
Robust Tracking Control of Wheeled Mobile
Robots with Parameter Uncertainties
and only Target’s Position Measurement

Lixia Yan and Baoli Ma

Abstract Robust tracking control of wheeled mobile robots (WMRs) is studied in

this work. Considering the dynamic model of WMRs with unknown parameters, a

robust sliding-mode state feedback controller is proposed, guaranteeing the tracking

errors converge to zero asymptotically. Later, combining robust exact differentiators

with the proposed state feedback control law leads to a tracking controller, in which

only the position of reference robot is included and the tracking errors are driven

to the origin asymptotically too. Numerical simulation is carried out to verify the

effectiveness of proposed controller.

Keywords Wheeled mobile robots ⋅ Robust tracking control ⋅ Sliding-mode con-

trol ⋅ Robust exact differentiator

1 Introduction

To date, the trajectory tracking and path following control of wheeled mobile robots

have been widely studied. There are no continuous time-invariant controllers to

achieve state stabilization of WMRs due to the limitation of Brockett necessary

condition [1]. A trajectory tracking control law based on backstepping method

is proposed in [2], within which the tracking errors converge to zero uniformly

asymptotically. Using dynamic feedback linearization, a local asymptotical track-

ing control scheme is shown in [3]. Clearly, sliding-mode control method is also a

good way to solve control problem and makes systems robust to uncertainties and
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disturbances. By describing system from cartesian coordinate to polar coordinate,

a sliding-mode tracking control law proposed in [4] guaranties the tracking errors

ultimately bounded, while a large control may appear near the origin. Considering

a universal sliding-mode control scheme for a class of nonlinear systems and trans-

form the model equations of WMRs into a special form, controller proposed in [5]

makes the system globally asymptotically stable. By designing a PI-type sliding-

mode surface and an adaptive algorithm, the trajectory tracking errors are steered to

zero asymptotically [6].

Almost under all situations, the trajectory tracking or path following controllers

can be directly used for the tracking control of two WMRs if the position/orientation

and linear/angular velocity information of reference robot are completely known by

the tracker robot. However, under real circumstance, not all the information of the

reference WMR can be known or easily detected, and less communication burden in

hardware-layer of controller helps to build a reliable apparatus and decreases error-

code rate [7]. Based on above practical considerations, it is desired to solve the track-

ing control problem of WMRs using only position information of the reference robot,

which can be easily obtained even in indoor environment by camera [8] or UWB [9].

In this work, we first refer results in [10] to design estimators of reference robot

using only its position information. Later, we introduce a full-state feedback sliding-

mode controller which drives the system states converging to the stable sliding sur-

face in finite time despite the model parameter uncertainties. The combination of

state feedback control law with estimators contributes to a tracking controller with

only position information of reference robot.

The paper is organized as follows. Section 2 contains problem formation, con-

troller design is included in Sect. 3, simulation results and conclusion are presented

in Sects. 4 and 5 respectively.

2 Problem Formation

Consider the dynamic model of WMRs described by

{
ẋ = v cos 𝜃, ẏ = v sin 𝜃, ̇𝜃 = 𝜔

mv̇ =
𝜏1+𝜏2
R

, I𝜔̇=L
R
(
𝜏1 − 𝜏2

) (1)

where (x, y) is the coordinate of mass center, 𝜃 denotes the posture angle, v and 𝜔

represent linear and angular velocity respectively. (v̇, 𝜔̇) are linear and angular accel-

erations. 𝜏1 and 𝜏2 denote driving torques of the right and left wheels. (m, I,R,L) are

mass, inertia around the mass center, wheel diameter, distance between right and left

wheel respectively, which are unknown parameters bounded by known bounds, i.e.,
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0 < mm ≤ m ≤ mM , 0 < Im ≤ I ≤ IM
0 < Rm ≤ R ≤ RM , 0 < Lm ≤ L ≤ LM

(2)

where mm,mM , Im, IM ,Rm,RM ,Lm,LM are known positive constants.

The kinematic equations of the reference robot are as follows:

ẋr = vr cos 𝜃r, ẏr = vr sin 𝜃r, ̇𝜃r = 𝜔r (3)

Assumption 1 The reference speeds and their first- and second-order derivatives
(vr, 𝜔r, v̇r, 𝜔̇r, v̈r, 𝜔̈r) are bounded by

{
vrM ≥ vr ≥ vrm > 0, v̇rM ≥ ||v̇r|| , v̈rM ≥ ||v̈r||
𝜔rM ≥ ||𝜔r

|| , 𝜔̇rM ≥ ||𝜔̇r
|| , 𝜔̈rM ≥ ||𝜔̈r

|| (4)

where vrM , vrm, 𝜔rM , v̇rM , 𝜔̇rM , v̈rM , 𝜔̈rM are positive constants.

Assumption 2 The exact position (xr, yr) of the reference robot is known.

Define the tracking errors as

ex = x − xr, ey = y − yr, e𝜃 = 𝜃 − 𝜃r (5)

With Assumptions 1 and 2, the control task in this paper is to design control law

[
𝜏1
𝜏2

]
=
[
U1

(
x, y, 𝜃, v, 𝜔, xr, yr, 𝛺

)
U2

(
x, y, 𝜃, v, 𝜔, xr, yr, 𝛺

) ] (6)

such that

lim
t→∞

ex = 0, lim
t→∞

ey = 0, lim
t→∞

e
𝜃

= 0 (7)

where 𝛺 denotes the set of auxiliary variables.

3 Controller Design

In this section, we first give out some preliminary results that refer to [10] and esti-

mate some values of reference robot that are not known exactly. Later, a robust state

feedback controller will be introduced. Combining estimating algorithm and state

feedback controller leads to the robust tracking controller with only position infor-

mation of the target.
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3.1 Target Observer Design

From Assumptions 1 and 2, we know that (xr, yr) is measurable and their derivatives

are bounded, so that we can estimate their first, second, and third derivatives by the

exact differentiators proposed in [10] as follows:

̇f0x = w0x,w0x = −𝜆0||f0x − xr|| 3
4 sign

(
f0 − xr

)
+ f1x

̇f1x = w1x,w1x = −𝜆1||f1x − w0x
|| 2
3 sign

(
f1x − w0x

)
+ f2x

̇f2x = w2x,w2x = −𝜆2||f2x − w1x
|| 1
2 sign

(
f2x − w1x

)
+ f3x

̇f3x = −𝜆3sign
(
f3x − w2x

)
(8)

̇f0y = w0y,w0y = −𝜆0
|||f0y − yr

|||
3
4 sign

(
f0y − yr

)
+ f1y

̇f1y = w1y,w1y = −𝜆1
|||f1y − w0y

|||
2
3 sign

(
f1y − w0y

)
+ f2y

̇f2y = w2y,w2y = −𝜆2
|||f2y − w1y

|||
1
2 sign

(
f2y − w1y

)
+ f3y

̇f3y = −𝜆3sign
(
f3y − w2y

)
(9)

where 𝜆i > Lr (i = 0, 1, 2, 3) with Lr = max{|ẋr|, |ẍr|, |x⃛r|, |ẏr|, |ÿr|, |y⃛r|}. By using

(8) and (9), the exact estimation of (ẋr, ẍr, x⃛r, ẏr, ÿr, y⃛r) can be obtained by (w0x,w1x,w2x,

woy,w1y,w2y) in finite time.

Taking (3) into account and calculating the first- to third-order derivatives of

(xr, yr), we get

⎧⎪⎨⎪⎩
ẋr = vr cos 𝜃r, ẍr = v̇r cos 𝜃r − vr𝜔r sin 𝜃r
ẏr = vr sin 𝜃r, ÿr = v̇r sin 𝜃r + vr𝜔r cos 𝜃r
x⃛r = v̈r cos 𝜃r − 2v̇r𝜔r sin 𝜃r − vr𝜔̇r sin 𝜃r − vr𝜔2

r cos 𝜃r
y⃛r = v̈r sin 𝜃r + 2v̇r𝜔r cos 𝜃r + vr𝜔̇r cos 𝜃r − vr𝜔2

r sin 𝜃r

(10)

which suggests

⎧⎪⎪⎨⎪⎪⎩

𝜃r = arctan 2
(
ẏr, ẋr

)
, vr =

√
ẋ2r + ẏ2r , v̇r = ẍr cos 𝜃r + ÿr sin 𝜃r

𝜔r =
ÿr cos 𝜃r − ẍr sin 𝜃r

vr
, 𝜔̇r =

y⃛r cos 𝜃r − x⃛r sin 𝜃r − 2v̇r𝜔r

vr
∀ vr > 0

(11)

Thus, the estimated values of (𝜃r, vr, 𝜔r, v̇r, 𝜔̇r) can be obtained as

⎧⎪⎪⎨⎪⎪⎩

̂

𝜃r = arctan 2
(
w0y,w0x

)
v̂r =

√(
w0x

)2 + (
w0y

)2
,

̂v̇r = w1x cos ̂𝜃r + w1y sin ̂

𝜃r

𝜔̂r =
w1y cos ̂𝜃r − w1x sin ̂

𝜃r

v̂r
,

̂

𝜔̇r =
w2y cos ̂𝜃r − w2x sin ̂

𝜃r − 2̂v̇r𝜔̂r

v̂r

(12)
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Remark 1 As v̂r appears in denominators of
(
𝜔̂r, ̂𝜔̇r

)
and converges to real value in

finite time, we adopt the following strategy in control to avoid possible singularity

when v̂r cross zero during transient process.

v̂r =
⎧⎪⎨⎪⎩
vrm,

√(
w0x

)2 + (
w0y

)2
≤ vrm√(

w0x
)2 + (

w0y
)2
,

√(
w0x

)2 + (
w0y

)2
> vrm

(13)

3.2 Sliding-Mode Controller

Define the auxiliary position tracking errors

e1 = ex + l
(
cos 𝜃 − cos 𝜃r

)
, e2 = ey + l

(
sin 𝜃 − sin 𝜃r

)
(14)

where constant l > 0. Differentiating (14) along state trajectory of (5) results

[
ė1
ė2

]
= A (𝜃)

[
v
𝜔

]
− A

(
𝜃r
) [ vr

𝜔r

]
(15)

where

A (a)
𝛥

=
[
cos a −l sin a
sin a l cos a

]
→ A−1 (a) =

[
cos a sin a
−sin a

l
cos a
l

]
(16)

Define the stable sliding-mode surfaces

s =
[
s1
s2

]
=
[
ė1 + k1e1
ė2 + k1e2

]
= A (𝜃)

[
v
𝜔

]
− A

(
𝜃r
) [ vr

𝜔r

]
+ k1

[
e1
e2

]
(17)

in which k1 is a positive constant.

Let
(
𝜏1, 𝜏2

)
=
(
𝜏1 + 𝜏2, 𝜏1 − 𝜏2

)
and

(
p1, p2

)
=
( 1
mR

,

L
IR

)
, the derivative of (17)

becomes

ṡ = A (𝜃)
[
p1𝜏1
p2𝜏2

]
+ A (𝜃)B (𝜔)

[
v
𝜔

]
−
[
𝛥1
𝛥2

]
(18)

where

B (a) =

[
k1 −laa
l

k1

]
,

[
𝛥1
𝛥2

]
= A

(
𝜃r
) [ v̇r

𝜔̇r

]
+ A

(
𝜃r
)
B
(
𝜔r

) [ vr
𝜔r

]
(19)



410 L. Yan and B. Ma

To realize the input-output decoupling, define the new sliding-mode surfaces

s̄ =
[
s̄1
s̄2

]
= A−1 (𝜃) s (20)

Differentiating s̄ leads to

̇s̄ =
[
p1𝜏1
p2𝜏2

]
+
[
𝛿11
𝛿21

]
+
[
𝛿12
𝛿22

]
(21)

where[
𝛿11
𝛿21

]
= B (𝜔)

[
v
𝜔

]
+ ̇A−1 (𝜃)A (𝜃)

[
v
𝜔

]
+ ̇A−1 (𝜃) k1

[
ex + l cos 𝜃
ey + l sin 𝜃

]
[
𝛿12
𝛿22

]
= −A−1 (𝜃)

[
𝛥1
𝛥2

]
− ̇A−1 (𝜃)A

(
𝜃r
) [ vr

𝜔r

]
− ̇A−1 (𝜃) k1l

[
cos 𝜃r
sin 𝜃r

] (22)

Theorem 1 Suppose that Assumption 1 establishes and the control parameters sat-
isfy k1 > 0, 𝜀1 > 0, 𝜀2 > 0, the sliding-mode control law

{
𝜏1 = − ̂p̄1𝛿11 − ̂p̄1𝛿12 − sign (s̄)

(
p̄′1|𝛿11| + p̄′1|𝛿12| + 𝜀1

)
𝜏2 = − ̂p̄2𝛿21 − ̂p̄2𝛿22 − sign (s̄)

(
p̄′2|𝛿21| + p̄′2|𝛿22| + 𝜀2

) (23)

guarantees that
(
s̄1, s̄2

)
converge to the origin in finite time, where p̄1 = p−11 ,

p̄2 = p−12 are unknown positive constants bounded by known constants(
p̄1M , p̄1m, p̄2M , p̄2m

)
, i.e.

p̄1M ≥ p̄1 ≥ p̄1m > 0, p̄2M ≥ p̄2 ≥ p̄2m > 0 (24)

and ⎧⎪⎨⎪⎩
̂p̄1 = 0.5

(
p̄1m + p̄1M

)
,

̂p̄2 = 0.5
(
p̄2m + p̄2M

)
p̄′1 = max

(|p̄1 − ̂p̄1|) = 0.5
(
p̄1M − p̄1m

)
p̄′2 = max

(|p̄2 − ̂p̄2|) = 0.5
(
p̄2M − p̄2m

) (25)

Proof Choose V1 = 0.5p̄1s̄21 and V2= 0.5p̄2s22 as Lyapunov candidates functions and

compute their derivatives along with the trajectory of closed-loop system (21)–

(23) as

̇V1 = s̄1
[
𝛿11

(
p̄1 − ̂p̄1

)
+ 𝛿12

(
p̄1 − ̂p̄1

)]
− |s̄1| (p′1|𝛿11| + p′1|𝛿12| + 𝜀1

)
≤ |s̄1||𝛿11 (p̄1 − ̂p̄1

) | + |𝛿12 (p̄1 − ̂p̄1
) | − |s̄1| (p′1|𝛿11| + p′1|𝛿12| + 𝜀1

)
≤ −𝜀1|s̄1| − |s̄1| (p′1 − |p̄1 − ̂p̄1|) |𝛿11| − |s̄1| (p′1 − |p̄1 − ̂p̄1|) |𝛿12|
≤ −𝜀1|s̄1|

̇V2 = s̄2
[
𝛿21

(
p̄2 − ̂p̄2

)
+ 𝛿22

(
p̄2 − ̂p̄2

)]
− |s̄2| (p′2|𝛿21| + p′2|𝛿22| + 𝜀2

)
≤ |s̄2||𝛿21 (p̄2 − ̂p̄2

) | + |𝛿22 (p̄2 − ̂p̄2
) | − |s̄2| (p′2|𝛿21| + p′2|𝛿22| + 𝜀2

)
≤ −𝜀2|s̄2| − |s̄2| (p′2 − |p̄2 − ̂p̄2|) |𝛿21| − |s̄2| (p′2 − |p̄2 − ̂p̄2|) |𝛿22|
≤ −𝜀2|s̄2|

(26)
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Let W1 =
√

2p̄−11 V1 = ||s̄1|| ,W2 =
√

2p̄−12 V2 = ||s̄2||, we then obtain

D+W1 =
2p̄−11 ̇V1

2
√

2p̄−11 V1

≤ −𝜀1p̄−11 ,D+W2 =
2p̄−12 ̇V2

2
√

2p̄−12 V2

≤ −𝜀2p̄−12 (27)

Comparison principle can then be used to obtain the conservative estimation of con-

verging time of
(
s̄1, s̄2

)
and we get

s̄1 (t) = 0, s̄2 (t) = 0,∀t ≥ T1 = max
{
p̄1M

||s̄1 (0)||
𝜀1

, p̄2M
||s̄2 (0)||
𝜀2

}
(28)

According to (21), we know that
(
s1 (t) , s2 (t)

)
= (0, 0) for t ≥ T1. On the sliding sur-

face
(
s1 (t) , s2 (t)

)
= (0, 0), the auxiliary position tracking errors

(
e1, e2

)
will con-

verge to zero exponentially.

Next, we show that the overall tracking error system is asymptotically stable

because the zero-dynamics subsystem of (15), associated with e
𝜃

, is asymptotically

stable. Nulling
(
ė1, ė2

)
in (15) gives rise to

[
v
𝜔

]
= A−1 (𝜃)A

(
𝜃r
) [ vr

𝜔r

]
(29)

Take out the angular velocity and write the dynamics of ė
𝜃

as

ė
𝜃

= ̇

𝜃 − ̇

𝜃r=𝜔 − 𝜔r = −
vr
l
sin e

𝜃

+ 𝜔r
(
cos e

𝜃

− 1
)

(30)

Linearize (30) at e
𝜃

= 0, we obtain

ė
𝜃

= −
vr
l
e
𝜃

(31)

which is exponentially stable under Assumption 1. So the overall closed-loop system

is concluded locally asymptotically stable [11] and (7) establishes.

Replacing the unmeasurable variables
(
𝜃r, vr, 𝜔r, v̇r, 𝜔̇r

)
with their estimates(

̂

𝜃r, v̂r, 𝜔̂r, ̂v̇r, ̂𝜔̇r
)

in controller (23) leads to

{
𝜏1 = − ̂p̄1𝛿11 − ̂p̄1 ̂𝛿12 − sign

(
̂s̄
) (

p̄′1|𝛿11| + p̄′1| ̂𝛿12| + 𝜀1
)

𝜏2 = − ̂p̄2𝛿21 − ̂p̄2 ̂𝛿22 − sign
(
̂s̄
) (

p̄′2|𝛿21| + p̄′2| ̂𝛿22| + 𝜀2
) (32)
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where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
̂

𝛿12
̂

𝛿22

]
= −A−1 (𝜃)

[
̂

𝛥1
̂

𝛥2

]
− ̇A−1 (𝜃)A

(
̂

𝜃r
) [ v̂r

𝜔̂r

]
− ̇A−1 (𝜃) k1l

[
cos ̂𝜃r
sin ̂

𝜃r

]
[
̂

𝛥1
̂

𝛥2

]
= A

(
̂

𝜃r
) [ ̂v̇r

̂

𝜔̇r

]
+ A

(
̂

𝜃r
)
B
(
𝜔̂r

) [ v̂r
𝜔̂r

]
[
̂s̄1
̂s̄2

]
= A−1 (𝜃)

[
A (𝜃)

[
v
𝜔

]
− A

(
̂

𝜃r
) [ v̂r

𝜔̂r

]
+ k1

[
ê1
ê2

]]
[
ê1
ê2

]
=
[
x − xr + l

(
cos 𝜃 − cos ̂𝜃r

)
y − yr + l

(
sin 𝜃 − sin ̂

𝜃r
) ]

(33)

Since the estimated variables
(
̂

𝛿12, ̂𝛿22
)

converge to real ones in finite time, there

exists T2 > 0 such that the performance of controller (32) equals to that of (23) for

t ≥ T2. Furthermore, we have

(𝜏1, 𝜏2) ∈ L∞, 0 ≤ t ≤ T2 (34)

so that all states are bounded during transient process. Thus, the closed-loop system

under control of (32) is also locally asymptotically stable.

4 Simulation Results

The model parameters of tracker robot are chosen from one real-wheeled mobile

robot in the authors’ laboratory that satisfy

⎧⎪⎨⎪⎩
(2 − 0.2) kg ≤ m ≤ (2 + 0.2) kg
(0.2 − 0.02)m ≤ L ≤ (0.2 + 0.02)m
(0.08 − 0.008) kg ⋅m2 ≤ I ≤ (0.08 + 0.008) kg ⋅m2

(0.05 − 0.005)m ≤ R ≤ (0.05 + 0.005)m

(35)

which contribute to the inequalities

{
0.121 = p̄1M ≥ p̄1 ≥ p̄1m = 0.081
0.027 = p̄2M ≥ p̄2 ≥ p̄2m = 0.015 (36)

Let the position of reference robot be generated from an eight-shaped trajectory

described by

ẋr = gr cos
(
2hr

)
, ẏr = gr sin

(
hr
)
,

̇hr = 𝛺r (37)
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x(m)

y(
m
)
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Target Robot
Tracking trajectory

Time(s)
-3 -2 -1 0 1 2 3 4 0 5 10 15 20 25 30 35 40

V
tr

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 1 The tracking trajectory and tracking error (39) under controller (32)

The initial states about robust differentiators are all set to zero, initial states and the

rest parameters are

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
x (0) , y (0) , 𝜃 (0)

]
= [0,−2, 0][

xr (0) , yr (0) , 𝜃r (0)
]
= [0,−5, 0]

l = 0.1, k1 = 0.5, 𝜀1 = 𝜀2 = 0.2
m = 1.8,L = 0.19, I = 0.081,R = 0.05
𝜆0 = 1.6, 𝜆1 = 1.2, 𝜆2 = 0.4, 𝜆3 = 0.2
gr = 0.5, 𝛺r = 0.1

(38)

Define the tracking error function

Vtr =
√

e2x + e2y + e2
𝜃

(39)

The simulation results are all shown in Fig. 1.

Simulation results show that the robot has successfully catched up with the refer-

ence robot under proposed controller (33) and Vtr converges to zero asymptotically.

5 Conclusion

A robust sliding-mode controller with only position information of reference robot

is obtained by combining sliding-mode control method with robust exact differ-

entiators. Theoretical analysis shows that the overall closed-loop system is locally

asymptotically stable. Numerical simulation results verify the efficiency of the pro-

pose controller. The proposed controller is robust to model parameters based on the

sliding-model technique. The author would like to investigate the multiagent control
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problem of WMRs with uncertain model parameters and with only position infor-

mation of neighbors in future work.
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