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Abstract In this paper, the finite-time formation control problem for a group of
nonholonomic mobile robots is considered. A distributed finite-time estimator is
proposed to estimate leader’s state in finite time. Then, based on the estimated
values of estimator, a distributed finite-time formation control law is designed. With
the help of finite-time Lyapunov theory and graph theory, rigorous proof shows that
the group of mobile robots can converge to desired formation pattern and its
centroid can converge to the desired trajectory in finite time. Simulations are given
to verify the effectiveness of the method.

Keywords Nonholonomic mobile robot ⋅ Formation control ⋅ Distributed
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1 Introduction

Recently, the cooperative control of multiple mobile robots has received a great
deal of attention due to its wide application prospects, including cooperative
surveillance, large object move, troop hunting, etc. Compared with single robot,
multiple mobile robots can finish certain works more accurately, efficiently and
robustly. As a typical cooperative control problem, formation control of multiple
mobile robots is the foundation of other coordination problems. The control
strategies are mainly behavior-based control [1], leader–follower-based control [2],
artificial potential-based control [3, 4], virtual structure-based control [5], etc.
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Due to the existence of nonholonomic constraint and nonlinear characteristics,
the control of mobile robots is more difficult. With the development of cooperative
control theory in networked system, these strategies have been used to realize the
formation control of multiple mobile robots. In [6, 7], the theories of cascaded
systems and communication graph are applied to design control law for nonholo-
nomic kinematic systems, which can guarantee the system globally exponential
stability. In [8], based on a new transformation, a distributed control scheme is
developed to achieve the desired control objectives.

Most of control algorithms proposed in previous works can guarantee that
multi-agent systems asymptotically converge to desired motion, that is, conver-
gence time is infinite. Obviously, finite-time control algorithms with a faster con-
vergence rate are more optimal. Previous works on finite-time control are mainly
about first-order and second-order multi-agent system. In [9], finite-time state
consensus problem for first-order multi-agent systems is researched and distributed
protocols are presented. In [10–12], a distributed protocol is proposed to solve the
finite-time consensus problem for second-order agent dynamics. For multiple
nonholonomic mobile robots, some finite-time control algorithms were prposed. In
[13], the problem of finite-time leader-following consensus is discussed, but one of
control inputs is forced to be the reference signal artificially for a given period of
time. In [14, 15], the finite-time tracking control problem is solved when the
leader’s state is available to each follower. In [16], a kind of finite-time formation
control algorithm is proposed. However, it excludes the case where the observer’s
value is zero.

Inspired by aforementioned articles, we mainly investigate the distributed
finite-time formation control problem for multiple mobile robots. The contributions
of this paper are as follows. The control algorithm is distributed. Each robot can
only obtain its neighbors’ information. Besides the desired trajectory is considered
as a virtual leader whose information is available to a subset of mobile robots. We
design an estimator to estimate the leader’s state in finite time. And based on the
estimated values of estimator, a finite-time formation controller is designed for each
mobile robot, the controller can guarantee that the group of mobile robots con-
verges to desired formation, and the centroid of formation converges to desired
trajectory in finite time.

The rest of this paper is organized as follows. In Sect. 2, the model of non-
holonomic mobile robots and preliminaries used in this paper are given. In Sect. 3,
some main results on distributed formation control problem for multiple mobile
robots are established. The simulation results are presented in Sect. 4. Finally,
conclusion is drawn in Sect. 5.
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2 Problem Statement

Notation Let diagðwÞ=diagðw1, . . . ,wnÞ, 1n = ½1, 1 . . . 1�T ∈Rn. λminð ⋅ Þ and
λmaxð ⋅ Þ are the smallest and largest eigenvalues of the matrix, respectively. For any
vectors a= ½a1, . . . , an�T and b= ½b1, . . . , bn�T , denote a⊙b= a1b1, . . . , anbn½ �T , Let
sigðxÞα = signðxÞ xj jα, where α>0, x∈R, and signð ⋅ Þ is the sign function, If
xi* = ½xi1, . . . , xin�T ∈Rn, then sigðxi*Þα = signðxi*Þ⊙ xi*j jα, where signðxi*Þ=
½signðxi1Þ, . . . , signðxinÞ�T and xi*j jα = ½ xi1j jα, . . . , xinj jα�T .

2.1 Algebraic Graph Theory

As done in [17], for a group of n nonholonomic mobile robots, if each mobile robot
is a node, we can represent the communication between the robots by a weighted
directed graph G= ðV,E,AÞ, where V = fv1, v2, . . . , vng is a node set representing
the mobile robots, and E⊆V ×V is an edge set. The weighted adjacency matrix is
defined as A= ½aij�∈Rn× n, where aij denotes the edge weight from vi to vj. if
ðvi, vjÞ∈E, then aij >0, Otherwise aij =0. The set of neighbors of node vi is denoted
by Ni = fvj ∈V: ði, jÞ∈E, i≠ jg. Furthermore, The matrix L=D−A is called
Laplacian matrix of G, where D=diagfd1, d2, . . . , dng with di = ∑n

j=1 aij.
Weighted directed graph G is said to satisfy the detail-balanced condition [17] in
weights if there exist some scalars wi >0 with i=1, 2 . . . , n satisfying wiaij =wjaji
for all i, j= 1, 2 . . . , n.

Assume that a desired trajectory is regard as a virtual leader. Let B denote the
connection weight between robot i and the virtual leader, where
B=diagðb1, b2, . . . , bnÞ. If robot i can obtain information of the virtual leader, then
bi =1, otherwise bi =0.

2.2 Problem Formulation

Consider a group of n nonholonomic mobile robots labeled as i=1, 2, . . . , n. The
kinematics of robot i can be described by:

xi̇ = vi cos θi
yi̇ = vi sin θi
θi =ωi

8<
: ð1Þ

where ðxi, yiÞ is the position coordinates of robot i, θi is the heading angle, and
ðvi,ωiÞ represent the linear velocity and the angular velocity of robot i. It is
well-known that the system (1) satisfies the pure roll without slipping constraint,
i.e., yi̇ cos θi − xi̇ sin θi =0.
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Suppose that the n mobile robots converge to the desired formation pattern F,
ðp0x, p0yÞ is the centroid of the formation pattern F, ðpix, piyÞ is the position vectors
of robots i relative to the centroid of formation pattern F, which satisfies

∑
n

i=1

pix
n

= p0x, ∑
n

i=1

piy
n

= p0y

Without loss of generality, we assume that p0x =0, p0y =0. The desired trajectory
is considered as a virtual leader 0, which can be described by:

x0̇ = v0ðtÞ cos θ0
y0̇ = v0ðtÞ sin θ0
θ0 =ω0ðtÞ

8<
: ð2Þ

where ðv0ðtÞ,ω0ðtÞÞ are known time-varying functions.
Now, our control problem is defined as designing a controller for mobile robot

i based on its state and its neighbors’ state, such that the group of robots converges
to a desired formation pattern F and the centroid of formation converges to the
desired trajectory in finite-time T, that is to say,

lim
t→T

xiðtÞ− xjðtÞ
yiðtÞ− yjðtÞ
� �

=
pix − pjx
piy − pjy

� �
lim
t→T

ðθi − θ0Þ=0

lim
t→T

∑
n

i=1

xiðtÞ
n

− x0ðtÞ
� �

=0

lim
t→T

∑
n

i=1

yiðtÞ
n

− y0ðtÞ
� �

=0

Before the introduction of the distributed control algorithm, some necessary
assumptions which mobile robot system should satisfy, and lemmas are listed.

Assumption 1 u10j j>0, u ̇10j j≤ κ, u ̇20j j≤ κ.

Assumption 2 Weighted directed graph G is strongly connected and
detail-balanced, and there is at least one robot which can obtain the leader’s
information.

Lemma 1 ([18]) For any xi ∈R, i=1, 2, . . . n, 0 < p≤ 1, the following inequalities
hold

∑
n

i=1
xij j

� �p

≤ ∑
n

i=1
xij jp ≤ n1− p ∑

n

i=1
xij j

� �p
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Lemma 2 ([19]) Consider the system

x ̇= f ðx, tÞ, f ð0, tÞ=0, x∈Rn

Suppose there are C1 function VðxÞ defined on a neighborhood U ̂⊂Rn of the
origin. If the function VðxÞ is positive definite and V ̇ðxÞ+ cVαðxÞ≤ 0 on U ̂ where
c>0 and 0< α<1 are real numbers, then the origin of system is locally finite time
stable. The setting time depending on the initial state xð0Þ= x0, satisfies

Tðx0Þ≤ Vðx0Þ1− α

cð1− αÞ . If VðxÞ is also radially unbounded and U ̂=Rn, the system is

globally finite time stable.

Lemma 3 ([20]) If Assumption 2 holds, then the matrix diagðwÞðL+BÞ is positive
definite.

3 Main Results

In this section, the finite-time formation control problem for system (1) is solved.
First, a finite-time distributed estimator is proposed to estimate the virtual leader’s
state. Second, a distributed formation control law is designed to make the mobile
robots converge to the desired state in finite time.

For the controller design, we define the following transformation:

x1i = θi
x2i = ðxi − pixÞ sin θi − ðyi − piyÞ cos θi
x3i = ðxi − pixÞ cos θi + ðyi − piyÞ sin θi
u1i =ωi

u2i = vi − x2iωi

8>>>><
>>>>:

ð3Þ

Using the above-coordinate transformation, the system (1) is transferred into the
following form:

x1̇i = u1i
x2̇i = u1ix3i
x3̇i = u2i

8<
: ð4Þ

where 0≤ i≤ n , ui = ½u1i, u2i�T and xi = ½x1i, x2i, x3i�T are the control input and state
of mobile robot i after the coordinate transformation, respectively.

Defining the formation error vector as xĩ = x ̃1i, x2̃i, x3̃i½ �T , the formation error
dynamics can be derived as following:
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x ̃1̇i = u1i − u10
x ̃2̇i = u10x3̃i + x3iðu1i − u10Þ
x ̃3̇i = u2i − u20

8<
: ð5Þ

We divide formation error dynamics (5) into a first-order subsystem (6),

x ̃1̇i = u1i − u10 ð6Þ

and a second-order subsystem (7)

x ̃2̇i = u10x3̃i + x3iðu1i − u10Þ
x ̃3̇i = u2i − u20

�
ð7Þ

Based on the transformation (3), the objective is converted into designing a
distributed control laws ui = ½u1i, u2i�T to stabilize the closed-loop system (6) and (7)
in a finite time.

3.1 Distributed Finite-Time Estimator

In the following, based on sliding mode control method, we construct distributed
finite-time estimator for each mobile robot to estimate the virtual leader’s
information.

Theorem 1 For mobile robot system (6)–(7), if Assumption 1 and 2 hold, we
design the distributed finite-time estimator as follows:

u ̂1̇i = − k1 ∑
j∈Ni

aijðu1̂i − u1̂jÞ+ biðu1̂i − u10Þ
 !

− k2sign ∑
j∈Ni

aijðu1̂i − u1̂jÞ+ biðu1̂i − u10Þ
 !

u ̂̇2i = − k1 ∑
j∈Ni

aijðu2̂i − u2̂jÞ+ biðu2̂i − u20Þ
 !

− k2sign ∑
j∈Ni

aijðu2̂i − u2̂jÞ+ biðu2̂i − u20Þ
 !

8>>>><
>>>>:

ð8Þ

where i=1, 2 . . . , n, k1, k2 > 0, u1̂i, u2̂i are the estimated information of the leader
for the robot i, and then u1̂i = u10, u2̂i = u20 for ∀t>T1.

Proof Let k2 > κ, u1̂* = ½u ̂11, . . . , u ̂1n�T , u2̂* = ½u ̂21, . . . , u ̂2n�T , u1̄* = u1̂* − u101n,
u2̄* = u2̂* − u201n, N =diagðL+B,L+BÞ, u ̄= ½u1̄*, u2̄*�T , f0 = ½u101Tn , u201Tn �T

From (8), the estimator error can be rewritten in a compact form as

u ̄̇= − k1Nu ̄− k2signðNu ̄Þ− f 0̇ ð9Þ
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Choose the Lyapunov candidate function as

V1 =
1
2
u ̄TMTu ̄

The derivative of V1 along system (9) is

V 1̇ = − k1u ̄TNTWNu ̄− k1u ̄TNTWsignðNu ̄Þ− u ̄TNTWf 0̇

≤ − λminðWÞ k1u ̄TN2u ̄+ ðk2 − κÞ u ̄TN
�� ��

1

� 	
≤ − λminðWÞ k1u ̄TN2u ̄+ ðk2 − κÞ u ̄TN

�� ��
2

� 	

≤ − λminðWÞ 2λminðMÞk1V1

λ2maxðWÞ +

ffiffiffi
2

p ðk2 − κÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λminðMÞp

λmaxðWÞ
ffiffiffiffiffi
V1

p
 !

By calculating the differential inequality, we can get

ffiffiffiffiffi
V1

p
≤

ffiffiffiffiffiffiffiffiffiffiffi
V1ð0Þ

p
+

ðk2 − κÞλmaxðWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1λminðMÞp

 !
e
− λminðWÞλminðMÞ

λ2maxðWÞt −
ðk2 − κÞλmaxðWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k1λminðMÞp
Since k2 > κ, we can conclude that V1 reaches zero in finite time, which implies

that V1 = 0, ∀t≥T1, where T1 =
λ2maxðWÞ

λminðWÞλminðMÞ lnð1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1λminðMÞV1ð0Þ

p
ðk2 − κÞλmaxðWÞ Þ. That is to say,

u1̂i = u10, u ̂2i = u20, ∀t≥ T1, i=1, 2 . . . , n. This completes the proof.

Remark 1 From the expression of convergence time T1, the parameter k2 can affect
the convergence speed of the system (9). With a larger k2, the convergence speed is
faster, but chattering phenomenon of system (9) will be more obvious caused by the
discontinuity of signð ⋅ Þ function. So, we need to consider the control precision and
convergence speed comprehensively when choosing parameter k2.

3.2 Distributed Finite-Time Formation Control Law

Based on the estimated values for desired state of the virtual leader 0, a finite-time
formation controller is designed for each mobile robot.

Theorem 2 Consider mobile robot system (6)–(7), if Assumption 1 and 2 hold, we
design finite-time control law as follows:

u1i = u1̂i − sigðε1iÞα ð10Þ

u2i = u2̂i − u1̂isigðε2iÞ
α

2− α − sigðε3iÞα ð11Þ
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where i=1, 2 . . . , n, 0 < α<1, ε1i = ∑
j∈Ni

aijðx1i − x1jÞ+ biðx1i − x10Þ, ε2i = ∑
j∈Ni

aijðx2i − x2jÞ+

biðx2i − x20Þ, ε3i = ∑
j∈Ni

aijðx3i − x3jÞ+ biðx3i − x30Þ, then x1i = x10, x2i = x20 and

x3i = x30 for ∀t>T1 + T2 +T3.

Proof In the following part, we will prove Theorem 2 in two steps. Firstly, we will
prove subsystem (6) is not divergent when t<T1, and subsystem (6) is finite-time
stability when t>T1. Secondly, we will prove subsystem (7) is not divergent when
t< T1 +T2, and subsystem (7) is finite-time stability when t>T1 + T2.

First, we prove subsystem (6) is not divergent when t< T1, and subsystem (6) is
finite-time stability when t>T1.

Let x1* = x11,⋯, x1n½ �T , x1̃* = x1* − 1nx10, ε1* = ½ε11, . . . , ε1n�T . Consider the
Lyapunov function

V2 =
1
2
x ̃T1*x1̃*

The derivative of V2 along system (6) is

V ̇2 = x ̃T1*x ̃1̇* = x ̃T1*ðu1̂* − u101nÞ− x ̃T1*sigðε1*Þα

Since u ̂1i converges to zero in finite time T1, u1̂i will be bounded in any time, i.e.,
there is a positive constant C1, such that u1̂* − u101nk k2 ≤C1, we have

V 2̇ ≤C1 x ̃T1*
�� ��

2 + n1− α L+Bð Þk kαF x1̃*k k1+ α
2

When xT̃1*
�� ��

2 ≤ 1, we have

V ̇2 ≤ L1

where L1 = n1− α L+Bð Þk kαF +C1. However, when x ̃T1*
�� ��

2 = η2 ≥ 1, we have

V 2̇ ≤C1η2 + n1− α L+Bð Þk kαFη1+ α
2

≤ 2C1V2 + 2n1− α L+Bð Þk kαFV2

≤ L2V2

where L2 = 2C2 + 2n1− α L+Bð Þk kαF . Thus, for any x ̃1*, we have V ̇2 ≤L2V2 +L1.

After some manipulation, we can further get V2 ≤ V2ð0Þ+ L1
L2

� 	
eL2t − L1

L2
. Hence, x1̃*

is bounded when t<T1.
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From Theorem 1, when t≥T1, u1̂i = u10, then control law (10) is equivalent to
the following:

u1i = u10 − sigðε1iÞα

Closed-loop system (6) can be rewritten in a compact form as:

x ̃1̇* = − sigðε1*Þα ð12Þ

Choose the Lyapunov candidate function as

V3 =
1
2
xT1*ðL+BÞTdiagðwÞx1*

The derivative of V3 along system (11) satisfies

V ̇3 = − xT1*ðL+BÞTdiagðwÞsigðε1*Þα

≤ − λminðdiagðwÞÞ 2λminðdiagðwÞðL+BÞÞ
λ2maxðdiagðwÞÞ

� �1+ α
2

V
1+ α
2

3

where ρ1 > 0, 0< 1+ α
2 < 1. By Lemma 2, we have V3 will converge to zero in finite

time, it can be concluded that x1i = x10, ∀t> T1 +T2, i=1, 2 . . . , n. where

T2 ≤
2
1− α
2 λ1+ α

max ðdiagðwÞÞV3ð0Þ
1− α
2

ð1− αÞλminðdiagðwÞÞ λminðdiagðwÞðL+BÞÞð Þ1+ α
2
.

Next, we will prove subsystem (7) is not divergent when t<T1 + T2, and sub-
system (7) is finite-time stability when t>T1 + T2.

Let x2* = ½x21, . . . , x2n�T , x2̃* = x2* − 1nx20, x3* = ½x31, . . . , x3n�T , x3̃* = x3* − 1nx30.
Consider the Lyapunov function

V4 =
1
2
x ̃T2*x2̃* +

1
2
x ̃T3*x3̃*

The derivative of V4 along system (7) is

V ̇4 = x ̃T2* ẋ̃2* + x ̃T3* ẋ̃3*

= u10x̃T2*x̃3* + x̃T2*ũ1*x ̃3* + x ̃T2*u1̃*x30 + x̃T3* u2̂* − u201n − u1̂*sigðε2*Þ
α

2− α − sigðε3*Þα
� 	

Since u1i, u1̂i converge to u10 and u ̂2i converges to u20 in finite time T1 +T2,
u1i, u1̂i and u2̂i will be bounded in any time, i.e., there is a positive constant C2, such
that u1̂* − u101nk k2 ≤C2, u1̃*k kF ≤C2, u1̂*k kF ≤C2, u2̂* − u201nk k2 ≤C2.
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V ̇4 ≤C2 x ̃T2*
�� ��

2 x3̃*k k2 +C2 x ̃T2*
�� ��

2 x3̃*k k2 +C2
2 x ̃T2*
�� ��

2 +C2 x ̃T3*
�� ��

2

+C2n
2− 2α
2− α L+Bð Þk k α

2− α
F x3̃*k k2 x2*k k α

2− α
2 + n1− α L+Bð Þk kαF x3̃*k k1+ α

2

When x ̃T2*, xT̃3*
� �T��� ���

2
≤ 1, we have

V ̇4 ≤ L3

where L3 = n1− α L+Bð Þk kαF +3C2 +C2
2 +C2n

2− 2α
2− α L+Bð Þk k α

2− α
F . However, when

xT̃2*, x
T̃
3*

� �T��� ���
2
= η2 ≥ 1, we have

V ̇4 ≤C2η
2
2 +C2η

2
2 +C2

2η2 +C2η2 +C2n
2− 2α
2− α ðL+BÞk k α

2− α
F η

2
2− α
2 + n1− α ðL+BÞk kαFη1+ α

2

≤ 6C2V4 + 2n1− α ðL+BÞk kαFV4 + 2C2
2V4 + 2C2n

2− 2α
2− α ðL+BÞk k α

2− α
F V4

≤L4V4

where L4 = 6C2 + 2n1− α L+Bð Þk kαF +2C2
2 + 2C2n

2− 2α
2− α L+Bð Þk k α

2− α
F . Thus, for any

x2̃* and x3̃*, we have V ̇4 ≤L4V4 +L3. After some manipulation, we can further get
V4 ≤ ðV4ð0Þ+ L4

L3
ÞeL4t − L4

L3
. Hence, x ̃2*, x3̃* is bounded when t<T1 + T2.

When t≥T1 + T2, u1̂i = u10, u ̂2i = u20, u1i = u10, then control law (11) becomes

u2i = u20 − u10sigðε2iÞ
α

2− α − sigðε3iÞα

Closed-loop system (7) can be obtained as

ε ̇2* = u10ε3*
ε3̇* = − ðL+BÞsigðε3*Þα − u10ðL+BÞsigðε2*Þ

α
2− α

�
ð13Þ

Choose the Lyapunov candidate function as

V5 =
1
2
εT3*ððL+BÞdiagðwÞÞ− 1ε3* +

2− α

2
ε

1
2− α

2*




� �T

ðdiagðwÞÞ− 1 ε
1

2− α

2*




� �

Let f ðε3*Þ = − εT3*ðdiagðwÞÞ− 1sig ε3*ð Þα. For any k>0, we obtain

V5 k2− αε2*, kε3*
� �

= k2V5 ε2*, ε3*ð Þ ð14Þ

and

f kε3*ð Þ= k1+ αf ε3*ð Þ ð15Þ

408 M. Li et al.



When V5 ε2*, ε3*ð Þ>0, let k= V5ðε2*, ε3*Þð Þ− 1
2 in (15), we can get

f ðε3*Þ
V5ðε2*, ε3*Þð Þ1+ α

2
= f V5ðε2*, ε3*Þð Þ− 1

2ε3*
� 	

≤maxf V5ðε2*, ε3*Þð Þ− 1
2ε3*

� 	
= − c

where c≥ 0. Since fðεT2*, εT3*ÞT : c=0g= fð0T , 0TÞTg, we have V5 ε2*, ε3*ð Þ=0.
Conflict with prerequisite condition V5 ε2*, ε3*ð Þ>0. So, it is easy to obtain that

c>0. Then, we obtain f ε3*ð Þ ≤ − c V5 ε2*, ε3*ð Þð Þ1+ α
2 with α∈ ð0, 1Þ. Second, we will

prove that when V5 ε2*, ε3*ð Þ=0, we have ðεT3*, εT2*ÞT = ð0T , 0TÞT . Then it can be

obtained that f ε3*ð Þ ≤ − c V5 ε2*, ε3*ð Þð Þ1+ α
2 .

Moreover, the derivative of V5 along system (13) is

V ̇5 = εT3*ððL+BÞdiagðwÞÞ− 1ε3̇* + ε
1

2− α

2*




� �T

ðdiagðwÞÞ− 1ðsigðε2*Þ
α− 1
2− α⊙ε ̇2*Þ

= − εT3*ðdiagðwÞÞ− 1sigðε3*Þα − u10εT3*ðdiagðwÞÞ− 1sigðε2*Þ
α

2− α

+ u10 sigðε2*Þ
α

2− α

� 	T
ðdiagðwÞÞ− 1ε3*

= − εT3*ðdiagðwÞÞ− 1sigðε3*Þα ≤ 0

Hence, V 5̇ ε2*, ε3*ð Þ= f ε3*ð Þ ≤ − c V5 ε2*, ε3*ð Þð Þ1+ α
2 . By lemma 2, we have V5

will converge to 0 in finite time T3, it can be concluded that x2i = x20, x3i = x30,

∀t>T1 +T2 + T3, i=1, 2 . . . , n, where T3 = 2
cð1− αÞ V5 ε2*ð0Þ, ε3*ð0Þð Þð Þ1− α

2 . This

completes the proof.
Hence, by Theorems 1 and 2 we conclude that nonholonomic mobile robot

system (1) is finite-time stability under distributed control laws (10) and (11). Thus,
the formation control problem is solvable in finite time T =T1 + T2 +T3.

Remark 2 u1̇0j j≤ κ, u ̇20j j≤ κ, it means the line velocity and angular velocity of
virtual leader not only can be constants, but also can be time-varying functions. So,
the control algorithm proposed in this paper can guarantee the group of mobile
robots moves along with the desired trajectory generated by a virtual leader whose
line velocity and angular velocity are varying.

4 Simulation Results

In this section, some simulation results are presented to illustrate the effectiveness
of the proposed theoretical results.
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We consider mobile robots system (1) with n=6, the information exchange
topology among mobile robots is shown in Fig. 1, define
diagðwÞ=diagð3, 1, 2, 1, 1, 3Þ. Obviously, diagðwÞðL+BÞ is positive definite.
Hence Assumption 2 holds.

Example 1 The desired trajectory is generated by system (1) with v0 = 5 m/s,
ω0 = 0.5 rad/s. The initial state of the virtual leader 0 is ½x0ð0Þ, y0ð0Þ, θ0ð0Þ�T =
½0, − 10, 0�T . The desired formation pattern F is ðp1x, p1yÞ= ð− 1,

ffiffiffi
3

p Þ,
ðp2x, p2yÞ= ð1, ffiffiffi

3
p Þ, ðp3x, p3yÞ= ð2, 0Þ, ðp4x, p4yÞ= ð1, − ffiffiffi

3
p Þ, ðp5x, p5yÞ=

ð− 1, −
ffiffiffi
3

p Þ and ðp6x, p6yÞ= ð− 2, 0Þ. According to the procedure detailed in the
proof of Theorem 1, estimator gain can be calculated. So, the gain parameters for
each mobile robot are chosen as k1 = 3, k2 = 0.5, α=0.8. The response curves of
each mobile robot system (1) under control laws (10) and (11) are given in Fig. 2, 3
and 4. It is shown from Fig. 2 that the formation pattern of six robots is converge to
the desired formation and the centroid of formation converges to the desired tra-
jectory. Figure 3 shows that the angular velocity ωi and velocity vi of six mobile
robots converge to angular velocity ω0 and line velocity v0 of the virtual leader.
Position errors and heading errors are presented in Fig. 4, from which it is easy to
see that after a few seconds the position error and heading error converge to
ðpix, piyÞ and 0, respectively.

Example 2 The desired trajectory is generated by system (1) with ω0 = 1 rad/s,
v0 = 3 sin t cos t m/s. The initial state of the leader 0 is ½x0ð0Þ, y0ð0Þ, θ0ð0Þ�T = ½1, 0, 0�T .
The desired formation pattern F is ðp1x, p1yÞ= 1

5
ffiffi
3

p ð− 1,
ffiffiffi
3

p Þ, ðp2x, p2yÞ=
1

5
ffiffi
3

p ð1, ffiffiffi
3

p Þ, ðp3x, p3yÞ= 1
5
ffiffi
3

p ð2, 0Þ, ðp4x, p4yÞ= 1
5
ffiffi
3

p ð1, − ffiffiffi
3

p Þ, ðp5x, p5yÞ=
1

5
ffiffi
3

p ð− 1, −
ffiffiffi
3

p Þ and ðp6x, p6yÞ= 1
5
ffiffi
3

p ð− 2, 0Þ. Following the procedure detailed in

1
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Fig. 1 The desired formation
pattern and the information
exchange among mobile
robots
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the proof of Theorem 1, the estimator gain can be calculated. So, the gain parameter
for each robot are chosen as k1 = 1, k2 = 9, α=0.6. The response curves of each
mobile robot system (1) under control laws (10) and (11) are given in Figs. 5, 6 and
7, form which it is easy to see that six mobile robots achieve desired formation
pattern, the trajectory of centroid formation pattern converges to desired trajectory,
and the angular velocity ωi and velocity vi of six mobile robots converge to ω0, v0.

Fig. 4 Position errors and heading errors of six robots
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5 Conclusion

In this paper, the distributed finite-time formation control problem for multiple
nonholonomic mobile robots has been studied. And a distributed finite-time esti-
mator and a distributed finite-time formation controller are proposed to solve it. The
simulation results show the feasibility of the proposed algorithm. However, the
communication topology is connected and balanced-detail and the communication

Fig. 7 Position error and heading error of six robots
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delay is not considered. So, the future work will focus on studying the unified
controller to overcome these constraints.
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