Logic Controller (FLC). The FLCmakes the output
PV system value close to the theoretical maximum value. The simulation results
show that in the case of irradiance and load abrupt change, the SMC can quickly find
a new maximum power point, and has a high power output efficiency. The FLC has
also performing results. The experimental validation of these two algorithms will be
the topic of future work.
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Chapter 13
Sliding Bifurcations and Sliding Mode
Controller for a Two-Cell DC/DC Buck
Converter

Karama Koubaâ

Abstract In this chapter, we analyze the sliding bifurcations that occur in the
two-cell DC/DC buck converter controlled using a dynamic feedback controller, then
we apply the sliding mode controller to the converter in order to inhibit bifurcations
and chaotic behavior. We use a simplified discrete model to analyze the bifurcations
in the two-cell converter, which can be regarded as a piecewise smooth nonlinear
system with discontinuous iterated maps. Then, we give theoretical conditions of
stability according to the parameters values of the dynamic feedback controller. The
presence of discontinuities in the converter leads to several types of non-smooth bifur-
cations namely border collision bifurcation, degenerate flip bifurcation and sliding
bifurcations such as switching-sliding, grazing-sliding and adding-sliding also called
multi-sliding. Non-smooth bifurcations, and more particularly, sliding bifurcations
are caused by structural changes in the system dynamics, then we apply the sliding
mode controller which is a variable structure control system (VSCS) to avoid sliding
modes in the DC/DC buck converter. Numerical simulations confirm the analytical
results and explain the bifurcations and the strange phenomena encountered in the
two-cell converter.

Keywords Sliding bifurcations · Two-cell DC/DC buck converter ·Dynamic feed-
back controller · Sliding mode controller

13.1 Introduction

Piecewise-smooth systems are characterized by periods of smooth evolutions
interrupted by instantaneous events. Traditional analysis of dynamical systems has
restricted its attention to smooth problems, thus preventing the investigation of non-
smooth processes such as impact, switching, sliding and other discrete state tran-
sitions. These phenomena arise, for example, in any application involving friction,
collision, intermittently constrained systems or processes with switching compo-
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nents (di Bernardo et al. 2008). In fact, power converters are known to exhibit border
collision bifurcation (di Bernardo and Tse 2002; Tse 2002; Yuan et al. 1998).

In addition, piecewise-smooth systems can undergo sliding bifurcations due to
interactions between a periodic orbit and the boundary of the sliding region.Basically,
four distinct cases of such bifurcations can be identified:

• Crossing-sliding: under parameter variation, the trajectory intersects the boundary
of the sliding region and then switches from a subspace to the other with no sliding
portion.

• Grazing-sliding: a section of trajectory lying in one region grazes the boundary of
the sliding region. This causes the formation of a section of sliding motion.

• Switching-sliding: under parameter variation, the trajectory initially completely
contained in the subspace and in the sliding region, intersects its boundary and
then passes from the subspace to the other, and from this to the sliding region.

• Adding-sliding: it differs from the scenarios presented above because the segment
of the trajectory that undergoes the bifurcation lies entirely within the sliding
region. Further variation of the parameter causes the formation of an additional
segment of trajectory above (or below) the sliding region (Santos 2006).

Sliding bifurcations may be encountered in several dynamical systems. In fact, the
two-cell DC/DC buck converter controlled with a dynamic PI controller exhibits
grazing-sliding also called spiralling bifurcation with multi-sliding orbits (Koubaâ
and Feki 2014a). A previous work (di Bernardo et al. 1998) provides an analytical
explanation for the grazing-sliding scenario observed in the one-cell DC/DC buck
converter in a double spiralling form. The existence of sliding orbits has been pointed
out in the context of relay feedback systems (di Bernardo et al. 2001, 1999), dry-
friction oscillator (Guardia et al. 2010) and superconducting resonator (Jeffrey et al.
2010).

We notice that sliding bifurcations are caused by structural changes in the system
dynamics, then we apply the sliding mode controller which is a variable structure
control system (VSCS) to avoid sliding modes in the DC/DC buck converter. Sliding
mode control (SMC) is well known for efficiently dealing with uncertain dynamical
systems even when no full information of their models is available (Edwards 1998;
Utkin 1992). The purpose of the SMC law is to force the tracking error to approach
the sliding surface and thenmove along the sliding surface to the origin. However, the
drawbacks of the conventional SMC such as chattering phenomenon, which reveals
itself as high-frequency dangerous vibrations of the whole system (Levant 2010),
and a priori knowledge of the bounds of uncertainties, can be destructive (Amer
et al. 2012).

The multi-cell converters introduced more than ten years ago make it possible to
distribute the voltage constraints among series-connected switches and to improve
the output waveforms. The balance of the constraints requires an appropriate distri-
bution of the flying voltages (Gateau et al. 2002). The use of a discrete time model
(El-Aroudi et al. 2008, 2006; Robert and El-Aroudi 2006) in this type of power con-
verters combined with a digital pulse width modulation (DPWM) controller leads to
discontinuous iterated maps. Due to the existence of various operating modes and
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control saturations, the overall operation is compared to a piecewise smooth nonlinear
dynamical system (Robert et al. 2006), which can undergo sliding bifurcations.

In this chapter, we analyze the sliding bifurcations in the behavior of a two-cell
DC/DC buck converter controlled using a generalized dynamic feedback controller.
This converter is generally characterized by a switching-sliding bifurcation, and
especially a grazing-sliding bifurcation for a particular choice of the control para-
meters, and adding-sliding also called multi-sliding, which results in the appearance
of an additional sliding section. Furthermore, we notice the presence of limit cycles
and undesirable saturating regimes caused by the saturation in the dynamic control
law. Sliding bifurcations are caused by structural changes in the system dynamics,
then we apply a discrete sliding mode controller which is a variable structure control
system (VSCS) to avoid sliding modes in the two-cell DC/DC buck converter.

The rest of the chapter is outlined as follows. In Sect. 13.2, we present the simpli-
fied discrete model for the two-cell DC/DC buck converter. Section13.3 deals with
the stability analysis and the bifurcations that occur in the generalized dynamic feed-
back controller. In Sect. 13.4, we adopt a discrete sliding mode controller to improve
the response of the two-cell DC/DC buck converter and to eliminate the sliding bifur-
cations. Finally, concluding remarks relating the overall study and future work will
be drawn in the last section.

13.2 Discrete Model of the Two-Cell DC/DC Buck
Converter

The structure of the two-cell DC/DC buck converter that we deal with in this chapter
is depicted in Fig. 13.1.

It consists of two cells separated by a flying capacitor C to balance the switch
voltages. Each cell contains a switch Sj and a diode Dj (1 ≤ j ≤ 2) that behave in
a complementary manner such that when the switch is open, the diode is closed
and vice versa. U1 and U2 are the control signals delivered by a Digital Pulse Width
Modulator (DPWM) controller and can take two boolean states 0 and 1. These control

Fig. 13.1 Structure of the
two-cell DC/DC buck
converter
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Table 13.1 Topologies in the two-cell DC/DC converter

Topologies State of S1 State of S2

Topology 1 (T1) OFF ON

Topology 2 (T2) ON ON

Topology 3 (T3) ON OFF

Topology 4 (T4) OFF OFF

signals represent the evolution of the duty cycles d1 and d2 of switches S1 and S2
with respect to their OFF state, which should vary in the interval [0 1].

The two-cell DC/DC converter is used to feed an RL load. iL is the inductor
current and vC is the voltage across the capacitor. We will suppose that U1 and U2

are phase shifted by π in order to obtain optimumwaveforms of the inductor current.
According to the states of the switches, we can define four different topologies in
Table13.1.

The current and the voltage are normalized by their maximum values iLmax = E
R

and vCmax = E and time is also normalized by the switching period T , then the new
state variables are given by:

xi = R

E
iL (13.1)

xv = 1

E
vC (13.2)

By applying Kirchhoff laws, the system can be described by a linear continuous
model for the kth topology:

ẋ = Akx + Bk for 1 ≤ k ≤ 4 (13.3)

where x is the state vector:

x =
[

xi
xv

]

(13.4)

and Ak and Bk are the matrices defined by:

A1 =
[ −δL δL

−δC 0

]

, A2 =
[−δL 0

0 0

]

, A3 =
[−δL −δL

δC 0

]

, A4 =
[−δL 0

0 0

]

B1 = B4 =
[

0
0

]

, B2 = B3 =
[

δL
0

]

δL and δC are the time constants given by:

δL = RT

L
, δC = T

RC
(13.5)
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In order to reduce the ripple current through the load and the ripple voltage across
the capacitor, the circuit parameters should satisfy the following condition:

δL � 1 and δC � 1 (13.6)

Toggling between different topologies occurs according to the values of the duty
cycles d1 and d2 at the beginning of the period. As a matter of fact, we can define
six configurations, to each of which we can assign a recurrent system to express the
values of the states at the beginning of the (n + 1)th period in terms of its value at
the nth period. Then, we obtain the simplified discrete model (Feki et al. 2007):

x(n + 1) = A x(n) + B (13.7)

where:

A =
[

1 − δL δL(d1 − d2)
δC(d2 − d1) 1

]

, B =
[

δL(1 − d1)
0

]

(13.8)

The simplified discrete model for the two-cell DC/DC converter can be written as
follows:

xi(n + 1) = (1 − δL)xi(n) + δL
(

d1(n) − d2(n)
)

xv(n) + δL
(

1 − d1(n)
)

(13.9)

xv(n + 1) = δC
(

d2(n) − d1(n)
)

xi(n) + xv(n) (13.10)

where the duty cycles have the following forms:

d1(n) = sat[kiei(n) + kvev(n) + u(n)] (13.11)

d2(n) = sat[kiei(n) + u(n)] (13.12)

ki and kv denote respectively the current gain and the voltage gain, ei(n) and ev(n)
are the errors defined with respect to the reference values Ir and Vr as:

ei(n) = xi(n) − Ir (13.13)

ev(n) = xv(n) − Vr (13.14)

u(n) is the control law that will be defined in the following sections, and the saturation
function is also defined by:

sat(d) =
⎧

⎨

⎩

0 if d < 0
d if 0 ≤ d ≤ 1
1 if d > 1

(13.15)

In the sequel, we choose the following values for numerical simulations:

δL = δC = 0.1, Ir = 0.6 A, Vr = 0.5 V, E = 1 V .
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13.3 Sliding Bifurcations in the Two-Cell DC/DC Buck
Converter Controlled Using a Dynamic Feedback
Controller

13.3.1 Dynamic Feedback Controller

One of the most popular methods in chaos control research is the delayed feedback
control (DFC) method proposed by Pyragas (Pyragas 1992). The main idea relies on
the fact that a chaotic attractor has typically embedded in it a dense set of unstable
periodic orbits (UPOs) that can be stabilized by a small feedback perturbation. The
DFC is based on applying a feedback proportional to the deviation of the current
state of the system from its state one period in the past so that the control signal
vanishes when the stabilization of the desired orbit is attained. This method has the
advantage of not requiring prior knowledge of anything but the period of the desired
orbit (Pyragas 2002), and the delayed feedback controller is given by:

u(n) = K
[

x(n) − x(n − τ )
]

(13.16)

where K is the feedback gain, τ is the time delay determined as the period of the
unstable periodic orbit to be stabilized, x(n) is the current state and x(n − τ ) is the
delayed state. Successful real implementations of this method include mechanical
pendulums (Landry et al. 2005), power electronics (Koubaâ et al. 2009; Koubaâ and
Feki 2014b; Robert et al. 2006), chemical systems (Xu andWu 2014), lasers (Liu and
Ohtsubo 1994; Schikora et al. 2006), the human respiratory control system (Batzel
and Tran 2000a, b), cardiac systems (Hall et al. 1997), financial systems (Chen 2008),
fractional-order chaotic systems (Gjurchinovski et al. 2010). Recently, Socolar et al.
(1994) have proposed an extended delayed-feedback control (EDFC) method which
uses many previous states of the system and permits to widen the stability region as
follows:

u(n) = K
+∞
∑

j=0

rj
[

x(n − j) − x(n − j − 1)
]

(13.17)

which can be written in a simplified form:

u(n) = K

⎡

⎣x(n) − (1 − r)
+∞
∑

j=1

rj−1x(n − j)

⎤

⎦ (13.18)

Although the first form of the extended delayed feedback controller (13.17) can be
seen as an analogy of the Pyragas control, this form is not feasible for numerical
implementation because it requires to store information of all states in the past.
However, there is also the equivalent recursive form given in (13.19) which involves
next to the time-delayed control signal x(n − 1) the delayed version of the control
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law u(n − 1) itself. This form becomes more suitable for an experiment.

u(n) = K
(

x(n) − x(n − 1)
) + ru(n − 1) (13.19)

The absolute value of the real constant r is smaller than unity, i.e., |r| < 1, such that it
can be interpreted as a memory parameter that weights information of states further
in the past. Note that the case r = 0 recovers the original Pyragas control scheme
(Hövel 2011). In (Robert et al. 2006), the EDFC has been used to stabilize a current-
programmed PWM single phase inverter and to widen the stability region. Other
applications of the EDFC include lasers (Gauthier 1998) and mechanical pendulums
(de Paula and Savi 2009). However, both of the DFC and the EDFC methods have
a limitation such that they can not stabilize any systems with an odd number of real
eigenvalues greater than one, also called odd number limitation (Konishi et al. 1999;
Ushio 1996). To overcome this limitation, Ahlborn and Parlitz (2004) have suggested
Multiple Delay Feedback Control (MDFC) given by:

u(n) =
N

∑

j=1

kj
(

x(n) − x(n − τj)
)

(13.20)

where two or more delayed feedback signals with different delay times τj are used,
and these delay times are not integer multiples of each other and may enter inde-
pendent control terms. In comparison to other delay based chaos control methods,
Multiple Delay Feedback Control (MDFC) is superior for controlling steady states
and works also for relatively large delay times, which are sometimes unavoidable in
experiments due to system dead times (Ahlborn and Parlitz 2004). Many researchers
have demonstrated the effectiveness of this approach through numerical simulations
of the Chua’s circuit (Ahlborn and Parlitz 2004) and a successful experimental appli-
cation for stabilizing a chaotic frequency doubledNd:YAG laser (Ahlborn and Parlitz
2004). In addition, (Chen 2008) indicates that chaotic behavior in economic systems
can be controlled under appropriate feedback strengths and delay times.

Other schemes using modulation of the control parameters with a period different
from the periodic target state are used to overcome the so-called odd number limita-
tion from which time-delayed feedback control suffers. It has been reported recently
that time-dependent modulation improves the control performance in autonomous
systems by several orders of magnitude. Whereas the phase of a periodic target state
does not play a significant role, a phase selection mechanism may take place when
a time-dependent control loop is applied. As time-dependent modulation breaks the
time translation invariance, certain phase lags between the periodic orbit and the
controller are selected due to enhanced stability properties. Consider the logistic
map subjected to time-delayed feedback control for stabilizing a periodic orbit of
period p:

xn+1 = 1 − μx2n + Kn
(

xn − xn−p
)

(13.21)
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with μ is a real parameter, Kn is a control parameter, xn+1 and xn are the magnitudes
of the population respectively in generation n + 1 and in the preceding generation
n. Whereas the original Pyragas scheme corresponds to a fixed value of the control
amplitude Kn = K , the authors consider in (Fichtner et al. 2004) a time-dependent
parameter having the same period as the target state Kn = Kn+p. The modulated
feedback controller has been successfully applied to the logistic map (Fichtner et al.
2004) and the Rössler model (Just et al. 2003).

Moreover, a Full Delayed Feedback Controller (FDFC) has been proposed to
stabilize the unstable fixed points (UFPs) for continuous chaotic systems, where the
two parameters of a FDFC, i.e., the controller gain and the upper bound of controller
time delay, can be simultaneously obtained by solving some linearmatrix inequalities
(Guan et al. 2006). Illustrative examples of chaotic systems such as the chua and the
Rössler systems are presented to show the effectiveness of the proposed method
in (Guan et al. 2007, 2006). Another recent method, called the Double Delayed
Feedback Control (DDFC) with two mutually prime delays and the relation between
the feedback gainmatrices and the controller delays, can be implicitly represented by
some stabilization criteria using the Lyapunov theory andmatrix inequality technique
(Lu et al. 2009).

In (Pyragas and Novičenko 2013), Pyragas et al. have presented an algorithm for
a delayed feedback control design to stabilize periodic orbits with an odd number of
positive Floquet exponents in autonomous systems. Due to the so-called odd num-
ber theorem, such orbits have been considered as uncontrollable by time-delayed
feedback methods. However, this theorem has been refuted by a counterexample and
recently a corrected version of the theorem has been proved, where the control matrix
is designed using a relationship between Floquetmultipliers of the systems controlled
by time-delayed and proportional feedbacks. Pyragas et al. have adopted this algo-
rithm (Pyragas and Novičenko 2013) to stabilize the periodic orbits in the Lorenz
and Chua systems, which have been considered as classical examples unaccessible
for the conventional delayed feedback controller.

To overcome the odd number limitation, Yamamoto et al. (2001) have supple-
mented DFC by dynamic DFC with a function which stores the past differences as
the state of the controller, and can be described in term of a difference equation of
the controller’s state. The proposed controller is given in the following form:

xd(n + 1) = A xd(n) + B y(n) (13.22)

u(n) = C xd(n) + D y(n) (13.23)

where:
y(n) = x(n) − x(n − 1) (13.24)

A ∈ R
nc×nc ,B ∈ R

nc×n,C ∈ R
l×nc ,D ∈ R

l×n, xd ∈ R
nc is the state of the controller,

u(n) ∈ R
l is the dynamic control law and x ∈ R

n is the state (Yamamoto et al. 2001).
This controller has been used successfully in (Koubaâ et al. 2010) to analyze the

stability of the two-cell DC/DC buck converter according to the control parameters
values.
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13.3.1.1 Controller Design

In this section, we apply the generalized dynamicDFCwithout a delay at the levels of
the duty cycles d1 and d2 defined by Eqs. (13.11) and (13.12) to the two-cell DC/DC
buck converter. In order to guarantee a zero static error, we modify the input of the
dynamic delayed controller in a feedback current error. This choice is well justified
in a previous work (Koubaâ et al. 2012), where it has been proved that we can achieve
a zero static voltage error without inserting an extra state variable in the voltage loop,
since its transfer function is a pure integrator. Then, the dynamic controller can be
defined in the following form:

xd(n + 1) = a xd(n) + b ei(n) (13.25)

u(n) = c xd(n) + d ei(n) (13.26)

where a, b, c and d are scalar parameters.
The state vector is given by:

x(n) =
⎡

⎣

xi(n)
xv(n)
xd(n)

⎤

⎦ (13.27)

By using Eqs. (13.9)–(13.12), (13.25)–(13.26), the closed-loop system becomes as
follows:

xi(n + 1) = [1 − δL(1 + d + ki)]xi(n) − δLkv(1 + Vr)xv(n) − δLcxd(n)

+δLkvx
2
v(n) + δL[1 + (d + ki)Ir + kvVr] (13.28)

xv(n + 1) = δCkvVrxi(n) + xv(n) − δCkvxv(n)xi(n) (13.29)

xd(n + 1) = bxi(n) + axd(n) − bIr (13.30)

The fixed point denoted by (x∗
i , x

∗
v , x

∗
d) is obtained by solving the equation:

x∗(n + 1) = x∗(n) (13.31)

According to the values of the parameters, we can distinguish two different cases:

• Case 1: 0 ≤ a < 1 :

x∗
i = 1 − a + [(1 − a)(d + ki) + bc]Ir

(1 − a)(1 + d + ki) + bc
(13.32)

x∗
v = Vr (13.33)

x∗
d = b(1 − Ir)

(1 − a)(1 + d + ki) + bc
(13.34)

• Case 2: a = 1 :
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x∗
i = Ir (13.35)

x∗
v = Vr (13.36)

x∗
d = 1 − Ir

c
(13.37)

We notice that in both two cases, we obtain a zero static error for the voltage. It is
more interesting to choose a = 1, which corresponds to case 2 to ensure zero static
errors for the current and the voltage.

13.3.1.2 Stability Analysis

In the sequel, we carry out a stability analysis for the error system in case 2, therefore,
we consider the error vector:

e(n) = x(n) − x∗ (13.38)

Then, the error system is defined by:

ei(n + 1) = [1 − δL(1 + d + ki)]ei(n) + δLkv(Vr − 1)ev(n)

−δLced(n) + δLkve
2
v(n) (13.39)

ev(n + 1) = (1 − δCkvIr)ev(n) − δCkvei(n)ev(n) (13.40)

ed(n + 1) = bei(n) + ed(n) (13.41)

with the characteristic equation:

[λ − (1 − δCkvIr)]P(λ) = 0 (13.42)

where:
P(λ) = λ2 + a1λ + a0 (13.43)

and the parameters:

a1 = δL(1 + d + ki) − 2 (13.44)

a0 = 1 − δL(1 + d + ki) + δLbc (13.45)

The stability condition for discrete systems is that the norm of each eigenvalue should
be less than one.
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By applying this condition to the real eigenvalue λ0 = 1 − δCkvIr , we get:

0 < kv <
2

δCIr
(13.46)

According to the Jury criterion for the other eigenvalues, we obtain the following
conditions:

|a0| < 1 (13.47)

1 + a1 + a0 > 0 (13.48)

1 − a1 + a0 > 0 (13.49)

which leads to:

−ki + bc − 1 < d < −ki + bc + 2

δL
− 1 (13.50)

bc > 0 (13.51)

d < −ki + bc

2
+ 2

δL
− 1 (13.52)

From these conditions, we depict in Fig. 13.2 the stability zone in the plane ki − d,
where the lines are given by:

L1 : d(ki) = −ki + bc − 1 (13.53)

L2 : d(ki) = −ki + bc + 2

δL
− 1 (13.54)

L3 : d(ki) = −ki + bc

2
+ 2

δL
− 1 (13.55)

The stability conditions (13.50)–(13.52) can be reformulated in the plane b − c
as follows:

1 + d + ki − 2

δL
b

< c <
1 + d + ki

b
(13.56)

bc > 0 (13.57)

c >
2(1 + d + ki) − 4

δL
b

(13.58)

and graphically presented in Fig. 13.3, where C1,C2 and C3 are the curves given by:
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Fig. 13.2 Stability zone in the plane ki − d
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Fig. 13.3 Stability zone in the plane b − c

C1 : c(b) =
1 + d + ki − 2

δL
b

(13.59)

C2 : c(b) = 1 + d + ki
b

(13.60)

C3 : c(b) =
2(1 + d + ki) − 4

δL
b

. (13.61)
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Fig. 13.4 2D bifurcation diagram of the current behavior in the plane ki − d for the parameters
a = 1, b = 1 and c = 0.1

13.3.2 Sliding Bifurcations

In this section, we study the complex dynamics and the strange phenomena observed
in the two-cell DC/DC buck converter controlled using a dynamic feedback con-
troller.We can optimize the choice of the voltage gain kv to obtain the fastest response
by choosing the eigenvalue λ0 at the origin, and the optimal value of kv is:

kvopt = 1

δCIr
= 16.6667 (13.62)

Figure13.4 presents the 2D bifurcation diagram of the current behavior in the plane
ki − d for the parameters a = 1, b = 1 and c = 0.1. In this figure, we use different
colors to indicate the periodic behaviors from period 1 to period 20 and the limit
cycles. Brown refers to the one periodic behavior, black is used for chaos and the
limit cycles are presented in light blue. The 2D bifurcation diagram confirms the
stability zone obtained theoretically in Fig. 13.2. We remark the existence of a two
periodic behavior plotted in red and a zone of a five periodic behavior presented in
green.

In Fig. 13.5, we present the 1D bifurcation diagram of the current behavior ver-
sus the current gain ki for parameters chosen from the 2D bifurcation diagram and
d = −30.

We can distinguish four main parts in this diagram. Indeed, for low values of
the current gain ki < 29.1, we obtain phases of limit cycles, and a one periodic
behavior with a zero static error after a subcritical Neimark-Sacker bifurcation based
on two complex conjugate eigenvalues crossing the unit circle. Then, we obtain a two
periodic behavior for 49 ≤ ki < 50, then a four periodic behavior at one bifurcation
point for ki = 50 followed by a chaotic behavior in a degenerate flip bifurcation,
where cycles of double period are degenerated.
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Fig. 13.5 1D bifurcation diagram of the current behavior versus the current gain ki for the para-
meters a = 1, b = 1, c = 0.1 and d = −30

In Fig. 13.6, we plot the evolution of the current xi(n) and the duty cycles d1(n) and
d2(n) for the parameters a = 1, b = 1, c = 0.1, ki = 20 and d = −30 at the steady
regime (i.e. the initial condition xv(1) = 0.5), that leads to a limit cycle.

The current response shows the existence of saturating regimes xi(n) = 0 and
xi(n) = 1 in the limit cycle. We remark the occurrence of repeated saturations of the
duty cycles at 0 and 1 alternated with phases of non saturation

(

0 < dj(n) < 1, j ∈
{1, 2}). At the beginning, the duty cycles saturate at 1, then their values decrease and
remain always between 0 and 1 until the saturation at 0. In a similar way, we obtain
a phase of non saturation, then the values of the duty cycles increase up to 1. We
recall that the two-cell DC/DC buck converter is described by the following discrete
model:

xi(n + 1) = (

1 − δL
)

xi(n) + δL
(

d1(n) − d2(n)
)

xv(n) + δL
(

1 − d1(n)
)

(13.63)

xv(n + 1) = xv(n) + δC
(

d2(n) − d1(n)
)

xi(n) (13.64)

At the steady regime, we have equal duty cycles d1(n) = d2(n), and system (13.63)
and (13.64) becomes:

xi(n + 1) = (

1 − δL
)

xi(n) + δL
(

1 − d1(n)
)

(13.65)

xv(n + 1) = xv(n) = xv(1) = 0.5 (13.66)

In the sequel, we are interested in studying the current behavior only since the voltage
is stabilized to its reference value, and the following functioning is repeated in four
phases to ensure the limit cycle:

1. Phase 1: Saturation at 1 (d1(n) = d2(n) = 1):

In this case, the current is given in a simplified form:

xi(n + 1) = (

1 − δL
)

xi(n) (13.67)
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Fig. 13.6 Evolution of the response curves for a = 1, b = 1, c = 0.1, ki = 20 and d = −30: a The
current xi(n), b The duty cycles d1(n) and d2(n)

During the phase of saturation at 1, the evolution of the current is:

xi(n) = (

1 − δL
)n−1

xi(1) (13.68)

The initial condition xi(1) = 0, which explains that the current xi(n) = 0.
2. Phase of non saturation:

The current is described by Eq. (13.65), and when the values of the duty cycles
decrease, the current increases to reach the reference current Ir = 0.6.

3. Phase of saturation at 0 (d1(n) = d2(n) = 0):

The evolution of the current becomes as follows:

xi(n + 1) = (

1 − δL
)

xi(n) + δL (13.69)
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We notice that the phase of saturation at 1 is long, then the current tends to the
fixed point x∗

i = 1.
4. Phase of non saturation:

In a similarway, the evolution of the current is obtained fromEq. (13.65). The duty
cycles values increase and the current decreases simultaneously until reaching the
fixed point x∗

i = 0.

Figure13.7 depicts the phase space xd − xi for the same parameters that shows the
existence of a limit cycle.

We plot the lower and upper boundaries of saturation of the duty cycles at 0 and 1
respectively in light blue and red and their expressions are given by:

d1(n) = d2(n) = 0 =⇒ xi(n) = − c

ki + d
xd(n) + Ir (13.70)

d1(n) = d2(n) = 1 =⇒ xi(n) = − c

ki + d
xd(n) + 1

ki + d
+ Ir (13.71)

The shape of the limit cycle changes slightly when the system hits the saturation
boundaries. In Fig. 13.8, we present the 1D bifurcation diagram of the current behav-
ior versus the parameter d for a = 1, b = 1, c = 0.1 and ki = 40.

There are four main parts in the 1D bifurcation diagram. For low values of the
parameter d < −21, we obtain a one periodic behavior followed by a two periodic
one for d ∈ [−21,−19.9] in a degenerate flip bifurcation leading to a four periodic
behavior at one bifurcation point d = −19.9, then a chaotic behavior in cyclical
chaotic sets. In addition, for high values of the parameter d, we observe an abrupt
transition from the chaotic behavior to a five periodic behavior.

To explain the type of bifurcation that leads to the appearance of the five periodic
behavior, we plot in Fig. 13.9 the phase spaces xd − xi for d = 16 before the bifur-
cation, which indicates the presence of a chaotic behavior, and for d = 30 after the
bifurcation that shows a five periodic behavior.

In Fig. 13.10,we carry out a zoom in the previous figure ford = 16 andd = 30 that
confirms the existence of a chaotic attractor and a five periodic behavior respectively.

Fig. 13.7 Phase space
xd − xi for the parameters
a = 1, b = 1, c = 0.1, ki =
20 and d = −30: Limit cycle

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

x
d
(n)

x i(n
)



13 Sliding Bifurcations and Sliding Mode Controller … 249

Fig. 13.8 1D bifurcation diagram of the current behavior versus the parameter d for a = 1, b = 1,
c = 0.1 and ki = 40
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Fig. 13.9 Phase spaces xd − xi for the parameters a = 1, b = 1, c = 0.1, ki = 40: a d = 16:
Chaotic behavior, b d = 30: Five periodic behavior
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Fig. 13.10 Zoom in the phase spaces xd − xi for a = 1, b = 1, c = 0.1, ki = 40: a d = 16: Chaotic
behavior, b d = 30: Five periodic behavior

For more explanation, we plot the evolution of the current and the duty cycles
for the same parameters in Fig. 13.11. The current response presents a five periodic
behavior, which is due to the saturation of the duty cycles at 0 and 1.

A sliding bifurcation is shown in the steady regime in Table13.2, where we give
the corresponding duty cycles values in the transient and the steady regimes.

In order to have sliding motion in the discrete case, the necessary and sufficient
condition is:

|S(n + 1)| < |S(n)| (13.72)

where S(n) is the switching function (Sarpturk et al. 1987).
The sliding orbit is obtained for the non saturated value of d1(14) = d2(14) =

0.4495 and the next value d1(15) = d2(15) = 0.0338 which verifies condition
(13.72):
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Fig. 13.11 Evolution of the response curves for a = 1, b = 1, c = 0.1, ki = 40 and d = 30: a The
current xi(n), b The duty cycles d1(n) and d2(n)

|d1(15)| < |d1(14)| (13.73)

The current is characterized by successive switchings between the three regions:
region of saturation at 0, at 1 and the region of non saturation, then the sliding
bifurcation obtained is switching-sliding. In Fig. 13.12, we plot the 2D bifurcation
diagram of the current behavior in the plane b − c for the parameters a = 1, ki = 40
and d = −30.

The stable zone for the one periodic behavior is delineated in brown. In addition,
we represent periodic behaviors from period 1 to period 20 and two undesirable
saturating regimes that correspond to the current xi(n) = 0 and xi(n) = 1 respectively
in light blue and red.

Figure13.13 shows the 1D bifurcation diagram of the current xi(n) versus b
for the parameters a = 1, c = 6, ki = 40 and d = −30. For negative values of the
parameter b, we obtain a saturating regime (xi(n) = 0), which is confirmed in the 2D
bifurcation diagram. In addition, we remark a peak in the current until 1 for negative
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Table 13.2 Duty cycles values for the parameters a = 1, b = 1, c = 0.1, ki = 40 and d = 30: Five
periodic behavior

Regime Period n Duty cycles d1(n) = d2(n)

Transient regime 1 ≤ n ≤ 9 0

n = 10 0.628

n = 11 0

n = 12 1

n = 13 0

n = 14 0.4495

n = 15 0.0338

Steady regime n ≥ 16 Switching cycle: 1 0 1 0 0

 b

 c
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Fig. 13.12 2D bifurcation diagram of the current behavior in the plane b − c for the parameters
a = 1, ki = 40 and d = −30

ones close to 0. The case b = 0 corresponds to the proportional controller, which is
a particular case of the dynamic feedback controller according to Eqs. (13.25) and
(13.26). For positive values of the parameter b, three behaviors can be shown:

• one periodic behavior for 0 < b < 1.82.
• phase-locking phenomenon characterized by high periodic windows alternated
with quasi-periodic strips for 1.82 ≤ b ≤ 2.04.

• high periodic orbits for b > 2.04.

It is worth noting that the saturating regime xi(n) = 0, obtained for negative values
of the parameter b, is due to the saturation of the duty cycles at 1 (see Fig. 13.14).

Figure13.15 depicts the evolution of the current, the voltage and the duty cycles
for a negative value of the parameter b but close to 0, that shows a saturating regime
xi(n) = 1 caused by the saturation of the duty cycles at 0 with a long settling time.
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Fig. 13.13 1Dbifurcation diagramof the current behavior versus b for the parameters a = 1, c = 6,
ki = 40 and d = −30
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Fig. 13.14 Evolution of the current, the voltage and the duty cycles for the parameters a = 1,
b = −1, c = 6, ki = 40 and d = −30

In Fig. 13.16, we present the current evolution for b = 0 and we remark the exis-
tence of a static error in the current response, which characterizes the traditional
proportional controller.

The high periodic orbits obtained for a positive value of the parameter b, for
instance b = 3, are treated in Fig. 13.17. We notice the presence of repeated satura-
tions of the duty cycles at 0 then at 1. Figure13.18 shows high periodic orbits in the
phase space xd − xi for the parameters a = 1, b = 3, c = 6, ki = 40 and d = −30.
A peculiar route to sliding is detected following a spiralling bifurcation also called
grazing-sliding bifurcation. The global behavior consists of a transient regime and a
steady regime. The transient regime shows grazing bifurcation points at the corners
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Fig. 13.15 Evolution of the current, the voltage and the duty cycles for the parameters a = 1, b =
−5 × 10−4, c = 6, ki = 40 and d = −30
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Fig. 13.16 Evolution of the current for the parameters a = 1, b = 0, c = 6, ki = 40 and d = −30

of the spiral after successive saturation phases of the duty cycles at 0 then at 1 (see
Table13.3), and the steady regime is a sliding motion of a high periodic orbit in the
middle of the spiral (see Table13.4).

Condition (13.72) for discrete sliding bifurcation is verified:

|d1(95)| < |d1(94)| and |d2(95)| < |d2(94)| (13.74)

with the non saturated values:

d1(94) = 3.0611, d2(94) = 3.5075 and d2(95) = 1.1942 (13.75)
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Fig. 13.17 Evolution of the current, the voltage and the duty cycles for the parameters a = 1,
b = 3, c = 6, ki = 40 and d = −30
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High periodic orbits

At the steady regime, the duty cycles follow a switching cycle composed of 9 sat-
urations at 0 then 6 saturations at 1, which confirms the fifteen periodic behavior
according to the 2D bifurcation diagram depicted in Fig. 13.12. The existence of
different sliding orbits as it is shown in Fig. 13.13 proves the existence of a multi-
sliding bifurcation with more than one sliding section. Grazing-sliding and multi-
sliding bifurcations are found in the two-cell DC/DC buck converter controlled using
a dynamic PI controller in a previous work (Koubaâ and Feki 2014a), which is a par-
ticular case of the dynamic feedback controller described by Eqs. (13.25) and (13.26)

such that a = c = 1, b = d = ki
τi
, where ki is a proportional gain and τi is an integral

constant.
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Table 13.3 The Transient regime for a = 1, b = 3, c = 6, ki = 40 and d = −30: A Grazing bifur-
cation

Period n d1(n) d2(n) Boundaries

1 ≤ n ≤ 23 0 0

n = 24 0 1 Grazing 1:
G1 : xi(25) = 0.9202

25 ≤ n ≤ 34 1 1 Grazing 2:
G2 : xi(35) = 0.3209

n = 35 0 1

36 ≤ n ≤ 44 0 0

n = 45 0 0.0157

n = 46 0 1 Grazing 3:
G3 : xi(47) = 0.7927

47 ≤ n ≤ 52 1 1 Grazing 4:
G4 : xi(53) = 0.4213

53 ≤ n ≤ 54 0 1

55 ≤ n ≤ 59 0 0

n = 60 0 0.1734 Grazing 5:
G5 : xi(61) = 0.7231

n = 61 0 1

62 ≤ n ≤ 66 1 1 Grazing 6:
G6 : xi(67) = 0.4255

n = 67 0 0.5392

68 ≤ n ≤ 74 0 0

n = 75 0 0.5156 Grazing 7:
G7 : xi(76) = 0.7482

76 ≤ n ≤ 80 1 1 Grazing 8:
G8 : xi(81) = 0.4418

n = 81 0.1677 1

82 ≤ n ≤ 89 0 0 Grazing 9:
G9 : xi(90) = 0.7609

Table 13.4 The steady regime for a = 1, b = 3, c = 6, ki = 40 and d = −30:A sliding bifurcation

Period n d1(n) d2(n)

90 ≤ n ≤ 94 1 1

n = 95 0.7478 1

n ≥ 96 Switching cycle: 9 saturations at 0, 6 saturations at 1
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13.4 Sliding Mode Controller

13.4.1 Previous Work

Recently, a particular attention has been paid to this type of controllers. Indeed, the
authors in (Márquez et al. 2014), have applied a second-order sliding using reduced
order of derivatives to the inverted pendulum and the stability conditions are derived
with LMI. In the work presented in (Jovanović and Bučevac 2015), fuzzy logic was
combined with sliding mode to control the DC servo motor.

In (Amer et al. 2012), the authors have suggested a robust adaptive control strat-
egy for robot manipulators based on a decoupled fuzzy proportional integral sliding
mode control approach. Moreover, a multi-surface sliding control scheme for multi-
agent networks has been applied in (Khoo et al. 2014), where the agent is described
by a class of high-order uncertain nonlinear systems in chain form, and we add a
power integrator approach to drive the sliding variables to the sliding surfaces in fast
finite time.

As amatter of fact, Levant andMichael (2009) have proposed a high-order sliding-
mode (HOSM) regularization procedure to diminish chattering and solve long-lasting
problems of HOSM design. Three main HOSM algorithms have been studied in the
literature:

• TheTwistingAlgorithm (TA) (Levant 1993) is one of the simplest andmost popular
among the second order sliding mode algorithms. It is used for the control of
systems with relative degree two or one with introduction of an integrator in the
loop (twisting-as-a-filter) (Boiko et al. 2004). It has been recently applied to control
a robot manipulator (Guendouzi et al. 2013) and an inverted pendulum (Mahjoub
et al. 2015).

• The Super-twisting SlidingMode algorithm (STA) (Levant 1993) is a second order
sliding mode control algorithm, which ensures all the main properties of first order
sliding mode control for the systems with Lipschitz matched uncertainties and
bounded gradients. Super-twisting algorithm does not require the knowledge of
the values of the derivatives and the perturbation (Kareem and Azeem 2012).

A particular attention was paid to the implementation of this algorithm on exam-
ples of real systems. In fact, Kareem et al. have presented in (Kareem and Azeem
2012) a novel fuzzy logic based adaptive STA for the DC-DC buck converter.
In (Lin and Chiang 2013), the authors use the STA controller for a synchronous
reluctancemotor.Another version of this algorithmwith variable gainswas applied
by Evangelista et al. (Evangelista et al. 2013) to control the variable-speed wind
energy conversion system (WECS) with slip power recovery to maximize the
energy extracted from the wind. In addition, the authors in (Derafa et al. 2012)
deal with the design and implementation of the STA for the attitude tracking of a
four-rotor helicopter known as quadrotor. A modified version of the STA has been
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applied to a class of linear uncertain and multivariable fractional-order systems in
(Pisano et al. 2010).

Moreover, the authors in (Saadaoui et al. 2006) have constructed STA observers
for switched chaotic systems. A novel Lyapunov based design of a generalized
super-twisting observer for a class of 2-dimensional nonlinear systems has been
tested in amathematicalmodel regarding to the reducedGlucose-Insulin process in
(Salgado et al. 2011). An adaptive STAderived using Lyapunov function technique
has been applied to position control of an electropneumatic actuator in (Shtessel
et al. 2011).

• The sub-optimal algorithm has been proposed by Bartolini et al. (Bartolini et al.
1997b), where the solution of a tracking problem for a second order nonlinear
system with uncertain dynamics and incomplete state measurement is obtained by
means of a procedure directly inspired by the solution of the classical minimum-
time optimal control problem (Bartolini et al. 1997b), and has been successfully
applied for a two arms constrained planar manipulator evenwhen the accelerations
are not available (Bartolini et al. 1997a). In (Liu and Li 2014), the authors have
proposed an nth order sub-optimal integral sliding mode controller for a class
of nonlinear affine systems, and to verify the effectiveness of this method, an
application example of an overhead crane system is provided.

It should be noted that the previous three algorithms do not require knowledge of the
systemmodel. Nevertheless, it is beneficial to use all available information from it to
improve the performances of the systemcontrolled using the slidingmode. Therefore,
instead of taking a classic sliding surface, many researchers have adopted a dynamic
slidingone. In fact, dynamic slidingmode (DSM)controlmethods forMIMOsystems
in a proper differential Input-Output form have been proposed in (Lu and Spurgeon
1999) using dynamic feedback controllers resulting from both the direct and indirect
sliding mode method based on an approach known as the equivalent control method,
which assumes the invariance conditions and is combined with a semi-high gain
observer. The DSM has been applied also to non-minimum phase tracking control
for boost and buck-boost power converters (Shtessel et al. 2003). Another scheme
has been presented in (Raoufi et al. 2010) to design robust sliding mode observers
(SMO) with H∞ performance for uncertain nonlinear Lipschitz systems where both
faults and disturbances are considered and a numerical example of Matsumoto-
Chua-Kobayashi (MCK) (Matsumoto et al. 1986) hyperchaotic circuit demonstrates
the high performance of the results compared with a pure SMO.

The different methods cited previously deal with the continuous systems. For the
discrete case, Sarpturk et al. (1987) have proposed a version of the sliding mode
controller. Indeed, many applications of the discrete sliding mode controller have
been reported in literature: A design synthesis procedure for a discrete time output
feedback sliding-mode controller, which incorporates integral action, has been pre-
sented in (Lai et al. 2006), and the controller has been implemented on a small DC
motor test rig in real time. In (Mihoub et al. 2009), the discrete sliding mode con-
troller has been successfully applied to the temperature control of a chemical reactor,
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and as shown by experimental results, this control law resolves the chattering prob-
lem while ensuring good robustness of the closed loop system behavior. Recently,
a Chebyshev Neural Network based sliding mode control has been proposed for a
class of unknown nonlinear discrete-time systems in the presence of fixed time delay
in (Goyal et al. 2015).

Some innovative approaches in the slidingmode controller are intended to regulate
the behavior of the one-cell DC/DC converters. In (Utkin 2013), a direct voltage con-
trol and harmonic cancellation principle along with switching frequency control was
applied for a DC/DC buck converter. A discrete-time sliding mode control scheme
has been designed in (Rivera et al. 2014) for the tracking of a DC-biased sinusoidal
signal in a boost power converter, where the discrete-time model was obtained by
means of a variational integrator scheme based on the discrete Lagrangian formula-
tion of the boost power converter that uses the midpoint rule integration method.

13.4.2 Application of the Sliding Mode Controller
to the Two-Cell DC/DC Buck Converter

In this section, we apply a discrete sliding mode controller to the two-cell DC/DC
buck converter in order to suppress the sliding bifurcations and the chaotic behavior.
The dynamics of the converter are described by the following simplified model:

xi(n + 1) = (1 − δL)xi(n) + δL
(

d1(n) − d2(n)
)

xv(n) + δL
(

1 − d1(n)
)

(13.76)

xv(n + 1) = δC
(

d2(n) − d1(n)
)

xi(n) + xv(n) (13.77)

where the duty cycles are given by:

d1(n) = kiei(n) + kvev(n) + u(n) (13.78)

d2(n) = kiei(n) + u(n) (13.79)

We define the sliding surface as:

S(n) = Ce(n) (13.80)

where:

C = [

ci cv
]

and e(n) =
[

ei(n)
ev(n)

]

(13.81)

The discrete sliding mode controller verifies:

S(n) = S(n + 1) = 0 (13.82)
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The control law u(n) is deduced from the relation S(n + 1) = 0 and is expressed as:

u(n) =
(
1

δL
− 1 − ki

)

ei(n) +
[

kv(Vr − 1) + cv
δLci

(

1 − δCkvIr
)
]

ev(n)

+kvev(n)
2 − cvδCkv

ciδL
ev(n)ei(n) + 1 − Ir (13.83)

By inserting the control law u(n) in the expressions of the duty cycles given by
Eqs. (13.78) and (13.79), the closed-loop error system becomes as follows:

ei(n + 1) = −cv
ci

(

1 − δCkvIr
)

ev(n) + cv
ci

δCkvev(n)ei(n) (13.84)

ev(n + 1) = (

1 − δCkvIr
)

ev(n) − δCkvev(n)ei(n) (13.85)

which guarantees zero error fixed point:

e∗
i = e∗

v = 0 (13.86)

and consequently the system converges to the reference values:

x∗
i = Ir (13.87)

x∗
v = Vr (13.88)

The characteristic equation of the linearized error system (13.84)–(13.85) around its
fixed point is:

λ
[

λ − (

1 − δCkvIr
)] = 0 (13.89)

and has two real eigenvalues:

λ1 = 0 (13.90)

λ2 = 1 − δCkvIr (13.91)

The stability conditions are obtained when the norm of each eigenvalue is less than 1,
then the voltage gain kv verifies:

0 < kv <
2

δCIr
= 33.3333 (13.92)

The coefficients ci and cv don’t intervene in the stability conditions of the discrete
sliding mode controller depending only on the choice of kv .

The equation S(n) = Ce(n) = 0 enables the reduction of system order, and the
desired system dynamics in sliding mode can be designed by an appropriate choice
of matrix C (Rivera et al. 2014). The shaded area in Fig. 13.19 depicts the stability
zone in the plane kv − ki that confirms condition (13.92).
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Fig. 13.20 Evolution of the current xi(n) and the voltage xv(n) for the parameters ci = 2, cv = −2
and ki = 50

To ensure the rapidity of the closed-loop system, we choose the optimal value of
the voltage gain kv obtained for the eigenvalue λ2 = 0, given by:

kvopt = 1

δCIr
= 16.6667 (13.93)

Figure13.20 shows the evolution of the current xi(n) and the voltage xv(n) for the
parameters ci = 2, cv = −2 and ki = 50, which guarantees zero overshoot and static
errors for the current and the voltage.

In Fig. 13.21, we plot the curves of the duty cycles for the same parameters. At the
transient regime, d1 saturates at 0 and d2 saturates at 1, which improves the response
of the closed-loop system.
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Fig. 13.22 Evolution of the control law u(n) and the sliding surface S(n) for the parameters
ci = 2, cv = −2 and ki = 50

Figure13.22 presents the evolution of the control law u(n) and the sliding surface
S(n) that verifies condition (13.82).

Figure13.23 shows the 2D bifurcation diagram of the current behavior for the
parameters ci = 2 and cv = −2. We can distinguish three behaviors in this diagram:
the one periodic behavior is presented in brown for kv < 33.3333 (see Fig. 13.19),
a red strip indicates the existence of a two periodic behavior followed by a chaotic
behavior for high values of the voltage gain kv .

In Fig. 13.24, we present the 1D bifurcation diagramof the current behavior versus
the voltage gain kv for the parameters ci = 2, cv = −2 and ki = 50.
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Fig. 13.24 1D bifurcation diagram of the current behavior versus the voltage gain kv for the
parameters ci = 2, cv = −2 and ki = 50

This diagram proves the degenerate flip bifurcation scenario found in the previous
2D bifurcation diagram and the two periodic behavior is obtained at one bifurcation
point.

13.5 Conclusion

Sliding bifurcations are non-smooth bifurcations characterized by sections of sliding
motion giving rise to the formation of the so-called sliding orbits. Different routes
to sliding have been pointed out in the current behavior of the two-cell DC/DC buck
converter controlled using a generalized dynamic feedback controller: switching-
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sliding, grazing-sliding and adding-sliding. Adopting a PI controller (Koubaâ and
Feki 2014a), which is a particular case of the dynamic feedback controller, leads to a
grazing-sliding bifurcation in a one spiralling form, with additional sliding sections
also called multi-sliding orbits. The use of a general form of the dynamic feedback
controller shows a switching-sliding bifurcation characterized by successive switch-
ings of the duty cycles between regions of saturation at 0, at 1 and region of non
saturation. The conditions to obtain a slidingmotion have been derived in the discrete
case according to the values of the duty cycles. In addition, it has been demonstrated
the existence of limit cycles and undesirable saturating regimes with constant values
of the current at 0 and 1 when the duty cycles saturate. The two-cell DC/DC buck
converter exhibits also the phase-locking phenomenon for high periodic orbits, the
Neimark-Sacker bifurcation and the degenerate flip bifurcation. Sliding bifurcations
are non-smooth bifurcations caused by structural changes in the system dynamics,
then we apply the sliding mode controller to avoid sliding modes in the DC/DC buck
converter. The analysis of the bifurcations that occur in other types of power convert-
ers such as multi-level and stacked multi-cell converters and the use of a dynamic
slidingmode controller to improve the performances of the controlled system remain
directions for future research.

References

Ahlborn, A., & Parlitz, U. (2004). Stabilizing unstable steady states using multiple delay feedback
control. Physical Review Letters, 93, 264101.

Amer, A. F., Sallam, E. A., & Elawady, W. M. (2012). Quasi sliding mode-based single input fuzzy
self-tuning decoupled fuzzy PI control for robot manipulators with uncertainty. International
Journal of Robust and Nonlinear Control, 22, 2026–2054.

Bartolini, G., Ferrara, A., & Usai, E. (1997a). Applications of a sub-optimal discontinuous control
algorithm for uncertain second order systems. International Journal of Robust and Nonlinear
Control, 7, 299–319.

Bartolini, G., Ferrara, A.,&Usai, E. (1997b). Output tracking control of uncertain nonlinear second-
order systems. Automatica, 33, 2203–2212.

Batzel, J. J., & Tran, H. T. (2000a). Stability of the human respiratory control system I. analysis of
a two-dimensional delay state-space model. Journal of Mathematical Biology, 41, 45–79.

Batzel, J. J., & Tran, H. T. (2000b). Stability of the human respiratory control system II. analysis
of a three-dimensional delay state-space model. Journal of Mathematical Biology, 41, 80–102.

Boiko, I., Castellanos,M. I.,&Fridman,L. (2004).Analysis of secondorder slidingmode algorithms
in the frequency domain. IEEE Transactions on Automatic Control, 49, 946–950.

Chen, W.-C. (2008). Dynamics and control of a financial system with time-delayed feedbacks.
Chaos, Solitons & Fractals, 37, 1198–1207.

de Paula, A. S., & Savi, M. A. (2009). Controlling chaos in a nonlinear pendulum using an extended
time-delayed feedback control method. Chaos, Solitons & Fractals, 42, 2981–2988.

Derafa, L., Benallegue, A., & Fridman, L. (2012). Super twisting control algorithm for the attitude
tracking of a four rotors UAV. Journal of the Franklin Institute, 349, 685–699.

di Bernardo, M., Budd, C., & Champneys, A. (1998). Grazing, skipping and sliding: analysis of the
non-smooth dynamics of the DC/DC buck converter. Nonlinearity, 11, 858–890.



13 Sliding Bifurcations and Sliding Mode Controller … 265

di Bernardo, M., Budd, C. J., Champneys, A. R., & Kowalczyk, P. (2008). Piecewise-smooth
dynamical systems, theory and applications (Vol. 163)., Applied mathematical sciences. Lon-
don: Springer.

di Bernardo, M., Johansson, K., & Vasca, F. (1999). Sliding orbits and their bifurcations in relay
feedback systems. In Proceedings of the 38th IEEE Conference on Decision & Control (pp.
708–713).

di Bernardo,M., Johansson,K.H.,&Vasca, F. (2001). Self-oscillations and sliding in relay feedback
systems: symmetry and bifurcations. International Journal of Bifurcation and Chaos, 11, 1121–
1140.

di Bernardo, M., & Tse, C. K. (2002). Chaos in circuits and systems, chapter Chaos in power
electronics: an overview (pp. 317–340). New York: World Scientific.

Edwards, C. (1998). Sliding mode control: theory and applications. London: Taylor and Francis.
El-Aroudi, A., Robert, B., & Martínez-Salamero, L. (2006). Modelling and analysis of multi-cell
converters using discrete time models. In Proceedings of the IEEE International Symposium on
Circuits and Systems, (pp. 2161–2164).

El-Aroudi, A., Robert, B. G. M., Cid-Pastor, A., & Martínez-Salamero, L. (2008). Modeling and
design rules of a two-cell buck converter under a digital PWM controller. IEEE Transactions on
Power Electronics, 23, 859–870.

Evangelista, C., Puleston, P., Valenciaga, F., & Fridman, L. (2013). Lyapunov designed super-
twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on
Industrial Electronics, 60, 538–545.

Feki, M., El-Aroudi, A., & Robert, B. G. M. (2007).Multicell dc/dc converter: modeling, analysis
and control. Technical report, National Engineering School of Sfax.

Fichtner, A., Just, W., & Radons, G. (2004). Analytical investigation of modulated time-delayed
feedback control. Journal of Physics A: Mathematical and General, 37, 3385–3391.

Gateau, G., Fadel, M., Maussion, P., Bensaid, R., & Meynard, T. A. (2002). Multicell converters:
active control and observation of flying-capacitor voltages. IEEE Transactions on Industrial
Electronics, 49, 998–1008.

Gauthier, D. J. (1998). Controlling lasers by use of extended time-delay autosynchronization.Optics
Letters, 23, 703–705.

Gjurchinovski, A., Sandev, T., & Urumov, V. (2010). Delayed feedback control of fractional-order
chaotic systems. Journal of Physics A: Mathematical and Theoretical, 43, 445102.

Goyal, V., Deolia, V. K., & Sharma, T. N. (2015). Robust slidingmode control for nonlinear discrete-
time delayed systems based on neural network. Intelligence Control and Automation, 6, 75–83.

Guan, X., Feng, G., & Chen, C. (2006). A stabilization method of chaotic systems based on full
delayed feedback controller design. Physics Letters A, 348, 210–221.

Guan, X., Feng, G., Chen, C., & Chen, G. (2007). A full delayed feedback controller design method
for time-delay chaotic systems. Physica D: Nonlinear Phenomena, 227, 36–42.

Guardia, M., Hogan, S. J., & Seara, T. M. (2010). An analytical approach to codimension-2 sliding
bifurcations in the dry-friction oscillator. SIAM Journal of Applied Dynamical Systems, 9, 769–
798.

Guendouzi, A., Boubakir, A., & Hamerlain, M. (2013). Higher order sliding mode control of robot
manipulator. In Proceedings of the 9th International Conference on Autonomic and Autonomous
Systems.

Hall, K., Christini, D. J., Tremblay, M., Collins, J. J., Glass, L., & Billette, J. (1997). Dynamic
control of cardiac alternans. Physical Review Letters, 78, 4518–4521.

Hövel, P. (2011). Control of complex nonlinear systems with delay, chapter Time-delayed feedback
control, (pp. 7–36). Berlin: Springer.

Jeffrey, M. R., Champneys, A. R., di Bernardo, M., & Shaw, S. W. (2010). Catastrophic sliding
bifurcations and onset of oscillations in a superconducting resonator. Physical Review E, 81,
016213.
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Chapter 14
DTC-SVM-Based Sliding Mode Controllers
with Load Torque Estimators for Induction
Motor Drives

Fatma Ben Salem and Nabil Derbel

Abstract In order to improve performances of the induction motor (IM) speed
control under sliding mode (SM) DTC-SVM, the paper proposes a SM DTC-SVM
based adaptive load torque. The aim of the suggested approach consists to discard
load disturbances effects on the IM operating. For this reason, an adaptive estimator
of the load torque has been developed to overcome this drawback. The load torque
has been considered as a combination of the following three types: a constant load
torque, a linear load torque and a quadratic load torque. Simulation results clearly
show that SM DTC-SVM strategy with load estimator offers best performances and
load disturbances effects can be completely discarded. Thus, the improvement of the
proposed adaptive approach has been observed.

Keywords Induction motor · DTC-SVM · Sliding mode control · Load torque
variations · Adaptive estimator

14.1 Introduction

Since 1980, the Direct Torque Control (DTC) has become popular in industrial drives
for the speed control of induction motor drives. In fact, DTC of IM drives has been
introduced by Takahashi (Takahashi and Noguchi 1986). Moreover, DTC and field-
oriented control (FOC) aremost popular for electricmachine vector control methods.
Compared with FOC (Sadoui and Meroufel 2012), it has been shown that DTC has a
very simple control scheme (Ben Salem et al. 2005; Chlebis et al. 2010; Chaikhy et al.
2011; Allirani and Jagannathan 2014). Nevertheless, the switching frequency of the
conventional DTC, which is uncontrolled, can induce vibrations and noises, and also
only one voltage space vector is applied for the entire sampling period (Ben Salem
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et al. 2005; Ben Salem and Masmoudi 2007). In order to overcome this drawback,
several DTC-SVM (direct torque control-space vector modulation) strategies have
been developed so far (Habetler et al. 1996; Bounadja et al. 2009; Joseline Metilda
et al. 2011; Rashag et al. 2013; Ahammad et al. 2014; Rashag et al. 2014). Using
the space vector modulation (SVM) technique in DTC, the switching frequency
can be maintained constant. This could produce accurate control of the stator flux
linkage, and the torque (Habetler et al. 1996). In order to improve the DTC-SVM
performances, hysteresis comparators of electromagnetic torque and stator flux have
been replaced by PI controllers (Chen 2009).

Despite these performance improvements, DTC-SVM using PI controllers is sen-
sitive to the system-parameter variations (Ben Salem and Derbel 2014). Moreover,
PI controllers are inadequate to reject external disturbances and load variations.
Moreover, since DTC-SVM along with induction motor (IM) is mostly nonlinear,
sliding mode controllers become more suitable. Sliding mode controllers perform
well in nonlinear systems (Veera and Brahmananda Reddy 2012; Ben Salem and
Derbel 2014; Carmelia and Maurib 2011; Venkateswarlu et al. 2013). Indeed, The
slidingmode control is a variable structure system characterized by a high robustness
against to parameters variations and external disturbances. In fact, in SM regime, the
dynamic of the system is insensitive tomodel uncertainties and external disturbances.
Several schemes of sliding mode control dedicated to the control of induction motor
have been studied in the literature (Carmelia and Maurib 2011; Ben Salem and Der-
bel 2007; Venkateswarlu et al. 2013; Zhang Yan et al. 2000; Boucheta et al. 2012).
Despite the robustness of SM controllers, the major limitation of the variable struc-
ture control is the high-frequency switching (Ben Salem andDerbel 2007; ZhangYan
et al. 2000). DTC-SVM using sliding mode controllers seems as an effective solution
offering (i) high performances in terms of the robustness to parameter variations, (ii)
the torque ripple reduction, (iii) the simplicity of design and implementation, etc.

Within this approach, this paper proposes a sliding mode DTC-SVM approach to
control the speed of an induction motor and to discard load disturbances effects on
the inductionmachine operating, by considering load torque containing (i) a constant
load, (ii) a linear load, and (iii) a quadratic load. For this, an adaptive estimator of the
load torque has been added to the speed loop in order to increase its robustness and
to overcome the problem of torque disturbances acting on the motor shaft which can
affect motor performances. In order to study performances of the drive system under
the steady state and dynamic conditions during starting, various speed range and
load disturbances have been considered. Simulation results show that the proposed
adaptive SM controller achieves robust and satisfactory performances.

14.2 Mathematical Model of Induction Machines

In the literature, there are several mathematical models representing the dynamical
behavior of induction machines. In the following, a state space model related to α
and β axes, for electrical variables, is considered:
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφαs
dt = vαs − Rsiαs

dφβs

dt = vβs − Rsiβs

dφαr
dt = −Rriαr − ωmφβr

dφβr

dt = −Rriβr + ωmφαr

(14.1)

where subscripts s and r refer to stator and rotor, subscripts α and β refer to compo-
nents in (α,β) frame, v, i andφ refer to voltage, current andflux,Rs andRr refer to sta-
tor and rotor resistances, andωm refers to themachine speed (ωm = NpΩm = ωs − ωr

and Np is the pole pair number).
Currents and flux relationships are:

[

φαs

φαr

]

=
[

Ls M
M Lr

] [

iαs

iαr

]

,

[

φβs

φβr

]

=
[

Ls M
M Lr

] [

iβs

iβr

]

(14.2)

where L and M refer to the inductance and the mutual one.
The mechanical part of the machine is described by:

dΩm

dt
= Tem − TL

J
(14.3)

where J is the motor inertia, Tem is the electromagnetic torque and TL is the load
torque.

14.2.1 Voltage Source Inverter

The made constant DC voltage by the rectifier is delivered to the inverter input,
which thanks to controlled transistor switches, converts this voltage to three-phase
AC voltage signal with wide range variable voltage amplitude and frequency.

The inverter one leg consists of two transistor switches. A simple transistor switch
consists of a feedback diode connected in anti-parallel with the transistor. Feedback
diode conducts current when the load current direction is opposite to the voltage
direction.

Assuming that the power devices are ideal: when they are conducting, the voltage
across them is zero and they present an open circuit in their blockingmode. Therefore,
each inverter leg can be represented as an ideal switch. It gives the possibility to
connect each of the three motor phase coils to a positive or negative voltage of the
dc link (E0).

Considering a 2-level inverter, presented by Fig. 14.1, the voltage vector of the
three-phase voltage inverter is expressed as follows:
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Fig. 14.1 2-level inverter

Sa Sb Sc

Sa Sb Sc

E0
2

E0
2

−→
V s =

√

2

3

[

Sa + Sb e
j2π3 + Sc e

j4π3

]

(14.4)

where Sa, Sb and Sc are three-phase inverter switching functions, which can take a
logical value of either 0 or 1.

14.2.2 Basic Principle of the Conventional DTC

The basic DTC strategy, to which is referred most if not all the literature in this area,
is the one developed by Takahashi (Takahashi and Noguchi 1986) consisting of a two
of hysteresis comparators, a torque and a flux estimators, a voltage vector selected
by a look-up table and three-phase voltage inverter. In fact, The principle of DTC
strategies consists of describing the way in which the stator flux and the torque are
directly controlled by selecting a suitable inverter’s voltage vector.

14.2.3 DTC-SVM Principle

The space vector modulation (SVM) technique has been widely used in industrial
applications of PWM (pulse width modulation) inverters because of lower current
harmonics, highermodulation index, fast transient response and simple digital imple-
mentation.

In the DTC system, the same active voltage vectors are applied during the whole
sample period, and possibly several consecutive samples which give rise to relatively
high ripple levels in stator current, flux linkage and torque. One of proposals to
minimize these problems is to introduce Space Vector Modulation (SVM), which is
a pulse width modulation technique able to involve the determination of the power
switch conduction times in each modulation period, leading to control the switching
frequency DTC strategy.
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14.3 DTC-SVM-Based PI Controllers

The basic idea of this strategy is the decoupling between the amplitude and the
argument of the stator flux vector. Indeed, the amplitude of this vector will be
imposed, but the argument will be calculated according to desired performances,
namely the reduction of electromagnetic torque ripples. The control of the electro-
magnetic torque is provided by a predictive controller. This approach differs from the
basic DTC approach by using a predictive controller and a space vector modulation
(SVM) which ensures the working with a constant commutation frequency. The vec-
tor selection table and hysteresis controllers are eliminated. The generation of control
pulses applied to the switches of the inverter is provided by a predictive controller
which receives signals of the torque error, the mechanical speed, the amplitude of
the stator flux reference vector, the estimated stator flux and stator current vector
coordinates. Then the controller determines the coordinates of the reference voltage
vector in the (α,β) frame (Ben Salem and Derbel 2014; Rashag et al. 2013).

14.3.1 Torque Controller

In these works (Ben Salem and Derbel 2014; Rashag et al. 2013), it has been shown
that for a constant stator flux |Φs| = |Φ∗

s |, the electromagnetic torque Tem and the
rotor angular speed ωr are related by a linear transmittance expressed as: (Ben Salem
and Derbel 2014; Srirattanawichaikul et al. 2010):

G1(p) = Tem

ωr
= a

1 + τp
(14.5)

where:

τ = σ
Lr

Rr
, σ = 1 − M2

LsLr
, a = Np

M2

RrL2
s

|Φ∗
s |2

For a linear load described by the load torque TL = K1Ωm, the transfer function
between the speed Ωm and the torque Tem is given by:

G2(p) = Ωm

Tem
= 1

K1 + Jp
(14.6)

14.3.2 Flux Reference Coordinates Computing

The slip angular reference speed ω∗
r , which is the output of the PI controller, will

be used to calculate the argument of the stator flux reference. In the reference frame
(α,β), coordinates of the reference stator flux φ∗

αs and φ∗
βs are calculated from the
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polar coordinates according to the following expressions:

{

φ∗
αs = |Φ∗

s | cos θ∗
s

φ∗
βs = |Φ∗

s | sin θ∗
s

(14.7)

14.3.3 Voltage Reference Coordinates Computing

The coordinates of references of voltage vectors v∗
αs and v∗

βs in (α,β) frame are
determined by the following equations:

⎧

⎪⎨

⎪⎩

v∗
αs = φ∗

αs − φαs
Tem

+ Rsiαs

v∗
βs = φ∗

βs − φβs

Tem
+ Rsiβs

(14.8)

These vectors are introduced to the SVM block, which uses them to control the
inverter switches (Sa, Sb, Sc).

14.3.4 PI-DTC-SVM Scheme

The implementation scheme of the DTC-SVM strategy with PI controllers applied to
the speed regulation of an induction motor drive is shown in Fig. 14.2. This strategy
differs from the basic DTC strategy by using a bloc of voltage reference coordinates
computing and a space vector modulation (SVM) which ensures the working with a
constant commutation frequency.Thevector selection table andhysteresis controllers
are eliminated.

14.4 DTC-SVM-Based SM Controllers

The main drawbacks of DTC-SVM using PI controllers are the sensitivity of the
performances to the system-parameter variations and the inadequate rejection of
external disturbances and load changes (Ben Salem and Derbel 2014, 2016). The
variable structure control can offer a good insensitivity to parameter variations, exter-
nal disturbances rejection and fast dynamics. This approach utilizes discontinuous
and robust control laws to drive the system state trajectory onto a sliding surface in
the state space.
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Fig. 14.2 Induction motor speed control based on DTC-SVM with PI controllers

14.4.1 SM Control Principle

Let’s consider a system described by the following differential equation:

dn

dtn
Y + an−1

dn−1

dtn−1
Y + · · · + a1

d

dt
Y + a0Y = b0U (14.9)

where U ∈ R
m is the input vector and Y ∈ R

m is the output vector. b0 is an m × m
matrix and ai (0 ≤ i ≤ n − 1) are m × m matrices.

Differential equations between an input and an output variable of induction
machines under DTC-SVM can be represented by this form.

The sliding surface can be expressed as:

S =
(

d

dt
+ λ

)n−1

(Y − Yr) = 0 (14.10)

where Yr is the reference trajectory of the system.
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The sliding mode control consists on expressing the control law as (Carmelia and
Maurib 2011; Utkin 1993; Young et al. 1999; Mahmoudi et al. 1993):

U = Ueq + ΔU (14.11)

The so called “equivalent control” Ueq can be determined by imposing Ṡ = 0 which
can be expressed as:

Ṡ = f (X) + BU (14.12)

where X is the state vector and B = diag([b1, b2, . . . , bm]) > 0 is a positive diagonal
matrix (in the case of induction machines under DTC-SVM). This gives:

Ueq = −B−1f (X) (14.13)

and:
ΔU = −U0 sign S (14.14)

where U0 = diag([U01, U02...U0m]) is a diagonal positive definite matrix containing
positive terms U0i, i = 1, 2, . . . , m.

The stability of the overall system can be ensured by considering the following
Lyapunov candidate function:

V = 1

2
ST S (14.15)

Its differential with respect to time is expressed as:

V̇ = ST Ṡ = ST [f (X) + BU] = ST [f (X) + BUeq
︸ ︷︷ ︸

=0

+BΔU]

= ST BΔU = −ST BU0signS = −
m

∑

i=1

U0ibi|Si| ≤ 0 (14.16)

Then, the system is stable.

14.4.2 Speed SM Controller

The subsystem with the input UΩ = ωr and with the output Ωm is a second order
system. Then, let us consider the sliding surface:

SΩ = d

dt
(Ωm − Ωr) + λΩ(Ωm − Ωr) (14.17)

= 1

J
Tem +

(

λΩ − K1

J

)

Ωm − Ω̇r − λΩΩr (14.18)
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Ωr is the speed reference trajectory.
The differential with respect to time of SΩ gives:

ṠΩ = a

Jτ
UΩ +

(

λΩ − 1

τ
− K1

J

)
1

J
Tem − K1

J

(

λΩ − K1

J

)

Ωm − Ω̈r − λΩΩ̇r

(14.19)
For SΩ = ṠΩ = 0, the equivalent control can be expressed as:

Ueq,Ω = Jτ

a

(

Ω̈r + λΩΩ̇r
) + τ

a

[(
1

τ
+ K1

J
− λΩ

)

Tem + K1

(

λΩ − K1

J

)

Ωm

]

(14.20)
The applied control is:

UΩ = Ueq,Ω + ΔUΩ (14.21)

where:
ΔUΩ = −U0,Ω sign SΩ (14.22)

14.4.3 Flux SM Controller

Let us consider the subsystem with the vector Vsref = Uφ as its input and the vector
Φs as its output. The sliding surface is chosen as:

Sφ = (

Φs − Φ∗
s

) + λφ

∫
(

Φs − Φ∗
s

)

dt (14.23)

where: |Φ∗
s | = |ΦN | = 1Wb, and:

Φ∗
s =

[

φ∗
αs

φ∗
βs

]

=
[

|Φ∗
s | cos θ∗

s

|Φ∗
s | sin θ∗

s

]

(14.24)

Similarly to the last case, and imposing Ṡφ = 0, the expression of the equivalent
control is:

Ueq,φ = RsIs + Φ̇∗
s − λφ

(

Φs − Φ∗
s

)

(14.25)

where:

Φ̇∗
s =

[

φ̇∗
αs

φ̇∗
βs

]

=
[

−|Φ∗
s | ω∗

s sin θ∗
s

|Φ∗
s | ω∗

s cos θ∗
s

]

=
[−ω∗

s φ∗
βs

ω∗
s φ∗

αs

]

(14.26)

This leads to the reference stator voltage control:
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Uφ = Ueq,φ − U0,φ sign
(

Sφ

)

(14.27)

14.4.4 SM-DTC-SVM Scheme

The structure of this control approach is given by the block diagram of Fig. 14.3
when we use only two sliding mode controllers: one for the speed and one for the
flux.

14.4.5 Adaptive Load Torque Estimator

The load torque adaptation law will be designed so that the updated gain converges
to its desired value. Stability properties are given on the basis of Lyapunov analysis.

It is obvious that the control Ueq,Ω is a function of the load gains K0, K1 and
K2 (TL = K0 + K1Ωm + K2Ω

2
m). If the load varies or if it is ill-known, an adaptive

estimation law of gains K0, K1 and K2 should be determined.
Let’s consider the following notations:

controller
speed

(S.M.)
+

-
+

Ωm

Ω∗
m computing of

reference flux
ω∗

r

controller
flux

(S.M.)

ω∗
s

-+

θ∗
s |Φ∗

s|

Φ
∗
s

Sa Sb Sc

Sa Sb Sc

Induction

Concordia

transform

estimator
Stator flux

estimator
Torque

φαs

φβs

iαsiβs SVM

v∗
αs

v∗
βs

E0
Motor

Φ s

+

Ωm

Np

ias ibs ics vasvbsvcs

Fig. 14.3 Induction motor speed control based on DTC-SVM with sliding mode controllers
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Ueq,Ω = Ueq,Ω(K0, K1, K2)

and
Ueq,Ω = Ueq,Ω(K0, K1, K2)

where K0, K1 and K2 are estimated values of gains K0, K1 and K2. Then, we can
write:

Ueq,Ω(K1) = Ueq,Ω(K1) − ∂Ueq,Ω

∂K0
K̃0 − ∂Ueq,Ω

∂K1
K̃1 − ∂Ueq,Ω

∂K2
K̃2 + o

(

K̃0, K̃1, K̃2
)2

(14.28)
where:

K̃0 = K0 − K0

K̃1 = K1 − K1

K̃2 = K2 − K2

Moreover, the differential with respect to time of SΩ can be expressed as:

ṠΩ = f (X) + bUΩ (14.29)

where X is the state vector, and b is a positive scalar constant. The equivalent control
verifies: f (X) + bUeq,Ω = 0. The applied control is:

UΩ = Ueq,Ω + ΔUΩ (14.30)

Thus:

ṠΩ = f (X) + b(Ueq,Ω + ΔUΩ) = f (X) + bUeq,Ω
︸ ︷︷ ︸

=0

+b(Ueq,Ω − Ueq,Ω) + bΔUΩ

= bK̃0
∂Ueq,Ω

∂K0
+ bK̃1

∂Ueq,Ω

∂K1
+ bK̃2

∂Ueq,Ω

∂K2
+ bΔUΩ + o

(

K̃0, K̃1, K̃2
)2

(14.31)

with (for i = 0, 1, 2):

∂Ueq,Ω

∂Ki
= τ

a

∂TL

∂Ωm

Te − TL

J
− τ

a

(
1

J

∂TL

∂Ωm
− λ

)
∂TL

∂Ki
(14.32)

Then:
∂Ueq,Ω

∂K0
= τ

Ja

(

JλΩ − K1 − 2K2Ωm
)

(14.33)
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∂Ueq,Ω

∂K1
= τ

Ja

[

Tem−(K0 + K1Ωm + K2Ω
2
m) + (

JλΩ −K1 − 2K2Ωm
)

Ωm
]

(14.34)
∂Ueq,Ω

∂K2
= τΩm

Ja

[

2Tem−2(K0 + K1Ωm + K2Ω
2
m) + (

JλΩ −K1−2K2Ωm
)

Ωm
]

(14.35)

• Theorem

Control laws (14.22) and (14.30) with the following adaptive laws:

K̇0 = −η0 b SΩ

∂Ueq,Ω

∂K0
(14.36)

K̇1 = −η1 b SΩ

∂Ueq,Ω

∂K1
(14.37)

K̇2 = −η2 b SΩ

∂Ueq,Ω

∂K2
(14.38)

stabilise the speed loop, where η0, η1 and η2 are positive scalars.

• Proof

Let us consider the following Lyapunov function:

VΩ = 1

2
S2

Ω + 1

2η0
K̃2
0 + 1

2η1
K̃2
1 + 1

2η2
K̃2
2 (14.39)

In the following, it assumed that parameters K0, K1 and K2 are constants or they
have slow variations with respect to time, in such away that we can neglect their
differentials with respect to time: K̇0 � 0, K̇1 � 0 and K̇2 � 0. Then, we can write:
˙̃K0 � K̇0, ˙̃K1 � K̇1 and ˙̃K2 � K̇2.
The differential with respect to time of function VΩ is expressed as:

V̇Ω = SΩ ṠΩ + 1

η0
K̃0

˙̃K0 + 1

η1
K̃1

˙̃K1 + 1

η2
K̃2

˙̃K2

= SΩb

[
∂Ueq,Ω

∂K0
K̃0 + ∂Ueq,Ω

∂K1
K̃1 + ∂Ueq,Ω

∂K2
K̃2 + ΔUΩ + o(K̃0, K̃1, K̃2)

2

]

+ 1

η0
K̃0

˙̃K0 + 1

η1
K̃1

˙̃K1 + 1

η2
K̃2

˙̃K2

= SΩbΔUΩ + o(K̃0, K̃1, K̃2)
2 +

[

SΩb
∂Ueq,Ω

∂K0
(K0) + 1

η0

˙̃K0

]

︸ ︷︷ ︸

=0

K̃0

+
[

SΩb
∂Ueq,Ω

∂K1
(K1) + 1

η1

˙̃K1

]

︸ ︷︷ ︸

=0

K̃1 +
[

SΩb
∂Ueq,Ω

∂K2
(K2) + 1

η2

˙̃K2

]

︸ ︷︷ ︸

=0

K̃2
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= SΩ b ΔUΩ + o(K̃0, K̃1, K̃2)
2=−b U0,Ω |S�| + o(K̃0, K̃1, K̃2)

2 ≤ 0

(14.40)

14.5 Simulation Results and Discussions

Parameters of the inductionmotor are listed in Table14.1. It has the following ratings:
220V, 10kW and 1470 rpm at 50Hz.

Simulations have been done for a desired size of the flux |Φ∗
s | = 1 Wb, and a

desired speed trajectory defined by: (i) an acceleration from t = 0 s to t = 1s varying
the speed from0 rpm to 1200 rpm, (ii) a constant speed equal to 1200 rmp from t = 1s
to t = 2.5s, (iii) a deceleration from t = 2 s to t = 2.5s varying the speed from 1200
rpm to 600 rpm, and (iv) a constant speed equal to 600 rmp from t = 2.5s to t = 4s.

14.5.1 Case of Known Loads

14.5.1.1 Considering PI Controllers

Figures14.4, 14.5 and 14.6 present the evolution of the speed Ωm, the flux |Φs|, the
electromagnetic torque Tem, the stator current ias, one period of the stator current ias

for the steady state defined by the speed equal to 1200 rpm, and the control variable
ωr which represents the rotor pulsation.

It is obvious that the flux |Φs| reaches its desired size rapidly, with low ripples, and
the speed follows its desired trajectory. Moreover, the electromagnetic torque has a
good evolution with low ripples, and the stator current presents sinusoidal variations
for constant speeds. Figures14.4, 14.5 and 14.6 present the response of the system
for different loads:

Case 1 (Fig. 14.4) : [K0, K1, K2] = [0, K1n, 0]
Case 2 (Fig. 14.5) : [K0, K1, K2] = 1

2
[0, K1n, K2n]

Case 3 (Fig. 14.6) : [K0, K1, K2] = 1

4
[0, K1n, K2n]

Table 14.1 Induction motor parameters

Rs = 0.29� Ls = Lr = 50mH Np = 2

Rr = 0.38� M = 47.3mH J = 0.5kg · m2
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Fig. 14.4 Transient behavior of the IM under DTC-SVM using PI controllers with a linear load
torque TL = K1Ωm, K1 = K1n

The first case needs the highest currents and highest torques. Because, in the first
case, the torque requirement is larger than the second and the third case. In fact, the
third case presents a half nominal load torque at the nominal speed.

However, the first case and the second case present a nominal load torque at the
same speed. Moreover, Using the fact that the nominal torque can be expressed as:

Tn = K0n = K1nΩn = K2nΩ
2
n

The expression of the load torque becomes:

TL = K0 + K1Ωm + K2Ω
2
m = Tn

[

K0

K0n
+ K1

K1n

Ωm

Ωn
+ K2

K2n

(
Ωm

Ωn

)2
]
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Fig. 14.5 Transient behavior of the IM under DTC-SVM using PI controllers with a load torque
TL = K1Ωm + K2Ω

2
m, K1 = 1

2K1n and K2 = 1
2K2n

This gives:

Case 1 (Fig. 14.4) : TL = TL1 = Tn

[
Ωm

Ωn

]

Case 2 (Fig. 14.5) : TL = TL2 = 1

2
Tn

[

Ωm

Ωn
+

(
Ωm

Ωn

)2
]

≤ TL1

Case 3 (Fig. 14.6) : TL = TL3 = 1

4
Tn

[

Ωm

Ωn
+

(
Ωm

Ωn

)2
]

≤ TL2 ≤ TL1

It is to be noted that we have not considered a constant torque load, because
PI controllers presents several difficulties and the system cannot follow its desired
trajectory. Moreover, if the load is unknown, PI controllers give bad performances,
and the system cannot reach its desired outputs (flux and speed).
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Fig. 14.6 Transient behavior of the IM under DTC-SVM using PI controllers with a load torque
TL = K1Ωm + K2Ω

2
m, K1 = 1

4K1n and K2 = 1
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14.5.1.2 Considering SM Controllers

Figures14.7, 14.8, 14.9 and 14.10 present the evolution of the speed Ωm, the flux
|Φs|, the electromagnetic torque Tem, the stator current ias, one period of the stator
current ias for the steady state defined by the speed equal to 1200 rpm, and the
control variable ωr which represents the rotor pulsation. It is obvious that the flux
|Φs| reaches its desired size rapidly, with very low ripples, and the speed follows its
desired trajectory. Moreover, the electromagnetic torque has a good evolution with
very low ripples, and the stator current presents sinusoidal variations for constant
speeds. It is also obvious that torque and flux ripples are reduced compared to those
given by PI controllers.

Figures14.7, 14.8, 14.9 and 14.10 present the response of the system for different
loads:
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Fig. 14.7 Transient behavior of the IM under DTC-SVM using SM controllers with a linear load
torque TL = K1Ωm, K1 = K1n

Case 1 (Fig. 14.7) : [K0, K1, K2] = [0, K1n, 0]
Case 2 (Fig. 14.8) : [K0, K1, K2] = 1

2
[0, K1n, K2n]

Case 3 (Fig. 14.9) : [K0, K1, K2] = 1

3
[K0n, K1n, K2n]

Case 4 (Fig. 14.10) : [K0, K1, K2] = 1

6
[K0n, K1n, K2n]

Cases 1, 2 and 3 give nominal load torques at the steady state around the nominal
speed. However, it is well obvious that we have: TL1 ≤ TL2 ≤ TL3 ≤ TL4. This is why
the electromagnetic torque and the stator current are larger for the first case, and they
decrease for the second case, then for the third case, and then for the fourth case.

These figures show good several improvements compared to the case of PI con-
trollers. The torque and the flux ripples have been reduced, and their evolutions
become more smooth. Moreover, the control variable ωr has a better shape and a
smaller magnitude using SM controllers than those given by PI controllers.
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Fig. 14.8 Transient behavior of the IM under DTC-SVM using SM controllers with a load torque
TL = K1Ωm + K2Ω

2
m, K1 = 1
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2K2n

14.5.2 Performance Criteria

Two comparison criteria have been selected to evaluate the effectiveness of the two
DTC-SVM approaches under comparison.

First of all, consider the expression of the ias current, around a steady state oper-
ating point, as follows:

ias(t) = �e

( ∞
∑

N=1

IN exp(jNωst)

)

(14.41)

|IN | is the amplitude of the harmonic N , and |I1| is the amplitude of the fundamental.
The first criterion is the average total harmonic distortion (THD) of the stator

current which is defined as follows:

THD =

√
∞∑

N=2
|IN |2

|I1| (14.42)
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Fig. 14.9 Transient behavior of the IM under DTC-SVM using SM controllers with a load torque
TL = K0 + K1Ωm + K2Ω
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The second comparison criterion translates the torque and the flux ripples around
their steady state values. It can be expressed as the norm of the ratio of torque ripples
by the torque mean, and the ratio of flux ripples by the flux mean, during one period:

TRIP =
∥
∥
∥
∥

Tem(t) − Tem,mean

Tem,mean

∥
∥
∥
∥

=
∥
∥
∥
∥

Tem(t)

Tem,mean
− 1

∥
∥
∥
∥

(14.43)

�RIP =
∥
∥
∥
∥

Φs(t) − Φs,mean

Φs,mean

∥
∥
∥
∥

=
∥
∥
∥
∥

Φs(t)

Φs,mean
− 1

∥
∥
∥
∥

(14.44)

Two norms have been considered leading to two criteria describing the torque ripples
and the flux ripples, based on the two well known norms (the norm 2 and the infinite
norm):
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Fig. 14.10 Transient behavior of the IM under DTC-SVM using SM controllers with a load torque
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TRIP,2 =
√

1

T

∫ t0+T

t0

[
Tem(t) − Tem,mean

Tem,mean

]2

dt (14.45)

TRIP,∞ = max
t0≤t<t0+T

∣
∣
∣
∣

Tem(t) − Tem,mean

Tem,mean

∣
∣
∣
∣

(14.46)

�RIP,2 =
√

1

T

∫ t0+T

t0

[
Φs(t) − Φs,mean

Φs,mean

]2

dt (14.47)

�RIP,∞ = max
t0≤t<t0+T

∣
∣
∣
∣

Φs(t) − Φs,mean

Φs,mean

∣
∣
∣
∣

(14.48)

Period T has been chosen equal to the stator period and time t0 should be chosen in
such away the system reaches its steady state for t larger than t0.

We have chosen the first case PI1 and the first case SM1 detailed in the last
paragraphs, for a linear nominal known load.
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Fig. 14.11 Reduced spectrum of ias with respect to fundamental, for DTC-SVM approach using
PI controllers and for DTC-SVM approach using SM controllers

Table 14.2 Total harmonic distorsion of the stator current, flux ripples, and torque ripples

Current Flux ripples Torque ripples

THD ΦRIP,2 ΦRIP,∞ TRIP,2 TRIP,∞
PI1 0.6252 0.0149 0.0060 0.1799 0.0558

SM1 0.2316 0.0065 0.0015 0.1590 0.0401

Figure14.11 presents the harmonics of the ias current. It is obvious that sliding
mode controllers yield less harmonics than PI controllers. This is also clear in the
values of the total harmonic distorsion THD presented in Table14.2. In this table,
flux and torque ripples are computed. Table14.2 shows that SM controllers give less
ripples on the torque and the flux than those given by PI controllers.

14.5.3 Case of Ill-Known Loads Without Load Gain
Estimators

To show that the used controllers are sensitive to load variations, we have considered
that the load is the half of the nominal one. However, the controllers use parameters
of the nominal load.

14.5.3.1 Considering PI Controllers

Figures14.12 presents the evolution of the speed Ωm, the flux |Φs|, the electro-
magnetic torque Tem, the stator current ias, one period of the stator current ias for
the steady state defined by the speed equal to 1200 rpm, and the control variable ωr

which represents the rotor pulsation.
The considered load is defined by:
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Fig. 14.12 Transient behavior of the IM under DTC-SVM using PI controllers with an ill-known
load torque TL = K1Ωm, K1 = 1

2K1n

Case 4 (Fig. 14.12) : [K0, K1, K2] = 1

2
[0, K1n, 0]

However, the PI controller assumes that the load gain is K1n.
It is obvious that the system performances have been affected by the fact that

the controller ignores the exact load gains. A static error on the speed has appeared
ΔΩm � 2 rpm.

14.5.3.2 Considering SM Controllers

Figure14.13 presents the evolution of the speedΩm, the flux |Φs|, the electromagnetic
torque Tem, the stator current ias, one period of the stator current ias for the steady
state defined by the speed equal to 1200 rpm, and the control variable ωr which
represents the rotor pulsation.

The considered load is defined by:

Case 5 (Fig. 14.13) : [K0, K1, K2] = 1

6
[K0n, K1n, K2n]
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Fig. 14.13 Transient behavior of the IM under DTC-SVM using SM controllers with an ill-known
load torque TL = K0 + K1Ωm + K2Ω

2
m, K0 = 1

6K0n, K1 = 1
6K1n, K2 = 1

6K2n

However, the SM controller assumes that the load gain is K1n.
It is obvious that the system performances have been affected by the fact that

the controller ignore the exact load gains. A static error on the speed has appeared
ΔΩm � 6 rpm.

14.5.4 Case of Ill-Known Loads with Load Gain Estimators

To check the robustness of the proposed adaptive approach, Figs. 14.14, 14.15 and
14.16 present the evolution of the speedΩm, the flux |Φs|, the electromagnetic torque
Tem, the stator current ias, one period of the stator current ias for the steady state defined
by the speed equal to 1200 rpm, and the control variable ωr which represents the
rotor pulsation. These figures present the response of the system for three cases of
unknown loads:
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Fig. 14.14 Transient behavior of the IM under DTC-SVM using SM controllers with load gain
estimators and for a constant torque load TL = K0, K0 = K0n

Case 1 (Fig. 14.14) : [K0, K1, K2] = [K0n, 0, 0]
Case 2 (Fig. 14.15) : [K0, K1, K2] = 1

3
[K0n, K1n, K2n]

Case 3 (Fig. 14.16) : [K0, K1, K2] = 1

6
[K0n, K1n, K2n]

These figures show that the system performances are not affected by the fact that
loads are unknown.

The evolution of the estimated load gains are presented in Figs. 14.17, 14.18 and
14.19. In these figures, estimated load gains converge to their actual values, and the
electromagnetic torque reaches the demand on the load torque.

Despite the fact that the load is unknown, the adaptive approach, which computes
the estimation of load gains, give very goodperformances. In fact, it is obvious that the
flux |Φs| reaches its desired size rapidly, with very low ripples, and the speed follows
its desired trajectory.Moreover, the electromagnetic torque has a good evolutionwith
very low ripples, and the stator current presents sinusoidal variations for constant
speeds.
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Fig. 14.15 Transient behavior of the IM under DTC-SVM using SM controllers with load gain
estimators and for a load torque TL = K0 + K1Ωm + K2Ω
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14.6 Conclusion

A comparative study between two DTC-SVM approaches: (i) using PI controllers,
and (ii) using sliding mode controllers, taking into account the effect of the load
torque disturbances, has been developed in this paper. A discussion, using simulation
results, with respect to load disturbances, considering constant, linear and quadratic
load torques, has been presented. It has been found that the second approach with
adaptive load gain, inserted in the control loop, offers best performances. Furthermore
it exhibits a high capability to reject effects of the load disturbances. Moreover, it has
been clearly shown the convergence of the adaptive load gains to their convenient
values.
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Fig. 14.16 Transient behavior of the IM under DTC-SVM using SM controllers with load gain
estimators and for a load torque TL = K0 + K1Ωm + K2Ω
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Chapter 15
An Enhanced High Order Sliding Mode
based Method for Detecting Inter-Turn
Short-Circuit Fault in Induction Machine
with Decoupled Current Control

Amal Guezmil, Hanen Berriri, Anis Sakly and Mohamed Faouzi Mimouni

Abstract This chapter is devoted to the exploitation of high order sliding mode
for fault detection of inter-turn short-circuit in induction machine. For this purpose,
healthy and faulty induction machine models are firstly established for different
operating conditions during open loop control. The faulty model show the impact of
inter-turn short-circuit on inductionmachine variables. Secondly, a high order sliding
mode is synthesized to design decoupled current controller for inductionmachine and
a closed loop inductionmachinedynamics are analyzed.The fault detection algorithm
is combined actual induction machine behavior given by faulty model including fault
occurrence and the behavior given by high order sliding mode observer to provide
sensitive residuals, which exploited such fault indicators. This theoretical research
prove that high order sliding mode approach have good capabilities to ensure both
decoupled current control and inter-turn short-circuit fault detection.

Keywords Induction machine · High order sliding mode · Decoupled current
control · Inter-turn short-circuit · Fault detection
15.1 Introduction

Fault detection in electrical machines is a topic of increasing interest and importance
in the field of control systems. Induction Machines (IM) are widely used in numer-
ous application (Cao et al. 2012; Jurkovic et al. 2015; Sebastián and Peña-Alzola
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2015; Sridharan and Krein 2014). However, owing to the electrical, mechanical,
thermal, magnetic and environmental stresses, mechanical and electrical faults are
unavoidable in IM (Siddique et al. 2005). Most recurrent faults are stator winding,
rotor winding, bearings and other faults such as connection faults, shaft and coupling
faults, etc (Kaikaa and Hadjami 2014). Several studies have shown that inter-turn
short-circuit (ITSC) fault accounts for approximately 30–40% of all possible faults
kinds. ITSC fault is usually related to long-term thermal and subsequent deteriora-
tion of winding insulation (Nandi et al. 2005). Therefore, early detection of the ITSC
fault is required to eliminate the undesirable IM behavior leading to unscheduled
maintenance, process shutdown and huge unnecessary costs and delays.

Intensive researches have been carried out to solve the ITSC fault problem (Riera-
Guasp et al. 2015). In Ahamed et al. (2014), Devi et al. (2014), Drif and Cardoso
(2014), Liu et al. (2014), authors have been focused on the machine current signature
analysis (MCSA) to solve the ITSC fault detection problem. This technique helps in
the detection of such fault due to remarkable noise on the line current and transient
operating conditions. Other works, such as Seshadrinath et al. (2014a) and Frosini
et al. (2012), use vibration analysis and axial leakage flux-based techniques. How-
ever, these methods require the installation of additional sensors that are costly and
sometimes inappropriate when the machine is operating in an adverse environment.
Moreover some techniques are introduced using sequence component such as the
zero sequence voltage or the negative sequence current component of the machine
phase current (Gyftakis and Kappatou 2014). Another ITSC fault detection method
using the air-gap torque, sensitive to asymmetric stator winding, is presented in
Melero et al. (2003). Also, the increasing interest in artificial intelligence approaches
(Filippetti et al. 2000) has led to the proliferation of new algorithms using fuzzy logic
(Verma et al. 2014), genetic algorithms (Seshadrinath et al. 2014b) or artificial neural
network (Bhavsar et al. 2014). Amodel-based approach remainswidely used for fault
detection area and especially for the ITSC fault detection (Ghazal and Poshtan 2011;
Lu et al. 2011; Sellami et al. 2013; Toumi et al. 2012). Its main idea is to generate
residual or set of residuals that should be sensitive to fault to be detected. These resid-
uals result from a comparison between normal machine behavior and an abnormal
behavior due to the fault occurrence.

In ITSC fault detection problem, the main goal is to develop an approach with a
minimum knowledge about its parameters and constructional data, which are usually
difficult to obtain when the machine is already installed and in operation. Following
these goal, observer-based ITSC fault detection has received considerable interest in
academic researches. In Lu et al. (2011), a Luenberger observer-based fault detection
and diagnosis scheme is developed for double fed induction generator. This technique
can not only provide a rapid detection when the ITSC fault occurs but also gives an
accurate diagnosis of its position and level. Authors in Toumi et al. (2012) propose
an adaptive observer to establish an online system able to detect the ITSC fault in IM.
Based on faulty IM model, this observer can estimate the short-circuit turns fraction
and other IM states. In Nohra (2013), μ analysis based observer followed by sliding
mode estimator is developed to detect, isolate and estimate stator short-circuit fault.
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Recently, there has been a special attention focus on slidingmode approach,where
it is widely used for state estimation and fault detection in linear and non-linear sys-
tems due to the finite-time convergence, robustness with respect to uncertainties and
the possibility of uncertainty estimation. In one of the first articles using sliding
mode methods, Hermans and Zarrop (1996) are expended a sliding mode observer
(SMO) for fault detection problem. Afterwards, several works have been treating the
first order sliding mode (FOSM) observer (Edwards et al. 2000; Sellami et al. 2013).
However, FOSM observer is limited by relative degree one requirement and the chat-
tering phenomenon. The chattering is due to the inclusion of the sign function in the
switching term. This is described as the appearance of oscillations of finite frequency
and finite amplitude. These oscillations are caused by the high-frequency switching
of the FOSM observer that can motivate no exhibited dynamics, like sensors and
actuators dynamics, which are neglected in the system modeling. Generally, sensors
and actuators dynamics are faster than the system one. The chattering phenomenon is
also induced by uncertainties and perturbations that force system dynamics to leave
the sliding mode. In order to reduce the chattering amplitude, a new generation of
observers based on the high order sliding mode (HOSM) algorithms has been devel-
oped. In this chapter, HOSM observer is established, to estimate IM states which
are not available and uncertain on one hand, and on other hand, to generate a set
of residuals which close to zero when no fault is present and non-zero when fault
occurs (Ashari et al. 2012).

A HOSM observer is established firstly for faulty IM in open loop control.
Then,HOSM-based controllers have been investigatedwith decoupled control design
(Kommuri et al. 2014, 2015). Indeed, HOSM current control is employed here to
meet the following two purposes: (i) decoupled control of (d − q) current for robust
tracking and (ii) ITSC fault detection. The HOSM decoupled current control scheme
is obtained using Proportional − Integral (PI) controller and the HOSM controller
output. The nominal PI controller acts on the ideal system dynamics, devoid of cou-
pling terms (Comanescu et al. 2008) and theHOSMcontroller generates an equivalent
continuous approximation of the compensation voltages that remove the coupling
terms in current dynamics deprived of the use of low-pass filtering (Comanescu
2009).

This chapter deals with ITSC fault detection scheme for IM using HOSM
approach. Then, to show that impact of such fault on IM behavior, healthy and
faulty IM models are established. Different fault scenarios are studied. Afterward,
HOSM approach is used to avoid the estimation of three−phase stator current and
rotor flux for ITSC fault detection and to eschew the decoupled control for robust
tracking. A HOSM observer is developed firstly, to generate set of residuals that used
for the fault detection technique. Secondly, the HOSM decoupled current controller
is expanded to produce an equivalent continuous approximation of the compensation
voltages that cancels out the coupling terms in the current dynamics. The present
work investigated the effectiveness and feasibility of the use of HOSM approach for
such fault detection.
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15.2 Modeling of Induction Machine

15.2.1 Healthy IM Model

Under assumptions of linear magnetic circuits and balanced operating conditions,
the three-phase voltage and current equations of the IM are expressed, in its natural
reference frame (a − b − c), as (15.1) and (15.2).

{[

V s
abc

] = [

Rs
abc

] [

Isabc
]+ d

dt

[

φs
abc

]

[

V r
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] = [

Rr
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] [
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dt

[
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] (15.1)

Note that flux linkage may be expressed as,
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Using (15.2),
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and
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]

can be eliminated from (15.1), and the resulting
equations can be written as:
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(15.3)

Accounting to (15.3), stator and rotor current dynamics can be expressed as:
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where
[
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] = [

V s
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b V s
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]T
and
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indicate the stator and rotor

voltage vectors respectively,
[

Isabc
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Isa I
s
b I

s
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]T
and

[

Irabc
] = [

Ira Irb Irc
]T

represent
the stator and rotor current vectors respectively. ω is the rotor electrical angular
velocity.

Resistance matrices
[
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abc

]

and
[
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]

presented in (15.1) are:
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where Rs and Rr are the stator and rotor resistances respectively.
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The matrix comprising the stator and rotor self and mutual inductance
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respectively, are given by (15.5):
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whereLs andLr are the stator and rotormagnetizing inductance of the IMrespectively,
ls and lr are the leakage inductance of the stator and rotor phasewinding, respectively.

The matrix of stator and rotor mutual inductance referred to the stator side
[

Lsr
abc

]

is given by (15.6) with Msr is the mutual inductance.

[

Lsr
abc

] = [

Lrs
abc

] = Msr

⎡

⎣

cos θ cos(θ + 2π
3 ) cos(θ + 4π

3 )

cos(θ + 4π
3 ) cos θ cos(θ + 2π

3 )

cos(θ + 2π
3 ) cos(θ + 4π

3 ) cos θ

⎤

⎦ (15.6)

The electromagnetic torque equation produced by an IM is given by:

Cem = 1

2

[

Isabc
]T
(

d

dθ

[

Lsr
abc

]
)
[

Isabc
]

(15.7)

The rotor mechanical equation can be written as:

Cem = J
dω

dt
+ fω + Cr (15.8)

where, J is rotor inertia, f is the friction coefficient and Cr is the load torque.

15.2.2 Faulty IM Model

In this section, a three phase stator windings with a short circuit on phase a is
considered. Figure15.1 shows an ITSC occurring in phase a. A short circuit of turns
introduces an extra winding in the machine winding structure. Therefore, the faulty
IM can bemodeled as a stator composed by four different winding as1, as2, bs and cs.
Winding as1 and as2 represent the healthy and shorted turns winding respectively. An
additional insulated winding is added and modeled by a resistance Rf . The current
If represents the circulating current in the shorted turns. Rf value depends on the
fault severity. A graver ITSC in the affected phase is got when the fault insulation
resistance Rf decreases toward zero. It decreases from infinite toward zero in most
materials. The number of short circuited turns is Nf out of the total number of turns
Ns of the phase winding. The ratio of Nf to Ns (Nf /Ns) is indicated by the short
circuit level kcc and is remain between 0 and 1. This ratio present the fault severity
(Lu et al. 2011).
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Fig. 15.1 Scheme of three
phase stator winding with an
ITSC fault in phase a

The IM voltage equations under ITSC fault conditions are written as:

⎧

⎪⎨

⎪⎩

[
V s
abcf

] = [
Rs
abcf

] [
Isabcf

]+ d

dt

[
φs
abcf

]

[

V r
abc

] = [

Rr
abc

] [

Irabc
]+ d

dt

[

φr
abc

]
(15.9)

Knowing that:

{[
φs
abcf

] = [
Ls
abcf

] [
Isabcf

]+ [
Lsr
abcf

] [

Irabc
]

[

φr
abc

] = [

Lr
abc

] [

Irabc
]+ [

Lsr
abcf

]� [
Isabcf

] (15.10)

Using (15.10),
[
φs
abcf

]

and
[

φr
abc

]

can be eliminated from (15.9) and the resulting
equations can be written as:

⎧

⎪⎨

⎪⎩

[
V s
abcf

] = [
Rs
abcf

] [
Isabcf

]+ [
Ls
abcf

] d

dt

[
Isabcf

]+ d

dt
(
[
Lsr
abcf

] [

Irabc
]

)

[

V r
abc

] = [

0
] = [

Rr
abc

] [

Irabc
]+ [

Lr
abc

] d

dt

[

Irabc
]+ d

dt
(
[
Lsr
abcf

]� [
Isabcf

]

)

(15.11)

Accounting to (15.10), stator and rotor current dynamics can be written as:

d

dt

[[
Isabcf

]

[

Irabc
]

]

=
[ [

Ls
abcf

] [
Lsr
abcf

]

[
Lsr
abcf

]T [

Lr
abc

]

]−1

×
⎛

⎜
⎝

[[
V s
abcf

]

[

V r
abc

]

]

−
⎡

⎢
⎣

[
Rs
abcf

]

ω
d

dt

[
Lsr
abcf

]

ω
d

dt

[
Lsr
abcf

]T [

Rr
abc

]

⎤

⎥
⎦

[[
Isabcf

]

[

Irabc
]

]
⎞

⎟
⎠

(15.12)

with
[
V s
abcf

] = [

V s
a V s

b V s
c 0
]T

and
[
Isabcf

] = [

Isa I
s
b I

s
c If

]T
indicate the three−phase

stator voltage and current vectors respectively, in presence of stator ITSC fault.
The resistance matrix

[
Rs
abcf

]

of (15.9) is:
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[
Rs
abcf

] =

⎡

⎢
⎢
⎣

Rs 0 0 −kccRs

0 Rs 0 0
0 0 Rs 0

kccRs 0 0 −(kccRs + Rf )

⎤

⎥
⎥
⎦

All the stator−stator and stator−rotor mutual inductances will have an extra term
due to this shorted loop. So far, the matrix comprising the stator self and mutual
inductance’s

[
Ls
abcf

]

is given by (15.13):

[
Ls
abcf

] =

⎡

⎢
⎢
⎢
⎣

Ls + ls − 1
2Ls − 1

2Ls −Lb
− 1

2Ls Ls + ls − 1
2Ls − 1

2kccLs

− 1
2Ls − 1

2Ls Ls + ls − 1
2kccLs

Lb − 1
2 (1 − kcc)Ls − 1

2 (1 − kcc)Ls −(Lsf + lsf )

⎤

⎥
⎥
⎥
⎦

(15.13)

It is admitted that:

Lb = [Lsf + lsf + Ls(1 − kcc)kcc]; Lsf = k2ccLs; lsf = k2ccls

Thematrix of stator and rotormutual inductance’s referred to the stator side
[
Lsr
abcf

]

is given by (15.14):

[
Lsr
abcf

] = Msr

⎡

⎢
⎢
⎣

cos θ cos(θ + 2π
3 ) cos(θ + 4π

3 )

cos(θ + 4π
3 ) cos θ cos(θ + 2π

3 )

cos(θ + 2π
3 ) cos(θ + 4π

3 ) cos θ
−kcc cos θ −kcc cos(θ + 2π

3 ) −kcc cos(θ + 4π
3 )

⎤

⎥
⎥
⎦

(15.14)

The electromagnetic torque equation produced by a faulty three phase IM can be
written as:

Cem = 1

2

[
Isabcf

]T
(

d

dθ

[
Lsr
abcf

]
)
[
Isabcf

]

(15.15)

15.2.3 Impact of ITSC Fault

Simulations are performed to evaluate an 1.5 kW IM in open loop. Its specifications
and parameters are given in Table15.1. For the simulation, the IM drive is operated
in healthy and faulty mode.

In order to test the performance of the IMmodel in healthy mode, the short-circuit
levelKcc is set to zerowith an insulation resistanceRf fixed to 15�. The load torque is
chosen as constant, equal to 3 Nm, applied at t = 1 s. Then, an ITSC fault occurs the
IM at t = 1.5 s (Kcc = 0.20 and Rf = 0�). To test the fault severity, the short-circuit
level Kcc increase from 0.20 to 0.30 with keeping Rf = 0� at t = 2.5 s.

Figures15.2 and 15.3 show the three phase stator current
(

Isa, I
s
b, I

s
c

)

. It is clear that
the real stator current becomes unbalanced and the current in phase a is bigger than
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Table 15.1 Induction
machine parameters and its
nominal values

Model parameter

Pn Output power 1.5 Kw

Vs Stator voltage 220 V

Np Pole number 2

Rs Stator resistance 5.272 �

Rr Rotor resistance 4.282 �

Ls Stator inductance 0.464 H

Lr Rotor inductance 0.464 H

ls Stator leakage
inductance

0.024 H

lr Rotor leakage
inductance

0.024 H

Msr Mutual inductance 0.44 H

J Inertia moment 0.048 kgm2

f Friction coefficient 0.003 Nms

Fig. 15.2 Three phase stator currents (Isa, Isb, Isc ) in healthy and faulty cases

the other two. The three-phase rotor current are presented in Fig. 15.4. As it shown,
the three-phase rotor current

(

Ira, I
r
b, I

r
c

)

increase when short circuit fault occurs.
The short-circuit current If is shown in Fig. 15.5. This current present oscillations
increase.

When the ITSC fault appears. Figures15.6 and 15.7 show, respectively the rotor
speed ω and electromagnetic and load torque (Cem,Cr) variations. The ITSC appli-
cation causes a fluctuation in the rotor speed at high frequency.

It can be revealed that, with the increase of short-circuit level Kcc, the affected
phase current Isa variation becomes more constables and the amplitude of Isa and If
increase, as shown in Fig. 15.3.
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Fig. 15.3 Zoom of (Isa, Isb, Isc ), a t = 1 s, b t = 1.5 s and c t = 2.5 s

Fig. 15.4 Three phase rotor currents (Ira, Irb, Irc ) in healthy and faulty cases

Fig. 15.5 Short-circuit current If in healthy and faulty cases
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Fig. 15.6 Rotor speed ω in healthy and faulty cases

Fig. 15.7 Electromagnetic and load torque (Cem,Cr) in healthy and faulty cases

15.3 HOSM Observer

The purpose of this section is to design HOSM observer used for fault detection
to generate residual signal on one hand and on the other hand, for control. Indeed,
observer−based approach is a popular model based technique used in fault detec-
tion. Luenberger observer is the earliest. The difference between model outputs
and observer ones is fed back linearly. However, in the presence of unknown sig-
nals or uncertainty, Luenberger observer is usually unable to force outputs estima-
tion errors to zero and estimated states does not converge to system states. Other
observers−based approaches are investigated (Lu et al. 2011; Toumi et al. 2012).
SMO is concerned to resolve fault detection problem. This observer feeds back the
output estimation error via a nonlinear switching term, provides an attractive solution
to this issue. SMO is used in both linear and nonlinear systems with uncertainties.
Provided a bound on the magnitude of the disturbances is known, the SMO can force
the output estimation error to converge to zero in finite time, estimated states converge
asymptotically to system states. Moreover, system disturbances can be reconstructed
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(Shtessel et al. 2014b). SMO has also a unique property which starts from the fact
that the introduction of a sliding motion forces the output of the observer to perfectly
track the system measurements. In case of fault, the output of the SMO follows the
system output. Indeed, the aim of SMO scheme is to brings states to a sliding surface
and then they are bound to remain on sliding surface onwards (Aurora and Ferrara
2007). Thus, an important step in the design of the SMO is to introduce a proper slid-
ing surface so that tracking errors and output deviations are reduced to a satisfactory
level.

In the literature, SMO has been adopted by researchers (Alwi and Edwards 2014;
Edwards et al. 2013; Mekki et al. 2015). Those papers are concerned on the use of
sliding mode ideas for fault detection and reconstruction. Their main advantages in
this domain are that they exhibit fundamental robustness against certain kinds of
parameter variations and that they also enable faults and/or values of immeasurable
system parameters to be reconstructed. Besides, the use of the FOSM observer intro-
duces some drawbacks such as chattering effect, limited flexibility for the designer
with a sliding function and constant gain as the error variable. Taking into account the
chattering problem, HOSM observer is introduced by Levant (1993). This observer
is the generalization of the FOSM observer and the observer input is performed such
that it acts on higher derivatives of the sliding surface. It should be noted that dif-
ferent HOSM approaches have been presented in the literature such as the twisting
(Guezmil et al. 2014), super-twisting (Zhao et al. 2014) and sub-optimal (Ferrara
and Rubagotti 2009). Readers are referred for the extensive information about these
methods to Shtessel et al. (2014a).

In the following section, authors delineate a HOSM observer, based on twisting
algorithm, in order to observe the rotor flux modulus and reconstruct the three-phase
stator current.

15.3.1 HOSM Observer Design

To simplify and clarify the development ofHOSMobserver, the healthy IMequations
according to (15.4) are transformed to (α − β) reference frame as the following set
of state variables equations:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt

[
Isαβ

] = a1
[

I2
] [
Isαβ

]+ a2
[

A
] [

φr
αβ

]+ [

C
] [
V s

αβ

]

d

dt

[
φr

αβ

] = b1
[

I2
] [
Isαβ

]− [

A
] [

I2
]

d

dt
ω = 1

J (m
[

J2
] [

φr
αβ

] [
Isαβ

]

) − Cr − fω

(15.16)

with
[
Isαβ

] = [
Isα Isβ

]T
,
[
φs

αβ

] = [
φs

α φs
β

]T
and

[
V s

αβ

] = [
V s

α V s
β

]T
are the two-

phase stator current, the rotor flux and the two-phase stator voltage components,
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respectively, in the (α − β) reference frame. Ts and Tr are the stator and rotor time
constant, respectively and Np is the number of pole pairs.

Expressions of
[

I2
]

;
[

A
]

;
[

C
]

;
[

J2
]

matrix, a1, a2,σ,Ts,Tr, b1, b2, c and m are
depend on IM parameters.

[

I2
] =

(

1 0
0 1

)

; [A] =
( −b2 Npω

−Npω −b2

)

; [C] =
(

c 0
0 c

)

; [J2
] =

(

0 −1
1 0

)

a1 =
(

Rs

σLs
+ M2

sr

σLsLrTs

)

; a2 = Msr

σLsLr
; σ = 1 − M2

sr

σLsLr

Ts = Ls
Rs

; Tr = Lr
Rr

; b1 = Msr

Tr
; b2 = − 1

Tr
; c = 1

σLs
; m = NpMsr

Lr

From the IM healthy model (15.16), the HOSM observer, based on the method as
proposed in Benderradji et al. (2012), will be introduced as follows:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt

[
Î sαβ

] = a1
[

I2
] [
Î sαβ

]+ a2
[

A
] [

φ̂r
αβ

]+ [

C
] [
V s

αβ

]

d

dt

[

φ̂r
αβ

] = b1
[

I2
] [
Î sαβ

]− [

A
] [

I2
]+ [

χαβ

]

J
d

dt
ω̂ = (

m
[

J2
] [

φ̂r
αβ

] [
Î sαβ

])− Cr − f ω̂

(15.17)

with
[
Î sαβ

] = [
Î sα Î sβ

]T
and

[

φ̂r
αβ

] = [

φ̂r
α φ̂r

β

]T
are the estimated stator current and

the rotor flux components, respectively.
[

χαβ

] = [

χα χβ

]T
is the observer matrix

gains to be designed.
Currents and flux estimation errors are defined as follow:

{[

eI
] = [

Î sαβ

]− [
Isαβ

]

[

eφ

] = [

φ̂r
αβ

]− [
φr

αβ

] (15.18)

The observation error dynamic is obtained from (15.16) and (15.17):

⎧

⎪⎨

⎪⎩

d

dt

[

eI
] = a1

[

A
] [

eφ

]

d

dt

[

eφ

] = b1
[

I2
] [

eI
]− [

A
] [

eφ

]+ [

χαβ

]
(15.19)

Let us select a sliding surface
[

S
]

as follow:

[

S
] =

[

S1
S2

]

= 1

a2

[

A
]−1 [

eI
]

(15.20)
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The dynamic sliding surface is:

d

dt

[

S
] = 1

a2

[

A
]−1

(
d

dt

[

eI
]
)

+ 1

a2

(
d

dt

[

A
]−1
)
[

eI
]

(15.21)

The derivative of ω is supposed constant compared to the derivative of
[
Isαβ

]

and
[
φr

αβ

]

. Consequently,
[

A−1
]

term is considered null and the dynamic of sliding
surface become:

⎧

⎪⎨

⎪⎩

d

dt

[

S
] = 1

a2

[

A−1
]
(
d

dt

[

eI
]
)

= [

eφ

]

d2

dt2
[

S
] = d

dt

[

eφ

] = b1
[

I2
] [

eI
]− [

A
] [

eφ

]+ [

χαβ

]
(15.22)

The idea of using twisting approach to fault detection consists of using estimated
variable to generate a residual.

[

χαβ

] =

⎧

⎪⎨

⎪⎩

−λmsign
[

S
]

if S
d

dt
(S) ≤ 0

−λMsign
[

S
]

if S
d

dt
(S) > 0

(15.23)

where λm and λM are appropriately designed positive constants that ensure the above
condition defined in (15.24):

{−λm > |eφ|
−λM > λm + 2|eφ|max (15.24)

The system (15.23) evolves featuring a HOSM, after a finite time. Therefore,

d

dt
(S) = d2

dt
(S) = 0 (15.25)

15.3.2 HOSM Observer Simulation

In order to illustrate the dynamic behavior of the proposed observer, simulation tests
were carried out in the IM used in Sect. 15.2.2. The ITSC fault, characterized by an
insulation resistance Rf equal to 0 � and short-circuit level Kcc = 0.20, is applied at
t = 1.5 s. The short-circuit level increase from 0.20 to 0.30 at t = 2.5 s. Assumed
that the rotor speed ω, three-phase stator current

(

Isa, Isb, Isc
)

and stator voltages
(

V s
a , V s

b , V s
c

)

are available.
The measured, estimated electromagnetic and load torque of the IM are depicted

in Fig. 15.8. The rotor speed ω and his estimated one ω̂ are presented in Fig. 15.9.



312 A. Guezmil et al.

Fig. 15.8 Measured, estimated electromagnetic and load torque (Cem, Ĉem and Cr) in healthy and
faulty cases, using HOSM observer

Fig. 15.9 Measured and estimated rotor speed (ω and ω̂) in healthy and faulty cases using HOSM
observer

The observed rotor flux φ̂r is appeared in Fig. 15.10. Figure15.11 shows the three-
phase stator current

(

Isa, Isb, Isc
)

. After application of ITSC fault, the different IM
variables present a small drop when increasing shorted turns level. From these sim-
ulation results, it can be seen that the proposed method can estimate the rotor flux
quickly and actually.

15.4 Control Scheme and Decoupling

It is known that the techniques developed for IM fault detection in open loop drives
cannot be used straight forward when the machine is included in control structure
basedondirect torque control andfield oriented control (Ashari et al. 2012). Indeed, in
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Fig. 15.10 Estimated rotor flux φ̂r in healthy and faulty cases, using HOSM observer

Fig. 15.11 Estimated stator currents (Î sa, Î sb, Î sc ) in healthy and faulty cases, using HOSM observer

efficient operation, the first difficulty get up from, the coupling between the currents
of d-axis and q-axis, respectively. This coupling effects result a change in one of
the current and produces a transient disturbance in the other. As a result, the torque
generated in IM is distorted.Another problem, related to synchronous current control,
is the tuning of current loops. To overcome those problems, PI controllers are used
as in Eker (2012).

15.4.1 Classical Decoupled Current Control for IM

The classical decoupled current control scheme is based on a conventional solution
of synchronous frame current control using simple PI controllers.

By applying the Park transform to healthy IM model (15.4), current equations in
synchronous reference frame (d − q), are defined as:
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⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dIsd
dt

= a1Isd − a2b2φr
d + ωNpIsq + b1

(Isq)
2

φr
d

+ cV s
d

dIsq
dt

= a1Isq − a2Npωφr
d − NpωIsd − b1

IsdI
s
q

φr
d

+ cV s
q

(15.26)

where Isd , I
s
q, V

s
d and V s

q are the stator current and voltage, respectively in the (d − q)
reference frame. φr

d is a magnitude of the rotor flux vector and ω is the rotor electrical
speed. a1, a2, b1 and b2 are defined in Sect. 15.3.1.

The current dynamics ( dI
s
d

dt and
dIsq
dt ) are dependent on each other and also they

have additional terms which are function of IM parameters, rotor flux magnitude and
speed. To obtain a torque production, current controllersmust provide both regulation
and decoupling.

Figure15.12 shows the classical decoupled current control scheme using PI con-
trollers. The current controllers are purposed according to machine dynamics and
must satisfy the control requirements for a certain type of reference inputs. PI cur-
rent controllers regulate currents with zero steady-state error and have proportional
gains Kd , Kq and integral times Td , Tq. Compensation voltages are looking to can-
cel the additional machine dynamics and unknown terms. Compensation terms are
dependent on the machine speed and are given by (15.27):

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

V s
dcomp = −1

c

(

NpωIsq + b1
(Isq)

2

φr
d

)

V s
qcomp = −1

c

(

a2Npωφr
d + NpωIsd + b1

IsdI
s
q

φr
d

) (15.27)

Fig. 15.12 Scheme based on PI controllers for IM decoupled current control
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The objective of this section is to design a robust current controllers, which can
decouple dependent currents (Isd and Isq). For instance, decoupled control of current
Isd is achieved by inserting (15.27) in (15.26), this control cancels the unknown
disturbances that depends on Isq. If the cancellation takes place, the overall dynamics
of Isd is simplified and it is easy to design the corresponding PI controller gains.

In order to implement the current control scheme, the following conditions must
be validate.

(1) Reference currents Isdref and Isqref , real currents I
s
d and Isq must be fed in PI con-

trollers to generate V s
d and V s

q . These four currents are available. Reference
currents are generated by structures of speed and flux controllers. Isd and Isq are
measured.

(2) Terms V s
dcomp and V

s
qcomp must be computed (and added to Isd and I

s
q). This compu-

tation requires the knowledge of four things:machine parameters, stator currents,
the IM speed ω, and the flux magnitude φr

d .

Generally, the scheme in Fig. 15.12 can be relatively be implement. In this case,
variables ω and φr

d are not available. Consequently, the control algorithm would
need a flux estimator for the sole purpose of being able to compute the voltages
V s
dcomp and V s

qcomp. Therefore it is difficult to compute the compensation voltages

(15.27) in control schemes. Because of this disadvantage, some implementations use
only PI controllers (the compensation voltages are omitted). These implementations
cannot regulate the current if the reference input is a step function. Since the machine
accelerates or decelerates, the speed is a ramp function and a PI alone cannot reject
the extra terms in Fig. 15.12 and is unable to regulate. The steady-state errors of
currents can be reduced by increasing proportional gains of the PI. However, the
steady state current errors can be reduced by increasing the proportional gains of the
PI controllers (Comanescu 2010). Also, the (d − q) axis currents will be coupled. As
a result, changing the reference current in one axis produces a transient disturbance
in the other axis. This results in a transient distortion in the torque.

15.4.2 HOSM Decoupled Current Control Design

The selection of the PI current controllers gain, presented in the previous sections,
is not easy and is usually subject to continuous adjustments. Equivalent control
approach is used in solution based on the high order IM model. Stability of the
closed-loop system is proved using direct Lyapunov approach. Let us note that the
unknown disturbance terms of model dynamics in (15.26) act like extra dynamics.
The idea is to use sliding mode controller on both the d-axis and q-axis to cancel the
extra dynamics of the IM. In the following, a HOSM controller will be designed to
cancel the disturbance dynamics.

The current dynamics in (15.26) can be expressed as:
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⎧

⎪⎨

⎪⎩

d

dt
Isd = a1Isd + a2b2φr

d + Γd
(

ω, Isq,φ
r
d

)+ cV s
d

d

dt
Isq = a1Isq + Γq

(

ω, Isd, I
s
q,φ

r
d

)+ cV s
q

(15.28)

where Γd
(

ω, Isq,φ
r
d

)

and Γq
(

ω, Isd, I
s
q,φ

r
d

)

are the cross coupling and unknown terms
for the d-axis and q-axis, respectively.

⎧

⎪⎪⎨

⎪⎪⎩

Γd
(

ω, Isq,φ
r
d

) = ωNpIsq + b1
(Isq)

2

φr
d

Γq
(

ω, Isd, I
s
q,φ

r
d

) = −a2Npωφr
d − NpωIsd − b1

IsdI
s
q

φr
d

(15.29)

The disturbance terms consist of some known terms and some unknown terms
which result in coupling the current dynamics. The objective is to design a controller
that performs decoupling action by canceling the coupling and unknown terms. The
control input provided to the IM comprises of nominal control and disturbance rejec-
tion control.

The nominal machine dynamics which is devoid of the disturbances can be
expressed as:

⎧

⎪⎨

⎪⎩

d

dt
Isd = a1Isd + cV s

d0

d

dt
Isq = a1Isq + cV s

q0

(15.30)

The nominal control inputs (V s
d0; V s

q0) are generated by the use of PI controllers
as shown in Fig. 15.13.

The nominal control inputs (V s
d0; V s

q0) are generated by the use of PI controllers as
shown in Fig. 15.13. The output of the nominal machine dynamics are the fictitious
currents (Isdsim, Isqsim), called model currents. Note that measured currents (Isd, I

s
q) are

not used in the generation of nominal control inputs (V s
d0; V s

q0). This currents are
only used by the proposed HOSM controllers to provide the tracking of the reference
currents. However, it is atypical control scheme because the error term ((Iref − Ireal))
does not appear directly in Fig. 15.13 like in a classical decoupled control scheme
shown in Fig. 15.12. To achieve the rejection of the unknown terms Γd

(

ω, Isq,φ
r
d

)

and Γq
(

ω, Isd, I
s
q,φ

r
d

)

, HOSM controllers are employed to control inputs ((ψs
d,ψ

s
d)).

For the design of HOSM controllers, the following sliding surfaces are selected:

{
Sd (t) = Isd − Isdref
Sq (t) = Isq − Isqref

(15.31)

where Isd and Isq are the actual currents, I
s
dref and Isqref are the reference currents.

Applying the samedesignprinciples as for variable structure control, the controller
trajectories are constrained to evolve after a finite time on the sliding manifold by the
use of a discontinuous output injection signal. Hence, the sliding motion provides
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Fig. 15.13 Proposed HOSM decoupled current control scheme

a cancellation of extra terms of the system states. Dynamics of sliding surfaces,
employing the modified HOSM algorithm (Moreno et al. 2008), can be obtained for
the d-axis and q-axis, respectively, as:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡd = a1Isd − a2b2φr
d + Γd

(

ω, Isq,φ
r
d

)+ cV s
d (t) − d

dt

(

Isdref

)

Ṡd = a1Isd − a1Isdref − d
dt

(

Isdref

)

− a2b2φr
d + Γd

(

ω, Isq,φ
r
d

)+ cV s
d (t)

V s
d (t) = −K1Φ1 (Sd) − K2

∫

Φ2 (Sd) dt − K3Sd
Φ1 (Sd) = |Sd | 1

2 sign (Sd)
Φ2 (Sd) = sign (Sd)

(15.32)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡq = a1Isq + Γq
(

ω, Isd, I
s
q,φ

r
d

)+ cV s
q (t) − d

dt

(

Isqref

)

Ṡsq = a1Isq + a1Isqref − d
dt

(

Isqref

)

+ Γq
(

ω, Isd, I
s
q,φ

r
d

)+ cV s
q (t)

V s
q (t) = −K1Φ1

(

Sq
)− K2

∫

Φ2
(

Sq
)

dt − K3Sq
Φ1
(

Sq
) = |Sq| 1

2 sign
(

Sq
)

Φ2
(

Sq
) = sign

(

Sq
)

(15.33)

and define terms of Ṡd and Ṡq as:

⎧

⎨

⎩

Ωd = −a1Isdref − d
dt

(

Isdref

)

− a2b2φr
d + Γd

(

ω, Isq,φ
r
d

)

Ωq = a1Isqref − d
dt

(

Isqref

)

+ Γq
(

ω, Isd, I
s
q,φ

r
d

) (15.34)
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where V s
d (t) and V s

q (t) are the sliding mode terms, K1, K2 and K3 are properly
designed positive constants.

In the sliding mode, Sd = Ṡd = 0 and Sq = Ṡq = 0. The reduced order dynamics
of the system (15.28) can be obtained as

{

0 = −a2b2φr
d + Ωd − c

(

K2
∫

Φ2 (Sd) dt
)

0 = Ωq − c
(

K2
∫

Φ2
(

Sq
)

dt
) (15.35)

The estimated robust terms correspond to the continuous compensation voltages
(V s

dcomp and V s
qcomp) and are given by

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψd = 1
c

(

a1Isdref − d
dt I

s
dref + a2b2φr

d

)

− K2
(∫

Φ2 (Sd) dt
)

= − 1
c

(

NpωIsq + b1
(Isq)

2

φr
d

)

ψq = 1
c

(

a1Isqref + d
dt I

s
qref

)

− K2
(∫

Φ2
(

Sq
)

dt
)

= 1
c

(

a2Npωφr
d + NpωIsd + b1

Isd I
s
q

φr
d

)

(15.36)

As a summarize, the control voltages (V s
d ,V

s
q ) in (15.28) are generatedby summing

two components as
{
V s
d = V s

d0 + ψd

V s
q = V s

q0 + ψq
(15.37)

The terms (V s
d0, V

s
q0) are the nominal inputs while (d − q) are the continuous

estimations of the unknown compensation voltages.

15.4.2.1 Convergence in the Sliding Mode

The HOSM controller employed in this paper provides finite-time convergence and
chattering free estimation of compensation voltages. For illustration, the d-axis con-
troller and prove the finite time convergence to the selected sliding surface Sd is
considered. The sliding surface dynamics in (15.31) can be written as:

Ṡ = a1I
s
d + a2b2φ

r
d + Ωd + cV s

d (15.38)

Here a2b2φr
d is a bounded quantity which comprises of known system parameters

and the flux. The boundlessness of this term can be established as a2b2φr
d ≤ pφr

d .
The terms of in (15.32) and (15.33) are functions of the physical quantities ω, Isq,

φr
d and other known system parameters. Hence, the boundlessness of this function

can also be established at least locally as:

∣
∣
∣
∣
Ωd + a2b2

d

dt
φr
d

∣
∣
∣
∣
≤ ρd (15.39)
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For some positive constant ρd . The above condition (15.41) is not restrictive since
ω, Isq and φr

d are continuous on a compact set.

Theorem 1 With the condition (15.41) satisfied, the controller (15.32) will ensure
that the sliding surfaces (Sd, Sq) converges to zero in finite time.

Proof For simplicity of exposition, we only prove the convergence of sliding surface.
With the robust terms of the controller defined as in and the perturbations bounded
as in (15.41), the convergence of the sliding surface dynamics can be proved similar
to Moreno et al. (2008) by consideration of the following Lyapunov function:

V (Sd) = ξ�Qξ (15.40)

where ξ = [

Φ1 (Sd) Sd
∫

Φ2 (Sd) dt
]�

and Q = Q� > 0 is a positive definite matrix
defined as

Q = 1

2

⎡

⎣

(

4K2 + K2
1

)

K1K3 −K1

K1K3
(

1 + K2
3

) −K3

−K1 −K3 2

⎤

⎦ (15.41)

The considered Lyapunov function satisfies

λmin||ξ||22 ≤ V (Sd) ≤ λmax||ξ||22 (15.42)

where λmax represents the maximum eigen value and λmin represents the minimum
singular value. The timederivative along the trajectories of the systemcan be obtained
as,

V̇ (Sd) = 2ξTQξ̇ (15.43)

On further simplification, V̇ (Sd) can be now written as:

V̇ (Sd) = − 1

|Sd |ξ
TQ1ξ − ξTQ2ξ (15.44)

Where

Q1 =
⎡

⎢
⎣

q11 0 −K2
1
2

0 q12 − 3K1K2
2

−K2
1
2 − 3K1K3

2
K1
2

⎤

⎥
⎦ ;Q2 =

⎡

⎣

q21 0 −K1γ
4

0 q22 q23
−K1γ

4 q23 K3

⎤

⎦

with ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q11 = (

2K2 + K2
1

) K1
2 − K3ρd

q12 = (

2 + 5K2
3

) K1
2 − 3K1K3γ

2

q21 = (

K2 + 2K2
1

)

K3 − K3ρd − γ
(
K2
1
2 + 2K2

)

q22 = K3
(

K2
3 + 1

)− γ (K3 + 2)
q23 = K2

3 − γK3

2
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Similar to the arguments in Moreno et al. (2008), it can be shown that if the gains
K1,K2 and K3 satisfy the following inequalities.

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 >

(
2K2γ + K3ρd − K2K3

2K3 − γ
2

)0.5

K2 >
2ρd − K2

1

2

K3 >
γ
(
K2
1
2

)

+ 2K2

K2 + 2K2
1 − ρd

(15.45)

Then, it can be shown from Eq. (15.46) that

V̇ (Sd) = − 1

|Sd |0.5λminQ1||ξ||2 − λminQ2||ξ||2 (15.46)

|Sd |0.5 ≤ ||ξ|| ≤ V 0.5 (Sd)

λ0.5
minQ

It can be thus show that

V̇ (Sd) ≤ β1V
0.5 (Sd) − β2V (Sd) (15.47)

where

β1 = λ0.5
min (Q)λmin (Q1)

λmax (Q)
;β2 = λmin (Q2)

λmax (Q)

with the proper selection of the gains, Ki, i = 1; 2; 3; such that (15.47) is satisfied
ensures that V̇ (Sd) is negative definite. Thus the sliding surface is reached in finite
time and maintained thereafter. Similarly, the convergence analysis for the q-axis
current can be established.

As a conclusion, the HOSM current controllers scheme is developed in order to
decouple the dynamics of the (d − q) currents. It consists on a PI and an HOSM
controller on each axis. The nominal PI control acts on the ideal plant dynamics,
devoid of coupling terms. The HOSM current control is an attractive alternative to
classic decoupled current control because it does not use the speed estimator. The
HOSM play the same role as the compensation voltages of the classic method.

15.4.2.2 Closed Loop HOSM Decouple Current Control
Simulations and Analysis

Simulations are performed with same parameters of IM as Sect. 15.2. The HOSM
decoupled current control considers that the speed ω and the rotor flux φr

d are acces-
sible for feedback and IM parameters are known exactly.
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Fig. 15.14 Proposed HOSM decoupled current control scheme

Table 15.2 HOSM decoupled current control and observer parameters

Control parameters Observer parameters

K1 K2 K3 λm λM

2 200 50 0.1 3

Besides, the rotor flux is inaccessible for measurement. To avoid this problem,
the HOSM observer established in Sect. 15.3 is taken on. The developed control
law supposes that only three-phase stator current and voltage are available. All the
observer initial conditions are set to zero.

Figure15.14 illustrates the block diagram of HOSM decoupled current control
scheme using HOSM observer. The rotor speed ω and flux φr

d are compared with
its reference (ωref = 314 rd/s and φr

dref = 0.9 Wb) and adjusted by the IP and PI
controller, respectively. The output of this regulators is considered to be the reference
quadratic and direct currents, respectively. Two phase Isd and I

s
q currents aremeasured.

These measurements feed the Clark transformation module. The outputs of this
projection are designated Isα and Isβ . These current components are the inputs of the
park transformation that gives the current in the d − q rotating reference frame. The
Isd and I

s
q components are compared to the references Isqref and direct I

s
dref , respectively.

The outputs of the current regulators are Isdref and Isqref . This outputs are applied to
the inverse park transformation to obtain and, which are the components of the stator
vector voltage in the (α − β) stationary orthogonal reference frame. These are the
inputs of IM. For the implementation of the HOSM decoupled currents controller,
the sliding mode gains are selected as in Table15.2.
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Fig. 15.15 Stator currents (Isa, I
s
b, I

s
c ) evaluation of HOSM decoupled controller with ITSC fault

Fig. 15.16 Rotor flux φr
d evaluation of HOSM decoupled controller with ITSC fault

Figures15.15, 15.16, 15.17 and 15.18 show responses of HOSM decoupled cur-
rent control for IMwith an ITSC fault in phase a. From these numerical simulations, it
can noticed that the proposed controller (nominal control) force the speed and d-axis
components of the estimated rotor flux trajectory converge to her desired references
with good dynamics and present robustness compared to the load torque disturbance
(Figs. 15.16 and 15.17) in healthy and faulty conditions. It is also seen that electro-
magnetic torque, presented in Fig. 15.18, tracks the load torque. Figure15.15 shows
a balanced three phase stator current with relative phase difference of 2π

3 rad. There-
fore, HOSM decoupled current performances with control scheme based on HOSM
observer works very well with the present flux estimation technique.
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Fig. 15.17 Rotor speed ω evaluation of HOSM decoupled controller with ITSC fault

Fig. 15.18 Electromagnetic and load torque (Cem,Cr) evaluation of HOSM decoupled controller
with ITSC fault

To simulate the sudden occurrence of stator ITSC fault, the insulation resistance
Rf become equal to zero and the short circuit level Kcc increase from zero to 0.20
at t = 1.5 s. When fault occurs the IM, it can be early observed that the three-phase
stator current become unbalanced and the current is bigger than the other two. The
speed shows up oscillations around of his reference value (Fig. 15.18). The rotor flux
deviates from his reference resulting in a coupling between the torque and flux and
after few time it tracks its reference with an oscillatory behavior (Fig. 15.17). The
electromagnetic torque present a crucial fluctuation which caused by the asymmetry
of the stator currents.
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15.5 Fault Detection and Residual Generation

In this section, a fault detection based residual generation is presented. This scheme
is established using a mathematical model of IM under considered faulty conditions
(15.14). Its implementation requires the measurement of three-phase stator current,
rotor speed, voltages and the knowledge of nominal IM parameters. The fundamental
purpose of a fault detection scheme is to generate an alarm when a fault occurs and
to pin-point the source.

Most existing fault detection schemes in the literature are concerned with the
design of so-called residuals. These residual signals are used as alarms to indicate
the occurrence of a fault, and if properly designed, give information from which the
source of the faultmay be identified. In analytic redundancy approaches, the residuals
are the difference between measurement outputs and reconstructed ones, as shown in
Fig. 15.19. Residuals are wanted to be identified such that they are close to zero when
the IM behavior in healthy mode, and promptly become nonzero when the associated
ITSC fault occurs. However, by appropriateHOSMobserver, developed in Sect. 15.3,
stator currents can be reconstructed with an estimation error exponentially decaying
to zero.

In this context, to obtain residuals, the HOSMobserver outputs are compared with
those from the healthy and faulty models developed in Sect. 15.2. The out-puts of
these models are considered as measures from the real machine. Residual is chosen
such an absolute value of the difference between measured variable and his estimate
one by HOSMO. The generated residuals in the case of fault absence and parametric
variations are established in the aim to define threshold.

Four residuals can be deduced agree with three phase stator current and speed:

Fi
(

Isa
) = |Isa − Î sa| (15.48)

Fi
(

Isb
) = |Isb − Î sb| (15.49)

Fi
(

Isc
) = |Isc − Î sc | (15.50)

The simplest fault detection strategy could be sought as follows (Pilloni et al.
2013).

{

if Fi ≤ ε then IM is healthy
if Fi > ε then IM is faulty

(15.51)

A good choice of threshold is used to detect ITSC fault while avoiding false
alarms. In fact, only the variables variations due to the ITSC fault are considered and
not those due to parametric change.

To illustrate the previously presented results, even in the presence of ITSC fault
and step wise variations of the load torque, simulation analysis of the responses of
HOSMdecoupled current control shown in Sect. 15.3were carried out. Figures15.20,
15.21 and 15.22, given by (15.48), (15.49) and (15.50), in the case of ITSC fault in
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Fig. 15.19 A general model-based fault detection scheme

Fig. 15.20 Evaluation of Fi(Isa) of faulty IM

current phase a at t = 1.5 s. The fault is characterized by fraction of shorted turns
of 0.20 of the phase and insulation resistance Rf = 0. Any adaptive thresholding
technique can be utilized for unsupervised online fault detection and identification.
When residuals exceed thresholds, the overtaking is caught by fault indicators that
indicate fault presence. The highest value of the stator currents recorded by fault
indicator Isa, I

s
b and Isc corresponds to the stator phase affected by the ITSC. The

analyze of residuals shows that all residuals are affected and exceed their maximum
value. However, only the first residual (15.48) according to affected current phase a
increases more than others residuals. That allows the isolation of affected phase.

As a conclusion, the effectiveness of this proposed observer based fault detection
scheme is validated through simulation tests performed by different operation con-
ditions. As it is shown, the fault can be rapidly detected by observing the modulus
of three phase stator currents residuals.
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Fig. 15.21 Evaluation of Fi(Isb) of faulty IM

Fig. 15.22 Evaluation of Fi(Isc) of faulty IM

15.6 Conclusion

In this chapter, HOSM approach is exploited for ITSC fault detection in IM. To show
that impact of such fault on IM behavior, healthy and faulty IM models are estab-
lished. Different fault scenarios and operation conditions are studied. An observer
based method in close loop decoupled current control is presented. The decoupled
current control method based onHOSM is designed to ensure the robust tracking per-
formance, to reduce the chattering phenomenon and provide an accurate ITSC fault
detection. This fault detection method is based on HOSM observer used to rotor flux
estimation and residual generation. Simulation results are presented to highlight the
performance and the validity of the developed scheme. Analysis of residuals allows
the identification of affected phase and show the sensitivity to ITSC fault occurrence.
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Chapter 16
Sliding Mode Control Applied
to Electrohydraulic System

Emna Kolsi Gdoura and Moez Feki

Abstract In this chapter a control law is designed to accurately control the rod
position of hydraulic servo system. In fact, due to its having a nonlinear model, the
hydraulic servo system is not accurately stabilized by a proportional controller and
suffers from wind up phenomenon when applying the PI controller. To overcome
the problems encountered by the action of these linear controllers, we propose two
ways. The first, consists in adding a simple anti-windup algorithm to the PI controller
while the second consists in designing a sliding mode controller with an integral and
realizable reference compensation. Both methods are applied to a symmetrical and
non symmetrical pistons and have showed an accurate position control in addition
to having a short settling time. Finally, to circumvent the problem of unmeasurable
pressures, we proposed a sliding mode observer to estimate them from the position
of the piston. The efficiency of the proposed scheme is illustrated using numerical
simulations.

Keywords Hydraulic servo system · PI control · Anti-windup · Sliding mode con-
trol · Actuator saturation · Realizable reference

16.1 Introduction

Electrohydraulic systems generate hydraulic power in response to the electrical signal
inputs. Their scope of application extends to the field of precision control of systems
such as robotics, heavy manipulators, etc. Therefore, they have been widely used
in industrial applications. However, this type of systems has a nonlinear behavior
due to the pressure-flow characteristics inside the control valves and the friction that
acts on the actuator and moving parts of the valves which they make the design of

E. Kolsi Gdoura (B) · M. Feki
Control and Energy Management Laboratory, National Engineering School of Sfax,
University of Sfax, Sfax, Tunisia
e-mail: kolsiemna@gmail.com

M. Feki
e-mail: moez.feki@enig.rnu.tn

© Springer Science+Business Media Singapore 2017
N. Derbel et al. (eds.), Applications of Sliding Mode Control,
Studies in Systems, Decision and Control 79, DOI 10.1007/978-981-10-2374-3_16

331



332 E. Kolsi Gdoura and M. Feki

a controller with state feedback a hard task. In a wide range of applications where
electrohydraulic systems are involved, the output force is required to follow a given
specific reference or the piston is required to achieve a given specific position. This
requires the design of a state feedback control law.

The control of electrohydraulic systems was treated by several researchers and it
reveals to be a hard task. To solve this problem, differentmethods of control have been
used such as PID controllers (Alleyne et al. 1998) and the input/output linearizing
controller (Feki 2001). But these methods do not take into account the uncertainties
and lead to controllers that sacrifice the performance and the robustness in favor of
simplicity. Therefore, several types of variable structure controls were applied to the
electrohydraulic systems.

Recently, nonlinear control methods and intelligent methods have been used to
control hydraulic systems taking into account the presence of unmodeled dynamics,
parameter uncertainties and external disturbances. Adaptive controllers have been
proposed in (Ahn and Dinh 2009; Knohl and Unbehauen 2000; Yao et al. 2000)
where the uncertainty parameters are linear. To handle the case where the unknown
parameters are nonlinear as the volume of the cylinder, a controller using the adaptive
control theory and the backstepping technique has been developed (Guan and Pan
2008; Sirouspour and Salcudean 2000). In order to improve the control quality of the
loading system while eliminating or reducing the disturbance, a prediction model
“grey” associated with a fuzzy PID controller is proposed to achieve a predeter-
mined force (Truong and Ahn 2009). PID controllers have also been improved using
fuzzy methods (Mihajlov et al. 2002), genetic algorithm (Aly 2011) and zero-pole
placement method (Jian-jun et al. 2012) to obtain accurate position control.

The variable structure control (VSC) is another controller that has been widely
used to deal with systems with uncertain parameters (Kolsi-Gdoura et al. 2013;
Khebbache and Tadjine 2013; Rossomando 2014). In (Hwang and Lan 1994), a
time varying switching gain, a second order relation between the sliding surface
and uncertainties, and a boundary layer of the sliding surface, is used to deal with
the position control. In (Chen et al. 2005), the position control was processed using
(VSC) with varying boundary layers to improve tracking performance by reducing
the width of the boundedness and reducing the chattering effect by increasing the
width the boundedness.

In this chapter, we will design a simple controller that can reach the reference
position in the presence of uncertain parameters, disturbance and saturation of the
actuator. To achieve this aim, we first present the effects of proportional control (P)
and a proportional integral control (PI). Subsequently, we present a sliding mode
controller enhanced by an integral surface and a realizable reference to reduce the
reaching time to the sliding surface and to obtain a shorter settling time. The different
types of control will be applied on two different mathematical models of the elec-
trohydraulic system the first concerns a symmetrical piston and the second model
concerns a non-symmetrical piston. Numerical simulation results are presented to
illustrate the effectiveness of the proposed control methods.
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16.2 Model of the Electrohydraulic System

Figure16.1 presents a hydraulic servo system.
If we consider S1 �= S2, Then we obtain the dynamical system represented by the

differential equations (16.1) (Feki 2001).

Ṗ1 = B

V0 + S1y

(

Q1 − S1v
)

, (16.1)

Ṗ2 = B

V0 − S2y

(

Q2 + S2v
)

, (16.2)

v̇ = 1

m + m0
(S1P1 − S2P2 − bv − kl y), (16.3)

ẏ = v, (16.4)

The first two equations of the adopted model is obtained using the Bernoulli law of
the fluid flow (Merritt 1967) and the last two equations are obtained using Newton’s
second law of motion. where the flow rates Q1 and Q2 are:

Q1 =
{

ku
√
Ps − P1 + α

1+γu (Ps + Pr − 2P1) if u ≥ 0

ku
√
P1 − Pr + α

1−γu (Ps + Pr − 2P1) if u < 0
(16.5)

Q2 =
{

−ku
√
P2 − Pr + α

1+γu (Ps + Pr − 2P1) if u ≥ 0

−ku
√
Ps − P2 + α

1−γu (Ps + Pr − 2P1), if u < 0
(16.6)

m

kl

b

m0
S2

P1 , V1 P2 , V2

u

Ps Pr

S1

Fig. 16.1 Hydraulic servo system
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P1 and P2 present respectively the pressure inside the first and the second chamber
of the cylinder, v and y present respectively the velocity and the position of the
rod. m is the mass of the load and m0 is the mass of the rod, V1 and V2 present
respectively the volume of the first and the second chambers of the cylinder, S1
and S2 present respectively the section surface of the first and the second sides of
the piston, Pr denotes the return pressure (atmospheric pressure) and Ps denotes
the supply pressure(pressure of the pump). b is the friction coefficient and kl is the
spring stiffness constant. B denotes the effective bulk modulus of the fluid and u
represents the control signal. The value of the various parameters of system are
given in Appendix A.

If we consider a symmetrical piston i.e. as S1 = S2 (noted S), then we can define
the variable ΔP = P1 − P2 so ΔṖ = Ṗ1 − Ṗ2. After simplification we obtain the
model represented by the system of equations (16.7)

ΔṖ = 4B

Vt

(

ku
√

Pd − sign(u)ΔP − α

1 + γ|u|ΔP − Sv
)

, (16.7)

v̇ = 1

m + m0
(SΔP − bv − kl y), (16.8)

ẏ = v, (16.9)

where Pd = Ps − Pr . From this model, we can deduce that the system is highly non-
linear with respect to the state vector and also not affine with respect to the control
signal u. Thus, the design of a control law is not a simple task.

16.3 Position Control of a Symmetric System

In this section, we will adopt the model of the electrohydraulic system expressed by
the Eq. (16.10):

ẋ1 = 4B

Vt

(

ku
√

Pd − sign(u)x1 − α

1 + γ|u| x1 − Sx2
)

, (16.10)

ẋ2 = 1

m + m0
(Sx1 − bx2 − kl x3), (16.11)

ẋ3 = x2 + d, (16.12)

where x1 is the pressure difference x1 = P1 − P2. We suppose that:

|P1 − P2| = |x1| < Pd = Ps − Pr .

x2 and x3 represent respectively the velocity and the displacement of the piston.
We consider that the system is under the effect of several mismatched perturba-

tions. Especially, the spring constant is used with an uncertainty of up to 20% of its
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nominal value and the piston velocity undergoes a constant perturbation d. Finally,
due to practical limitation, the input signal u(t) which is simply the current injected
to the actuator is restricted to a maximum value |u(t)| ≤ umax.

It is always interesting to start by checking the effect of proportional and PI
controllers. Indeed, a command that does not show significant advantages compared
to PI will always be excluded under application. In the following, the aim of the
control is to move the piston from its central position considered as the origin to a
reference position noted xre f .

16.3.1 Proportional Control

The control signal of a proportional controller is given by:

u p = k0(x3re f − x3) (16.13)

where x3re f is the reference position to be attained and k0 = 0.05. The application
of this control law leads to the following result:
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Fig. 16.2 Position control of the electrohydraulic system under the proportional controller:
SSE = 3.55%, Ts5% = 0.37s
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From Fig. 16.2, we notice that the proportional controller yields to steady state
error of 3.55% and a 5% settling time of Ts5% = 0.37s.

16.3.2 Proportional Integral Control

The proportional integral control signal is expressed as follows

u pi = k0(x3re f − x3) + ki

∫ t

0
(x3re f − x3)dt (16.14)

By applying this control law to our model with k0 = 0.05 and ki = 0.05, we obtain
the results shown in Fig. 16.3.

From these figures, it can be deduced that the proportional integral controller
eliminates the steady state error but the settling time becomes too long due to wind-
up phenomenon, in fact the settling time becomes 2.31 s.
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Fig. 16.3 Position control of the electrohydraulic system under the PI controller: SSE = 0,
Ts5% = 2.31s
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To improve these results and achieve good performances, we will apply in the
first part the anti wind-up approach to this model and in the second part we will deal
with the sliding mode method.

16.3.3 Anti Wind-Up Approach

From the previous section, we remark that when applying the proportional integral
controller to our system the output takes a long time to eliminate the steady state error,
this is due the wind-up phenomenon of the integrator that maintains the integration
of tracking error especially if the input is saturated. So, to overcome this problem we
think about the use of an anti wind-up approach (Fig. 16.4).

In this section we will use an anti wind-up with back calculation:

• Theanti-windup schemehas no effectwhen the actuator is not saturating (et (t)= 0)
• The time constant Tt determines how quickly the integrator of the PI controller is
reset

• If the actual output u(t) of the actuator in not measurable, we can use a mathe-
matical model of the actuator. For instance et (t) = v(t)−sat(v(t)).

The application of this type of anti wind-up leads to the results in Fig. 16.5.
We can remark from Fig. 16.5 that the anti wind-up reduces the effect of the

integral and so we obtain a reduced settling time compared to PI controller without
anti wind-up.

Now, in the following section we will use another type of controller which is the
sliding mode controller that can help to obtain a good performance of the electrohy-
draulic system.

r e v u y

et

+ - + +

+ +

+
+

+-

SystemActuatorKp

1
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Kp

Ti

1
Tt

PI

anti wind-up

Fig. 16.4 Anti wind-up using back calculation



338 E. Kolsi Gdoura and M. Feki

0 2 4 6
−100

−50

0

50

100

150

200
Δ

pr
es

su
re

(b
ar

)

0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

ve
lo

ci
ty

(m
/s

)

0 2 4 6
0

5

10

15

20

25

po
si
ti
on

(c
m

)

0 2 4 6
−0.5

0

0.5

1

1.5

2

2.5

u
(t

)
(m

A
)

Fig. 16.5 Position control of the hydraulic servo system under the PI controller with anti wind-up:
SSE = 0, Ts5% = 0.59s

16.3.4 Sliding Mode Control

In this section, we suggest a sliding mode controller by conjunction of an integral
controller that helps to attenuate the constant mismatched perturbation effect. We
propose the expression of a simple bang-bang control law given by:

u = −umaxsign(σ(x)) (16.15)

where σ(x) = 0 is the sliding surface. By conjunction of the integral state equation
defined as follows:

ẋ4 = x3re f − x3 (16.16)

we obtain a four dimensional system. So, the sliding surface is chosen as:

σ(x) = C4x4 + C3(x3re f − x3) + C2x2 + x1 (16.17)

where the constants C4, C3 and C2 are calculated such that the behavior becomes
asymptotically stable when the system is confined to the sliding surface σ(x).
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To restrict the behavior of the system to σ(x), we should satisfy the attractivity
condition of σ(x)σ̇(x) < 0.

Using (16.15) and (16.17), the attractivity condition becomes:

σ(x)σ̇(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(x)
(

C4(x3re f − x3) − C3x2 + C2
m+m0

(Sx1 − bx2 − kl x3)
)

+ 4B
Vt

(

− kumax|σ(x)|√Pd − x1 − α
1+γumax

x1σ(x) − Sx2σ(x)
)

if σ(x) < 0

σ(x)
(

C4(x3re f − x3) − C3x2 + C2
m+m0

(Sx1 − bx2 − kl x3)
)

+ 4B
Vt

(

− kumax|σ(x)|√Pd + x1 − α
1+γumax

x1σ(x) − Sx2σ(x)
)

if σ(x) > 0

Thus, to satisfy the attractivity condition, we should choose C4, C3 and C2 such that:

• if σ(x) < 0:

∣
∣
∣
∣
∣
∣

(

C4(x3re f − x3) − C3x2 + C2

(
Sx1−bx2−kl x3

m+m0

) )

− 4B
Vt

(

αx1 − Sx2
)

4Bk
Vt

√
Pd − x1

∣
∣
∣
∣
∣
∣

≤ umax

• if σ(x) > 0:

∣
∣
∣
∣
∣
∣

(

C4(x3re f − x3) − C3x2 + C2

(
Sx1−bx2−kl x3

m+m0

) )

− 4B
Vt

(

αx1 − Sx2
)

4Bk
Vt

√
Pd + x1

∣
∣
∣
∣
∣
∣

≤ umax

Furthermore, in sliding mode the system is confined to the sliding surface, so
we have σ(x) = 0. Therefore, in closed loop the system can be considered as three
dimensional linear system (the nonlinearity exists only in the dynamics of x1) with
the characteristic equation:

s3 + SC2 + b

m + m0
s2 − SC3 − kl

m + m0
s − SC4

m + m0
= 0 (16.18)

Eventually, using the method of pole placement and imposing a stable multiple
pole at s = −λ, we can determine the control parameters:

C2 = 3λ(m + m0) − b

S
(16.19)

C3 = kl − 3λ2(m + m0)

S
(16.20)

C4 = −λ3(m + m0)

S
(16.21)
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Now, by analyzing the behavior of the sliding mode controller, we can note that if
the system is initiated at the origin of the state space then σ(0) = C3x3re f . So, if we
chooseλ such that C3 > 0 then the control signal u will be negative for all t ∈ [0, t1]
where t1 is the necessary time for the system to attain the sliding surface for the first
time. During this interval, the actuator moves in the opposite direction of the positive
reference. If the sliding condition is satisfied at t = t1 then the system will slide to
the reference point. Otherwise, the system will pass through the sliding surface until
the sliding condition is satisfied before it slides to the reference point.

If we choose λ such that λ ≥ λ0 =
√

kl
3(m+m0)

then the control signal u will be

positive until the system attains the sliding surface. During this interval, the actuator
may exceed the reference value which lead to an overshoot, before moving to the
reference position while sliding on the surface σ(x).

In Fig. 16.6, we show the system behavior with the actuator which moves in
the opposite direction to reach x3 = −15cm before reaching the reference position
x3 = 20cmwith a settling time equal to Ts5% = 2.87s. Figure16.7 shows the system
behavior with the fastest settling time Ts5% = 0.88s obtained by placing the poles
at λ = 14.5. The system has an undershoot of 30% but no overshoot. By the choice
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Fig. 16.6 Position control of the electrohydraulic systemunder the slidingmode controller:λ = 10,
Ts5% = 2.87s
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Fig. 16.7 Position control of the electrohydraulic system under the sliding mode controller:
λ = 14.5

of λ = λ0, the system behavior has a settling time equal to Ts5% = 1.05s and an
overshoot of 35.75% as shown in Fig. 16.8.

By analyzing the system behavior under the action of the sliding mode controller,
we deduce that the reaching phase is the defective part in the behavior of the system,
therefore, it should be improved. To tackle this problem, we propose a modification
of the controller in terms of the reference noted as the realizable reference method
(Hanus 1987).

16.3.5 Sliding Mode Control with “Realizable Reference”

We consider the sliding surface Eq. (16.17), the method is to determine the realizable
reference at each instance, that the surface equation is always satisfied. Next, we
modify the expression of the sliding surface such that the system is behaving on the
surface.
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Fig. 16.8 Position control of the electrohydraulic system under the slidingmode controller: λ = λ0

Plainly, with the realizable reference rre f we have σ(x) = 0, then substituting this
reference in (16.17) we obtain:

0 = C4x4 + C3(rre f − x3) + C2x2 + x1 (16.22)

Subtracting (16.22) from (16.17), it follows that:

rre f = x3re f − 1

C3
σ(x) (16.23)

Next, substituting the reference signal by the realizable reference in the dynamics of
the integral state we obtain:

ẋ4 = x3re f − 1

C3
σ(x) − x3 (16.24)
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Finally, we get:

σ̇(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−C4
C3

σ(x) + C4(x3re f − x3) − C3x2 + C2
m+m0

(Sx1 − bx2 − kl x3)

− 4B
Vt
kumaxsign(σ(x))

√
Pd − x1 − 4B

Vt

(
α

1+γumax
x1 + Sx2

)

if σ(x) < 0

−C4
C3

σ(x) + C4(x3re f − x3) − C3x2 + C2
m+m0

(Sx1 − bx2 − kl x3)

− 4B
Vt
kumaxsign(σ(x))

√
Pd + x1 − 4B

Vt

(
α

1+γumax
x1 + Sx2

)

if σ(x) > 0

wherefrom one can deduce that if C4
C3

> 0 then the dynamics of σ(x) are stable
and makes the sliding surface more attractive. Knowing that C4 < 0 so we should
choose λ such that the constant C3 is also negative, equivalently, we should choose
λ > λ0.

The behavior of system under the action of a sliding mode controller with the
realizable reference is delineated in Fig. 16.9. The settling time was significantly
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Fig. 16.9 Position control of the electrohydraulic system under the sliding mode controller with
realizable reference: λ = 50
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reduced to Ts5% = 0.48s while we get a zero steady state error and no overshoot.
Clearly, this controller outperforms all the previous designed controllers.

16.4 Position Control of a Non-symmetric System

In this section, we will adopt the model of the electrohydraulic system defined by
(16.1).

We will repeat the same steps detailed in the previous sections to a model of a
non-symmetric system. In a first step, we will check the effect of the proportional
and the proportional integral controller then we will apply the sliding mode control
with conjunction of the “realizable reference” method.

16.4.1 Proportional Control

The control signal of the proportional controller is given by:

u p = k0(yre f − y) (16.25)

where yre f is the reference position to be attained and k0 = 0.5. In addition, the
actuator constraint is described by the saturation function:

usat = 1

2
(|u + umax| − |u − umax|) (16.26)

Applying this control law to our model we obtain the result in Fig. 16.10
From this simulation, we notice that the proportional controller yields to steady

state error (SSE) of 9.1% and a 5% settling time of Ts5% = 0.6s.

16.4.2 Proportional Integral Control

The control law of the proportional integral control is given by (16.27)

u pi = k0(yre f − y) + ki

∫ t

0
(yre f − y)dt (16.27)

with k0 = 0.5 and ki = 0.5. The application of this control law to the electrohydraulic
system leads to the result shown in Fig. 16.11.
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Fig. 16.10 Position control of the hydraulic servo system under the proportional controller:
SSE = 9.1%, Ts5% = 0.6s

From the simulation the PI controller eliminates the SSE, but the settling time
becomes too long due to wind-up phenomenon, in fact the settling time becomes
2.64 s. To improve these results and achieve good performance, we will apply in the
first part the anti wind-up approach to this model and in the second part we will deal
with the sliding mode approach.

16.4.3 Anti Wind-Up Approach

In this section we will use the same type of anti wind-up applied to the symmetric
system. So, applying the back calculation anti wind-up to the non-symmetric system
leads to the results delineated in Fig. 16.12.

From Fig. 16.12 we can note that the effect of the integral is reduced and the
settling time is reduced to Ts5% = 0.75s.
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Fig. 16.11 Position control of the hydraulic servo system under the PI controller: SSE= 0, Ts5% =
2.64s

16.4.4 Sliding Mode Control

To improve the performance of the electrohydraulic system to obtain accurate and fast
position control, we suggest in this section to design a sliding mode controller with
an integral surface which helps to attenuate the effect of the constant disturbances
having the following expression:

u = −umaxsign(σ) (16.28)

σ is the sliding surface defined by

σ = C4 ỹint + C3 ỹ + C2ṽ + C1 P̃2 + P̃1 (16.29)

with

P̃1 = P1 − P1e,

P̃2 = P2 − P2e,
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Fig. 16.12 Position control of the hydraulic servo system under the PI controller with anti wind-up:
SSE = 0, Ts5% = 0.75s

ṽ = v − ve,

ỹ = y − yre f

ỹint =
∫

ỹdt,

where (P1e, P2e, ve, yre f ) is the unperturbed system equilibrium point when the ref-
erence position yre f is reached, and C4, C3, C2 and C1 are the constants which must
be chosen to ensure an asymptotic stability of the system when it is behaving in
sliding mode, that is when σ = 0.

To limit the behavior of the system to the sliding surface we must satisfy the
attractivity condition σσ̇ < 0. Using (16.28) and (16.29), the attractivity condition
becomes:
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σσ̇ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
(

C4y + C3v + C2
m+m0

(

S1P1 − S2P − bv − kl y
))

+ C1B
V0−S2 y

(

− kumax|σ|√P2 − Pr + α
1+γumax

(Ps + Pr − 2P2)σ + S2vσ
)

+ B
V0+S1 y

(

kumax|σ|√Ps − P1 + α
1+γumax

(Ps + Pr − 2P1)σ − S1vσ
)

if σ < 0

σ
(

C4y + C3v + C2
m+m0

(

S1P1 − S2P2 − bv − kl y
))

+ C1B
V0−S2 y

(

− kumax|σ|√Ps − P2 + α
1+γumax

(Ps + Pr − 2P2)σ + S2vσ
)

+ B
V0+S1 y

(

kumax|σ|√P1 − Pr + α
1+γumax

(Ps + Pr − 2P1)σ − S1vσ
)

if σ > 0

Thus, to satisfy the attractivity condition, we should choose C4, C3, C2 and C1

such that:

• if σ < 0:

∣
∣
∣
∣
C4y + C3(ṽ + ve) + C2

m + m0
(S1(P̃1 + P1e)

−S2(P̃2 + P2e) − b(ṽ + ve) − kl(ỹ + yre f ))
∣
∣
∣

× 1

C1Bk
V0−S2(ỹ+yre f )

√

(P̃2 + P2e) − Pr − Bk
V0+S1(ỹ+yre f )

√

Ps − (P̃1 + P1e)

+
∣
∣
∣

C1B
V0−S2(ỹ+yre f )

(

α(Ps + Pr − 2(P̃2 + P2e)) + S2(ṽ + ve)
)∣
∣
∣

C1Bk
V0−S2(ỹ+yre f )

√

(P̃2 + P2e) − Pr − Bk
V0+S1(ỹ+yre f )

√

Ps − (P̃1 + P1e)

+
∣
∣
∣

B
V0+S1(ỹ+yre f )

(

α(Ps + Pr − 2(P̃2 + P2e)) − S1(ṽ + ve)
)∣
∣
∣

C1Bk
V0−S2(ỹ+yre f )

√

(P̃2 + P2e) − Pr − Bk
V0+S1(ỹ+yre f )

√

Ps − (P̃1 + P1e)
≤ umax

• if σ > 0:

∣
∣
∣
∣
C4y + C3(ṽ + ve) + C2

m + m0
(S1(P̃1 + P1e)

−S2(P̃2 + P2e) − b(ṽ + ve) − kl(ỹ + yre f ))
∣
∣
∣

1

C1Bk
V0−S2(ỹ+yre f )

√

Ps − (P̃2 + P2e) − Bk
V0+S1(ỹ+yre f )

√

(P̃1 + P1e) − Pr
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+
∣
∣
∣

C1B
V0−S2(ỹ+yre f )

(

α(Ps + Pr − 2(P̃2 + P2e)) + S2(ṽ + ve)
)∣
∣
∣

C1Bk
V0−S2(ỹ+yre f )

√

(P̃2 + P2e) − Pr − Bk
V0+S1(ỹ+yre f )

√

Ps − (P̃1 + P1e)

+
∣
∣
∣

B
V0+S1(ỹ+yre f )

(

α(Ps + Pr − 2(P̃2 + P2e)) − S1(ṽ + ve)
)∣
∣
∣

C1Bk
V0−S2(ỹ+yre f )

√

(P̃2 + P2e) − Pr − Bk
V0+S1(ỹ+yre f )

√

Ps − (P̃1 + P1e)
≤ umax

Clearly, there are different choices ofC4,C3,C2 andC1 such that the condition of
the attainability is satisfied. However, there is an additional and necessary condition
that should also be satisfied which is the asymptotic stability of the system in sliding
mode; that is when the system is confined to σ = 0. In this case, we have:

P̃1 = −C1 P̃2 − C2ṽ − C3 ỹ − C4 ỹint (16.30)

thus the system dynamics can be expressed as follows:

˙̃yint = ỹ, (16.31)
˙̃y = ṽ, (16.32)

˙̃v = 1

m + m0

(

S1(−C1 P̃2 − C2ṽ − C3 ỹ − C4 ỹint ) (16.33)

−S2 P̃2 − b(ṽ + ve) − kl(ỹ + yre f )
)

, (16.34)

˙̃P2 = B

V0 − S2(ỹ + yre f )

(

Q2 + S2(ṽ + ve)
)

, (16.35)

Since at the equilibrium we have S1P1e − S2P2e − bve − kl yre f = 0 and we may
choose

C1 = − S2
S1

(16.36)

then we obtain

˙̃yint = ỹ, (16.37)
˙̃y = ṽ, (16.38)

˙̃v = 1

m + m0

(

− S1C4 ỹint − (S1C3 + kl)ỹ − (S1C2 + b)ṽ
)

, (16.39)

˙̃P2 = B

V0 − S2(ỹ + yre f )

(

Q2 + S2(ṽ + ve)
)

, (16.40)

Clearly, after application of a control signal u(x1, x2), we obtain an autonomous
system in the triangular form. Indeed (16.37) is represented as:

ẋ1 = f1(x1), (16.41)
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ẋ2 = f2(x1 + x1e, x2 + x2e), (16.42)

with x1 = (ỹint , ỹ, ṽ) and x2 = P̃2. Using proposition 1, we can prove the stability
of system (16.37) which is actually limited to behave on the sliding surface.

Proposition 1 Consider the dynamic system defined by (16.41). Assume that x1 = 0
is an exponentially stable equilibrium for (16.41-a) and ẋ2 = f2(x1e, x2 + x2e) is
an exponentially bounded system. Moreover, assume that f2(x1 + x1e, x2 + x2e) is
Lipschitz w.r.t. x1 and x2 with constants γ1 and γ2 respectively. Then if ‖x1e‖ ≤ γ3,
then limt→∞ x1(t) = 0 and ‖x2‖ < ∞.

Proof By assumption of exponential stability of (16.41a), we obtain: limt→∞
x1(t)= 0, if u(x1, x2) is bounded. So, we should show that ‖x2‖ < ∞.

The exponential boundedness of ẋ2 = f2(x1e, x2 + x2e) implies that there isV (x2)
such that the following hold outside a ball of radius R for some positive constants
a1, a2, a3 and a4 (Sastry and Isidori 1989).

a1‖x2‖2 ≤ V (x2) ≤ a2‖x2‖2, (16.43)
dV

dx2
f2(x1e, x2 + x2e) ≤ −a3‖x2‖2, (16.44)

∥
∥
∥
dV

dx2

∥
∥
∥ < a4‖x2‖. (16.45)

Combining (16.42b) and (16.44b) leads to

V̇ = dV

dx2
f2(x1 + x1e, x2 + x2e)

≤ −a3‖x2‖2 + dV

dx2
.
(

f2(x1 + x1e, x2 + x2e) − f2(x1e, x2 + x2e)
)

,

≤ −a3‖x2‖2 + a4‖x2‖.γ1γ3,

so
V̇ ≤ 0 for ‖x2‖ ≥ a4γ1γ3

a3
. (16.46)

Using (16.43) and (16.46), it follows that any trajectory of x2(t) that starts at a
finite value x2(0) will finish by entering in a ball of radius R̄ = max{R,

a4γ1γ3
a3

} so
‖x2‖ < ∞ and limt→∞ x1(t) = 0 is achieved. �

Now, to apply the above result to the controlled servo system (16.37) and to prove
that is stable and should attain its reference value, we can easily deduce that the first
three equations form a linear subsystem with a characteristic equation given by:

s3 + S1C2 + b

m + m0
s2 + S1C3 + kl

m + m0
s + S1C4

m + m0
= 0 (16.47)
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Using the method of the pole placement and imposing a stable multiple pole at
s = −λ (λ > 0), we can determine the control parameters:

C2 = 3λ(m + m0) − b

S1
(16.48)

C3 = 3λ2(m + m0) − kl
S1

(16.49)

C4 = −λ3(m + m0)

S1
(16.50)

The fourth equation forms the second subsystem, we can deduce that this subsystem
is not globally Lipschitz since it contains the square root term. However, since the
system variables are not expected to behave in the vicinity of their physical limits,
then a local Lipschitz condition is satisfied. Now, it remains to prove that the second
subsystem expressed by (16.51) is exponentially bounded.

˙̃P2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B
V0−S2 yre f

[

α
1+γumax

(Ps + Pr − 2 P̃2) + S2ve − kumax

√

P̃2 + P2e − Pr

]

if u ≥ 0

B
V0−S2 yre f

[

α
1+γumax

(Ps + Pr − 2 P̃2) + S2ve + kumax

√

Ps − P̃2 − P2e

]

if u < 0
(16.51)

From the equation bellow we obtain:

P2e =
{

Pr if u ≥ 0

Ps if u < 0

P2

Ṗ 2
if σ > 0

if σ ≤ 0

Ps − P2ePr − P2e

Fig. 16.13 Graphical analysis to prove the exponential boundedness of P̃2
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Fig. 16.14 Position control of the hydraulic servo system under the integral surface sliding mode
controller: λ = 15

Clearly, the subsystem (16.51) is a system that toggles among two systems and each
has its own equilibrium point. To prove the exponential boundedness, a graphical
analysis is used as shown on Fig. 16.13.

In blue color, we present ˙̃P2 versus P̃2 when σ ≤ 0 where the solid part represent
the effective part of the vector field and the dashed part is not effective since the
pressure in the system cannot drop beyond the return pressure. The arrows on the
P̃2 axis point to the left if

˙̃P2 < 0 that is the pressure is decreasing and they point to
the right if ˙̃P2 > 0 that is the pressure is increasing. Using similar argument for the
case of σ > 0 shown in black curve and arrows, we may easily deduce that when the
pressure is initiated in the interval P2(0) ∈ (Pr , Ps) then P2(t) remains in that interval
for all subsequent time which proves the boundedness of the second subsystem.

Finally usingProposition 1,we candeduce that the reference position is reachedby
the servo system under the action of a sliding control signal with an integral surface.
Figure16.14 represents the behavior of the controlled system states in presence of the
constant disturbance d = 0.1 and the uncertainty in the spring constant of the order
of 20% and with closed loop poles placed at λ = 15. It is noted that the reference
position has been reached with a settling time Ts5% = 0.91s and an overshoot of
about 25%. The rod velocity has been stabilized at v = −0.1 to compensate the
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Fig. 16.15 Sliding surface σ(t) and the control signal u(t) used to assess the hydraulic servo system

disturbance d and therefore the physical velocity of the system is zero that is the rod
is at rest. We can also note that the pressures in the chambers of the piston evolved
within the interval (Pr , Ps). Finally, the control signal used to evaluate the hydraulic
servo system is shown in Fig. 16.15.

16.4.5 Sliding Mode Control with Realizable Reference

To improve the system behavior such as eliminating the overshoot of the system and
reducing the settling time, we can think of decreasing the time needed for the system
to reach the sliding surface.

To do this, we consider the realizable reference that can be reached by the control
at each instant, and use this information so that the system behaves as if it is in sliding
mode at each instant of the transient time.

The realizable reference is noted by rre f . With the realizable reference, the sliding
mode is supposed to be achieved so σ = 0, then substituting in (16.29) we obtain:

0 = C4 ỹint + C3(y − rre f ) + C2ṽ + C1 P̃2 + P̃1 (16.52)

Subtracting (16.52) from (16.29), we obtain:
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rre f = yre f + 1

C3
σ (16.53)

Next, we change the reference by the realizable reference in the dynamics of the
integral state to obtain:

ẏint = y − yre f − 1

C3
σ = ỹ − 1

C3
σ (16.54)

Finally, we obtain:

σ̇ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−C4
C3

σ + C4(y − yre f ) + C3v + C2
m+m0

(

S1P1 − S2P − bv − kl y
)

+ C1B
V0−S2 y

(

− kumaxsign(σ)
√
P2 − Pr + α

1+γumax
(Ps + Pr − 2P2) + S2v

)

+ B
V0+S1 y

(

kumaxsign(σ)
√
Ps − P1 + α

1+γumax
(Ps + Pr − 2P1) − S1v

)

if σ < 0

−C4
C3

σ + C4(y − yre f ) + C3v + C2
m+m0

(

S1P1 − S2P2 − bv − kl y
)

+ C1B
V0−S2 y

(

− kumaxsign(σ)
√
Ps − P2 + α

1+γumax
(Ps + Pr − 2P2) + S2v

)

+ B
V0+S1 y

(

kumaxsign(σ)
√
P1 − Pr + α

1+γumax
(Ps + Pr − 2P1) − S1v

)

if σ > 0

We can deduce that σ̇ is expressed now as a function of σ in addition to the
expression obtained earlier. So to satisfy the attractivity of the sliding surface σ we
should satisfy the following relation:

C4

C3
> 0 (16.55)

Knowing that C4 > 0, so we can choose λ such that C3 is also positive, that is:

λ >

√

kl
3(m + m0)

(16.56)

Figure16.16 delineates the behavior of the system states when it is controlled by
the integral sliding controller using the integral state and being modified using the
realizable reference as indicated in (16.54). To ensure the stability condition (16.56),
the closed loop poles are placed at λ = 90. We can deduce that the reference posi-
tion has been attained with a settling time Ts5% = 0.35s and an overshoot of about
1.5%. The velocity of the rod has been again stabilized at v = −0.1 to compensate
the disturbance d. We can also note that the pressures in the chambers of the pis-
ton evolved in the interval (Pr , Ps). Finally, the control signal used to evaluate the
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Fig. 16.16 Position control of the hydraulic servo system under the integral surface sliding mode
controller: λ = 90

electrohydraulic system is shown in Fig. 16.17. Clearly, this controller exceeds all
controllers previously designed in terms of performance.

We should mention here that we did not address the chattering phenomenon
because our aim was to construct a simple controller expression. Nevertheless, we
can reduce the chattering phenomenon by substituting the sign function by a smooth
saturation function tanh(Aσ)where A is a gain.We can note that when A is very large
then tanh(Aσ) 
 sign(σ). Figure16.18 represents the behavior of the system states
when the controller uses a smooth function. We can note that the chattering phenom-
enon is decreasing especially in the pressure and velocity behaviors. Figure16.19
represents the behavior of the controller and the sliding surface when the controller
uses a smooth function.

16.4.6 Sliding Mode Observer Design

From the previous sections, we can notice that the controller conceived uses implic-
itly all four state variables through the sliding surface definition. Nevertheless, the
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Fig. 16.17 Sliding surface σ(t) and the control signal u(t) used to assess the hydraulic servo system

measure of the pressures P1 and P2 is a costly task and needs high technology to elim-
inate the additional leakage. To overcome this problem, we propose in this section to
design a sliding mode observer that can estimate the required states and used them
to construct the sliding surface.

Before starting the observer design, it is interesting to note that when the rod
position y is the measured output, then we can easily verify that the hydraulic servo
system described by its model (16.1) is not fully observable. Indeed, the pressures
P1 and P2 are not observable, nevertheless, the difference E = S1P1 − S2P2 is itself
observable if it is considered as a single state. Referring to the choice of C1 = − S2

S1
given in (16.36), and to the expression of the sliding surface (16.29), then it is deduced
that we only need to estimate the expression E = S1P1 − S2P2 to be able to construct
the sliding surface. Therefore, we choose to use a sliding mode observer due to its
robustness and the possibility of estimating the termwithout knowing the full model.
We here consider the reduced order model of the hydraulic servo system:

Ė = f (P1, P2, v, y) (16.57)

v̇ = 1

m + m0
(E − bv − (kl + δkl)y) (16.58)

ẏ = v + d (16.59)
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Fig. 16.18 State behavior of the hydraulic servo system under the integral surface sliding mode
controller with smooth saturation function

where δkl represents the 20% uncertainty of the spring stiffness and f is a nonlinear
function which represents the dynamics of E .

For this model we associate the following observer:

Δ̇ = L1sign(z1 − Δ) (16.60)

˙̂v = 1

m + m0
(Δ − bz2 − kl ŷ) + L2sign(z2 − v̂) (16.61)

˙̂y = v̂ + L3sign(y − ŷ) (16.62)

where L1, L2 and L3 are the observer gain and z1 and z2 are the observer outputs
defined by:

z1 = Δ + (m + m0)L2sign(z2 − v̂) (16.63)

z2 = v̂ + L3sign(y − ŷ) (16.64)

The observer state Δ is intended to estimate the expression E = S1P1 − S2P2. To
prove the efficiency of the observer and to show that the controller based on the
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Fig. 16.19 Sliding surface σ(t) and the control signal u(t) used to assess the hydraulic servo system
with smooth saturation function

estimated states may also achieve accurate positioning in the presence of disturbance
and uncertainty, we will conduct a proof step by step.

Step 1: Let ey = y − ŷ and ev = v − v̂, from (16.59) and (16.62) the error dynam-
ics are expressed as follows:

ėy = ev + d − L3sign(ey) (16.65)

Thus, if we choose L3 such that:

L3 > sup
t>0

{ev(t) + d} (16.66)

then the sliding mode is established at the observer sliding surface ey = 0 in a finite
time. In addition, we obtain at sliding mode ėy = 0 and thus from (16.65) we have

0 = v − v̂ + d − L3sign(ey) (16.67)

so
v + d = v̂ + L3sign(ey) = z2 (16.68)
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Fig. 16.20 Convergence of the sliding mode observer to the intended values

At this stage, it can be inferred that the observed state ŷ will converge in a finite time
to the system state and there the observer output z2 will converge to the perturbed
rod velocity v + d.

Step 2: Let eΔ = E − Δ and taking into account that ey = 0 and z2 = v + d,
then from (16.58) and (16.61) the error dynamics are expressed as follows:

ėv = 1

m + m0

(

eΔ + bd − δkl y
)

− L2sign(ev + d) (16.69)

Thus, if we choose L2 such that:

L2 > sup
t>0

{eΔ(t) + bdmax − δkl y(t)} (16.70)

then we can deduce that ev + d tend to zero and therefore v̂ tend to v + d. That is
the observer state v̂ will achieve its output z2. Moreover, when the error dynamics
are on the sliding surfaces ey = 0 and ev + d = 0, then ėv = 0 and we obtain:

E + bd − δkl y = Δ + (m + m0)L2sign(z2 − v̂) = z1 (16.71)

That is the observer will estimate the expression E = S1P1 − S2P2 with a con-
stant difference proportional to the uncertainty δkl and to the perturbation d. Even-
tually, when the estimated variables are used to design the sliding surface, then the
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Fig. 16.21 Behavior of the hydraulic servo system controlled with sliding mode controller with
estimated states feedback

uncertainty is taken into consideration, therefore when the controller sliding mode is
attained the convergence to the reference position is reached despite the existence of
the constant perturbation d which will be eliminated by the use of the integral term
in the definition of the surface.

Figure16.20 shows the convergence of the observer state ŷ to y despite starting
from different initial conditions; y(0) = 0 and ŷ(0) = −0.1 represents respectively
the initial conditions of the system and the observer starting at −10cm. As expected
from the previous analysis, v̂ tends to v + d and Δ tends to E with a constant
difference. We choose the observer gains as L1 = 107, L2 = 3000 and L3 = 30.
The system behavior is shown on Fig. 16.21 with the sliding surface is calculated
using the estimated states and the controller with a smooth saturation function.

16.5 Conclusion

In this chapter, we have detailed the different steps of the design the control law of
an electrohydraulic system. In first part, we have presented the effect of the classical
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P and PI controller. Then, we have used an anti wind-up approach in order to reduce
the settling time. Next, a method has been described to design a complete sliding
mode controller with realizable reference to overcome the phenomenon of wind-up
due to the saturation of the actuator. The controller achieves zero static error with
a significantly shorter response time. This controller is compared to the classical PI
controller and sliding mode controller and it has been shown to outperform them in
terms of speed. This work has been applied first to a symmetrical system and then
secondly to a non-symmetrical system.

Appendix A

See Tables 16.1, 16.2, 16.3, 16.4 and 16.5.

Table 16.1 Numerical values
of the parameters of the fluid

Parameter Value Unit

B 2.2 × 109 Pa

Ps 300 × 105 Pa

Pr 1 × 105 Pa

Table 16.2 Numerical values
of the parameters of the piston

Parameter Value Unit

m0 50 kg

S 1.5 × 10−3 m2

S1 3.1 × 10−3 m2

S2 1.5 × 10−3 m2

V0 0.458 × 10−3 m3

Vt 1 × 10−3 m3

Table 16.3 Numerical values
of the mass parameter

Parameter Value Unit

m 20 kg

b 590 kg/s

kl 125,000 N/m
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Table 16.4 Numerical values
of the parameters of the servo
valve

Parameter Value Unit

Symmetric system

k 5.12 × 10−5 m3s−1A−1Pa−1/2

γ 8571 s−1

α 4.1816 × 10−12 m3s−1Pa−1

Non symmetric system

k 1.46 × 10−5 m3s−1A−1Pa−1/2

γ 10622 s−1

α 4.605 × 10−13 m3s−1Pa−1

Table 16.5 Numerical values
of controller parameters

Parameter Value Unit

Symmetric system

umax 2 mA

z3re f 0.2 m

k0 0.05 –

ki 0.05 –

Non symmetric system

umax 0.01 mA

yre f 0.2 m

k0 0.5 –

ki 0.5 –
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