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Abstract In this chapter, an adaptive neural output feedback control scheme is
proposed for flexible-joint robotic manipulators. First, the mathematical model of a
robotic manipulator is built with considering flexible joints. Then, a Luenberger
state observer is employed to estimate the unknown states such that the constriction
that all the states should be available for measurements can be relaxed. In order to
achieve a satisfactory tracking performance, an adaptive controller is designed by
combining neural network control and dynamic surface control techniques to avoid
the so-called “explosion of complexity” problem. With the proposed scheme, the
tracking error can be guaranteed to converge to a small neighborhood around zero,
and simulation results show the effectiveness of the developed method.
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1 Introduction

Over the past decades, electromechanical servo system has been widely studied,
such as robotic manipulators, motor servo system, and so on [1–3]. As a popular
automatic equipment, robotic manipulators have attracted considerable attention
and been widely applied to the field of industrial automation [4, 5]. Since the
existence of the inferior flexibility may affect the practical control precision, the
joint flexibility should be taken into account in both modeling and control of
manipulators, in which torsional elasticity is introduced [6].
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So far, many significant researches have been presented to handle the issue of
joint flexibility to achieve a better tracking performance. In [6], an adaptive state
feedback controller for flexible-joint manipulators is presented using the back-
stepping technique. However, when some states are immeasurable, the
above-mentioned researches may not be applied directly. In [7], an extended state
observer-based control scheme is developed for trajectory tracking of flexible-joint
robotic manipulators with partially known model. Therefore, the control task of the
flexible-joint robotic manipulators with immeasurable states and model uncertain-
ties is still a challenging work.

In this paper, an adaptive neural output feedback control scheme is presented for
the tracking control of flexible-joint manipulators with immeasurable states and
model uncertainties. The unknown states are estimated using a Luenberger state
observer, and the output feedback controller is designed based on the estimated
states and dynamic surface control technique. Moreover, the model uncertainties of
the system are approximated by employing radial basis function (RBF) neural
networks. The position tracking error is proven to converge to a small neighbor-
hood around zero via the Lyapunov synthesis.

2 System Description

As shown in Fig. 1, the considered single-link robotic manipulator system taken
from [6] is expressed as

Iq ̈1 +Kðq1 − q2Þ+MgL sinðq1Þ=0
Jq2̈ −Kðq1 − q2Þ= u

�
ð1Þ

where q1 and q2 are the angles of the link and motor, respectively, g is the
acceleration of gravity, I is the link inertia, J is the inertia of the motor, K is the
spring stiffness, M and L are the mass and length of link, respectively, and u is the
input torque.

For the purpose of simplifying the controller design, define x1 = q1, x2 = q1̇ = x1̇,
x3 = q2, and x4 = q2̇ = x3̇ and the system (1) can be transformed into

Fig. 1 Schematic of
flexible-joint manipulator
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x1̇ = x2 + f1ðXÞ
x2̇ = x3 + f2ðXÞ
x3̇ = x4 + f3ðXÞ
x4̇ = 1

J u+ f4ðXÞ
y= x1

8>>>><
>>>>:

ð2Þ

where X = x1, x2, x3, x4½ �T ∈ R4, f1ðXÞ=0, f2ðXÞ= − MgL
I sin x1 − K

I x1 − x3 + I
K x3

� �
,

f3ðXÞ=0, and f4ðXÞ= K
J ðx1 − x3Þ, the output y is measurable directly and states

xtðt=2, 3, 4Þ are immeasurable.
Rewrite (2) in the following form:

X ̇=AX +FðXÞ+Bu+Ly ð3Þ

where A=
L3 I3
l4 01× 3

� �
, L3 = l1, l2, l3½ �T , B= 0, 0, 0, 1

J

� �T , and FðXÞ=
f1ðXÞ, f2ðXÞ, f3ðXÞ, f4ðXÞ½ �T .
The parameters liði=1, 2, 3, 4Þ are chosen such that the characteristic polyno-

mial of matrix A is strictly Hurwitz, and the control objective is to design the
controller u such that the output y follows the desired position trajectory yr .

3 Observer Design

Consider the following observer that estimates the immeasurable state variables
X in (3)

X ̂
.

=AX ̂+FðX ̂Þ+Bu+Ly ð4Þ

where X ̂= x1̂, x2̂, x3̂, x4̂½ �T and xî are the estimation of xi,

FðX ̂Þ= f1ðX ̂Þ, f2ðX ̂Þ, f3ðX ̂Þ, f4ðX ̂Þ
� �T

, f1ðX ̂Þ=0,
f2ðX ̂Þ= − MgL

I sin x1̂ − K
I x1̂ − x3̂ + I

K x3̂
� �

, f3ðX ̂Þ=0,
f4ðX ̂Þ= l4ðx1 − x1̂Þ+ K

J x1̂ − x3̂ð Þ.

Let ei = xi − xîði=1, 2, 3, 4Þ be the observer error. From (3) and (4), the
observer-error equation can be expressed as follows:

E ̇=AE +FðXÞ− FðX ̂Þ, ð5Þ

where E= ½e1, e2, e3, e4�T .

Adaptive Neural Output Feedback Control … 631



Construct the following Lyapunov function candidate

Ve =ETPE ð6Þ

where P=PT >0.
In view of (5), the time derivative of Ve is

Vė =ETðATP+PAÞE+2ETP FðXÞ− F X ̂
� �� �

. ð7Þ

According to the mean-value theorem, the term 2ETP FðXÞ−FðX ̂Þ� �
can be

transformed into

2ETP FðXÞ−FðX ̂Þ� �
=ET P

∂F
∂x

+
∂F
∂x

	 
T

P

" #
E ð8Þ

where ∂F
∂x is a Jacobin matrix with its element at the of ith row and the jth column

being ∂fi
∂xj
.

Substitute (8) into (7) and choose a proper matrix A such that and we have

V ̇e ≤ ET PA+ATP+P
∂F
∂x

+
∂F
∂x

	 
T

P+ I

" #
E<0. ð9Þ

4 Controller Design and Stability Analysis

In this section, an adaptive neural control scheme is developed for flexible-joint
robotic manipulators (2) based on the observer (4) and dynamic surface control
technique. The whole control process includes the following steps.

Step 1:
Define the tracking error s1 = y− yr and differentiating s1 yields

s1̇ = y ̇− yṙ = x2̂ + e2 − yṙ. ð10Þ

Consider the Lyapunov function candidate V1 = 1
2 s

2
1, whose time derivative is

V 1̇ = s1̇s1 = s1ðx2̂ − yṙÞ+ s1e2. ð11Þ

Applying Young’s inequality 2ab ≤ a2 + b2, we can obtain the following
inequality
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s1e2 ≤
1
2
s21 +

1
2
e22 ≤

1
2
s21 +

1
2
ETE. ð12Þ

By regarding x2̂ is a virtual control input, we choose α1 ≜ x2̂ as intermediate
control input as follows:

α1 = − ðc1 + 0.5Þs1 + yṙ ð13Þ

where c1 > 0 is a positive parameter.
To avoid the problem of “explosion of complexity” in [6], we introduce a state

variable z2 and let α1 pass through a first-order filter with a time constant τ2 > 0 as
follows:

τ2z2̇ + z2 = α1, z2ð0Þ= α1ð0Þ. ð14Þ

Define the output error of the first-order filter as

χ2 = z2 − α1 ð15Þ

From (11) to (15), we can obtain

V ̇1 ≤ s1s2 + s1χ2 − c1s21 +
1
2
ETE ð16Þ

where s2 = x2̂ − z2.
Step 2:
The time derivative of s2 is

s2̇ = x2̂ − z2̇ = x3̂ + l2 x1 − x1̂ð Þ− z2̇ + f 2̂ ð17Þ

where the uncertainty f 2̂ is approximated by the following neural network

f 2̂ =W*φðZÞ+ ε2 ð18Þ

where Z = xT̂1 , x
T̂
3

� �T ∈ R2 is the input vector, W* = w1, . . . ,wL½ �T ∈ RL is the ideal
weight matrix, and ε2 is the bounded approximation error satisfying ε2j j ≤ ε*N2 with
ε*N2 being a positive constant, the NN node number L>1φðZÞ= φ1ðZÞ, . . . ,φ5ðZÞ½ �
with φiðZÞ commonly being used as the Gaussian function, which is in the
following form

φiðZÞ= exp
− kZ − c2j k

b2j

" #
i=1, 2, . . . , n; j=1, 2, . . . , Lð Þ ð19Þ
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where the input of NN n>1, cj = c11, c12, . . . , c1L½ �T and bj are the center of the
receptive field and the width of the Gaussian function, respectively.

Construct the following Lyapunov function:

V2 =
1
2
s22 +

1
2
χ22 +

1
2γ2

W̃
T
W̃ +

1
2η2

ε ̃2N2 ð20Þ

where γ2 and η2 are positive parameters, W̃ =W* − Ŵ and εÑ2 = ε*N2 − εN̂2, Ŵ and
εN̂2 are the estimations of W* and ε*N2, respectively.

In view of (14) and (15), we can obtain

χ2̇ = ż2 − α̇1 = −
χ2
τ2

+B2 s1, s2, χ2, yr, yṙ, yrð Þ ð21Þ

where the function of B2 satisfies B2j j≤M2 and M2 is a positive parameter.
Set the virtual input α2 as

α2 = − l2e1 − ŴφðZÞ+ z2̇ − c2s2 − εN̂2 tanh
s2
δ2

	 

ð22Þ

where c2 and δ2 are positive parameters.
Similarly, introduce a new state variable z3 and let α2 pass through a first-order

filter with a time constant τ3 > 0 as follows:

τ3ż3 + z3 = α2, z3ð0Þ= α2ð0Þ. ð23Þ

Define the output error of the first-order filter as

χ3 = z3 − α2. ð24Þ

From (14) and (15), we can obtain the derivative of V2

V ̇2 ≤ s2 s3 + χ3ð Þ− c2s22 −
χ22
τ2

+
σ2
γ2

W̃
T
Ŵ + χ2B2 + ε*N2 s2j j− s2 tanh

s2
δ2

	 
� �

+ ε*N2s2 tanh
s2
δ2

	 

− εN̂2s2 tanh

s2
δ2

−
1
η2

εÑ2ε ̂Ṅ2
ð25Þ

where s3 = x3̂ − z3.
The adaptive laws of Ŵ and εN̂2 are given as

Ẇ̂ = r2s2φ2ðZÞ− σ2Ŵ

ε ̂Ṅ2 = η2s2 tanh
s2
δ2

� �(
ð26Þ

where r2, σ2, and δ2 are positive parameters.
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Then, use the facts

0≤ xj j− x tanh
x
δ

� �
≤ 0.2785δ ð27Þ

and

σ2
γ2

W̃
T
Ŵ =

σ2
γ2

W̃
T
W* − W̃
� �

≤ −
σ2kW̃2k
2γ2

+
σ2kW*2k

2γ2
ð28Þ

Substitute (26)−(28) into (25), and we have

V 2̇ ≤ s2 s3 + χ3ð Þ− c2s22 −
χ22
τ2

+ χ2B2 + 0.2785δ2ε*N2 +
σ2kW*2k

2γ2
. ð29Þ

Step 3:
Following the similar procedures of the Step 2, consider the following Lyapunov

function candidate

V3 =
1
2
s23 +

1
2
χ23 ð30Þ

and set the virtual input α3 as

α3 = − l2e1 + z3̇ − c3s3 ð31Þ

where c3 is a positive parameter.
Then, we can obtain

V ̇3 ≤ s3ðs4 + χ4Þ− c3s23 −
χ23
τ3

+ χ3B3 ð32Þ

where s4 = x4̂ − z4, χ3 = z3 − α1, and the function of B3 satisfies B3j j≤M3 with M3

being a positive parameter.
Step 4:
Similarly, the following neural network is utilized to approximate the nonlinear

uncertainty f 4̂

f 4̂ = θ*φðZÞ+ ε4 ð33Þ

where θ* = θ1, . . . , θ5½ �T ∈R5 is the ideal weight matrix and ε4 is the bounded
approximation error satisfying ε4j j≤ ε*N4 with ε*N4 being a positive constant.
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Construct the following Lyapunov function candidate

V4 =
1
2
s24 +

1
2
χ24 +

1
2γ4

θTθ+
1
2η4

ε ̃2N4 ð34Þ

where γ4 and η4 are positive parameters, θ ̃= θ* − θ ̂ and εÑ4 = ε*N4 − εN̂4, θ ̂ and εN̂4
are the estimations of θ* and ε*N4, respectively.

The control law u is designed as

u= − J l4e1 + θ ̂φ Zð Þ− z ̇4 − c4s4 − εN̂4 tanh
s4
δ4

	 
� �
ð35Þ

where c4 and δ4 are positive constants, and the adaptive laws of θ ̂ and ε ̂N4 are

θ ̇= r4s4φðZÞ− σ4θ ̂

ε ̂Ṅ4 = η4s4 tanh
s4
δ4

� �(
ð36Þ

where r4 are σ4 are positive constants.
Differentiating (34) yields

V ̇4 ≤ − c4s24 −
χ24
τ4

+ χ4B4 + 0.2785δ4ε*N4 +
σ4kθ*2k
2γ4

ð37Þ

where the time constant τ4 > 0 and the function of B3 satisfies B3j j≤M3 with M3

being a positive parameter.
Finally, construct the following Lyapunov function candidate

V=Ve +V1 +V2 +V3 +V4 ð38Þ

According to (9), (16), (29), (32), and (37), differentiate (39) with respect to time
and we can obtain

V ̇≤ − ∑
4

k=1
α0s2k +6η+0.2785 δ2ε

*
N2 + δ4ε

*
N4

� �
+

σ2kW*2k
2γ2

+
σ4kθ*2k
2γ4

ð39Þ

where α0 and η are positive constants.
Consequently, all the signals of the closed-loop system are semiglobally uni-

formly bounded, and the output tracking error s1 converges to a small neighborhood
around zero on the condition that the parameters are chosen properly.
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5 Simulation Results

In this section, simulation examples are carried out to show the feasibility and
superiority of the proposed scheme. The sinusoidal wave yr = sin t is adopted as the
desired reference signal.

The initial conditions of the system are x1, x2, x3, x4½ �T = 0, 0, 0, 0½ �T ,
x1̂, x2̂, x3̂, x4̂½ �T = 0, 0.5, 0.5, 0.5½ �T , θ2̂ = θ4̂ = 1, 1, 1, 1, 1, 1, 1½ �T , and εN̂2 = εN̂4 =
0.01. The parameters of state observer are L= 12, 40, − 6, − 32½ �T . The control
parameters are chosen as c1 = 4.5, c2 = 3.5, c3 = 2.5, and c4 = 9. The constants of
adaptive laws are r2 = 0.2, r4 = 0.2, δ2 = 0.3, and σ2 = σ4 = 0.01. The time constants
are τ1 = 0.01, τ2 = 3, and τ3 = 2. The RBF NN parameters are
cij = − 3− 2− 10123½ � and bj =0.5. The system parameters are MgL=5, I = 1,
J = 1, and K= 40. The simulation results are shown by Figs. 2, 3, 4, 5, 6, and 7.

Fig. 2 State x1 and its
estimation x1̂

Fig. 3 State x2 and its
estimation x2̂
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Fig. 4 State x3 and its
estimation x3̂

Fig. 5 State x4 and its
estimation x4̂

Fig. 6 Position tracking
performance
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Figures 2, 3, 4, and 5 show the estimation performance of states xiði=1, 2, 3, 4Þ
and corresponding errors ei, respectively. We can clearly see that all the estimation
states tracks actual states with a small observed errors. The tracking trajectory and
tracking error are shown in Figs. 6 and 7, respectively. Obviously, the tracking
error can converge to a small neighborhood around zero. From the aforementioned
figures, it is clear that the proposed adaptive neural output feedback control scheme
can achieve a good tracking performance for the system (2) with immeasurable
states.

6 Conclusion

In this paper, an adaptive neural output feedback control scheme is investigated for
single-link flexible-joint robotic manipulator systems with immeasurable states. The
immeasurable states are estimated by constructing a Luenberger state observer, and
model uncertainties are approximated by using RBF neural networks. Based on the
dynamic surface control scheme, the adaptive controller is designed to avoid the
problem of “explosion of complexity.” Simulation results illustrate that the pro-
posed method is effective to achieve a good tracking performance.
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Fig. 7 Position tracking error
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