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Abstract. This paper presents a novel point set registration algorithm based on
iterative linear optimization, which can be used to register both rigid and
non-rigid point set. Firstly, a new cost function was constructed to evaluate the
summation of squared distance between the two point sets, in which rigid
transformation, non-rigid elastic deformation and complex deformation were all
included for consideration. Secondly, the proposed cost was linearized using to
obtain a linear cost function of registration parameters. Thirdly, the registration
parameters were solved by iterative optimization using Tikhonov regularization.
Experimental results validated the performances of proposed method.
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1 Introduction

With the rapid development of 3d scanning technology, 3d point set could be obtained
more and more conveniently. As an important part, registration of rigid and non-rigid
point set has become popular for the researchers who proposed many registration
algorithms. For example, Fitsgibbon et al. [1] developed a robust iterative closest point
algorithm, which optimize the registration energy function via LM algorithm, making
registration error minimum. Although the algorithm greatly reduces the possibility of
trapping in local minima, it is not consider noise perturbation in the matrix of coeffi-
cients, thus leading to poor stability. Hasler et al. [2] obtained the statistical modeling
of interference noise before maximum likelihood estimation to register the point set.
Bing et al. [3] proposed a novel point cloud registration method based on GMM,
obtained sound registered results for rigid point set. In the field of non-rigid point set
registration, the most famous algorithm was proposed by Chui et al. [4], in which thin
plate splint was taken as the deformation template, and deterministic annealing tech-
nique was adopted. Although, this algorithm occluded abnormal shrinkage points, the
speed is rather slow. Sofien et al. [5] presented a more efficient algorithm for non-rigid
point set registration via the constraint of the energy change generated by the single
template during registration process. But it will be accompanied by a large number of
abnormal shrinkage points.

Main contents of this paper were organized as follow: Sect. 2 presented the basic
principle and the pipeline of the algorithm. Section 3 constructed a new cost function
for non-rigid point registration, followed by the linearization of the cost function in
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Sect. 4. In Sect. 5, the register parameters were solved by iterative linear optimization.
And Sect. 6 presented the experimental results. The main achievements of this paper
were concluded in Sect. 7.

2 Pipeline of the Algorithm

Let S and M be two 3d point sets(S is the Scene point set, M is the Model point set).
Due to the registration was performed in an iterative manner, the intermediate point sets
Mt and St were defined as illustrated in Fig. 1. In order to evaluate the degree of
transformation, translation, deformation and distance between the point sets, cost
functions CostðMt; Mtþ 1Þ, CostðSt; Stþ 1Þ and CostðMt; Stþ 1; Stþ 1; Mtþ 1Þ were
defined, and the total cost function of t th iteration was defined by weighted summation
of the three cost functions. Based on the cost function, Tikhonov regularization was
used to linearize the cost function. In addition, linear optimization was used to solve the
registration parameters in each step. This process was iterated until preset tolerance was
achieved. Pipeline of overall algorithm was illustrated in Fig. 2.

3 Cost Function for Non-rigid Point Set Registration

In rigid or non-rigid point set registration, a proper cost function is very important to
avoid the iteration trapped in local minima, as well as speed up the convergence
progress. In our construction, the cost function was divided into three parts, which were
Cost Mi; Miþ 1

� �
, Cost Si; Siþ 1� �

and Cost Mt; Stþ 1; Stþ 1; Mtþ 1
� �

, as illustrated
in Fig. 1. And the total cost function Cost i; iþ 1ð Þ was defined by weighted summation
of the three parts as
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Cost i; iþ 1ð Þ ¼ w1Cost Mi; Miþ 1� � þ w2 Cost Mi; Siþ 1; Siþ 1; Miþ 1� �þw3Cost Si; Siþ 1� �

ð1Þ

where w1;w2 and w3 are the weights, used to control the relative significance during
registration.

For Cost Mi; Miþ 1
� �

, this cost function was defined to evaluate the averaged
distance between point set Mi and Mi+1. In which, rigid and non-rigid were both
involved. Further more, for non-rigid transformation elastic deformation and complex
deformation should be involved to perform complex deformation. Thus the cost
function Cost Mi; Miþ 1

� �
between Mi and Mi+1, was defined by

Cost Mi; Miþ 1
� � ¼ w11 Costrigid Mi; Miþ 1

� �þw12Costnonrigid Mi; Miþ 1
� � ð2Þ

where w11 and w12 were the weights, fulfilling w11 þ w12 ¼ 1; Costrigid Mi; Miþ 1
� �

was the cost function describing rigid transformation of the point set,
Costnonrigid Mi; Miþ 1

� �
was the cost function describing non-rigid transformation of

the point set defined below

Costnonrigid Mi;Miþ 1� � ¼ w121Costelastic Mi;Miþ 1� �þw122Costcomplex Mi;Miþ 1� �

ð3Þ

where w121 and w122 were the weights. Costelastic Mi; Miþ 1
� �

was the cost function
describing elastic deformation of the point set, Costcomplex Mi; Miþ 1

� �
was the cost

function describing complex deformation of the point set. Costelastic Mi; Miþ 1
� �

and
Costcomplex Mi; Miþ 1

� �
were defined in following subsections.

For Cost Mi; Siþ 1; Miþ 1; Siþ 1� �
, the cost function was defined to evaluate the

averaged distance between point set Mi and Si+1 and between point set Mi+1 and Si+1, a
symmetrical distance was defined based on projection to nearest plane in our work.

For Cost Si; Siþ 1� �
, the cost function was defined to evaluate the degree of rigid

transformation between point set Si and Si+1, because only rigid transformation was
involved for scene point set. Thus,

Cost Si; Siþ 1� � ¼ Costrigid Si; Siþ 1� � ð4Þ

3.1 Cost Function for Rigid Point Set Transformation

In order to evaluate the degree of rigid transformation, Costrigid Xi; Xiþ 1
� �

was defined
in this subsection. Due to Xi+1 is the transformed point set of Xi, the cost function was
defined by summation of squared distance between the points in Xi and their trans-
formed points in Xi+1. The Costrigid Xi; Xiþ 1

� �
was defined by
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Costrigid Xi;Xiþ 1� � ¼
XN
k¼1

xiþ 1
k � Rxik þ t

� ��� ��2
2 ð5Þ

where xik and xiþ 1
k are the kth point in Xi and Xiþ 1, R is the rotation matrix, t is the

translation vector.
Equation (5) could be used in the definition of Cost Si; Siþ 1� �

and rigid part of
Cost Mi; Miþ 1

� �
.

On the contrary, in the definition of Cost Mi; Siþ 1; Miþ 1; Siþ 1� �
, symmetrical

distance was defined based on projection to nearest plane, the point projection was
illustrated in Fig. 3.

Let mj be a point in Mi, sk, sk+1 and sk+2 were three nearest points in Si+1, Π is the
nearest plane defined by point sk, sk+1 and sk+2, p(mj) is the point on Π projected by mj,

dms jð Þ ¼ mj � p mj
� ��� ��2

2 is the squared distance between mj and its projected point. In
the same way, the squared distance between point sj(a point in Si+1) and its projected

point can also be computed by dsm jð Þ ¼ sj � p sj
� ��� ��2

2. Thus the cost function

Cost Mt; Stþ 1; Stþ 1; Mtþ 1
� �

was defined symmetrically, by

Cost Mi; Siþ 1; Siþ 1;Miþ 1� � ¼
XN
j¼1

dms jð Þþ
XM
j¼1

dsm jð Þ ð6Þ

where N and M are the point numbers of Mi and Si+1.

3.2 Cost Function for Non-rigid Point Set Transformation

During registration, the model point set was deformed non-rigidly, thus the deforma-
tion model constraints the deformation performances, a simple model often causes
inadequate deformation or abnormal deformation, and a complex model would reduce
the efficiency of the algorithm. Thus, in our construction, elastic deformation and
complex deformation model were used in our construction.

3.2.1 Cost Function for Elastic Deformation
Let m1, m2, m3 and m4 be four points in Mi, q1, q2, q3 and q4 be the corresponding
deformed points, as illustrated in Fig. 4.
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Fig. 3. Illustration of point projection
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In this paper, the elastic deformation cost Costelastic Mi;Miþ 1
� �

was defined

Costelastic Mi;Miþ 1� � ¼
XN
j¼1

X
k2gj

qj � qk
� �� ~Rj mj �mk

� ��� ��2
2

ð7Þ

where N is the point number of Mi, ηj is the neighboring index set of point mj, ~Rj is the
rotation matrix. Equation (7) performed a block rotation to deformable template elas-
tically or approximate elastically, but for every block, one block correspond to one
rotation matrix, presenting approximate rigid transformation within the block, main-
taining local structure.

3.2.2 Cost Function for Complex Deformation
In complex deformation, former elastic deformation model is not enough to describe
the deformation form, thus, a data driven method was adopted to evaluate the complex
deformation quantitatively.

Let M be a point set, represented by a N × d matrix, where N is the point number,
d is the dimension, P0, P1, P2, …, PN−1 be the circular shifted point sets of M.
Representing M and its ith circular shifted form Pi by

M ¼ P0 ¼
x11 x12 � � � x1d
x21 x22 � � � x2d
..
. ..

. ..
. ..

.

xN1 xN2 � � � xNd

2
6664

3
7775 ð8Þ

Pi ¼

x iþ 1ð Þ1 x iþ 1ð Þ2 � � � x iþ 1ð Þd
x iþ 2ð Þ1 x iþ 2ð Þ2 � � � x iþ 2ð Þd

..

. ..
. ..

. ..
.

xN1 xN2 � � � xNd
x11 x12 � � � x1d
..
. ..

. ..
. ..

.

xi1 xi2 � � � xid

2
66666666664

3
77777777775

; i ¼ 1; 2; � � � ;N � 1 ð9Þ

Then, a complex deformed point set M’ was defined by linear combination of P0,
P1, P2 … PN−1, represented by

M0 ¼
XN�1

i¼0

kiPi ð10Þ

where ki; i ¼ 0; 1; � � � ;N � 1 are the coefficients and k0 ¼ 1.
Defining the deformation cost performed by Eq. (10) according to the summation

of squared distance between the two point sets, by
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Costcomplex M;M0ð Þ ¼
XN
k¼1

mk �m0
kk k22 ð11Þ

where mk and m0
k are the kth point in point set M and M

0
respectively.

In above section, the cost function to register two point sets was defined (see
Eq. (1)) rigidly or non-rigidly. The type of registration the algorithm performed
depends on the weights w12 in Eq. (2), if w12 = 0, rigid registration would be per-
formed, or non-rigid registration would be performed, a larger w12 often leads to a more
flexible deformation during registration.

4 Linearization of the Cost Function

Based on constructed cost function in above section, optimal registration parameters
could be solved by minimizing the cost function using linear or non-linear optimiza-
tion. In this paper, the cost function was firstly linearized, then, the registration
parameters were solved by Tikhonov regularization.

For non- rigid registration, the total cost for ith iteration can be written as

Cost i; iþ 1ð Þ ¼ w1

XN
k¼1

miþ 1
k � R1mi

k þ t1
� ��� ��2

2 þw2

XN
j¼1

X
k2gj

qj � qk
� �� ~Rj mj �mk

� ��� ��2
2
þ

w3

XN
k¼1

mk �m0
kk k22 þw4

XN
j¼1

mj � p mj
� ��� ��2

2 þw5

XM
j¼1

sj � p sj
� ��� ��2

2 þ

w6

XM
k¼1

siþ 1
k � R2sik þ t2

� ��� ��2
2

ð12Þ

Equation (12) is a non-linear function of registration parameters, especially on the
aspects of the rotating angles in R1 and R2, in which, sine and cosine computation were
involved. Because the point sets were transformed slightly, the rotating angles in R1

and R2 are all very small, thus R1 and R2 could be approximated by

R1 ¼
1 �c1 b1
c1 1 �a1
�b1 a1 1

2
4

3
5 ; R2 ¼

1 �c2 b2
c2 1 �a2
�b2 a2 1

2
4

3
5 ð13Þ

Substitute Eq. (13) to Eq. (12), besides p �ð Þ in Eq. (12) is a linear projection
operator. Thus, Eq. (12) was transformed into a linear model, rewrite Eq. (12) in the
following form
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Cost i; iþ 1ð Þ ¼ w1 A1x� b1k k22 þw2 A2x� b2k k22 þw3 A3x� b3k k22 þw4 x� b4k k22 þ
w5 x� b5k k22 þw6 A6x� b6k k22
¼ D0:5ðAx� bÞ�� ��2

2 þ Cxk k22
ð14Þ

where x is the state variable induced by rotation angles in R1, R2, the translating vector
t1, t2 and the new point set Miþ 1, Siþ 1. D was a coefficient matrix who encoded w1,
w2, w3,w4, w5 and w6. A was encoded A1, A2, A3 and A4, in which point setsMi and Si

were used. b was the biased vector who encoded b1; b2, b3 and b4, in which point sets
Mi, Si and the two linear projection operators were used. C was a coefficient matrix to
involve the solution of rotation angles in R1, R2 and the translating vector t1, t2. Thus,
non-rigid registration was transformed into the problem of linear minimization of
Eq. (14).

5 Tikhonov Regularization

Up to now, non-rigid point set registration can be solved by minimizing linear opti-
mization proved by Eq. (14). In this paper, Tikhonov regularization was used to
minimize the two formulas. According to Tikhonov regularization method, the extreme
of Ax� bk k22 þ Cxk k22 expressed by

argmin
x

jjAx� bjj2 þ Cxk k2 ð15Þ

can be solved by

x� ¼ ATAþCTC
� ��1

ATb ð16Þ

This optimization was performed step by step, until preset tolerances were reached.

6 Experimental Results

In order to validate the performances of proposed method, point sets were registered
non-rigidly, using both proposed method and the method in [5]. Non-rigid registration
results of 3D wolf point sets were shown in Fig. 5. It can be seen from the registered
point sets, in our method, the model point set and the scene point set were registered
accurately(corresponding points overlapped accurately), while [5] obtained slightly
biased result, which means, our proposed method could reduce the residue error
appeared in [5]. Numerical results were listed in Table 1. In Table 1, residue addition,
our proposed method maintained more points after registration. It indicates our pro-
posed method is more robust to point contraction than [5]. There will also offer rela-
tionship curves of non-rigid registration experiment to illustrate the change of residue
error and maintained points with the registration in Figs. 6 and 7. In addition, our
proposed method maintained more points after registration. It indicates our proposed
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method is more robust to point contraction than [5]. There will also offer relationship
curves of non-rigid registration experiment to illustrate the change of residue error and
maintained points with the registration in Figs. 6 and 7.

7 Conclusions

This paper presented a novel point set registration method based on newly constructed
cost function, linearization and Tikhonov regularization based optimization. The pro-
posed method can be used in registration of both rigid and non-rigid point sets,
achieving relative smaller residue error and larger maintained points. Experimental

Fig. 5. Non-rigid registration test of method in [5] and proposed method

Table 1. The residual and abnormal contraction points after registration

Non-rigid registration Method in [5] Proposed method

Original points 4344 4344
Residue error 1.7471 × 10−12 1.9333 × 10−14

Maintained points 2622 3894

Fig. 6. Relationship curve between residue
error and iteration number

Fig. 7. Relationship curve between maintained
point and iteration number
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results indicate the proposed method is more accurate and robust than traditional
method on the aspect of abnormal contraction.
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