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Abstract This paper is concerned with the average consensus problem on multi-

agent networks with undirected interactions which can be either static or dynamic.

Notably, the multi-agent networks involving static and dynamic interactions are rep-

resented by graphs with edge weights in the form of real numbers and transfer func-

tions. We propose a distributed consensus control algorithm based on the nearest

neighbor rule. It is shown that the connectivity topology condition supplies a neces-

sary and sufficient condition for all agents to achieve average consensus. Numerical

simulations are provided to verify the effectiveness of the obtained results.
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1 Introduction

Coordination control for multi-agent networks has attracted considerable attention

owing to its wide applications in many areas, such as biological systems [1], vehicle

systems [2], complex networks [3], and power networks [4]. An important research

topic of multi-agent coordination is consensus since it plays a fundamental role in

all related problems. By consensus, it needs all agents to agree on a common quan-

tity [5].
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In the literature, most results address consensus problems on multi-agent net-

works with static interactions (see [6–11]). Static interactions between agents denote

that the information is directly communicated with each other, and the correspond-

ing adjacency weights are usually represented by real numbers. However, in practice,

many systems are subject to dynamic interactions, especially large-scale systems

with interconnected storage elements [12]. Dynamic interactions between agents

denote that the information is not directly communicated with each other but shared

after it is dynamically processed via a system/filter, and the corresponding adjacency

weights are represented by dynamic systems or transfer functions. Recently, consen-

sus against dynamic interactions emerges as a hot topic. Consensus problems on

multi-agent networks with dynamic interactions represented by positive real sys-

tems and stable LTI systems are addressed in [13, 14], respectively. Two consensus

problems on directed dynamic multi-agent networks with application to the thermal

processes in buildings and undirected dynamic multi-agent networks with applica-

tion to the power networks are studied in [15]. These new studies have extended the

consensus theory to more general multi-agent networks.

In this paper, we study the average consensus problem on multi-agent networks

with both static and dynamic interactions. A new consensus algorithm that combines

traditional static consensus algorithm and the dynamic consensus algorithm with

dynamic weights designed in the form of transfer functions is proposed. We adopt

analysis approaches both in the time domain and in the frequency domain. It is shown

that the connectivity of the undirected graph plays a crucial role for the mixed multi-

agent networks reaching average consensus.

The remainder of this paper is organized as follows. In Sect. 2, we introduce some

preliminaries on graph theory and present the problem statement on dynamic con-

sensus. Distributed dynamic consensus results are presented in Sect. 3 and simula-

tion results are provided in Sect. 4 to demonstrate the dynamic average consensus

performance. Finally, in Sect. 5, conclusions and future studies are given.

Notations: Throughout this paper, In = {1, 2,… , n}, 1n = [1, 1,… , 1]T ∈ ℝn
, 𝐼

and 0 denote the identity matrix and null matrix with appropriate dimensions, respec-

tively, and diag{⋅} represents a block matrix with the off-diagonal elements are all

zeros.

2 Problem Statement

2.1 Preliminaries

We use an undirected graph to model the information exchange among agents. A

weighted undirected graph is denoted by a triple G = (V ,E,A), where

V =
{
ei ∶ i ∈ In

}
is the vertex set, E ⊆

{(
ei, ej

)
∶ ei, ej ∈ V

}
is the edge set, and

A =
(
aij
)
∈ ℝn×n

is the symmetric nonnegative adjacency weight matrix, which sat-

isfies aij > 0 ⇔
(
ei, ej

)
∈ E and aij = 0 otherwise. Moreover, aii = 0 is assumed for

all i ∈ In. The edge
(
ei, ej

)
∈ E denotes that ei and ej can receive information from
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each other, and ei and ej are neighbors. The index set of neighbors of each agent ei
is denoted by Ni = {j ∶

(
ei, ej

)
∈ E}. A path is a finite sequence of edges consist-

ing of distinct vertices ei0 , ei1 ,… , eij such that
(
eik−1 , eik

)
∈ E for k = 1, 2,… , j. An

undirected graph is said to be connected if there exists a path between every pair of

distinct vertices.

2.2 Problem Description

Consider a mixed multi-agent network with n + m agents, and the interaction topol-

ogy among these n + m agents is modeled by an undirected graph G = (V ,E ,A (s)),
whereA (s) is the symmetric adjacency weight matrix with entries in the form of real

numbers and transfer functions. According to different interactions among agents,

we divided the multi-agent networks into two separate subnetworks: a controlled

network with n agents labeled 1 through n, and a controller network with m agents

labeled 1 throughm. If agents lie in the same networks, the interactions between them

are static. Otherwise, if agents lie in different networks, the interactions between

them are dynamic. A simple example of such mixed multi-agent networks is shown

in Fig. 1, where the controlled and controller network have 6 agents and 4 agents,

respectively.

The controlled network is associated with an undirected graph

G p = (V p
,E p

,A p), where V p =
{
vi ∶ i ∈ In

}
, E p

⊆

{(
vi, vj

)
∶ vi, vj ∈ V p}

, and

A p =
(
apij
)
∈ ℝn×n

. The dynamics of each agent vi are given by

ẋi(t) =
∑

j∈N p
i

apij
[
xj(t) − xi(t)

]
+ upi (t), i ∈ In (1)

where xi(t) ∈ ℝ is the state of agent vi, u
p
i (t) ∈ ℝ is the control input or protocol to

be designed according to the dynamic interactions between vi and its neighbors in

controller network, and N p
i = {j ∶

(
vi, vj

)
∈ E p}.

Similarly, we consider the controller network be associated with an undirected

graph G c = (V c
,E c

,A c), whereV c =
{
ci ∶ i ∈ Im

}
, E c

⊆

{(
ci, cj

)
∶ ci, cj ∈ V c}

,

and A c =
(
acij
)
∈ ℝm×m

. The dynamics of each agent ci are given by

Fig. 1 An example of

mixed undirected network,

where solid lines denote the

static interactions, and

dashed lines denote the

dynamic interactions
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ẏi(t) =
∑

j∈N c
i

acij
[
yj(t) − yi(t)

]
+ uci (t), i ∈ Im (2)

where yi(t) ∈ ℝ is the state of agent ci, uci (t) ∈ ℝ is the control input or protocol to

be designed according to the dynamic interactions between ci and its neighbors in

controlled network, and N c
i = {j ∶

(
ci, cj

)
∈ E c}.

The interactions between agents in different networks are achieved by the inputs

upi (t) and uci (t) which fulfill the nearest neighbor rules. Let Up
i (s) = L

[
upi (t)

]
be the

Laplace transform of upi (t), and let Uc
i (s), Xi(s), and Yi(s) be defined in the same way

for uci (t), xi(t), and yi(t), respectively. We consider distributed dynamic consensus

protocols in the form of

Up
i (s) =

∑

j∈N cp
i

gcpij (s)
[
Yj(s) − Xi(s)

]
, i ∈ In (3)

Uc
i (s) =

∑

j∈N pc
i

gpcij (s)
[
Xj(s) − Yi(s)

]
, i ∈ Im (4)

where gcpij (s) and gpcij (s) are dynamic weights to be designed, which satisfy gcpij (s) ≠ 0
if vi can get dynamic information from cj and gcpij (s) = 0 otherwise, and gpcij (s) ≠ 0
if ci can get dynamic information from vj and gpcij (s) = 0 otherwise. Also, in (3) and

(4), N cp
i = {j ∶ gcpij (s) ≠ 0} and N pc

i = {j ∶ gpcij (s) ≠ 0}.

The problem addressed in this paper is to enable the agents in mixed multi-agent

networks to achieve consensus such that

lim
t→∞

𝜉(t) = 𝜉c,∀𝜉(t) ∈
{
x1(t),… , xn(t), y1(t),… , ym(t)

}
(5)

where 𝜉c ∈ ℝ is a constant quantity. In particular, the multi-agent networks achieve

the average consensus if 𝜉c =
1

n+m

(∑n
i=1 xi(0) +

∑m
j=1 yj(0)

)
, where xi(0) and yj(0)

are initial states of xi(t) and yj(t), respectively.

3 Problem Analysis

3.1 Consensus Analysis

Let x(t) =
[
x1(t), x2(t),… , xn(t)

]T
, and let up(t), y(t), uc(t) be denoted in the same

way with x(t). In this case, the consensus algorithm (1) and (2) can be written in a

compact form as

ẋ(t) = −Lpx(t) + up(t) (6)

ẏ(t) = −Lcx(t) + uc(t), (7)
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where Lp = diag{
∑

j∈N p
1
ap1j,

∑
j∈N p

2
ap2j,… ,

∑
j∈N p

n
apnj} −A p

and Lc = diag
{
∑

j∈N c
1
ac1j,

∑
j∈N c

2
ac2j,… ,

∑
j∈N c

m
acmj} −A c

are symmetric Laplacian matrix asso-

ciated with G p
and G c

, respectively.

For distributed dynamic consensus protocols (3) and (4), we design dynamic

weights in the form of transfer functions as

gcpij (s) =
acpij

s + kpi
, i ∈ In, j ∈ Im; g

pc
ij (s) =

apcij
s + kci

, i ∈ Im, j ∈ In, (8)

where kpi > 0, acpij > 0 if vi can get dynamic information from cj and acpij = 0 oth-

erwise, kci > 0, and apcij > 0 if ci can get dynamic information from vj and apcij = 0
otherwise.

Remark 1 Since the interactions between agents are undirected, it can easily be seen

that the dynamic weights gcpij (s) = gpcji (s) if there exist dynamic interactions between

vi and cj, which implies that kpi = kcj , a
cp
ij = apcji > 0, ∀i ∈ In, j ∈ Im.

With dynamic weights in (8), the control inputs upi (t) and uci (t) take the form of

u̇pi (t) = −kpi u
p
i (t) +

∑

j∈N cp
i

acpij
[
yj(t) − xi(t)

]
, i ∈ In (9)

u̇ci (t) = −kci u
c
i (t) +

∑

j∈N pc
i

apcij
[
xj(t) − yi(t)

]
, i ∈ Im (10)

which can be rewritten as

u̇p(t) = −Kpup(t) − Dcpx(t) +A cpy(t) (11)

u̇c(t) = −Kcuc(t) − Dpcy(t) +A pcx(t), (12)

where Kp = diag{kp1, k
p
2,… , kpn}, Dcp = diag{

∑
j∈N cp

1
acp1j ,

∑
j∈N cp

2
acp2j ,… ,

∑
j∈N cp

n
acpnj }, A cp =

(
acpij

)
∈ ℝn×m

, Kc = diag{kc1, k
c
2,… , kcm}, Dpc = diag{

∑
j∈N pc

1

apc1j ,
∑

j∈N pc
2
apc2j , … ,

∑
j∈N pc

m
apcmj}, and A pc =

(
apcij

)
∈ ℝm×n

. Clearly, we have

A cp = (A pc)T , Dcp1n = A cp1m and Dpc1m = A pc1n.

3.2 Main Result

Let z(t) =
[
xT (t), yT (t)

]T
and u(t) =

[
(up(t))T , (uc(t))T

]T
. By combining (6), (7) and

(11), (12), we get
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ż(t) = −Lz(t) + u(t) (13)

u̇(t) = −Ku(t) − Hz(t), (14)

where L =
[
Lp 0n×m
0m×n Lc

]
, K =

[
Kp 0n×m
0m×n Kc

]
, and H =

[
Dcp −A cp

−A pc Dpc

]
.

To achieve the primary objective of this paper, we proceed to analyze (13) and

(14). Traditional convergence analysis of (13) and (14) generally collapses into

checking the Hurwitz property of block matrix C ≜

[
−L I
−H −K

]
. However, it is hard

to testify, since the block matrix C does not have nice structure, such as diagonally

dominant. We adopt a different analysis approach to addressing this issue, which is

motivated by the proof of sufficiency of Theorem 3.1 in [16].

Let Z(s) = L [z(t)] and U(s) = L [u(t)] be the Laplace transform of z(t) and u(t),
respectively. Taking Laplace transform of (13) and (14) gives that

sZ(s) − Z(0) = −LZ(s) + U(s) (15)

sU(s) = −KU(s) − HZ(s) (16)

Substituting (16) into (15) arrives at Z(s) =
[
sI + L + (sI + K)−1H

]−1 Z(0). Now the

consensus problem can be transformed into the stability problem of the transfer func-

tion matrix G(s) =
[
sI + L + (sI + K)−1H

]−1
.

Theorem 1 For the multi-agent network given by (1) and (2) with undirected graph
G , let the control input Up(s) and Uc(s) be applied with dynamic weights gcpij (s)
and gpcij (s) satisfying kpi = kcj = k,∀i ∈ In, j ∈ Im. Then the multi-agent network
achieves average consensus asymptotically if and only if G is connected.

The proof of Theorem 1 depends on the Gershgorin’s disc theorem [17] and the

final value theorem [18], which is omitted here due to the page limitation.

4 Illustrative Simulations

Consider mixed multi-agent networks whose interaction topology among agents is

shown in Fig. 1. Note that the undirected graph is connected. Without loss of gener-

ality, let the static adjacency weights (solid lines) be taken as 1, and let the dynamic

adjacency weights (dashed lines) be taken as gcp11(s) = gpc11(s) =
1

s+1
, gcp23(s) = gpc32(s) =

3
s+1

, gcp32(s) = gpc23(s)=
2

s+1
. The initial states are given by x(0) = [1, 2, 1.6, 2.5, 2.3, 2.7]T

and y(0) = [1, 2, 3, 2.2]T . Simulation results of this mixed multi-agent networks with

static and dynamic weights are shown in Fig. 2. It is clear from Fig. 2 that average

consensus is achieved for all agents on 2.03. This illustration coincides with the state-

ment of Theorem 1.
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Fig. 2 Average consensus

for multi-agent networks

with mixed static and

dynamic interactions
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5 Conclusions

In this paper, average consensus problems on multi-agent networks with static and

dynamic interactions have been discussed. We have proposed a new distributed con-

sensus algorithm and have studied under what kind of topology conditions average

consensus can be obtained. We adopt analysis approaches both in the time domain

and in the frequency domain, which can provide an alternative way to deal with

dynamic consensus problems on multi-agent networks. Simulations have been given

to validate the effectiveness of our proposed consensus algorithm. Possible future

research studies include dealing with multi-agent networks with directed static and

dynamic interactions.
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