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Abstract. HPC systems are widely used for accelerating calculation-
intensive irregular applications, e.g., molecular dynamics (MD) simula-
tions, astrophysics applications, and irregular grid applications. As the
scalability and complexity of current HPC systems keeps growing, it is
difficult to parallelize these applications in an efficient fashion due to
irregular communication patterns, load imbalance issues, dynamic char-
acteristics, and many more. This paper presents a fine granular program-
ming scheme, on which programmers are able to implement parallel sci-
entific applications in a fine granular and SPMD (single program multiple
data) fashion. Different from current programming models starting from
the global data structure, this programming scheme provides a high-level
and object-oriented programming interface that supports writing appli-
cations by focusing on the finest granular elements and their interactions.
Its implementation framework takes care of the implementation details
e.g., the data partition, automatic EP aggregation, memory manage-
ment, and data communication. The experimental results on SuperMUC
show that the OOP implementations of multi-body and irregular appli-
cations have little overhead compared to the manual implementations
using C++ with OpenMP or MPI. However, it improves the program-
ming productivity in terms of the source code size, the coding method,
and the implementation difficulty.

1 Introduction

HPC is currently experiencing very strong growth in all computing sectors.
Many HPC systems are used for accelerating different kinds of calculation-
intensive applications including quantum physics, weather forecasting, climate
research, oil and gas exploration, molecular dynamics, and so on [1–4]. The major
programming interfaces are OpenMP [5,6], MPI [7–9], and CUDA [10,11]. In
addition, a large number of high-level programming models have been devel-
oped to improve the programming productivity and implementation efficiency
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as well, e.g., High Performance Fortran (HPF) [12,13], Charm++ [14–16], and
Threading Building Blocks (TBB) [17,18]. All these high-level programming
approaches are designed to obtain better programming productivity using higher
level abstraction or automatic parallelization. However, it is still complicated
for programmers to manage irregular scientific applications in an efficient and
scalable fashion in terms of decomposing the computational domain, manag-
ing irregular communication patterns among processes, and manipulating data
migration among processes, maintaining computational load balance, and so on.
For example, a molecular dynamics (MD) simulation [19] is a form of N-body
[20] computer simulation in which molecules interact with other molecules within
a certain domain for a period of time. The molecules may move in the domain
according to the interactions with others, which changes their storage layout
and communication pattern during execution. In order to improve the perfor-
mance of such irregular applications, researchers apply linked cells algorithms
and bi-section decomposition method which needs runtime re-distribution.

Different from current programming models starting from the global data
structure, we present a fine granular programming scheme for irregular scientific
applications. It provides a programming interface that supports writing applica-
tions by focusing on the finest granular elements and their interactions. They are
organized as an Ensemble, which manages the elements, topologies, and high-
level operations. By using the high-level operations explicitly, developers can
control the actions of the elements including communication, synchronization,
and parallel operations. In this paper, we introduce an abstract machine model,
programming interface, and implementation framework ported on different types
of systems on SuperMUC [21].

2 Abstract Machine Model

As can be seen from Fig. 1, the machine model is an abstract architecture com-
posed of a Control Processor (CP) and a large number of distributed Fine Gran-
ular Processors (FGPs). The major interactions between the CP and FGPs are
described as follows:

1. Explicit communication among FGPs: It is triggered by the CP explicitly.
Point-to-Point communication between FGPs is not supported due to low
efficicency.

2. Parallel computations of FGPs: It starts the computation of FGPs in the
form of parallel operations.

3. Collective operations among FGP : The CP is able to trigger collective oper-
ations on a set of FGPs. All the participating FGPs start the operations
cooperatively to get collective results.

4. Collective operations between CP and FGPs: The CP can access the local
memory of FGPs in the machine by explicit collective operations.
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Fig. 1. Abstract machine model

3 Programming Interface

An object-oriented(OO) programming interface is designed on top of the abstract
machine model. It consists of a template hierarchy starting from three top-
level base templates ElementaryPoint, Ensemble, and Topology. These base
templates have derived templates called application-specific templates, which
support multi-body, irregular grid, and regular grid applications respectively.
User-defined entities with local properties and operations can be defined as
C++ classes derived from the application-specific templates. The organization
is shown in Fig. 2.

Definition 1. An ElementaryPoint(EP) is a software entity that represents the
finest granular computational object in the domain of an application. The ensem-
ble is a software container that stores a set of EPs and manages their local infor-
mation, communication patterns, and computation. A topology defines a commu-
nication pattern resulting from the need for the information of a set of EPs in
the ensemble. The EPs can exchange their status based on certain topologies.
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Fig. 2. Organization of the template hierarchy
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The base templates for creating elementary points are ElementaryPoint and
its derived templates MultiBodyEP, IrrGridEP, and ReGridEP. Ensemble and
its derived templates are used to create the ensemble of an application. The
major high-level operations in Ensemble are described as follows:

1. SC-update: It supports exchanging the complete information as well as partial
information of EPs in the ensemble based on a certain topology.

2. parallel : It triggers member functions of EPs to execute in parallel. The tem-
plate parameter is a function object adapted from a member function of
ElementaryPoint.

3. collective: The collective operation currently consists of allReduceOp and
reduceOp. allReduceOp provides collective reduction operations that return
the result in all the involved EPs.

4. getNghbList : This operation is called by an individual EP in order to get a
list of its neighboring EPs from the ensemble based on a topology. After
it is accomplished, the EP can access data in the neighbor list for local
computations.

Topology is used to create topologies, which keep the communication patterns
of EPs. The major operations of Topology are shown as follows:

1. initialization: It initialize the internal data structures of Topology.
2. createNeighborList : If the topology is the root topology, it creates the neighbor

EP list for the EPs.
3. updateTopology : It rebuilds a new topology according to the runtime infor-

mation or the information specified by the users.

4 Implementation Framework

The implementation framework consists of machine-specific libraries including a
sequential library, an OpenMP-based library, and an MPI-based library ported
on SuperMUC. It is currently designed for multi-body and irregular grid applica-
tions. A single ensemble-based program can be compiled and linked to different
executables by these libraries.

4.1 OpenMP-Based Library

It aggregates the computation of a group of EPs and binds it to a single thread.
On NUMAs, all the EPs are initially stored in the physical memory of the socket
running the master thread. It is not efficient that the threads residing on other
sockets have to access the EPs by non-local memory accesses. Therefore, we
apply a reallocation and re-indexing strategy to distribute EPs across different
physical memory of the sockets.
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Reallocation and Re-Indexing to Manage EPs and Their Shadow
Copies. The OpenMP-based library integrates METIS [22] library to distribute
the EPs across physically distributed memory. The indirection array is gener-
ated from the output of METIS. It gives the information of the thread affin-
ity of all the EPs. The size of the array is the size of EP Set called numEP .
The numEP/numSocket elements of the indirection array keeps the identifiers
of EPs stored in the physically memory of the sockets sequentially.The indi-
rection array is organized in such a way. The the first numEP/numSocket
elements of the indirection array (indices from 0 to numEP/numSocket − 1)
stores the identifiers of EPs stored in the physically memory of socket#0.
The second numEP/numSocket elements (indices from numEP/numSocket
to 2 ∗ numEP/numSocket − 1) stores the identifiers of EPs stored in the phys-
ical memory of socket#1, and so on and so forth. The pseudo code of the EP
reallocation is shown in Algorithm 1.

Algorithm 1. The EP reallocation

void r e a l l o c a t i o n ( ){
EP ∗EP Set = (EP∗) mal loc (numOfEPs ∗ s izeof (EP) ) ;

#pragma omp p a r a l l e l for
for ( i =0; i<numOfEPs ; i++)

EP Set [ i ] = Buf EP [ i n d i r e c t i o n [ i ] ] ;
f r e e (Buf EP ) ;

}

In order to avoid frequent accesses to the indirection array, we create indexO-
rigin2New and indexNew2Origin arrays to manage the re-indexing translation.
The indexOrigin2New array is used for the translation from orignial indices to
new indices, while indexNew2Origin is used for the translation from the new
indices back to orignial indices. Both indexOrigin2New and indexNew2Origin
are organized in such a way. The indexNew2Origin array and the indirection
array described above have the same organization. The indexOrigin2New array
is generated from indexNew2Origin according to the rule:

indexOrigin2New[indexNew2Origin[i]] = i;

For example, 8 EPs are resided on socket#0 and socket#1, the partition-
ing result generated from METIS is [0, 1, 0, 1, 1, 0, 0, 1], then the indirection is
[0, 2, 5, 6, 1, 3, 4, 7], the indexNew2Origin array is: [0, 2, 5, 6, 1, 3, 4, 7], while the
indexOrigin2New array is [0, 4, 1, 5, 6, 2, 3, 7].

4.2 MPI-based Library

The MPI-based library implements the programming interface in C++ with
MPI. It employs both the domain decomposition and efficient graph partitioning
algorithms to achieve optimal EP distribution and communication.
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Storage of EPs and their Shadow Copies. Each process keeps different
subsets of the EPs in the ensemble according to an EP distribution, which is
determined by the root topology and an optimal EP distribution generated from
METIS.

Ensemble Management. As the machine model is mapped on a distributed
memory machine, the master thread is duplicated and resided across all the
processes. Each process keeps an ensemble, which stores a subset of the EPs,
their shadow copies, and references to topologies. The implementation of the
Ensemble operations are described below:

1. SC-Update: It triggers communication among processes according to a topol-
ogy specified in the operation and EP distribution algorithms.

2. getNghbList : It is a local operation implemented on each process. It only
references local EPs stored in loc SC Set according to the topology specified
in the operation.

3. parallel : Multiple processes executing EPs’ member functions in parallel.
4. collective: A collective operation of EPs is translated into local collective

operations and collective operations among MPI processes.

Topology Management. The topology is managed in a distributed fashion.
Each process keeps the root topology, which maintains the neighbor EP list for
the local EPs.

MultiBodyTopology. Each process keeps the root MultiBodyTopology topol-
ogy, which maintains the neighbor EP list for all the local EPs. The generation of
the neighbor EP list in the multi-body topology is based on the parallel Linked
Cells algorithm, which is presented in Algorithm2.

Algorithm 2. Creation of neighbor EP list
1. Forall ep in local process

1) Get cell id localidCell of ep
2) Get ids of neighbor cell localidCell
3) Get neighbor cells local NghbCells
4) Get EPs in the local nghbCells and determine whether the distance between the

EPs in local localidCell and ep is smaller than the cut-off radius
5) If yes, put the address of EP
6) Create neighbor EPs for ep

End for
2. updateTopology() and go to Step 1
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IrrGridTopology. Similar to the multi-body topology, each process keeps the
root irregular grid topology, which maintains the neighbor EP list for the EPs
in loc EP Set according to the id-based graph and EP distribution as well. The
memory organization of local EPs and their SCs in a single process is shown in
Fig. 3. The organization integrates the PARTI/CHAOS library [23]. The shadow
copies of local EPs are allocated in the memory as an array, the SCs of remote
EPs are stored after the local shadow copies with the indices from n to n + m.

EP0 EP1 ... ... EPn-1 EPn EPn+1 EPn+2 EPn+3 ... EPn+m...

Local Eps: EP0 EP1 ... ... EPn-1

Local SCs:

Pi Pi+1 Pi+j...

Remote EP copies

Fig. 3. Local EPs and SC organization

Communication Optimizations. Different communication optimizations are
applied in the implementation of the MPI-based library.

1. Aggregated send receive buffer management : Each process keeps an aggre-
gated send and receive buffer. The EPs in loc EP Set are copied into the
aggregated send buffer, while EPs received from remote processes are stored
in the aggregated receive buffer.

2. Communication reduction: It guarantees that an EP is only sent once while
a group of remote EPs usually require the it for local computation. It can
reduce the communication volume significantly.

3. Communication coalescing : A process collects many EPs destined for the
same process into a single message, which is stored in the aggregated send
buffer. The objective of communication coalescing is to reduce the number of
message startups to avoid the “too many short messages” problem.

4. Automatic adjustment of communication patterns according to the update of
topologies: For multi-body and irregular grid applications, the communication
pattern is usually irregular and adaptive. The MPI-based library update the
communication pattern accordingly based on runtime information.

5 Experimental Results

5.1 Overview

This section presents the experimental results of multi-body and irregular appli-
cations implemented by a manual program and an ensemble-based program. The
manual program is implemented in C++, and parallelized with OpenMP and
MPI, while the ensemble-based program is implemented by linking the libraries
of the implementation framework.
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5.2 Experiment Platform

The experimental platform is a number of fat nodes on SuperMUC. A fat node
is based on the Intel Westmere-EX processor. It is a shared memory NUMA
machine with four sockets, each of which has one Intel Xeon Processor E7-4870
processor and 64 GB of memory. The processor has 10 cores running at the
frequency 2.4 GHz with a peak performance of 9.6 GFlops.

5.3 Irregular Grid Applications

Overview. The computational kernel is a simplified version from FIRE [24]. The
maximum number of the iterations N is set to 128. The grid size is 128×128×128,
each has 26 nearest neighbors based on the Moore neighborhood. The local values
of a point at a time step are determined by the values of its neighbor points at
its previous time step according to the arithmetical operations:

valueN+1 = 1
numOfNeighbors+1 (

∑i=numOfNeighbors
i=1 Neighbor[i].valueN +

valueN )

OpenMP Comparison. The execution time of the program on Grid128 using
2, 4, 8, 16, 32 threads is shown Fig. 4. Neither of the programs scale well when
the number of threads is increased to 32. The main reason is that non-continuous
memory accesses cause a large number of L2 and L3 cache misses. Therefore,
we applies the re-indexing and data reallocation strategy to improve the per-
formance on large irregular grids. We can see that the ensemble-based program
implemented by the OpenMP-based library with the re-indexing and realloca-
tion strategy scales well up to 32 threads and achieves much better performance
than the ensemble-based implementation without re-indexing.

Fig. 4. Execution time of OpenMP programs (Color figure online)

MPI Comparison. The execution time and speedup curves comparison of
both programs are shown in Fig. 5. It tells that the MPI-based library can get
good performance while the number of processes increases with around 20 %
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Fig. 5. Execution time comparison with MPI (Color figure online)

overhead compared to the manual MPI program. The ensemble-based program
obtains comparative performance and its overhead is stable while scaling up to
256 processes. The execution time and speedup curves are shown in Fig. 5.

5.4 Molecular Dynamics Simulation

Overview. The computational kernel of the MD programs is based on the trun-
cated Lennard-Jones(L-J) potential formula, and the simulation domain is a 3D
cubic domain. Each molecule in the domain keeps a randomly generated posi-
tion and interacts with its neighbor molecules located within the cut-off radius
region. The positions of all the molecules are updated according to the molecule-
to-molecule interactions and the equations of motion. In the experiments, the
number of the molecules is set to 128K (131,072), the number of iteration steps
is 8. The cut-off radius is set to 1, the size of the cubic simulation domain is 8.

OpenMP Comparison. The execution time and speedup curves of both pro-
grams is shown in Fig. 6. We can see that the overhead of the ensemble-based
program becomes higher when the number of threads increases.

The overhead mainly originates from two aspects:

– The creation of the neighbor list is not efficient as expected because of its
vector-based data structure.

– The parallel operation that doesn’t scale very well because of memory band-
width of the nodes on SuperMUC. Different from irregular grid applications,
each molecule in an MD simulation typically has hundreds of neighbor mole-
cules, which greatly increases the memory overhead.

MPI Comparison. In order to balance the computational load, the manual
program uses METIS to decompose the molecules according to the linked cells,
while the ensemble-based program links to the MPI-based library. The execution
time and speedup curves of both programs is shown in Fig. 7.
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Fig. 6. Execution time and speedup curves of OpenMP MD programs (Color figure
online)

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program 129.7 62.1 35.9 20.5 9.67 4.29 2.61 1.78 1.77
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Fig. 7. Execution time and speedup curves of MPI MD programs (Color figure online)

The experimental results show that the ensemble-based implementations of
multi-body and irregular applications are a bit slower than the manual imple-
mentations using C++ with OpenMP or MPI because of the internal function
overheads. However, it improves the programming productivity in terms of the
source code size, the coding method, and the implementation difficulty. For irreg-
ular grid applications, it saves around 80 % lines of code, while for multi-body
applications, the percentage is more than 95 %.

6 Conclusion and Future Work

The fine granular programming scheme is applied to implement irregular scien-
tific applications in a fine granular and SPMD fashion. The experimental results
show that with acceptable and reasonable overhead, the ensemble-based pro-
gramming improve the programming productivity and make parallel program-
ming easier and more straightforward. In the future, we mainly focus on the
support for more application areas, e.g., adaptive grid applications. In addition,
the implementation for CPU+GPU hybrid architectures can also be exploited
in the future in order to take advantages of hybrid programming.
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