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Abstract. Quantum computing promises to outperform its classical
counterpart substantially. In the past decades, there has been tremen-
dous progress. However, few previous researches have involved program-
mable systems. Quantum computing is mainly implemented in physics
laboratories. This paper proposes a programmable structure. Using the
entangled states of photon pairs, we have constructed the whole pro-
grammable system including a classical host, constructed with computer
and circuits, and a quantum “coprocessor”, used for two-particle quan-
tum simulations. A quantum “program” with both classical statements
and quantum statements is executed for a certain computation task. The
experiment shows high similarity of 95.2 % to theoretical result in boson
simulation and 97.1 % in fermion simulation, which demonstrates the
feasibility of our programmable system.

Keywords: Quantum computing · Quantum simulation · Program-
mable · Entanglement · Quantum coprocessor · Quantum program

1 Introduction

Quantum computing is one of the most fascinating technology in the Post-Moore
era [31]. It studies computation techniques based on quantum mechanics which
promises to outperform its classical counterpart fundamentally. This field was
initiated and developed by Paul Benioff in 1980 [3], Richard Feyman in 1982 [11]
and David Deutsch in 1985 [8]. In 1994, Peter Shor developed a quantum algo-
rithm solving the integer factorization problem in polynomial time, whereas the
well-known classical algorithm takes exponential time [24]. Since the integer fac-
torization forms the base of RSA scheme, a widely used public-key cryptography
scheme, quantum computing came to attract more attentions.

There are various technologies [16], such as photons [1,2,22], trapped atoms
[21,26], quantum dots [14], superconductors [6], nuclear magnetic resonance
(NMR) [25], that can be used for the implementation of quantum computing. On
the one hand, researchers have been studying how to reduce decoherence that
hinders the scalability of quantum systems. On the other hand, a lot of efforts
have been made to construct small-scale quantum devices to demonstrate quan-
tum algorithms. In 2001, Shor’s algorithm was demonstrated on a 7-qubit NMR
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 142–156, 2016.
DOI: 10.1007/978-981-10-2209-8 13



Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 143

computer to factor 15 [28]; in 2012, an all-bulk optics system was constructed at
the University of Bristol to factor 21 [20]; in 2013, a quantum boson sampling
machine is devised using photons [4,12,27]. Besides, D-Wave systems, although
doubted about its quantum speedup, has been built based on Ising model and
superconductor technology [9,10,13,17].

Most of these work implemented quantum algorithm [19] only with quantum
hardware [5,13,18,20,30], just like classical Application Specific Integrated Cir-
cuits (ASIC). They did not run programs as a classical computer. Here, we focus
on the programmability of a quantum system, and have implemented a demo
system based on photons. The main contributions are listed in the following:

– We propose a programmable structure for two-particle bosonic and fermionic
quantum simulation, which completes a certain task controlled by a program.
Such a program consists some classical statements and some quantum ones.
These quantum statements are executed on the corresponding quantum com-
putation units.

– We have implemented our programmable structure based on entangled pho-
tons. To the best of our knowledge, this is one of rare programmable quantum
computation systems. Previous work, except D-Wave systems, did not involve
any concept of programming.

In the rest of this paper, we first introduce some preliminary knowledge for
our simulation system, then report on the structure and implementation of a
programmable two-particle bosonic-fermionic quantum simulation system, and
finally present the test and evaluation of our system.

2 Preliminary

Quantum State and Entanglement. Quantum state is used to describe the
state of a quantum system. It is denoted by a vector in Hilbert space, |ψ〉. In
quantum mechanics, a special quantum state, denoted by α|ψ1〉+β|ψ2〉, is called
a superposition of |ψ1〉 and |ψ2〉, if |ψ1〉 and |ψ2〉 are both quantum states where
the system stays. The coefficients satisfy |α|2+|β|2 = 1. However, if we measure1

the quantum system at α|ψ1〉 + β|ψ2〉, the state collapses to |ψ1〉 or |ψ2〉 with
the probability information. The probability of the possible result |ψ1〉 (|ψ2〉) is
|α|2 (|β|2).

A photon can be horizontal polarized or vertical polarized. The polarization
state means the oscillating direction of the electrical field of a photon. We can
use |H〉 to express a horizontal polarized state and |V 〉 a vertical one. A photon
at the superposition state of 1√

2
(|H〉 + |V 〉) corresponds to the polarization of

45◦, as shown in Fig. 1.
As for a quantum system with more than one photon, with 2 photons for

example, the system at the state with two horizontal polarized photons is denoted
by |HH〉. The system with two vertical polarized photons is denoted by |V V 〉.
1 Strictly, the measurement is done in the base of |ψ1〉 and |ψ2〉.
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Fig. 1. Superposition and entanglement

It also can be at a superposition state, 1√
2
(|HH〉 + |V V 〉), which is a special

state in quantum physics, called entanglement. As is shown in Fig. 1, it cannot
be written as a tensor product of two quantum states, while a non-entangled
state can be written as a tensor product. The second photon must be in |H〉
(|V 〉) no matter how far it is from the first one, if we detect the first photon
at the state |H〉 (|V 〉). The special phenomenon is often portrayed as quantum
non-locality. There are other types of entangled states in two-photon system,
such as 1√

2
(|HH〉−|V V 〉), 1√

2
(|HV 〉+ |V H〉) and 1√

2
(|HV 〉−|V H〉). The latter

two are used in our simulation system.

Bosons and Fermions. In quantum mechanics, there are two kinds of identical
particles: bosons (photons, alpha particles, etc.) and fermions (electrons, protons,
neutrons, etc.). Identical particles are particles that cannot be distinguished
from each other substantially. Suppose the two particles in Fig. 2 have the same
internal properties, such as the spin, the frequency. In classical physics, the
situation in which the first particle stays at r1 and the second particle at r2
is different from the situation in which the first particle stays at r2 and the
second one at r1. The former situation is described in |r1(1)r2(2)〉, and the
latter in |r1(2)r2(1)〉. ra(b) indicates the particle b stays at ra. However, it is
impossible to distinguish the first particle from the second one. In this case, the
system goes into a superposition of |r1(1)r2(2)〉 and |r1(2)r2(1)〉. If the particles
are bosons with property of exchange symmetry, the superposition state will
be 1√

2
(|r1(1)r2(2)〉 + |r1(2)r2(1)〉). If the particles are fermions with exchange

antisymmetry, the superposition state will be 1√
2
(|r1(1)r2(2)〉 − |r1(2)r2(1)〉).
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Fig. 2. Quantum identical particles: bosons and fermions

Simulating Two Bosons (Fermions) with Polarization-Entangled Pho-
ton Pairs. Photons are bosons as stated in the preceding paragraph. However,
the symmetric and antisymmetric entangled photon pairs can mimic two non-
interacting bosonic and fermionic particles respectively. The brief principle is
derived as follows.

Suppose the quantum simulation network is denoted by a unitary matrix U .
If the network has N input ports and N output ports, U will be an N × N
matrix. With two identical particles injected into the input port Im and In (m
and n indicate the port number), the system evolves to the quantum state:

N∑

i=1

N∑

j=1

UImOi
UInOj

| . . . , 1Oi
, . . . , 1Oj

, . . .〉,

where UImOi
is the element of U in row Im and column Oi. | . . . , 1Oi

, . . . , 1Oj
, . . .〉

denotes that there are a particle in output port Oi and a particle in output port
Oj , with no particles in other ports.
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If the input particles are two identical bosons, the quantum state will be
written as

1
2

N∑

i=1

N∑

j=1

[
(UImOi

UInOj
+ UImOj

UInOi
]| . . . , 1Oi

, . . . , 1Oj
, . . .〉] .

The probability of finding a particle in output ports Op and Oq respectively is

Pboson =
{ |UImOi

UInOj
+ UImOj

UInOi
|2 p �= q

1
2 |UImOi

UInOj
+ UImOj

UInOi
|2 p = q

.

However, if the input particles are two identical fermions, the quantum state
and the probability will be

1
2

N∑

i=1

N∑

j=1

[
(UImOi

UInOj
− UImOj

UInOi
]| . . . , 1Oi

, . . . , 1Oj
, . . .〉] ,

Pfermion =
{ |UImOi

UInOj
− UImOj

UInOi
|2 p �= q

0 p = q
.

If we inject two photons at entanglement state 1√
2
(|HIm

VIn
+ VIm

HIn
〉) or

1√
2
(|HIm

VIn
− VIm

HIn
〉), the former state will lead to bosonic behavior and the

latter fermionic behavior. As for the 1√
2
(|HIm

VIn
− VIm

HIn
〉) input, the output

quantum state is

1√
2

N∑

i=1

N∑

j=1

[
(UImOi

UInOj
− UImOj

UInOi
)|HOi

VOj
〉] .

The probability of detecting one photon in Op and one in Oq is

P =
{ |UImOi

UInOj
− UImOj

UInOi
|2 p �= q

1
2 |UImOi

UInOj
− UImOj

UInOi
|2 p = q

.

It is obvious that the probability of detecting two photons in two distinct
output ports is the same as that of two fermions. Therefore, we can use a
polarization-entangled photon pair at 1√

2
(|HIm

VIn
− VIm

HIn
〉) to simulate the

behavior of two fermions.

3 Structure

As is shown in Fig. 3, we design a structure that adopts a quantum “coproces-
sor” for two-particle bosonic-fermionic quantum simulation. Unlike most previ-
ous quantum experiments with only quantum devices, our structure consists of a
computer, home-made circuits and quantum elements used for quantum experi-
ments. A user-designed “program” with both classical statements and quantum
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Fig. 3. Structure of the system

statements is executed by the monitor program on computers. When quantum
statements are executed, the host will schedule the quantum coprocessor through
the controlling driver or the measurement circuits. The driver is applied to receive
commands to adjust the entangled states. The measurement circuits are applied
to transfer the measured data from quantum parts to the computer.

The quantum coprocessor is constructed with a polarization-entangled two-
photon source, an interference-based optic network and several avalanche pho-
todiodes (APDs). The two-photon source produces photon pairs in a certain
entangled state controlled by commands. The adjustment is accomplished by a
motorized cage rotator, on which a half-wave plate is mounted. The produced
photon pairs are send to the interference-based optic network to carry out the
simulation. The APDs output electrical signals once they detect photons from
optical network. The measurement circuits complete the coincidence counting
which is a typical task in photonic experiments.

In this structure, quantum information, carried by photons, only exists in
the quantum “coprocessor”; i.e., quantum state like entanglement only occurs in
the quantum part. When simulating two bosons, the quantum part employs the
entanglement of 1√

2
(|HV 〉 + |V H〉). When simulating two fermions, it employs

the entanglement of 1√
2
(|HV 〉+|V H〉). Besides, two anyons can also be simulated

by other entangled states.
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4 Implementation

We have implemented the proposed structure based on photonic system as shown
in Fig. 4. The scheme of the quantum coprocessor is shown in Fig. 5. In the
following subsection, we will introduce the scheme in detail.

Fig. 4. System implementation

Fig. 5. Scheme of quantum coprocessor for two-particle bosonic-fermionic quantum
simulation
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4.1 Polarization-Entangled Two-Photon Source

We implement the two-photon source using spontaneous parametric down-
conversion (SPDC) [15]. In SPDC, a high-frequency photon can split into a
pair of low-frequency photons in accordance with the law of conservation of
energy and law of conservation of momentum when it enters a nonlinear crystal.
The process of SPDC happens randomly with extremely low probability, which
makes the experiment challenging.

A two-crystal geometry is used to construct the polarization-entangled two-
photon source. When a vertically polarized photon enters the specially-designed
nonlinear crystals, down-conversion will only occur in the first crystal. The emit-
ted light cones will be horizontally polarized, due to the type-I coupling. Sim-
ilarly, with a horizontally polarized pump injected, down-conversion will only
occur in the second crystal, producing otherwise identical cones of vertically
polarized photon pairs. A 45◦-polarized pump photon will lead to the same
probability of down-conversions in either crystal (neglecting losses from passing
through the first crystal). The possible down-conversion processes in the two
adjacent nonlinear crystals are coherent with one another, as long as the emit-
ted spatial modes for a given pair of photon are indistinguishable for the two
crystals. Consequently, the photons in the state 1√

2
(|HH〉 + eiφ|V V 〉) will auto-

matically be created. φ is determined by the details of the phase matching and
the crystals thickness, and in our experiment we adjust the wave plate group to
set different φ for different simulation.

Figure 5 shows the experimental setup used to produce and characterize the
entangled photons. The pump beam at 405 nm is directed to the two crystals
after passing through: a half-wave plate (HWP) and a polarizing beam splitter
(PBS) to adjust the power (|H〉); a rotatable HWP to adjust the polarization
( 1√

2
(|H〉 + |V 〉)); and a wave plate group to set φ in the final output state

( 1√
2
(|H〉 + eφp |V 〉))2. The nonlinear crystals are β-barium borate (BBO). The

optic axis of each BBO is cut at 33.9◦. For this cut the degenerate-frequency
photons( 1√

2
(|HH〉+eiφ|V V 〉)) at 810 nm are emitted into a cone of half-opening

angle 3◦. An HWP is added to one down-conversion path to get the state of
1√
2
(|HV 〉+eiφ|V H〉). Interference filters (IFs) centered at 810 nm with full width

at half maximum (FWHM) of 5 nm are placed to reduce the background noise
and select only these (nearly) degenerate photons.

4.2 Interference-Based Optic Network

The interference-based optic network in Fig. 5 completes the quantum simulation
task of the system. Beam splitters (BSs) with transmittance rate of 50 % transmit
a particle with 50 % probability and reflect it with 50 % probability [23]. If we
send a classical particle into any input port of the network, each output port will
emit the particle with a probability of 0.25. If we send two classical particles into
2 The phase φ in down-converted photons is determined by φp in the pump beam and

accumulated phase of photons in the optic path.
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Table 1. Probabilities of output particles in different ports of the network

Port No. Classical particles Bosons Fermions

A B C D A B C D A B C D

A 0.0625 0.0625 0.0625 0.0625 0.125 0.25 0 0 0 0 0.25 0.25

B 0.0625 0.0625 0.0625 0.0625 0.25 0.125 0 0 0 0 0.25 0.25

C 0.0625 0.0625 0.0625 0.0625 0 0 0.125 0.25 0.25 0.25 0 0

D 0.0625 0.0625 0.0625 0.0625 0 0 0.25 0.125 0.25 0.25 0 0

it, the probability of detecting one particle in port i and one in port j will be
0.0625 (0.25 × 0.25). i and j are A, B, C or D. The probabilities of all cases are
listed in Table 1. However, if we send two bosons into the network, it is impossible
to detect bosons from A and C simultaneously because of the interference in the
first BS; i.e., the two bosons will either be reflected or transmitted by the first
BS. This phenomenon is called photon-bunching in physics. If two fermions are
input into the network, they will exhibit antibunching behaviour. Table 1 shows
all probabilities in classical, bosonic and fermionic situations. Note that two
classical particles are distinguished from each other as discussed in the preceding
section. The situation that port A output the first particle and B the second one
is different from the situation that A output the second particle and B the first
one. We will always get the probability of 1 when summarizing all probabilities
of these 16 situations (0.0625 × 16 = 1). As for the quantum particles, the two
identical particles cannot be distinguished from each other. Therefore, there is
no difference between AC and CA in Table 1. In addition, it is impossible for the
measurement circuits to distinguish coincidence AC from CA in the experiments.

The key of the experiment is to realize identical, which requires the minimum
distance difference between entangled photons arriving at the first BS. If the
distance difference is greater than 40µm, the coherent length of down-converted
pump, the two particles will be distinguishable.

4.3 Interface Between Classical Host and Quantum Coprocessor

There is a two-way information flow between classical host and quantum
coprocessor. The information flow from quantum coprocessor to classical host
relies on the measurement circuits, while the information flow from classical host
to quantum coprocessor relies on the driver.

From Quantum Coprocessor to Classical Host. APD will output an elec-
trical pulse in the width of 8 ns once it detects a photon. The pulses from different
APDs are sent into a coincidence counting circuits to count the coincident events
in a duration time. A coincident event is defined as two pulses arising in a coin-
cidence window. In our experiment, the coincidence window is set to 10 ns. As
is discussed above, the coincidence count between A and B is apparently more
than that between A and C in a two-boson quantum simulation, which is in
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contrast to the situation for fermions. We have implemented the circuits on a
Xilinx FPGA development board.

From Classical Host to Quantum Coprocessor. The information sent from
classical host to quantum coprocessor is to adjust φ in the entangled state of
1√
2
(|HV 〉+eiφ|V H〉). This task is completed by rotating an HWP on a motorized

cage rotator. Once the rotator driver receives commands from the host, it will
drive the rotator to the target position. The overall function of the wave plate
group can be expressed as the product of Jones matrices in Eq. (1).

1√
2

(
1 −i
−i 1

) (
cos2θ sin2θ
sin2θ −cos2θ

)
1√
2

(
1 −i
−i 1

)
= e−i2θ

(
1 0
0 ei(π+4θ)

)
(1)

The fast axis of each QWP is set at 45◦ with respect to the horizontal axis.
When the state of the input pump laser beam is 1√

2
(|H〉+ |V 〉), the output state

will be e−i2θ√
2

(|H〉+ei(π+4θ)|V 〉). We can adjust φ in the final entanglement state
by rotating the HWP in the wave plate group. The phase prefactor cannot be
detected in our system.

4.4 Quantum “Program”

We use Python to implement the monitor program executing a quantum “pro-
gram”. As is shown in Fig. 6, the monitor program communicates with quantum
coprocessor and schedule a quantum program. Figure 6 gives an example of a
quantum program to simulate fermionic behavior. The statements began with
QUANTUM are quantum statements used to interact with quantum hardware.

Fig. 6. Moniter program and an instance of quantum “program”
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They are encapsulated into python functions. The sample code gets the coinci-
dence counts and controls the entangled state according to the comparison of
the counts. It will find a position with the maximum coincidence count between
port A and C, which exhibits the fermionic behavior.

5 Evaluation and Analysis

The performance of the system strongly depends on the quality of polarization-
entangled two-photon source. Therefore, we first evaluated the polarization-
entangled state and then evaluated the final state.

5.1 Polarization-Entangled Two-Photon Source

There are several typical methods to evaluate the quality of an entangled-photon
source. We have measured the polarization correlations, the CHSH inequality3

and the fidelity. The measurement was performed with the pump laser of 63 mW,
coincidence window of 10 ns and counting duration of 0.5 s.

Polarization Correlations. The polarization correlations were measured with
adjustable polarization analyzers, consisting of a polarizer in front of each cou-
pler. The polarizer in one path was fixed at 0◦ or 45◦, while the polarizer in
the other path was rotated. The coincidence rate displayed sinusoidal fringes
with nearly perfect visibility. As is shown in Fig. 7, the visibilities are 98.28%
( 1√

2
(|HV 〉+ |V H〉)) and 99.65% ( 1√

2
(|HV 〉+ |V H〉)) respectively, with a polar-

izer fixed at 45◦. With a polarizer fixed at 45◦, the visibilities are 98.55%
( 1√

2
(|HV 〉 + |V H〉)) and 97.48% ( 1√

2
(|HV 〉 + |V H〉)) respectively.

CHSH Inequality. CHSH inequality is another method to evaluate the quality
of the entanglement [7]. We obtained 2.72 of S and 15−σ violation in 0.5 s using
Eqs. (2) and (3). In 50 s, we obtained 2.41 of S and 94 − σ violation.

E(x, y) =
N(x, y) + N(x⊥, y⊥) − N(x⊥, y) − N(x, y⊥)
N(x, y) + N(x⊥, y⊥) + N(x⊥, y) + N(x, y⊥)

(2)

S = |E(−45◦,−22.5◦)|+ |E(−45◦, 22.5◦)|+ |E(0◦,−22.5◦)|+ |E(0◦, 22.5◦)| (3)

Fidelity. We calculated the density matrix by quantum state tomography [29],
and got the fidelities of 94% ( 1√

2
(|HV 〉+ |V H〉)) and 92% ( 1√

2
(|HV 〉− |V H〉)).

3 CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt,
who derived the inequality.
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Fig. 7. Correlation of two photons in polarization.

5.2 Two-Particle Bosonic-Fermionic Simulation

The control program adjusted the simulation system to the target states auto-
matically. The similarity(S) of fermionic simulation can be calculated as Eq. (4).

S =

(
Σi,j

√
PijDij

)2

Σi,jPijΣi,jDij
(4)

Pij is the ideal probability of coincidence between port i and port j given in
Table 1. Dij is the experimental coincidence count between port i and port j.

We have tried several quantum programs with different algorithms to test
the system. The similarity for bosonic simulation is 95.2% and for fermionic
simulation 97.1%. There are several factors accounting for the experimental
error. First, the dither of the system, including source and detector, influences
the count rates, which are the essential input of the script. Second, the quantum
programs still have potential to be optimized.
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6 Conclusion

This paper has proposed a programmable structure for two-particle bosonic
and fermionic quantum simulation and implemented the whole system based
on entangled photons. The evaluation of the experiment has shown the feasi-
bility of this programmable system. Quantum computing is an interdisciplinary
field of physics and computer science. We expect to improve our system with
the help of methods from both physics and computer science.
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