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Abstract. Task partitioning is the critical step in the co-design of recon-
figurable embedded system. Particle Swarm Optimization (PSO) has
been used for fast task partitioning. However, PSO has the problems
of local extremum and low precision, leading to the poor partitioning
quality and unsatisfied performance. In this paper, Reverse Learning
Dynamic Radius Particle Swarm Optimization (RLDRPSO) task par-
titioning algorithm was proposed to solve these problems. Firstly, the
fitness function was designed according to the system model. Then,
DRPSO was proposed to extend the solution space and improve the
accuracy. Finally, reverse learning strategy was proposed to degenerate
solution periodically and solve the problem of local extremum. Experi-
mental results show that RLDRPSO increases the partitioning quality
by 20 %–45 % and the average performance of system by 7 %–9 %.

Keywords: Task partitioning · Radius particle swarm optimization ·
Reverse learning

1 Introduction

Task partitioning is the critical step in the co-design of reconfigurable embedded
system, which has a dominant effect on the system performance. It determines
which components of the system are implemented on hardware and which ones
on software [1]. Traditional methods of task partitioning are made by hand. As
the embedded system becomes more and more complex, it is difficult for task par-
titioning in embedded system. Then many researchers put attention on task par-
titioning algorithms, turning to use automatic methods to solve this problem [2].

Task partitioning is a problem of multi-objective optimization. Using Mixed
Integer Linear Programming(MILP) [3] and Dynamic Programming(DP) [4]
could find global optimal solution in theory to achieve the best system per-
formance. However, these methods search for the whole solution space blindly.
Particularly in the case of large-scale amount of tasks, these methods run for a
long time.

Then, many researchers used heuristic methods [5], like Genetic Algo-
rithm(GA) [6], Simulated Annealing(SA) [7], Ant Colony Optimization (ASO) [8]
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and Particle Swarm Optimization(PSO) [9], as the partitioning strategy. PSO in
these heuristic methods has simple parameters, executes rapidly and costs less [9].
So, we choose PSO to solve the problem of task partitioning in this paper.

While, the disadvantages of PSO are the unsatisfied approximate solution and
local extremum. To solve inherent defects of PSO, early literatures proposed the
optimized parameters. In the initial stage of PSO, the convergence is accelerated
by the individual learning factor. In the latter part, the search is performed by
the global learning factor. The improvement of this strategy is not obvious. Yang
[10] proposed CLPSO task partitioning algorithm, which changed the structure
of PSO and led the population to converge on the global optimal solution by
a alterable leader. CLPSO is unreliable for unstable results. Luo [11] proposed
ICPSO task partitioning algorithm, which combines the PSO and immune clone
algorithm to extend the solution space through cloning and mutation. Hu [12]
combined PSO and simulated annealing algorithm, which delays the convergence
to avoid the local extremum. These methods have the problems of premature
and poor accuracy and result in unsatisfied task partitioning quality.

Above all, we propose RLDRPSO task partitioning algorithm to improve the
task partitioning quality system performance. RLDRPSO includes the optimized
parameters, structure and combined algorithm. DRPSO algorithm is used to
search for optimum solution dynamically, which expands the solution space and
improves the accuracy. When judging the results falling into the local extremum,
the algorithm uses reverse learning mechanism to degenerate solution in a certain
extent, so as to overcome the problem of local extremum and search for better
solution on this basis. Experimental results show that the proposed algorithm
can effectively improve the partitioning quality and performance of the system.

This paper is organized as follow. Section 2 introduces the task partitioning
model. In Sect. 3, we propose RLDRPSO task partitioning algorithm. Then the
proposed algorithm is compared with typical algorithms in Sect. 4. The fifth
section points out shortcomings of the proposed algorithm and the direction for
further study.

2 Problem Definition

2.1 System Structure

The general structure of configurable embedded system model is presented in
Fig. 1 [13].

CPU is the processor for software tasks, which contains the local mem-
ory(LM). FPGA or ASIC is the processor for hardware tasks. The communi-
cation among tasks is realized by bus and shared memory. We suppose that
execution time, energy consumption, area of hardware resources and the com-
munication time and energy consumption in CPU or FPGA are known. In this
model, tasks oriented two-way division.
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Fig. 1. Embedded system model [13]

2.2 Generalized Task Partitioning

According to the task granularity, an application needs to be decomposed into
a number of tasks, which is represented by Data Flow Graph(DFG):

G = {V,E} (1)

DFG G is a directed acyclic graph that contains a set of nodes V and edges E.
Each node vi ∈ V represents a task that needs to be performed in processor
cores. Each side eij ∈ E indicates that the data is transferred from vi to the
task vj via the bus. The number of tasks is n. ∀vi, i ∈ [1, n] contains multiple
attributes:

vi = {xi, TSi, THi, ESi, EHi, Ai} (2)

xi is the candidate partitioning location of vi. For the task is divided into two
directions, xi ∈ {0, 1}. xi = 1 means vi performed in the CPU and xi = 0 means
vi performed in the FPGA. TSi, THi are the execution time of vi in CPU or
FPGA respectively. ESi, EHi are the energy consumption of vi in CPU or FPGA
respectively. Ai indicates the hardware area resources needed to perform vi in
FPGA. The hardware area resources usually mean the cost of the system design.

Generally speaking, the goal of task partitioning is to minimize the execution
time and energy consumption of the system under system constraints, so as to
achieve the goal of improving the system performance. For the problem of two-
way partitioning in heterogeneous embedded systems, the target is to solve the
optimal solution X:

X = {x1, x2, ..., xn} (3)

In G, V is divided into {Vs, Vh}. Vs represents a collection of tasks performed
in CPU, and Vh represents a collection of tasks performed in FPGA or ASIC,
Vs ∪ Vh = V and Vs ∩ Vh = ∅. In the co-design of embedded system, the hard-
ware area resource is limited. For the generalized task partitioning, the principle
is to make full use of limited area resource and at the same time minimize the exe-
cution time and energy consumption. Therefore, in this paper we will not focus
on tasks sensitive to time and energy, but discuss the limited area resource under
this generalized principles. At the same time, the communication time and energy
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consumption between each task are ignored in the bus structure. The objective
function to describe the task partitioning problem is in formula (4):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
[

n∑

i=1

THi · xi +
n∑

i=1

TSi · (1 − xi)
]

min
[

n∑

i=1

EHi · xi +
n∑

i=1

ESi · (1 − xi)
]

n∑

i=1

Ai · xi < Amax

(4)

T (x),E(x),A(x) respectively represent the time, energy consumption and
area overhead of a particular application. Amax is the largest area on the FPGA
for performing tasks.

2.3 PSO Task Partitioning Algorithm

In the classical PSO task partitioning algorithm, each particle represents a
candidate partition solution. PSO randomly generated m candidate partition
solutions, X1,X2, ...,Xm. Number of tasks is n. Xi = {xi1, xi2, ..., xid, ..., xin}
is n-dimensional vector in Euclidean space Rn and xid is the dth element.
PSO updates partitioning solutions by iteration. The number of iterations is
K ∈ N∗. The current iteration number is k ∈ [1,K]. Each xid corresponds to an
updating rate of vid. Updating speed vector is Vi = {vi1, vi2, ..., vid, ..., vin},
meaning the updating speed of candidate partition solution, which should
be controlled within a certain range |vid|<vmax d. Velocity threshold vector is
Vmax = {vmax 1, ..., vmax d, ..., vmaxn}. PSO uses the fitness function f(X) to eval-
uate the candidate partitioning solution, so as to find the optimal partitioning
solution. f(X) is determined by the target of the system, as shown in formula (4).
It is used to measure the degree of the candidate solution to adapt to the system
constraints. X∗

1 ,X∗
2 , ...,X∗

n are the optimal partition solutions in the updating
processes of Xi. X∗

g =
{
X∗

g1,X
∗
g2, ...,X

∗
gn

}
is the optimal partition solution in

X∗
1 ,X∗

2 , ...,X∗
n. In each iteration, the candidate partition solution is guided by

X∗
i and X∗

g . In the kth generation, xid and vid correspond to xk
id and vk

id. The
updating formula is as follow:

{
vk+1
id = ω · vk

id + c1r1(X∗
id − xk

id) + c2r2(X∗
gd − xk

id)
xk+1
id = xk

id + vk+1
id

(5)

The updating formula of PSO task partitioning algorithm is composed of
three parts. The first part is the inertia part, ω is the inertia factor, which is
used to measure the effect of the current updating rate. The second part is the
part of self-cognition, which reflects the memory of the particle’s own historical
experience. The third part is the social cognitive part, which reflects the historical
experience of the cooperation and knowledge sharing among the particles. c1 and
c2 are learning factors, which respectively indicate the effect of the individual
optimal solution and the global optimal solution on the direction of population
updating. r1 and r2 are random number between [0,1].
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3 RLDRPSO Task Partitioning Algorithm

In RLDRPSO task partitioning algorithm, we first design learning factors and
the fitness function. With the idea of “divide and conquer”, DRPSO selects
regional optimal value and global optimal solution from the regional optimal
solution. In the latter part of the algorithm, if the candidate partitioning solu-
tion falls into local optimal solution, this algorithm triggers reverse learning
mechanism to degenerate partitioning solution, jumping out of local extremum.
On the basis, the optimal solution is solved.

3.1 Learning Factors and Fitness Function

ω, c1 and c2 in PSO are in linear form, expressed as follows:

ω = ωmin +
(ωmax − ωmin)(K − k)

K
(6)

c1 = (c1max − c1min) · k

K
+ c1min (7)

c2 = (c2max − c2min) · K − k

K
+ c2min (8)

In the initial stage of the algorithm, ω and c1 are larger and c2 is smaller. Vi

and X∗ have a great influence on solution updating, which not only ensures the
solution space but also increases the speed of updating. At the later stage of the
algorithm, c2 increases, which means the impact of X∗

g on the updating process
is larger. ω and c1 decrease, which means the impact of X∗ on the updating
process is small. As a result, the updating speed is reduced and the accuracy of
the solution increases.

According to formula (4), we evaluate candidate partitioning solutions from
three aspects, the hardware area, task execution time and energy consumption.
After that, we normalize the processing and design fitness function. Generally, if
the hardware area of partitioning solution needed is larger than the area system
provided, the task will not be performed. So, the fitness function is designed in
the formula (9):

f(x) = a · e
A(x)−Amax

δA
·ma ·

∣
∣
∣
∣
A(x) − Amax

δA

∣
∣
∣
∣ + b · T (x)

δT
+ c · E(x)

δE
(9)

A(x), T (x) and E(x), respectively, are the hardware area, execution time and
energy consumption in one partitioning solution. δA, δT and δT , respectively, are
the normalization factor of area, execution time and energy consumption. δA =
max{max A−Amax, Amax −min A}, δT = max T −min T , δE = max E −min E.
a, b and c are influence factors. Punishment factor is shown as follow:

ma =
{

1, A(x) ≤ Amax

k,A(x) > Amax
(10)
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In this penalty mechanism, if the candidate partitioning solution is not in
excess of the hardware area system provided, the fitness value decreases in the
form of the exponential function. Otherwise, the fitness value increases rapidly
according to current iteration number. When the iteration is small, the pun-
ishment is light, offering an opportunity for the candidate partitioning solution
correcting the error. When the number of iterations is larger, the punishment is
large. Penalty mechanism no longer tolerates the wrong candidate partitioning
solution. The fitness function is in good agreement with the actual situation.

3.2 Reverse Learning

In order to solve the problem that PSO algorithm is easy to fall into the local
extremum, which makes the system cannot reach the prospective performance,
we design a reverse learning mechanism (RL) for the task partitioning algorithm.
The idea of reverse learning is to jump out of the local extremum when algorithm
predicates solution falling into local extremum. The reverse learning mechanism
first initializes xi and vi of each partitioning solution, the initial location of the
worst solutions W 0

i and the worst location of each individual solution W k
i . After

Lth reverse learning, the result jumps out of local extremum. In the reverse learn-
ing mechanism, l indicates the number of the current reverse learning iteration.
RL’s updating formula is as shown in (11):

{
vl+1
id = ω · vl

id + c3r3(xl
id − W l

id) + c4r4(xl
id − W 0

id)
xl+1
id = xl

id + vl+1
id

(11)

The distance between solutions is in the Euclidean distance. The distance
between W 0

i must be large enough in order to ensure that the W 0
i can pull the

result out the local extreme value. When choosing W 0
i , their distance is greater

than the preset distance R =
√

n.
In the reverse learning mechanism, the updating speed threshold changes to

RVmax = 2 · Vmax, making the candidate partitioning solution jumping out of
local extremum rapidly under the leading of W 0

i and W k
i (Table 1).

Table 1. RL mechanism
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3.3 RLDRPSO

In this paper, we improve RPSO [14] algorithm to solve the problem of task
partitioning. Generally speaking, at the initial stage of the algorithm, Xi is far
from the optimal solution. Using a larger radius to search Xi is conducive for
fast convergence. In the late stage of the algorithm, Xi is near from the optimal
solution. Reducing radius can improve the search accuracy. The basic idea of
DRPSO is to dynamically adjust the region size of each candidate partition
solution according to the number of iteration. The global optimal solution is
selected from these region optimal solutions. Set radius r. r varies linearly with
the number of iteration, as shown in formula (12):

r =
K − k

K
· n (12)

The distance between solutions is in the Euclidean distance. Firstly, Choose
the optimal individual solution location as the center of the circle, whose radius
is r. Then randomly select neighbor solutions in this circle. Find the region
optimal solution XR

i = {XR
i1, ...,X

R
id, ...,X

R
id}. DRPSO’s updating formula is

shown as follow:
{

vk+1
id = ω · vk

id + c1r1(XR
id − xk

id) + c2r2(X∗
gd − xk

id)
xk+1
id = xk

id + vk+1
id

(13)

Combined with the reverse learning mechanism mentioned in the last sub-
section, when the solution falls into local extremum, RL helps the result to jump
out of local extremum (Table 2).

Table 2. RLDRPSO task partitioning algorithm
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4 Experimental Results

4.1 DFG Data and RLDRPSO Parameters

Researchers usually use TGFF [15] to generate DFG and attributes as the test-
bench for task partitioning algorithm. According to the research [10], we use
TGFF to generate the DFG and the hardware area, execution time and power
consumption of each task. The range of the specified task attributes is shown in
Table 3.

Table 3. Task attributes’ value [8,10]

Task attribute Range

FGPA area/unit [50,150]

power consumption/W [0.15,0.55]

time/ns [75,225]

CPU area/unit 0

power consumption/W [0.25,0.65]

time/ns [200,400]

Task partitioning algorithms run in Visual Studio 2010, Xeon Intel 2680 CPU
2.8 GHz, RAM 4 GB, Window7. Besides RLDRPSO task partitioning algorithm,
we also select the standard PSO task partitioning algorithm [9], ICPSO task
partitioning algorithm [8] and CLPSO task partitioning algorithm [10] for com-
parison. In order to ensure the comparability, the experiment uses the same PSO
parameters. The parameters are shown in Table 4.

Table 4. RLDRPSO constant parameters

DRPSO RL

K 100 R 10

ωmax 0.9

ωmin 0.4 ω 0.7

c1max 2 c3 0.7

c1min 1.85

c2max 2 c4 0.3

c2min 1.85

vmax 0.8 rvmax 1.6

4.2 Results

To evaluate the performance of the system, the algorithm is designed to punish
the task sensitive to area. So we first study the performance of the algorithm
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under different area. HAR refers to the ratio of the hardware area restriction to
the total hardware area. MR is the probability that the task partitioning solution
cannot satisfy the system constraints. When the task partitioning solution can-
not meet the requirements of the system, it needs to be resolved, which increases
the execution time of the algorithm. The smaller MR is, the higher the proba-
bility of the algorithm finding the optimal solution is, that is, the space of the
solution is larger. The smaller the fluctuation is, the higher the reliability of the
algorithm is. Figure 2 shows that algorithms have a certain MR, especially the
CLPSO task partitioning algorithm is not reliable. When the HAR is more than
80 %, the MR of RLDRPSO is 0, and the fluctuation is small. It reflects that
the RLDRPSO can effectively expand the space of the candidate partitioning
solutions.

Fig. 2. MR in different HARs

In the next experiment we discuss the influence of HAR on algorithm perfor-
mance. In order to compare the performance of each algorithm, the fitness value
of the optimal solution is normalized to the fitness value of the general proces-
sor. From Fig. 3, in the conditions of presence of a certain MR, the performance
improvement of all algorithms is almost same. When the HAR is more than 70 %,
the performance of the RLDRPSO algorithm is still growing compared to other
algorithms. Therefore, RLDRPSO task partitioning algorithm has a significant
effect on the improvement of the system performance under large HAR.

Figure 4 is the relation of the fitness value with the iteration number, reflect-
ing the partitioning process of algorithms. It can be seen from the figure that
PSO, ICPSO and CLPSO algorithm have converged in the initial stage of
the algorithm, falling into the local extremum. While RLDRPSO algorithm
with reverse learning mechanism can jump out of the local extremum, con-
verging toward the global optimal solution. In the figure, the steep part in
RLDRPSO algorithm curve indicates the reverse learning process. Each time the
reverse learning mechanism is triggered, the partitioning process has a signifi-
cant improvement effect. In the case that the number of tasks is 500, RLDRPSO
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Fig. 3. Performance in different HARs

Fig. 4. Iterative process of different algorithms

improves the partitioning quality of 45 % compared to the PSO task partition-
ing algorithm and 39 % compared to the ICPSO task partitioning algorithm and
20 % compared to the CLPSO task partitioning algorithm. The reverse learning
mechanism can effectively solve the local extremum and RLDRPSO algorithm
enhance the accuracy of the solution. Finally, RLDRPSO task partitioning algo-
rithm can improve the partitioning quality. As a result, the system performance
is improved.

Figure 5 shows the effect of proposed algorithm in different number of tasks.
RLDRPSO task partitioning algorithm improved the performance of the sys-
tem significantly. Compared to PSO task partitioning algorithm, the average
performance of the system is improved by 7 %. Compared to the ICPSO task
partitioning algorithm, the average performance of the system is improved by
6.3 %. Compared to the CLPSO task partitioning algorithm, the average perfor-
mance of the system is improved by 4.9 %.
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Fig. 5. Performance in different task numbers

5 Conclusions

In this paper, an integrated heuristic algorithm RLDRPSO is proposed, which
can improve the task partitioning quality and the performance of system.
Dynamic radius strategy and the reverse learning mechanism are proposed
to solve the problem of the current task partitioning algorithm. Experimen-
tal results show that the algorithm can effectively improve the performance of
the system.

The algorithm still has some defects, such as the existence of MR and the
blindness of the reverse learning mechanism. Blindness means that the global
optimal value which is resolved by reverse learning has the probability of being
worse than the former global optimal value. Next research will conduct the dis-
crimination and retention mechanisms to overcome these defects.

Finally, tasks can be executed simultaneously in different processing cores
in heterogeneous system. Emerging reconfigurable system changes the existing
system model. There is another problem of task scheduling. The combination of
partitioning and scheduling will be the trend of future research.
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