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Abstract This paper presents an alternative control method based on a new
unknown input observer (UIO) for servo motor systems with unknown
time-varying nonlinear dynamics and disturbances. By defining auxiliary filtered
variables, an invariant manifold is derived and used to design the estimation of
unknown dynamics. The new observer has only one scalar to be set, and thus can be
easily incorporated into the control design to achieve precise output tracking. The
convergence of the proposed estimator is compared with other three well-known
schemes. Comparative simulation results show the satisfactory estimation and
control performance.

Keywords Servo motion control ⋅ Unknown input observer ⋅ Nonlinear
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1 Introduction

Servo motors are a kind of widely used driving motors in the industry applications
[1]. To achieve high precision motion control of such mechanisms, it is essential to
derive accurate model of the whole systems. However, this is not a trivial task. In
practical applications, the uncertainties that degrade the motion control performance
include both internal and external disturbances such as friction, load, torque, and
also modeling error. To handle such uncertainties and disturbances, there are two
widely used approaches: adaptive control and disturbance observer. In the adaptive
control framework, e.g., [2, 3], an important assumption is that the unknown
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dynamics should be strictly reformulated as a linearly parameterized form. To relax
this assumption, some functional approximators, e.g., neural network, fuzzy system,
were further incorporated into the control synthesis of nonlinear servo motion
mechanisms [4–6]. However, the function approximation is only valid for contin-
uous functions in a compact set, and only semi-global stability can be proved.

In the past decades, disturbance observer (DOB) [7, 8] was also proposed, where
the disturbances and modeling uncertainties are lumped as a time-varying distur-
bance, which is estimated using an observer. Traditional design methods of DOB are
based on frequency domain techniques so that they cannot be extended to nonlinear
systems [9]. In [7], a two-stage design procedure to improve disturbance attenuation
ability of linear/nonlinear controllers is proposed. The DOB-based control can
compensate the unparameterizable uncertainties, and has a simplified structure. In
generic nonlinear DOB design, an observer has a similar structure to original system
and there are several parameters to be set. In our recent work [10], we proposed a
simply yet effective Unknown input observer (UIO) to address the engine torque
estimation. The convergence and robustness are also rigorously analyzed.

The aim of this paper is to exploit the idea of UIO proposed in [10] for the
precision motion control of nonlinear servo systems with disturbances. First, we
present the design of UIO based on available system variables to design the dis-
turbance estimators. We also compare the estimation response of the proposed UIO
to other three estimators, e.g., extended state observer (ESO) [11, 12], nonlinear
disturbance observer (NDO) [13], and sliding model observer [14]. The proposed
UIO is incorporated into the control design to alleviate the effects of these unknown
dynamics, e.g., friction and disturbance. Comparative simulations are included to
show the satisfactory control performance.

2 Problem Formulation

In this paper, the following servo motion system driven by a linear DC motor as
[15] will be considered as follows:

x ̇1 = x2
x2̇ = ax ̇1 + u− ff − fr − fl

� �
̸b

�
ð1Þ

where u is the control voltage, x1, x2 are the motor rotation position and speed; ff is
the friction force, fr is the ripple force, and fl is the applied load force. The
parameters a, b denote the effect of mechanical and electrical dynamics, whose
nominal values are available for most physical systems.

The objective of this paper is to introduce an alternative control scheme for
system (1) in the presence of unknown dynamics ff , fr, fl. In particular, the UIO
proposed in [10] is modified to estimate and then compensate these unknown
forces, which leads to a simple but efficient two-step control design procedure.
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3 Disturbance Observer Design

We first consider the estimation of the unknown dynamics using the unknown input
observer. Thus, we rewrite the second equation of the system (1) as

x ̇2 = ½ax2 + u−Fðx1, x2Þ� ̸b ð2Þ

where Fðx1, x2Þ= ff + fr + fl is the lumped unknown dynamics.
This section first presents theoretical developments of a new input observer to

estimate the unknown dynamics. Without loss of generality, we assume the
derivative of Fðx1, x2Þ is bounded, i.e., supt≥ 0 F ̇ðx1, x2Þ

�� ��≤ℏ holds for a constant
ℏ>0.

A. Unknown Input Observer Design

We define the filtered variables x2f , uf of x2, u as

kx ̇2f + x2f = x2, x2f ð0Þ=0
kuḟ + uf = u, uf ð0Þ=0

�
ð3Þ

where k>0 is a filter parameter.
An ideal invariant manifold [16] will be used to inspire the design of UIO.

Lemma 1 [10] Consider system (2) and filter operation (3), the variable

β= ðx2 − x2f Þ ̸k− ðax2f + uf −FÞ ̸b ð4Þ

is ultimately bounded for any finite k>0, and

lim
k→ 0

½ lim
t→∞

fðx2 − x2f Þ ̸k− ðax2f + uf −FÞ ̸bg�=0,

Proof We refer to [10] for a similar proof. ◇

The above ideal invariant manifold provides a mapping from the filtered vari-
ables x2f , uf to the unknown dynamics F. Thus, it can be used to design an estimator
for F without knowing any information of x ̇2. Based on the invariant manifold, a
feasible estimator of Fðx1, x2Þ is given by

bF = ax2f + uf − bðx2 − x2f Þ ̸k ð5Þ

Clearly, only the filter constant k>0 should be selected by the designer.
The convergence property of the proposed observer can be summarized as

Theorem 1 For system (2) with unknown input observer (5), the estimation error

eF =F − bF is bounded by eFðtÞj j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Fð0Þe− t k̸ + k2 ℏ2

q
and thus F→ bF holds for

k→ 0 or ℏ→ 0.
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Proof We apply a low-pass filter ð ⋅ Þf = ½ ⋅ � ̸ðks+1Þ on both sides of (2), so that

s
ks+1

½x2�= a
b
⋅

1
ks+1

x2½ �+ 1
b
⋅

1
ks+1

u½ �− 1
b
⋅

1
ks+1

F½ � ð6Þ

We consider (6) together with the first equation of (3) and have

x2̇f =
x2 − x2f

k
=

ax2f + uf −Ff

b
ð7Þ

where Ff is the filtered version of F given by kF ̇f +Ff =F. Then it follows from (5)
and (7) that bF =Ff , that is, the estimator gives the filtered version of the unknown
dynamics. In this case, we can prove that the estimation error can be small using
sufficiently small k. For this purpose, we derive the estimation error as

eF =F − bF = 1−
1

ks+1

� �
F =

ks
ks+1

½F� ð8Þ

To facilitate the convergence proof, we further represent the estimation error (8)
in the time-domain as

eḞ =F ̇−F ̂̇=F ̇−
1
k

F −Ff
� �

= −
1
k
eF +F ̇ ð9Þ

Select a Lyapunov function as V =
1
2
e2F , then its derivative can be given as

V ̇= eFeḞ = −
1
k
e2F + eFF ̇≤ −

1
k
V +

k
2
ℏ2 ð10Þ

We can calculate the solution of (10) as VðtÞ≤ e− t k̸Vð0Þ+ k2ℏ2 ̸2, so

eFðtÞj j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Fð0Þe− t k̸ + k2ℏ2

q
. In this case, one can verify that eFðtÞ→ 0 for k→ 0

and/or ℏ→ 0. ◇

B. Comparison to different disturbance estimation methods

In this subsection, we will compare the proposed UIO with other three estimators
for system (2) to show their convergence and implementation.

B.1: Extended state observer (ESO)
ESO was initially proposed by Han in [11, 12], and has gained many applications
[1]. The basic idea of ESO is to regard the lumped disturbances as a new state
variable of the system, which can be estimated via a high-gain observer. Consid-
ering F as an extended state as x3 =F, then the Eq. (2) can be rearranged as
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x2̇ = ðax2 + u−FÞ ̸b
x3̇ = c tð Þ

�
ð11Þ

where c tð Þ=F ̇ is assumed to be bounded. Thus we can design an ESO as

z ̇1 = − ½z2 − β1 z1 − x2ð Þ� ̸b+ u ̸b+ ax2 ̸b
z2̇ = − β2 z1 − x2ð Þ

�
ð12Þ

where β1, β2 are the feedback gains in the observer, z1 is the estimation of x2 and z2
is the estimation of F. A feasible way to determine β1, β2 can be given as
s2 + β1s+ β2 = ðs+ pÞ2, where p>0. As analyzed in [17], if F ̇ is bounded, then
z1 → x2 and z2 →F hold for p→∞. In this paper, to make a trade-off between the
convergence and robustness, we set p=1000 in the simulations. The induced
high-gain of ESO leads to a potential peaking phenomena as shown in [17], which
may degrade the transient control response when the estimated state z2 is used.

B.2: Nonlinear disturbance observer (NDO)
The authors of [13] provide a nonlinear disturbance observer to estimate the
unknown disturbances. From system (2), we know F = − bx ̇2 + ax2 + u. Then we let
L>0 as the observer gain, so that a direct DO with exponential convergence can be
formulated as

F ̂̇= − LF ̂+L − bx ̇2 + ax2 + uð Þ ð13Þ

However, the above DO requires prior knowledge of acceleration signal x ̇2,
which may not be available or measured in actual systems.

To address this issue, we design an auxiliary variable z=F ̂+Lbx2, and then
design the following NDO as

bF = z−Lbx2
ż= − Lz+ Lðax2 + u+ Lbx2Þ

�
ð14Þ

Then the observer error is derived from (14) as

eḞ =F ̇−L − z− ax2 − u− Lbx2 + bx ̇2ð Þ= − L F − bF	 

+F ̇= − LeF +F ̇ ð15Þ

It is interesting to find that the error dynamics of NDO shown in (15) are in the
same form of that of the proposed UIO. Thus, it can be proved that the observer
error eF of (15) will converge to zero for F ̇=0 and/or L→∞. Thus, the response of
NDO is the same as UIO. However, no auxiliary variable needs to be defined in the
proposed UIO.
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B.3: Sliding mode observer (SMO)
We assume the disturbance FðtÞ is bounded, i.e., ( ) ( )F t t≤ holds for ( ) 0t > .
Then, we can define the following sliding mode observer

x ̂2̇ =
1
b
½ax2 + u− σ sign ðx2 − x2̂Þ� ð16Þ

with a small positive constant  t  .
Then the observer output error between (2) and (16) can be obtained as

ef = x2 − x2̂, so that its derivative is

be ̇f = −F + σ sign ðef Þ ð17Þ

Based on the sliding mode theory and the equivalent control method [14], we
know that ef will reach the sliding mode surface ef =0 in finite time, and thus

( )sign( )FF eσ= + for any bounded disturbance F. However, a well-recognized
issue in the sliding model observer is the chattering due to the signum function. To
reduce the chattering, a low-pass filter is adopted to give the following estimator:

bF =
1

ks+1
σ sign ðef Þ
� � ð18Þ

In this case, we can verify the estimator error of (18) is the same as (8). Con-
sequently, the steady-state convergence response of the sliding mode observer (16)
is comparable to those of UIO and NDO. However, the estimated dynamics may
not be smooth although the high-frequency switching can be reduced by intro-
ducing the low-pass filter in (18). This will be further shown in simulations.
Moreover, the upper bound ( )t of the unknown dynamics FðtÞ should be known in
the sliding mode observer design to determine the constant σ.

4 Control Design with Disturbance Observer

In this section, we will incorporate the proposed UIO into the control design for (1)
to achieve output tracking for a given command x1d. System (1) with the estimator
(5) can be given as

x1̇ = x2
x2̇ = 1

b ½ax2 + u− bFðx1, x2Þ− eF�
�

ð19Þ
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We define an auxiliary variable defined as

p= e ̇+ k2e ð20Þ

where e is the tracking error as e= x1 − x1d , and k2 is a positive constant.
Then we get the derivative of p as

p ̇= e ̈+ k2e ̇= ½ax2 + u− bFðx1, x2Þ− eF� ̸b− x1̈d + k2e ̇ ð21Þ

The controller can be designed as

u= − k1p+ bF − ax2 − bðk2e ̇− x1̈dÞ ð22Þ

where k1 > 0 is the feedback gain.
Then the following theorem summarizes the main results of this paper:

Theorem 3 For the motor system (1), the controller (22) with the estimator (5) is
designed. Then, for any unknown dynamics F, the estimation error eF and the
tracking error e will converge to a small compact set around zero, whose size
depends on the bound supt≥ 0 F ̇

�� ��≤ℏ.

Proof Substituting (22) into (21), we have the tracking control error as

p ̇=
1
b

− k1p− eFð Þ ð23Þ

Select a Lyapunov function as V =
1
2
bp2 +

1
2
e2F , so that its time derivative can

be calculated along as

V ̇= bpp ̇+ eFeḞ = − k1p2 − peF −
1
k
e2F + eFF ̇≤ − αV +

η

2
ℏ2 ð24Þ

where α=min f2ðk1 − η ̸2Þ ̸b, 2ð1 ̸k− 1 ̸ηÞg is positive for k1 > η ̸2>
k ̸2, k>0. Thus, we can obtain from (24) that VðtÞ≤ e− αtVð0Þ+ ηℏ2 ð̸2αÞ holds
and this implies that p and eF will exponentially converge to a compact set defined

by Ω: = p, eFj pj j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηℏ2 α̸b

p
, eFj j≤

ffiffiffiffiffiffiffiffiffiffiffiffi
ηℏ2 α̸

pn o
. ◇

5 Simulations

This section will present comparative simulation results to demonstrate the validity
of the proposed method, and to compare the estimation response of the above
mentioned four estimators for F. The parameters of model (1) can be found in [15],
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which lead to the lumped parameters a= − 123, b=0.69. Moreover, the ripple
force is given by

fr =Ar sin 2πx1 ̸P+φð Þ ð25Þ

where ω=2π P̸=314 and φ=0.05π. The friction model is given as

ff = fc + fs − fcð Þe− x2 ̸xṡð Þ2
h i

sign ðx2Þ+Bx2 ð26Þ

where fs =20, fc =10, xṡ =0.1, B=10 define the effects of the maximum static
friction, the coulomb friction the Stribeck effect and the viscous friction. Moreover,
the external load is given as fl =50 sin ð2πtÞ. In the control design, the filter
parameter is k=0.001, and the feedback gains used in the controller are chosen as
k1 = 2, k2 = 500.

Figure 1a shows the tracking responses of the motor position and speed using
the presented control (22) with the proposed UIO. It is shown that fairly smooth and
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Fig. 1 Simulation results: a Tracking control response of the proposed control (22) with (5);
b Estimation performance of UIO (5), ESO (12), NDO (14) and SMO (18); c The zoom-in plot of
(b); d Estimator errors of UIO (5), ESO (12), NDO (14) and SMO (18)
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satisfactory control performance can be obtained. The profiles of the estimated
disturbances are given in Fig. 1b, c. The first picture of Fig. 1b shows the esti-
mation response of F using the four estimators, and its zoom-in view of the esti-
mation between 0.2 and 0.3 s is shown in Fig. 1c. We can see the major trends of
F can be accurately captured, although there is a small phase delay (about 0.001 s).
This phase delay comes from the introduced low-pass filter (3). It is noted that
k should be chosen as a trade-off between the estimation performance and
robustness.

Moreover, we compare their estimation error responses in Fig. 1d. It can be
found that the performance of NDO is indeed very similar to that of UIO, which are
all better than that of ESO and SMO. In particular, the phase delay of NDO is
smaller than that of ESO. Moreover, the implementation of the proposed UIO is
simpler than that of ESO. On the other hand, as we stated in Sect. 3, SMO creates
oscillated estimation results. The estimation errors of all these four different esti-
mators shown in Fig. 1d further confirm the above analysis.

6 Conclusion

In this paper, we propose a new nonlinear disturbance observer for servo mecha-
nisms by extending the principle of a recently proposed unknown input observer.
This new UIO has only one constant to be selected and a simpler structure, while its
convergence response is comparable to that of generic NDO, ESO and SMO. The
proposed estimator is incorporated into the feedback control design to achieve
precision motion control. The closed-loop system stability including the UIO can be
rigorously proved. Simulations are given to verify the theoretical analysis. The
results demonstrate that the proposed UIO can achieve a superior estimation
compared to ESO and SMO. Future work will focus on the robustness analysis for
the proposed UIO and other estimators.
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