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Abstract. Massive traffic data is produced constantly every day, caus-
ing problems in data integration, massive storage, high performance
processing when applying conventional data management approaches.
We propose a cloud computing based system H-TDMS (Hadoop based
Traffic Data Management System) to capture, manage and process the
traffic big data. H-TDMS designs a configurable tool for data integra-
tion, a scalable data scheme for data storage, a secondary index for fast
search query, a computing framework for data analysis, and a web-based
user-interface with data visualization service for user interaction. Exper-
iments on actual traffic data show that H-TDMS achieves considerable
performance in traffic big data management.

Keywords: Traffic big data · Cloud computing · Data integration ·
Secondary index · Data analysis

1 Introduction

The last few years have witnessed an explosion of traffic data due to the rapid
improvement in Intelligent Transportation System (ITS). Surveillance system
plays an important role in modern intelligent traffic management and produces
massive and complex traffic data every day. Usually traffic data is stored as
records, which are metadata extracted from the collected media information
such as images and videos. The volume of records of a big city in China may
exceed one hundred billion in a year.

In order to fully exploit traffic big data potential, there remain many tech-
nical challenges that must be addressed. The most critical challenges of traf-
fic big data management system are: (1) integrating data from heterogeneous
sources in different formats to solve the problem of Data Island (data sets in iso-
lated storages with different specifications); (2) providing high availability and
scalability to support large volume of collected data; (3) equipping enormous
processing capacity to handle the analyzing of the traffic data; and (4) providing
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diverse mining algorithms and models for deep analysis, such as criminal detec-
tion and risk pre-alarming [6,10,14,20]. All these problems call for well-adapted
infrastructures which can efficiently handling traffic big data integration, index-
ing and query, and mining and analysis.

Cloud computing in current era plays a critical role when conventional data
platforms fail in the “Big Data” scenario. Hadoop [1] is a popular framework
for cloud computing running on commodity hardware. With the advantage of
Hadoop, we propose a cloud computing based system H-TDMS, providing traffic
big data management to support decision making and knowledge discovery. This
proposed system has several key features:

(1) Flexible data import and distributed data storage
H-TDMS integrates a flexible and efficient tool to capture and extract data
from various databases and provides a storage system for massive traffic
data with high performance and sufficient scalability based on a distributed
database.

(2) Fast data indexing and query
H-TDMS adopts a secondary index structure to build a lightweight and
powerful search engine. The answer of a search query is returned back within
a tolerable response time limit, usually in seconds.

(3) Intelligent analysis and mining
H-TDMS integrates and encapsulates diverse algorithms and models for traf-
fic characteristics analysis and criminal detection. It provides both on-line
and off-line data processing services to support traffic management and pub-
lic security issues.

(4) Web-based user-interface and data visualization
H-TDMS provides a web-based user-interface to hide the complexity for
accessing and managing data. Analysis results are interpreted by data visu-
alization to help produce and comprehend insights from massive traffic data.

The rest of the paper is organized as follows. Section 2 outlines the the back-
ground and related work. Section 3 presents our design in detail. Section 4 gives
the evaluation results based on the prototype system and Sect. 5 concludes.

2 Related Work

Big data and cloud computing have brought great opportunities for manag-
ing data. Hadoop is a framework for cloud computing, including a distributed
file system HDFS (Hadoop Distributed File System) and a parallel processing
framework MapReduce. Based on HDFS, HBase [2] is developed as a scalable,
distributed database that supports data storage for large tables. Sqoop [4] is
an open source software used for efficiently transferring data between Hadoop
and structured relational databases (e.g., PostgreSQL [5]). Spark [3] is a fast
framework for large-scale data processing. Compared with MapReduce, Spark
runs some programs faster due to its in-memory computing.
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Hadoop was proven to be an efficient framework for big data storage and
query. Hadoop-GIS [7] stored large scale spatial data in HDFS and built a spa-
tial index to support high-performance spatial queries. SpatialHadoop [9] was
designed specifically to handle huge datasets of spatial data, which employed
a two-level spatial index structure and some efficient spatial operations. Lee et
al. [11] presented a lightweight spatial index for big data stored in HBase. Le and
Takasu [15] proposed a scalable spatio-temporal data storage for ITS based on
HBase and a spatio-temporal index structure using a hierarchical text-encoding
algorithm. However these systems supported limited query constraints. As we
know, more complex search queries should be provided for traffic big data.

Data mining has attracted wide attention as an approach to discovering infor-
mation from traffic data. Moriya et al. [13] developed an algorithm using feature-
based non-negative matrix factorization to predict the number of accidents and
cluster roads to identify the risk factors. Benitez et al. [8] presented a two-
step trajectory pattern recognition process including a k-means clustering and a
classification over a Self-Organizing Map. Yue et al. [19] proposed a multi-view
attributes reduction model for discovering the patterns to manage traffic bot-
tleneck. Lv et al. [12] utilized a deep learning approach considering the spatial
and temporal correlations inherently to predict the traffic flow. Xu and Dou [17]
implemented an assistant decision-supporting method for urban transportation
planning. Since so many works studied accident detection, pattern recognition,
traffic flow prediction, investment decision, etc., diverse data mining approaches
could be adopted in H-TDMS.

Several traffic big data platforms, based on cloud computing, were researched
in recent years. RTIC-C [18] was a system designed to support traffic history data
mining based on MapReduce framework. Kemp et al. [10] presented a big data
infrastructure for managing data and assisting decision making for transport sys-
tems using service oriented architecture. Xiong et al. [16] discussed the design
of ITS, including the current situation and future trend of related research and
development areas. Different from these solutions, H-TDMS focuses more on
how to provide data integration, search query, data analysis and user interac-
tion in one system for traffic big data management, and achieve considerable
performance based on cloud computing techniques.

3 System Design

Cloud computing is an inevitable trend for traffic data processing due to its
great demands on big data analysis and mining. H-TDMS constructs three lay-
ers to meet these demands, as shown in Fig. 1. The data layer stores all the
massive traffic data and provides high read/write performance when supporting
transparent usage of physical resources. The processing layer provides diverse
modular functions for upper layer services, and helps improve performance by
parallel-based data processing. The application layer provides the entrances for
users to call functions of the lower layers as well as http-based services for end
users to access and use H-TDMS.
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Fig. 1. H-TDMS architecture

3.1 Data Collection and Storage

Traffic data is stored as records in heterogeneous databases in different for-
mats due to historical reasons (e.g., different times of construction, different
application scenarios, and different equipment manufacturers). H-TDMS aims
to integrate all kinds of data into one distributed database to fully exploit their
potential. There is a critical need to flexible import data from various databases.
A data import tool is designed as shown in Fig. 2. Though the process of crawling
real-time data from the surveillance system is not shown in the figure, H-TDMS
supports collecting real-time data into its storage system directly as well.

Relational
Databases

HDFS
Sqoop

Transform 
Program

XML 
File

HBase
BulkLoad

Import Tool

HFile
<rule>
    <column>passTime2</column>
    <oper>5</oper>
    <src_info>
        <src_column>pass_time</src_column>
        <src_format>yyyy-MM-dd HH:mm:ss</src_format>
    </src_info>
    <dst_info>
        <dst_format>s</dst_format>
    </dst_info>
</rule>

Fig. 2. Data import tool

Sqoop is used for transferring data between HDFS and structured relational
databases, which are frequently applied to store traffic data. The transform pro-
gram is capable of transforming the data to the target format and storing it in
the low-level storage files of HBase called HFiles. The HFiles are moved to the
regions of a table by BulkLoad, which is a function native supported by HBase.
Both Sqoop and the transform program are based on MapReduce to accelerate
their processes. An XML file which specifies the transform rules including the
target field of a record, the source field of a record and the transform operation
between them, is another input used in the transform program to guarantee the
flexibility of the import tool. An example of time transformation is shown in
Fig. 2.
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Fig. 3. HBase four-dimensional data model

H-TDMS builds a storage system based on HBase due to its high perfor-
mance and scalability. The HBase data model is shown in Fig. 3. A well-adapted
data scheme is designed to store traffic record data. A complete record consists
of a list of fields including the information about a vehicle and its passing events.
Table 1 shows the format of the obtained record. Every day all records are stored
in a table named by date (e.g., Table 20160101 ) for management reasons. Each
record is indexed with a unique rowkey calculated according to the recordId and
stored in a row of the table. Some key fields such as PlateCode and TollgateCode
are stored in a cell separately and others like pic1Name and relateVideoAddr
are concatenated and stored in one cell to obtain the most considerable perfor-
mance. Because there is a trade-off between one-column based and multi-column
based table structures. The former achieves faster import speed but less access
flexibility while the latter is just the opposite.

Table 1. Record format

There is a lot of business data to be stored while the system is running, includ-
ing fundamental data like road network information and result data generated
by some applications. As a result, many different HBase tables are constructed
to hold the corresponding data for maintenance and extension.

3.2 Fast Search Engine

A fast search engine is implemented to support search query, especially multi-
condition search and fuzzy search. Equipped with this engine, user could search
out the records whose fields containing the specified values within a tolerable
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response time limit. Since data access is done by relating rowkeys to values in
HBase. The problem here is how to figure out the rowkeys of the required records
as soon as possible.

H-TDMS builds a secondary index and uses a customized calculation method
to figure out the required rowkeys. Logically data in HBase tables is stored
in alphabetical order of rowkeys, which are used as a primary index in fact.
However there is no way but scanning and filtering the whole table to search
out the required records if the rowkeys are not known. Unfortunately, the filter
operation in HBase is quite slow and inefficient. HBase would get all the records
in a table and then check the content to find out the records that contain the
specified values. Instead of using filter operation, a secondary index is designed to
relating the specified values to their rowkeys. Figure 4 (a) shows the construction
of table Index Tollgate for instance. There is one index table for one specified
field of a record and all index information for that field goes into the same
index table. When a row is put into the record table, the index information
is put into the corresponding index tables. Table Index Time is constructed in
another way shown in Fig. 4 (b), utilizing the timestamps generated by a convert
function. Any time interval can be specified by setting the range of timestamp.
To support fuzzy search of plateCode, table Index PlateX is constructed similar
as table Index Tollgate, but a special management is employed. When a row is
put into the record table, seven rows of index data are generated and put into
table Index PlateX at the same time as shown in Fig. 4 (c). A fuzzy search of
plateCode can be decomposed into several scans, in which the prefixes can be
obtained by shifting the plateCode. As the rowkeys with the same prefix are
stored at a near place in HBase, the scans can be completed very soon. Other
index tables such as table Index Color and table Index Speed are constructed in
a similar way as table Index Tollgate.

Rowkey
... Tollgate ...

ID1 ... G1 ...

Rowkey
... ID1 ...

G1_20160101 ... 1 ...

Table_20160101

Index_Tollgate

cf

cf

Rowkey
info

20160101

Timestamp1  1

Index_Time

...  1

cf

TimestampN  1
20160102 ...  1

(a) (b)

Convert (passTime, ID1)

20160101_0_ A12345

20160101_1_A12345

...

20160101_5_ 45 A123

Rowkey

Index_PlateX

(c)

20160101_6_ 5 A1234

Fig. 4. Construction of index tables

Based on the index tables, the fast search engine defines two basic opera-
tions “OR” and “AND” to calculate the index information. Index information is
obtained from the index tables and stored in bit sequences, in which the positions
of “1”s represent the rowkeys in record tables. “OR” and “AND” are bit-wise
operations which are quite fast for processor to perform. The whole process is
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divided into several sub-processes according to the time condition, usually by
the day. In a sub-process, a multi-condition search is decomposed into several
steps. Firstly, the search engine decomposes the conditions to get the corre-
sponding index data from the index tables. For each kind of index information,
each row of the index data is stored as a bit sequence, which is initialized with
“0”s and inserted with “1”s according to the index data. Then all bit sequences
are calculated by “OR”/“AND” operations to generate a unique bit sequence
for each kind of index information. The calculating logic is determined based on
the search conditions in advance. Finally the result bit sequence is generated by
calculating the bit sequences of all kinds of index information and the rowkeys
of required records are obtained by figuring out the offsets of the “1”s. All of the
sub-processes are performed in parallel but commited sequential to make sure
that the response can be returned as quickly as possible.

The fast search engine composes of the secondary index and the fast cal-
culation method as discussed above. The secondary index is constructed when
the original record data is imported and only sparse “1”s are stored in the index
tables. The calculation method takes full advantage of processor’s basic bit oper-
ations to improve the performance. Both of them make the engine lightweight
and powerful.

3.3 Intelligent Analysis Engine

In modern society, people’s everyday life has a close connection with traffic issues.
In other words, a lot of knowledge can be achieved from the massive traffic data
and then be used in traffic management and public security areas. To mine
and utilize the knowledge, an intelligent analysis engine is developed based on
the fusion of physical, cyber and cognitive spaces. The three-dimensional space
model is shown in Fig. 5 (a).
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Fig. 5. (a) Three-dimensional space model. (b) Intelligent analysis engine

The conventional analysis methods of pattern recognition and data mining
usually collect related data from the physical space which is consisted of fun-
damental data such as location and monitoring data and process them in the
cyber space to form events and topics such as traffic jams. However human’s
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experience and judgements are very important and useful in the traffic man-
agement and public security areas. Human’s feedback will help evaluate and
improve the models generated/used during the data processing. So we introduce
the human cognitive space which is consisted of human’s knowledge into the
analysis process. The intelligent analysis engine is hierarchical with three lay-
ers as shown in Fig. 5 (b). The semantic parsing layer is applied to define and
describe technical terms such as the congestion level of the road section, the
speed limit, peak accident times, etc. The algorithm layer integrates and encap-
sulates various algorithms, including data mining techniques, statistics methods,
and human experience. The library layer is adopted to store the features of the
traffic and analysis models for prediction, classification, etc.

The intelligent analysis engine is constructed based on Spark instead of
MapReduce, because data mining and statistics algorithms benefit a lot from
Spark’s in-memory computing. Since there is no general one fits all solution in
Hadoop, application development is always ad hoc. However, the general process
can be modeled as shown in Fig. 6. Human plays an important role during the
process, providing professional experience, evaluating results and returning feed-
back to H-TDMS. Some of the H-TDMS’s applications are illustrated and eval-
uated in detail in Sect. 4.

3.4 User-Interface and Data Visualization

A web-based user-interface is implemented to provide interaction between user
and H-TDMS. A set of RESTful web services are created to exchange data.
End users access and use H-TDMS through web browsers. Many operations are
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defined to allow users to combine their flexibility and creativity. In order to
gain insights from the complex analysis results, data visualization is applied to
transform various types of data into appropriate visual representations. Figure 7
illustrates two examples of data visualization. Figure 7 (a) is the sunburst view
for a vehicle’s activities and Fig. 7 (b) shows the result of vehicle cluster analysis.

4 System Evaluation

A prototype system is built on a Hadoop cluster using 3 nodes. One master node
takes charge of both cluster management and data processing while the other two
slave nodes are only responsible for data processing. The system environment
is shown in Table 2. We evaluate our design using actual traffic data of a city
in south China, which contains more than 100 million records with a size about
40 GB per month.

Table 2. System environment

Hadoop environment

Hadoop version 2.6.0

Sqoop version 1.4.5

HBase version 1.0.0

Spark version 1.3.0

Node environment

CPU Intel(R) Core(TM) i7-3770 @ 3.40 GHz

Memory 32 GB

OS Ubuntu Server 12.04 LTS (64-bit)

4.1 Data Import and Preprocessing

The actual traffic data is imported from a PostgreSQL database. Several record
sets with different sizes are selected to evaluate the import tool. The performance
is shown in Fig. 8 (a). As is evident from the linear regression line, the speed
of data import keeps stabile and exceeds 15 million records per minute when
the number of records ranges from 20 to 400 million. The main reason for this
stability is that the import tool fully utilizes all the processor resources of the
cluster during its MapReduce process.

The traffic data is organized and categorized by the intelligent engine, uti-
lizing statistics methods, to extract necessary information for later use. For
instance, many spatial and temporal features of vehicle activities and the infor-
mation about road conditions are summarized based on the historical vehicle
trajectory data, which is generated by combining the relating records.
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Fig. 8. (a) Performance of data import. (b) Fake plate vehicle detection

4.2 Search Query

Several typical query groups are executed to demonstrate the performance of the
search engine. The response times of the queries in the same group differ only tens
of milliseconds and an example of each group and its result are listed in Table 3.
Query1, Query2 and Query3 are used to get the records of a specified time inter-
val, a specified vehicle and a specified tollgate, respectively, and their response
times are less than 300 milliseconds. Query4 to Query9 are the most frequently
used search query types, in which the plate number of a vehicle is known or
partly known. For a search query with a complete plate number such as Query4
and Query5, the response times are less than 500 milliseconds. The response
time of the search queries with more tollgates increases a little as more index
information is calculated. Although complex fuzzy search queries like Query6,
Query7, Query8, and Query9 have longer response times, they can still return
results in just a few seconds. Compared Query9 with Query8, the response time
does not increase exponentially along with the time interval’s growth because of
the process division and parallel computing of the search engine.

Table 3. Performance of the search engine. (The Dash (-) represents an unspecified
value, the Question Mark (?) indicates an unknown character, and the Star (*) depicts
at least an unknown character.)
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4.3 Fake Plate Vehicle Detection

A fake plate vehicle is a vehicle using a plate number that is the same as another
legal one. Based on the idea that a vehicle can not appear in more than one loca-
tion within a short time, H-TDMS employs an application, utilizing trajectory
data and road conditions, to detect fake plate vehicles. The number of records
analyzed ranges from 12 to 102 million. Figure 8 (b) shows the processing time
of the application and the number of fake plate vehicles detected. It takes H-
TDMS less than 10 minutes to process 100 million records, revealing the high
data processing capability of H-TDMS. The result can be verified by checking
the related image and video data.

4.4 Vehicle Cluster Analysis

A case in point to show the usability and scalability of H-TDMS based on users’
flexibility and creativity is the vehicle cluster analysis, which can be applied
to support risk pre-alarming through outlier detection. The user-interface of H-
TDMS provides entrances for users to access data and call functions to construct
their own applications. We firstly define a feature vector and then apply rules
and precedence to the data to create it. The feature vector is consisted of a
vehicle’s activity of daily period (ADP) and activity of specified hours (ASH),
which represent the temporal features of the vehicle. Then a k-means clustering
algorithm is applied to classify 1 million vehicles’ feature vectors. The result is
shown in Fig. 7 (b). It is convenient for users to construct, run and tune their
own applications through the web-based user-interface of H-TDMS.

5 Conclusion

Big data has brought great opportunities for resolving transportation problems.
In this paper, we provide H-TDMS for traffic big data management based on
cloud computing. Our evaluation shows that H-TDMS achieves considerable per-
formance in data integration, search query, data analysis, and provides usability
and scalability for users to combine their flexibility and creativity. In our future
work, we plan to develop more customized mining services and encapsulate more
open interfaces to support more application functionalities.
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