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Abstract This paper addresses the optimal deconvolution estimation problem for

measurement-delay systems over a network subject to random packet dropout, which

is modeled by independent and identically distributed Bernoulli processes. First, the

state estimator problem is solved by utilizing the reorganized innovation analysis

approach, which is given in the linear minimum mean square error sense (LMMSE).

Then, the noise estimator is obtained based on the state estimator and the projec-

tion formula. Last, we provide a numerical example to declare that our proposed

estimation approach is effective.

Keywords Time delay ⋅ Packet dropping ⋅ Reorganized innovation ⋅ Riccati

equation ⋅ Projection formula

1 Introduction

Recently, the problem of deconvolution estimation for linear systems has attracted

much attention due to its extensive applications in image processing [1], oil explo-

ration [2, 3] and so on. The precursory work on the deconvolution problems can be

traced back to [2], which contains the study of white noise estimation according to

the Kalman filter approach. As for the deconvolution estimation problems, another

approach based on the modern time series analysis method is presented in [4], which

includes both the input white noise estimator and measurement white noise estima-

tor. However, communication networks are usually unreliable and may lead to time

delay and packet dropout, so that many results about time delay and packet dropout
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are presented in [5–17]. For the time delay problems, the authors apply the state aug-

mentation approach to solve time delay problem in [5, 6]. There is another approach

in [7], where the authors use the partial difference Riccati equation approach to deal

with time delay problem.

We retrospect the pioneer work on the Kalman filter about packet losses to [8], in

which the author uses the statistics of the unobserved Bernoulli process to describe

the observation uncertainty and to derive the estimator. In [9], the sensor measure-

ments are encoded together and sent over the network in a single packet, so that the

Kalman filter receives either the complete observation if the packet is received or

none of the observation if the packet is lost. In [10], the measurements are trans-

mitted to the filter via two communication channels, while the authors consider the

measurements may be sent through different communication channels in the net-

worked filter systems in [11], thus [11] is more general than [10]. Some results about

multiple packet dropout have been published in [12–17].

For nonlinear stochastic systems with multi-step transmission delays, multiple

packet dropouts and correlated noises, the authors study the recursive estimations by

using the innovation analysis approach in [15], in which the noises are assumed to be

one-step autocorrelated and cross-correlated. In [16], the multiple packet dropouts

phenomenon is considered to be random and is described by a binary switching

sequence, which obeys a conditional probability distribution. The authors calculate

the recursive estimators based on an innovation analysis method and the orthogonal

projection theorem.

In previous works about time delay and packet dropout, the authors have dealt

with time delay problem using the partial difference Riccati equation approach or

the state augmentation approach. While, those approaches may bring tremendous

computation when time delay dl−1 is large. The authors have used a scalar inde-

pendent and identically distributed (i.i.d) Bernoulli process to describe the packet

dropout phenomenon. In the real word, scalar can not satisfy realistic. Stimulated

by above works about measurement dropout and time delay systems, we will inves-

tigate deconvolution estimation for discrete-time systems with measurement delay

and packet dropout in this paper. According to the projection formula and the reor-

ganized innovation analysis approach, the state estimation is first obtained. Then, we

gain the white noise estimation on the basis of the state estimation obtained above.

The major contributions of this paper are as follows: (i) we describe the multiplica-

tive noise using a diagonal matrix dropout, which is described by an independent and

identically distributed (i.i.d) Bernoulli process. A closed-form result is gained using

the Hadamard product flexibly. (ii) according to the reorganized innovation analy-

sis approach, we derive the optimal state estimator and noise estimator utilizing l
Raccati difference equations and one Lyapunov difference equation. When the delay

dl−1 is large, our proposed approach is more efficient than the classical augmentation

approach in [5, 6] and partial difference Riccati equation approach in [7].

The organization of this paper is following. In Sect. 2, we put forward the prob-

lem formulae, some assumptions and remarks. In Sect. 3, we deduce the optimal

state estimation according to the reorganized innovation analysis approach. Then,
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we obtain the white noise estimation based on the optimal state estimation gained

above and the projection formula. A numerical example is given to explain the effec-

tiveness of our approach in Sect. 4. Finally, some conclusions are provided in Sect. 5.

Notation: From beginning to end in this paper, the superscripts “−1” and “T”

represent the inverse and transpose of a matrix. 
n

denotes an Euclidean space of

n-dimension. 
n×m

means the linear space of all n × m real matrices. The mea-

surement sequence {y(0),… , y(k)} can be represented as 
{

y(s)ks=0
}

. ⊙ denotes

the Hadamard product. The diagonal matrix with diagonal elements 𝜆1,… , 𝜆n is

expressed as diag{𝜆1,… , 𝜆n}. In addition, the mathematical expectation operator is

denoted as E.

2 Problems Statement and Preliminary

Consider the linear system following

x(k + 1) = Ax(k) + n(k), (1)

yi(k) = 𝜉i(k)Bix(k − di) + vi(k), k ≥ di, i = 0,… , l − 1, (2)

here x(k) ∈ 
n

is an unknown state and yi(k) ∈ 
mi is delayed measurement, respec-

tively. n(k) and vi(k) are white Gaussian noises with zero mean and covariances

E{n(k)nT (j)} = Q𝛿k,j,E{vi(k)vT
i (j)} = Ri𝛿k,j respectively. Here, 𝛿k,j is the Kronecker

function. We describe the packet dropout phenomenon with the mutually uncor-

related and identically distributed (i.i.d.) Bernoulli random variables 𝜉ij(k), in the

mi channels with Pr{𝜉ij(k) = 1} = 𝛼ij, Pr{𝜉ij(k) = 0} = 1 − 𝛼ij. di satisfies that 0 =
d0 < d1 < ⋯ < dl−1. The initial state x(0) is a random vector with zero mean and

covariance matrix D(0). The random process n(k), vi(k), 𝜉i(k) for all k and the initial

state x(0) are uncorrelated mutually.

Let

y(k) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

y0(k), 0 ≤ k < d1,
⋮

⎡
⎢
⎢
⎢
⎣

y0(k)
⋮

yi(k)

⎤
⎥
⎥
⎥
⎦

, di ≤ k < di+1,

⋮
⎡
⎢
⎢
⎢
⎣

y0(k)
⋮

yl−1(k)

⎤
⎥
⎥
⎥
⎦

, dl−1 ≤ k.

(3)
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Problem For the given measurements {y(k)}N
k=0, find a LMMSE estimator x̂(k ∣ k)

of x(k) and n̂(k ∣ k + T) of n(k), such that

E{[n(k) − n̂(k ∣ k + T)][n(k) − n̂(k ∣ k + T)]T}

is minimized. Note that T = 0 is the filter, T > 0 is the smoother and T < 0 is the

predictor.

Remark 1 From the distribution of 𝜉ij(k), it is readily to deduce that E{𝜉ij(k)} =
𝛼ij, E{(𝜉ij(k) − 𝛼ij)2} = 𝛼ij(1 − 𝛼ij), E{𝜉ij(k)(1 − 𝜉ij(k))} = 0, E{[𝜉ij(k) − 𝛼ij][𝜉il(s) −
𝛼il]} = 𝛼ij(1 − 𝛼ij)𝛿k,s𝛿j,l. E{𝜉ij(k)𝜉il(s)}= 𝛼ij𝛼il for k ≠ s or j ≠ l.

Remark 2 In the previous references, the authors usually use a scalar independent

and identically distributed (i.i.d) Bernoulli process to describe the packet dropout

phenomenon. In this paper, we describe the packet dropout via a diagonal matrix

independent and identically distributed (i.i.d) Bernoulli process, which is more real-

istic. Regarding to the time delay systems, one can use the state augmentation

approach to solve the optimal state estimation and white noise estimation problems,

but the state augmentation approach may bring tremendous computational when the

delay dl−1 is large. Therefore, in this paper we will deduce the problem of deconvolu-

tion estimation using the reorganized innovation analysis approach to avoid tremen-

dous computation.

3 Main Results

In this section, we will present an analytical solution to the optimal state estimation

and the white noise estimation according to the projection formula.

Lemma 1 ([18]) Let 𝜎 = diag{𝜎1,… , 𝜎n} and 𝜌 = diag{𝜌1,… , 𝜌m} be two diago-
nal stochastic matrices, and A be any n × m matrix. Then

E{𝜎A𝜌} =
⎡
⎢
⎢
⎣

E{𝜎1𝜌1} ⋯ E{𝜎1𝜌m}
⋮ ⋱ ⋮

E{𝜎n𝜌1} ⋯ E{𝜎n𝜌m}

⎤
⎥
⎥
⎦
⊙ A. (4)

3.1 Design of the Optimal State Estimator

In the next, we first provide an optimal state estimator, which will lead to the optimal

white noise estimator. We note that yi(k) is an additional measurement of the state

x(k − di), which is gained at time instant k with time delay di, so the measurement

y(k) contains time delay when k ≥ di. On the basis of [19], the linear space {y(s)ks=0}
includes the same information as
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

{
{Yl−1(s)}

k−dl−1
s=0 ,… , {Y0(s)}k

s=k−d1+1

}
,

where the new observations

Yl−1(s) =
⎡
⎢
⎢
⎣

y0(s)
⋮

yl−1(s + dl−1)

⎤
⎥
⎥
⎦
, 0 ≤ s ≤ k − dl−1, (5)

⋮

Yi(s) =
⎡
⎢
⎢
⎣

y0(s)
⋮

yi(s + di)

⎤
⎥
⎥
⎦
, k − di+1 + 1 ≤ s ≤ k − di, (6)

⋮

Y0(s) = y0(s), k − d1 + 1 ≤ s ≤ k. (7)

Obviously, Y0(s), Y1(s),. . . , Yl−1(s) satisfy

Yi(s) = Hix(s) + Vi(s), i = 0, 1, 2,… , l − 1, (8)

where Hi = diag{𝜉0(s), 𝜉1(s + d1),… , 𝜉i(s + di)} ̄Bi, and

̄Bi =
[

BT
0 ,B

T
1 ,… ,BT

i
]T

, Vi(s) =
[

vT
0 (s), v

T
1 (s + d1),… , vT

i (s + di)
]T

.

Obviously the new measurements Y0(s), Y1(s),… ,Yi(s) are delay-free and the

associated measurement noises V0(s), V1(s),… ,Vi(s) are white noises with zero

mean and covariance matrices RV0(s) =R0, RV1(s) = diag{R0,R1},… ,RVi(s) = diag
{R0,R1,… ,Ri}. The filter x̂(k ∣ k) is the projection of x(k) onto the linear space of



{
{Yl−1(s)}

k−dl−1
s=0 ,… , {Yi(s)}

k−di
s=k−di+1+1

,… , {Y0(s)}k
s=k−d1+1

}
.

In order to compute the projection, we define the innovation sequence as follows:

𝜀(s, i) = Yi(s) − ̂Y(s, i), i = 0, 1, 2,… , l − 1, (9)

where ̂Y(s, i) is the projection of Yi(s) onto the linear space of



{
{Yl−1(m)}k−dl−1

m=0 ,… , {Yi(m)}s−1
m=k−di+1+1

}
.

From (8)–(9), the innovation sequence is given as follows

𝜀(s, i) = diag{𝜉0(s)−𝜙0,… , 𝜉i(s)−𝜙i} ̄Bix(s)
+ diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bix̃(s, i)+Vi(s), (10)
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here 𝜙i = diag{𝛼i1, 𝛼i2,… , 𝛼imi
}, x̃(s, i) = x(s) − x̂(s, i), the definition of x̂(s, i) is

same to ̂Y(s, i). We know that white noises 𝜀(s, 0), 𝜀(s, 1),… , 𝜀(s, l − 1) are inde-

pendent. Conveniently, we define that

Pi(s) = E{x̃(s, i)x̃T (s, i)},
D(s) = E{x(s)xT (s)}.

Based on (10) and Lemma 1, the recognized innovation covariance matrices are cal-

culated by

R
𝜀(s,i) = E{diag{𝜉0(s) − 𝜙0,… , 𝜉i(s) − 𝜙i} ̄Bix(s)xT (s) ̄Bi

T

diag{𝜉0(s) − 𝜙0,… , 𝜉i(s) − 𝜙i}
+ diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bix̃(s, i)x̃T (s, i) ̄BT

i
diag{𝜙0, 𝜙1,…𝜙i}} + diag{R0,R1,… ,Ri}

= diag{𝜙0, 𝜙1,… , 𝜙i} ̄BiPi(s) ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}

+ diag{R0,R1,… ,Ri}
+ diag{𝛱0,𝛱1,… ,𝛱i}⊙

(
̄BiD(s) ̄BT

i
)
, (11)

where

𝛱i =
⎡
⎢
⎢
⎢
⎣

𝛼i1(1 − 𝛼i1) 0 ⋯ 0
0 𝛼i2(1 − 𝛼i2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛼imi

(1 − 𝛼imi
)

⎤
⎥
⎥
⎥
⎦

.

Now, we deduce the covariance matrices of one-step ahead state estimation error

using the lemma as follows.

Lemma 2 The covariance matrices Pi(s + 1) submits to the Riccati difference equa-
tions following,

Pi(s + 1) = APi(s)AT + Q − APi(s) ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}

R−1
𝜀(s,i)diag{𝜙0, 𝜙1,… , 𝜙i} ̄BiPi(s)AT

, (12)

Pl−1(0) = D(0), (13)

Pi(k − di + 1) = Pi−1(k − di + 1), (14)

where R
𝜀(s,i) is the one in (11), and D(s + 1) can be calculated using

D(s + 1) = AD(s)AT + Q (15)

with initial value D(0).
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Proof According to (1), it is readily to yield (15). On the basis of projection formula,

x̂(s + 1, i) is calculated

x̂(s + 1, i) = proj{x(s + 1) ∣ {𝜀(m, l − 1)}k−dl−1
m=0 ,… , {𝜀(m, i)}s

m=k−di+1+1
}

= Ax̂(s, i) + E{x(s + 1)𝜀T (s, i)}R−1
𝜀(s,i)𝜀(s, i)

= Ax̂(s, i) + KP(s, i)𝜀(s, i), (16)

here KP(s, i) = APi(s) ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}R−1

𝜀(s,i). From (1) and (16), one has that

x̃(s + 1, i) = Ax̃(s, i) + n(s) − KP(s, i)𝜀(s, i). (17)

Therefore, the prediction error covariance is obtained by

Pi(s + 1) = E{x̃(s + 1, i)x̃T (s + 1, i)}
= APi(s)AT + Q − APi(s) ̄BT

i diag{𝜙0, 𝜙1,… , 𝜙i}R−1
𝜀(s,i)

diag{𝜙0, 𝜙1,… , 𝜙i} ̄BiPi(s)AT
,

which is (12). On the basis of the definitions of x̂(k − di + 1, i), we have x̂(k − di +
1, i) = x̂(k − di + 1, i + 1). The proof is accomplished. ∇

Now, we introduce the filter according to the projection formula in Hilbert space.

Theorem 1 In view of the system (1)–(2), the filter x̂(k ∣ k) can be computed by

x̂(k ∣ k) = x̂(k, 0) + P0(k)BT
0𝜙0R−1

𝜀(k,0)𝜀(k, 0), (18)

where, we calculate the estimation x̂(k, 0) by

x̂(s + 1, 0) = Ax̂(s, 0) + KP(s, 0)𝜀(s, 0) (19)

with initial value x̂(k − d1 + 1, 0) = x̂(k − d1 + 1, 1). x̂(k − d1 + 1, i) is gained by

x̂(s + 1, i) = Ax̂(s, i) + KP(s, i)𝜀(s, i) (20)

with x̂(k − di + 1, i) = x̂(k − di + 1, i + 1). And one calculates x̂(k − dl−1 + 1, l − 1)
by

x̂(s + 1, l − 1) = Ax̂(s, l − 1) + KP(s, l − 1)𝜀(s, l − 1) (21)

with initial value x̂(0, l − 1) = 0.

Proof Because x̂(k ∣ k) is the projection of x(k) onto the linear space of



{
{𝜀(s, l − 1)}k−dl−1

s=0 ,… , {𝜀(s, i)}k−di
s=k−di+1+1

,… , {𝜀(s, 0)}k
s=k−d1+1

}
,
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according to the projection theory, one has

x̂(k ∣ k) = proj{x(k) ∣ {𝜀(s, l − 1)}k−dl−1
s=0 ,… , {𝜀(s, i)}k−di

s=k−di+1+1
,… ,

{𝜀(s, 0)}k
s=k−d1+1

}

= x̂(k, 0) + P0(k)BT
0𝜙0R−1

𝜀(k,0)𝜀(k, 0), (22)

therefore, (18) is proved. The proof of (19) and (20) can be yielded from (16). The

proof is finished. ∇

Remark 3 Applying the reorganized innovation approach, we have deduced the opti-

mal filter by calculating Riccati equations (12) and one Lyapunov equation (15) of

𝐧 × 𝐧 dimension. On the other hand, if we let

X(k) =
[

xT (k), xT (k − d1),… , xT (k − dl−1)
]T
(𝐝𝐥−𝟏+𝟏)𝐧×𝟏

,

the delayed measurement equation (2) can be converted into a delay-free equation.

Further, the LMMSE estimator can be designed in terms of one Lyapunov equation

and one Riccati equation of (𝐝𝐥−𝟏 + 𝟏)𝐧 × (𝐝𝐥−𝟏 + 𝟏)𝐧 dimension. Hence the high

dimension Riccati equation related to the augmentation approach is avoided.

3.2 Design of the Optimal White Noise Estimator

We can export the optimal white-noise estimator n̂(s ∣ s + T) according to the inno-

vation sequences 𝜀(0), 𝜀(1),… , 𝜀(s + T). When T ≤ 0, it can be observed that n(s)
is independent of 𝜀(0), 𝜀(1),… , 𝜀(s + T). Then the estimator n̂(s ∣ s + T) is 0. When

N > 0, the optimal input white-noise smoother n̂(s ∣ s + T) is defined following

n̂(s ∣ s + T) = n̂(s ∣ s + T − 1) + E{n(s)𝜀T (s + T , i)}R−1
𝜀(s+T ,i)𝜀(s + T , i), (23)

where E{n(s)𝜀T (s + T , i)}R−1
𝜀(s+T ,i) is to be determined, such that

E{[n(s) − n̂(s ∣ s + T)][n(s) − n̂(s ∣ s + T)]T}

is minimized. On the basis of the projection formula, we can calculate the optimal

recursive input white-noise smoother n̂(s ∣ s + T).

Theorem 2 Consider the system (1)–(2), the optimal recursive input white-noise
smoother is given following

n̂(s ∣ s + T) = n̂(s ∣ s + T − 1) + Mn(s + T , i)𝜀(s + T , i),T = 1, 2… , (24)
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the initial value n̂(s ∣ s) = 0, and the smoother gain Mn(s + T) satisfies the equation
as follows

Mn(s + 1, i) = Q ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}R−1

𝜀(s+1,i),

Mn(s + T , i) = Q
T−1∏

l=1
{𝛹T

p (s + l, i)} ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}R−1

𝜀(s+T ,i),T > 1

𝛹p(s, i) = A − Kp(s, i)diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bi.

The covariance matrix Pn(s + T) is derived following

Pn(s + T) = Pn(s + T − 1) + Mn(s + T , i)R
𝜀(s+T ,i)MT

n (s + T , i) (25)

with initial value Pn(s) = 0.

Proof Using the projection formula, one obtains

n̂(s ∣ s + T) = n̂(s ∣ s + T − 1)
+E{n(s)𝜀T (s + T , i)}R−1

𝜀(s+T ,i)𝜀(s + T , i) (26)

where E{n(s)𝜀T (s + T , i)}R−1
𝜀(s+T ,i) is determined. We know that

𝜀(s + T , i) = Yi(s + T) − ̂Yi(s + T)
= diag{𝜉0(s + T)−𝜙0,… , 𝜉i(s + T)−𝜙i} ̄Bix(s + T)
+ diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bix̃(s + T , i) + Vi(s + T) (27)

x̃(s + 1, i) = x(s + 1, i) − x̂(s + 1, i)
= Ax̃(s, i) + n(s) − Kp(s, i)𝜀(s, i)
= 𝛹p(s, i)x̃(s, i) + n(s)
−Kp(s, i)[diag{𝜉0(s)−𝜙0,… , 𝜉i(s)−𝜙i} ̄Bix(s)
+Vi(s)] (28)

here, 𝛹p(s, i) = A − Kp(s, i)diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bi. From (28), x̃(s + T , i) is derived

as follows

x̃(s + T , i) = 𝛹i(s + T , s)x̃(s, i) +
s+T∑

l=s+1
𝛹i(s + T , l)[n(l − 1)

−Kp(l − 1, i)(diag{𝜉0(l − 1) − 𝜙0,… , 𝜉i(l − 1) − 𝜙i}
̄Bix(l − 1) + Vi(l − 1))],T > 1, (29)
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where,

𝛹i(s + T , s + T) = I,
𝛹i(s + T , l) = 𝛹p(s + T − 1, i)…𝛹p(l, i), l < s + T .

Putting (28), (29) into (27), one has

𝜀(s + 1, i) = diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bi{𝛹p(s, i)x̃(s, i) + n(s)
−Kp(s, i)[diag{𝜉0(s) − 𝜙0,… , 𝜉i(s) − 𝜙i} ̄Bix(s)
+Vi(s)]} + Vi(s + 1)
+ diag{𝜉0(s + 1) − 𝜙0,… , 𝜉i(s + 1) − 𝜙i} ̄Bix(s + 1),

𝜀(s + T , i) = diag{𝜙0, 𝜙1,… , 𝜙i} ̄Bi{𝛹i(s + T , s)x̃(s, i) +
s+T∑

l=s+1
𝛹i(s + T , l)

[n(l − 1)−Kp(l − 1, i)(diag{𝜉0(l − 1)−𝜙0,… , 𝜉i(l − 1)−𝜙i}
̄Bix(l − 1) +Vi(l − 1))]} + Vi(s + T) + diag{𝜉0(s + T) − 𝜙0,… ,

𝜉i(s + T) − 𝜙i} ̄Bix(s + T),T > 1.

From above equations, it is readily to obtain

E{n(s)𝜀T (s + 1, i)} = Q ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i},

E{n(s)𝜀T (s + T , i)} = Q
T−1∏

l=1
{𝛹T

p (s + l, i)} ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i},T > 1.

Considering that R
𝜀(s+T ,i) is invertible, we define

Mn(s + 1, i) = Q ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}R−1

𝜀(s+1,i),

Mn(s + T , i) = Q
T−1∏

l=1
{𝛹T

p (s + l, i)} ̄BT
i diag{𝜙0, 𝜙1,… , 𝜙i}R−1

𝜀(s+T ,i),T > 1.

Next, we begin to derive the expression of Pn(s + T). According to (24), ñ(s ∣ s + T)
is gained by

ñ(s ∣ s + T) = ñ(s ∣ s + T − 1) − Mn(s + T , i)𝜀(s + T , i), (30)

so one gets (25). The proof is finished. ∇

Remark 4 According to projection formula and the optimal state estimator in The-

orem 1, one can gain the smoother in Theorem 2 directly. What has we finished in

this paper is the state estimator and white noise estimator for finite horizon, while the
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related work for infinite horizon has not been finished. In the future, we will solve the

problems about state estimator and white noise estimator for infinite horizon under

the condition that A is a stable matrix.

4 Numerical Example

Consider the following linear measurement-delay systems

x(k + 1) =
[
0.2 0.12
0.4 0.18

]
x(k) + n(k), (31)

y0(k) = 𝜉0(k)
[
1 1.5
2 1

]
x(k) + v0(k), (32)

y1(k) = 𝜉1(k)
[
1.2 1.4
2.3 1.8

]
x(k − d) + v1(k), (33)

with

x(0) =
[
−1
1

]
, x̂(0, 1) =

[
0
0

]
, D(0) = P(0) =

[
1 −1
−1 1

]
, 𝜙0 = diag{0.85, 0.73},

𝜙1 = diag{0.79, 0.89}, R0 = R1 = I2×2, Q =
[
1 1
1 1

]
. n(k), v0(k) and v1(k) are white

noises with zero mean and covariances Q, R0 and R1, respectively. We adopt d = 15,

N = 100 in this simulation.

Primarily, according to Theorem 1, we give the simulation results in Figs. 1 and 2,

where we can observe that the filter with additional measurement-delay channel

Fig. 1 The first state

component x1(k) and the

filter x̂(k ∣ k)
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Fig. 2 The second state

component x2(k) and the

filter x̂(k ∣ k)
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Fig. 3 The first state

component x1(k) and the

filter x̂(k ∣ k)
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represented by red line tracks the true state x(k) better than the filter without

measurement-delay channel shown by green line. It suggests that the information

coming from the measurement-delay channel is also important.

Then, we consider the influence of different packet dropping rate case,

Case 1 ∶ 𝜙0 = diag{0.45, 0.43}, 𝜙1 = diag{0.37, 0.5},
Case 2 ∶ 𝜙0 = diag{0.83, 0.75}, 𝜙1 = diag{0.78, 0.9}.

The results are appeared in Figs. 3 and 4, where the filter for case 1 is represented

by green line and the filter for case 2 is shown by the red line. It is shown in Figs. 3
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Fig. 4 The second state

component x2(k) and the

filter x̂(k ∣ k)
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and 4 that the filter for case 2 tracks the true state better. The reason is that the filter

in case 2 is gained with more information than the filter in case 1.

5 Conclusion

In this paper, we have investigated the LMMSE state estimation and noise estima-

tion for discrete-time system with time delay and random packet loss, which is mod-

eled by an independent and identically distributed Bernoulli process. First, the opti-

mal state estimator has been designed by using the reorganized innovation analysis

approach. The solution to state estimator has been provided by calculating l Riccati

difference equations and one Lyapunov difference equation. Next, an optimal input

white-noise estimation has been put forward based on innovation analysis approach

and state estimation mentioned above. Finally, a numerical example has been offered

to show the effectiveness of the proposed approach. These works about the state esti-

mator and noise estimator are only for finite horizon. In the future, we will solve

problems about the state estimator and noise estimator for infinite horizon under the

condition that A is a stable matrix.
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