
123

Junjie Wu · Lian Li (Eds.)

11th Conference, ACA 2016
Weihai, China, August 22–23, 2016
Proceedings

Advanced
Computer Architecture

Communications in Computer and Information Science 626

Communications
in Computer and Information Science 626

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Junjie Wu • Lian Li (Eds.)

Advanced
Computer Architecture
11th Conference, ACA 2016
Weihai, China, August 22–23, 2016
Proceedings

123

Editors
Junjie Wu
State Key Laboratory of High Performance
Computing

National University of Defense Technology
Changsha
China

Lian Li
State Key Laboratory of Computer
Architecture

Chinese Academy of Sciences
Beijing
China

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-10-2208-1 ISBN 978-981-10-2209-8 (eBook)
DOI 10.1007/978-981-10-2209-8

Library of Congress Control Number: 2016947183

© Springer Science+Business Media Singapore 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media Singapore Pte Ltd.

Preface

Welcome to the proceedings of ACA 2016, the 11th Conference on Advanced Com-
puter Architecture, which was held in Weihai. As one of the most important confer-
ences in the field of computer architecture in China, the ACA conference is 21 years
old. The conferences are held once every two years, and ACA 2016 was held in Weihai
during August 22–23 with a lot of exciting activities. We believe this event provided an
excellent platform for the presentation of important research and the exchange of
views.

We would like to express our gratitude to all the authors who submitted papers to
ACA 2016 and our congratulations to those whose papers were accepted. There were
89 submissions in this year. Each submission was reviewed by at least three Program
Committee (PC) members. Only the papers with an average score of ≥ 1.0 were
considered for final inclusion, and almost all accepted papers had positive reviews or at
least one review with a score of 2 (accept) or higher. Finally, the PC decided to accept
38 submissions, including 17 papers in English and 21 in Chinese.

We would like to express our great appreciation to our PC members. Each member
reviewed at least nine papers, and they gave constructive reviews in time. We also
would like to thank our general chairs, Prof. Ninghui Sun and Prof. Xiangke Liao, our
steering committee chair, Prof. Yong Dou, organization chairs, Prof. Chenggang Wu
and Prof. Zhenzhou Ji, and all other members of the conference committees. Our
thanks also go to the China Computer Federation (CCF), Technical Committee on
Computer Architecture of CCF, Institute of Computing Technology of Chinese
Academy of Sciences, Harbin Institute of Technology (Weihai), Springer, and all other
institutes that offered help.

August 2016 Junjie Wu
Lian Li

Organization

ACA 2016 was organized by the China Computer Federation.

General Chairs

Ninghui Sun ICT, Chinese Academy of Sciences, China
Xiangke Liao National University of Defense Technology, China

Steering Committee Chair

Yong Dou National University of Defense Technology, China

Steering Committee

Zhenzhou Ji Harbin Institute of Technology, China
Dongsheng Wang Tsinghua University, China
Xingwei Wang Northeastern University, China
Gongxuan Zhang Nanjing University of Science and Technology, China
Chenggang Wu ICT, Chinese Academy of Sciences, China
Junjie Wu National University of Defense Technology, China

Local Chair

Zhenzhou Ji Harbin Institute of Technology, China

Organization Chairs

Chenggang Wu ICT, Chinese Academy of Sciences, China
Zhenzhou Ji Harbin Institute of Technology, China

Organization Committee

Yong Dou National University of Defense Technology, China
Yun Liang Peking University, China
Xiaofei Liao Huazhong University of Science and Technology, China
Dongsheng Wang Tsinghua University, China
Xingwei Wang Northeastern University, China
Chuliang Weng Huawei Techonologies Co., Ltd, China
Chunfeng Yuan Nanjing University, China
Kuanjiu Zhou Dalian University of Technology, China

Web Chair

Gongxuan Zhang Nanjing University of Science and Technology, China

Program Chairs

Junjie Wu National University of Defense Technology, China
Lian Li ICT, Chinese Academy of Sciences, China

Program Committee

Yungang Bao ICT, Chinese Academy of Sciences, China
Qiong Cai Hewlett Packard Labs, USA
Yangjie Cao Zhengzhou University, China
Zhilei Chai Jiangnan University, China
Jicheng Chen INSPUR Co., Ltd, China
Tianhan Gao Northeastern University, China
Wen Hu University of New South Wales, Australia
Yu Hua Huazhong University of Science and Technology, China
Chuanhe Huang Wuhan University, China
Weixing Ji Beijing Institute of Technology, China
Lei Ju Shandong University, China
Chao Li Shanghai Jiao Tong University, China
Dongsheng Li National University of Defense Technology, China
Jingmei Li Harbin Engineering University, China
Tao Li Nankai University, China
Xiaoyao Liang Shanghai Jiao Tong University, China
Xiaoyi Lu Ohio State University, USA
Yi Lu Oracle Labs, Australia
Songwen Pei University of Shanghai for Science and Technology, China
Feng Qin Ohio State University, USA
Zhenghao Shi Xi’an University of Technology, China
Tian Song Beijing Institute of Technology, China
Yulei Sui University of New South Wales, Australia
Guangyu Sun Peking University, China
Jin Sun Nanjing University of Science and Technology, China
Biao Wang National High-Performance IC Design Center (Shanghai),

China
Haixia Wang Tsinghua University, China
Tao Wang Peking University, China
Wei Wang Hefei University of Technology, China
Wei Wang Tongji University, China
Xiaoyin Wang University of Texas, San Antonio, USA
Yu Wang Tsinghua University, China

VIII Organization

Fei Wu Huazhong University of Science and Technology, China
Weihua Zhang Fudan University, China
Yunlong Zhao Harbin Engineering University, China
Xuan Zhu National University of Defense Technology, China

Organization IX

Contents

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 1
Hongbin Zhang, Jie Fan, and Jiwu Shu

Coarse Granularity Data Migration Based Power Management Mechanism
for 3D DRAM Cache . 15

Litiao Qiu, Lei Wang, Hongguang Zhang, Zhenyu Zhao, and Qiang Dou

A Novel Hybrid Last Level Cache Based on Multi-retention STT-RAM
Cells . 28

Hongguang Zhang, Minxuan Zhang, Zhenyu Zhao, and Shuo Tian

Overcoming and Analyzing the Bottleneck of Interposer Network in 2.5D
NoC Architecture . 40

Chen Li, Zicong Wang, Lu Wang, Sheng Ma, and Yang Guo

Micro-architectural Features for Malware Detection 48
Huicheng Peng, Jizeng Wei, and Wei Guo

An Energy Efficient Algorithm for Virtual Machine Allocation in Cloud
Datacenters. 61

Ahmad Ali, Li Lu, Yanmin Zhu, and Jiadi Yu

Research on Virtual Machine Cluster Deployment Algorithm in Cloud
Computing Platform . 73

Zheng Yao, Wen-Sheng Tang, Sheng-Chun Wang, and Hui Peng

H-TDMS: A System for Traffic Big Data Management 85
Xingcheng Hua, Jierui Wang, Li Lei, Bin Zhou, Xiaolin Zhang,
and Peng Liu

GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU 97
Pei Xue, Tao Li, Kezhao Zhao, Qiankun Dong, and Wenjing Ma

High Performance Stencil Computations for Intelr Xeon Phi™
Coprocessor . 108

Luxia Feng, Yushan Dong, Chunjiang Li, and Hao Jiang

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 118
Xiaofeng Qi, Xingming Zhang, and Kaijian Yuan

A Fine-Granular Programming Scheme for Irregular Scientific Applications . . . 130
Haowei Huang, Liehui Jiang, Weiyu Dong, Rui Chang, Yifan Hou,
and Michael Gerndt

http://dx.doi.org/10.1007/978-981-10-2209-8_1
http://dx.doi.org/10.1007/978-981-10-2209-8_2
http://dx.doi.org/10.1007/978-981-10-2209-8_2
http://dx.doi.org/10.1007/978-981-10-2209-8_3
http://dx.doi.org/10.1007/978-981-10-2209-8_3
http://dx.doi.org/10.1007/978-981-10-2209-8_4
http://dx.doi.org/10.1007/978-981-10-2209-8_4
http://dx.doi.org/10.1007/978-981-10-2209-8_5
http://dx.doi.org/10.1007/978-981-10-2209-8_6
http://dx.doi.org/10.1007/978-981-10-2209-8_6
http://dx.doi.org/10.1007/978-981-10-2209-8_7
http://dx.doi.org/10.1007/978-981-10-2209-8_7
http://dx.doi.org/10.1007/978-981-10-2209-8_8
http://dx.doi.org/10.1007/978-981-10-2209-8_9
http://dx.doi.org/10.1007/978-981-10-2209-8_10
http://dx.doi.org/10.1007/978-981-10-2209-8_10
http://dx.doi.org/10.1007/978-981-10-2209-8_10
http://dx.doi.org/10.1007/978-981-10-2209-8_11
http://dx.doi.org/10.1007/978-981-10-2209-8_12

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation
System . 142

Yang Wang, Junjie Wu, Yuhua Tang, Huiquan Wang,
and Dongyang Wang

An Introduction to All-Optical Quantum Controlled-NOT Gates 157
Hongjuan He, Junjie Wu, and Xuan Zhu

Performance Analysis of Sliding Window Network Coding in MANET 174
Baolin Sun, Chao Gui, Ying Song, Hua Chen, and Xiaoyan Zhu

A Model for Evaluating and Comparing Moving Target Defense
Techniques Based on Generalized Stochastic Petri Net. 184

Guilin Cai, Baosheng Wang, Yuebin Luo, and Wei Hu

Subway Timetable Adjusting Method Research of Bi-directional Trains
Arriving at a Station Asynchronously . 198

Dan Yan, Jianhua Mao, Xuefeng Liu, and Minglai Yang

Author Index . 211

XII Contents

http://dx.doi.org/10.1007/978-981-10-2209-8_13
http://dx.doi.org/10.1007/978-981-10-2209-8_13
http://dx.doi.org/10.1007/978-981-10-2209-8_14
http://dx.doi.org/10.1007/978-981-10-2209-8_15
http://dx.doi.org/10.1007/978-981-10-2209-8_16
http://dx.doi.org/10.1007/978-981-10-2209-8_16
http://dx.doi.org/10.1007/978-981-10-2209-8_17
http://dx.doi.org/10.1007/978-981-10-2209-8_17

An OS-level Data Distribution Method
in DRAM-PCM Hybrid Memory

Hongbin Zhang1,2, Jie Fan1,2, and Jiwu Shu1,2(B)

1 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

{zhanghb10,fanjie11}@mails.tsinghua.eud.cn, shujw@tsinghua.edu.cn
2 Tsinghua National Laboratory for Information Science and Technology,

Beijing 100084, China

Abstract. Hybrid memory composed of DRAM and PCM has gained
substantial research recently. Compared to each other, DRAM has lower
read/write latency and higher endurance, and Phase Change Memory
(PCM) has higher density and consumes less energy. Hybrid memory has
been proposed to exploit the benefits of both these technologies, while
at the same time mitigating their disadvantages. The data distribution
methods of state of art approaches were managed by either hardware or
compiler, which had some shortcomings. The disadvantage of hardware
based approaches is that it need large storage, and the required data
swapping degrades overall performance, which is not suitable for certain
program which has poor locality. While the compiler based technique
requires dynamic program analysis, thus increasing run time overhead
and also requires programmer’s help, thus making it a cumbersome app-
roach. We present an OS-level Data Distribution (OSDD) method, in
which data sections that have respective read/write features in virtual
address space were assigned to different memory medium by memory
management module of operating system. Since our approach needs no
input from programmer, thus making it transparent. The OSDD based
hybrid memory put appropriate data to corresponding memory medium
at system level in page granularity and gained better performance and
energy saving than former methods, with less overhead. The experiment
showed that on average our method get 52 % energy saving at 6 % per-
formance overhead than uniform DRAM memory.

Keywords: Phase change memory · Hybrid memory · Data distribution

1 Introduction

As the number of CPU cores increases, so does the number of concurrent applica-
tions and threads. The capacity of main memory also keeps increasing in order to
keep their data in main memory. However, the density, capacity and energy cost
of main memory made by DRAM are approaching physical limit and becoming
a critical bottleneck of computer systems.
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 1–14, 2016.
DOI: 10.1007/978-981-10-2209-8 1

2 H. Zhang et al.

For these reasons, many architectures are searching out for new alternative
of DRAM. As a potential substitute, Phase Change Memory (PCM) has caught
much attention for its larger density than DRAM. It has little idle energy because
it needs no refresh. Furthermore, its property of non-volatile and byte address-
able makes system IO optimization possible. However, PCM also has disadvan-
tages such as higher read/write latency and higher write energy than DRAM, and
it has limited endurance and lifetime [7,8,12,20,23,24]. In order to achieve the
advantages while hiding the disadvantages of PCM, many researchers are trying
out to design hybrid main memory architecture which contains both DRAM and
PCM. Their aim is to benefit from large capacity and low energy cost offered by
PCM and the low latency, high endurance offered by DRAM at the same time
[5,13–16,18,19,25].

There are many potential challenges for designing DRAM-PCM hybrid mem-
ory systems. The most important question is which component of the system
should be in charge of the data allocation, and how to distribute them to DRAM
and PCM to best exploit the strength of each technology while avoiding their
weaknesses as much as possible [22]. Many data distribution methods based on
memory controller were proposed in previous work [13–15,18,19]. Most of them
record the access pattern of memory data in granularity of pages or blocks and
rank them by their read/write features. And then the controller swap them to
appropriate memory medium at runtime in order to balance the performance,
energy cost and lifetime. All these work exploit the benefits of hybrid memory
to some extent. However, these methods has some shortages. First, they require
certain storage to record the page access hotness and mapping relation. Second,
the data swapping degrade system efficiency.

There are also application-level data distribution methods proposed [5,16,25].
These approaches try to complete the data distribution in compiler or user appli-
cation through user annotation or analysis program. In contrast with controller
based methods, these approaches have more flexibility. But these approaches have
shortages too. First, they require extra user annotation to help memory allocating,
which is not friendly to user. Second, they need dynamic code analysis before pro-
gram execution, which degrades the overall performance of application. Thirdly,
the analysis program itself does not benefit from the allocation regulation it itself
prefer.

In this paper, we propose a new DRAM-PCM hybrid memory system using
OS-level Data Distribution (OSDD) method in which the data distribution is
conducted by memory management module of operating system. OSDD is based
on following observations. The linear logic address space of a process includes
code section, static data section and dynamic data section etc. And different
sections has various read/write characteristic, such as read/write frequency, pro-
portion, locality, average access frequency etc. We find out that sections with
specific read/write features are suitable for each memory medium’s character-
istics respectively. The OSDD recognizes which section the page belong to and
maps it to specific memory medium dynamically. Then the page will not be
swapped to another medium until the process end. From doing so, OSDD puts
appropriate data with certain access features to DRAM or PCM respectively.

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 3

This approach extracts the merits of DRAM and PCM with no extra storage cost
and data swapping overhead, and it is transparent to user program. In some way,
OSDD delivers program’s semantic information to memory management module
of OS, and brings certain intelligence to data allocation module. The evaluation
showed that it exhibits more energy saving at lower performance overhead than
the methods based on controller or application.

Overall, the primary contributions of our work are:

(1) We outline and testify the read/write feature of different data sections in
logic memory spaces of a process.

(2) We propose and evaluate a new data assignment approach of DRAM-PCM
hybrid memory, which is conducted at operating system level.

(3) We present evaluation and analysis of the system’s benefits, overhead and
limitation based on OSDD.

The rest of the paper is organized as follows. Section 2 provides background
and related work. Section 3 explains our observation and motivation. Section 4
introduces the design of OSDD based hybrid memory. Section 5 presents evalua-
tion and result analysis. In Sect. 6, we discuss about some limitations of OSDD.
And the conclusion will be given in Sect. 7.

2 Background and Related Work

2.1 DRAM and PCM

DRAM has been used to compose main memory in modern computers for a long
time. Though strides in DRAM technology have enabled it to scale to smaller
size and thus higher densities, it is predicted that DRAM density scaling will
become costly as feature size continues to reduce [6,21]. Satisfying increasingly
higher memory demands with DRAM exclusively will become expensive in terms
of both cost and energy.

PCM is an emerging non-volatile random access memory technology that
offers a competitive alternative to DRAM. The difference in resistance between
its two states, amorphous and crystalline, can be used to represent binary states
[12,21]. PCM has larger density and less static energy consumption than DRAM
because it need no dynamic refresh. The read latency of PCM is a little slower
than but close to DRAM, which is better than FLASH to be an alternative of
memory. Besides, the non-volatile and byte addressable property are also helpful
for system to reduce the IO cost. However, PCM has also disadvantages that
prevent its adoption as a direct DRAM replacement. PCM exhibits higher write
latencies and higher dynamic energy consumption than DRAM. And it has finite
write endurance (limited write times) [12,21].

2.2 Related Work

There are many hybrid memory systems proposed which aim to benefit from the
large capacity and low energy offered by PCM, while achieving the low latency

4 H. Zhang et al.

and high endurance of DRAM. The data distribution of these works are based on
either memory controller or application. The quality of distribution mechanism
will directly affect the performance of hybrid memory.

PDRAM [13] is trying to detect hot data and cold data dynamically and
move the hot data to DRAM and cold data to PCM. The first shortcoming of
PDRAM is the storage cost for recording access count of each page. It will cost
4 MB to record 4 GB memory for each 4K page, if each record costs 4 bytes
(2 for page number and 2 for access count). The other shortcoming is the fre-
quent data swapping which disturb normal memory accessing and affect overall
performance. Their evaluation showed that PDRAM achieves 30 % energy sav-
ing with 6 % performance overhead. Page placement [19] use the similar method
with PDRAM and rank the pages by critical feature at the same time, which also
has the disadvantage of PDRAM. The Row Buffer Locality (RBL) [14,15] based
data assignment method distribute data in smaller granularity. They observe the
row buffers have the same latency and bandwidth in both DRAM and PCM, and
only row buffer miss will cause much more latency and bandwidth in PCM than
in DRAM. So they put the data with higher RBL to PCM and the lower one
to DRAM at runtime. This approach received better performance for workloads
with good locality, but exhibited poor behavior for certain workloads with poor
locality. Furthermore, the data swapping cost certain performance too.

HaVOC [5] is a hybrid memory model which allow programmer or compiler
to partition the application’s address space, and generate data and instruction
layouts. HaVOC map instruction blocks onto NVM since their volatility is quite
low and code blocks to SRAM since their volatility is high. The disadvantage
of this method is it needs programmer’s annotations, which is not friendly with
user. Power-aware variable partition [25] is an approach which partition variables
into different banks to reduce power consumption and the number of writes on
PCM. Based on the graph models, the variables with higher write rations are
put in DRAM bank and that with lower write rations are put in PCM bank.
This method reduce 53 % power consumption on average. However, this method
is based on static analysis which increase 2–18 % execution time. Data allocation
optimization for hybrid SPM [16] proposed a dynamic algorithm which generate
optimal data allocations for each program region. Before the execution of each
program region, the data management code is executed first to generate data
allocation which will move most written data into SRAM and the most read
data into NVM. The dynamic analysis degrade tlhe performance of application.

These approaches exploit the merits of hybrid memory to certain extent.
However, they are accompanied with apparently extra storage cost or swapping
cost or dynamic analysis, which degrade overall system performance.

2.3 Data Sections in Logical Address Space

The operating system allocate each process a linear address space whose size is
usually 4 GB in 32bit machine. In virtual memory space, the compiler organize
the instruction and data in different address sections in order to make it easy
to run and manage. Different operating system has various logical address space

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 5

in detail, but in general, the logical memory space includes system code section,
system data section, user code section and user data section [11]. According to
their respective mission, different sections have different read/write feature, such
as access frequency and locality and access variance etc. In this work, we focus
our design and experiment on user code section and user data section to prove
its effectiveness.

3 Observation and Motivation

3.1 Observation

In order to find out the memory access feature of each section in logical address
space, we analyzed memory access trace of 20 benchmarks from Splash2 [4,9] and
Parsec3 [3,9] using Pin tools [2,10], which was used to collect memory trace of
running program. The benchmark program domain includes financial analysis,
computer vision, physical modeling, future media, content-based search, etc.,
which represents main aspect of computer application at present. We analyzed
memory trace of each bench in detail and got a series of statistics from multi
point of view. The analytical index includes independent address number, total
read/write counts, average access counts of independent address, and variance
of memory access frequency. Among all these index, we mainly inspect two of
them. The first one is independent address numbers of code section and data
section for each bench as Fig. 1 shows, another one is average access frequency
of independent address of code section and data section as Fig. 2 shows. Since
there are both read and write access in data section, we seperate them apart in
order to distinguish them respectively.

Fig. 1. Footprint(Independent Address Numbers): data section has far more indepen-
dent address than code section.

From the observation, we find out several regular pattern of memory access-
ing: (1) Code section has far more small size and data section has relatively
larger one. Because independent address numbers in data section is 10–500 times
that of instruction section as Fig. 1 shows; (2) The average access frequency of
code section is far more great than that in data section. Because this index in
code section is 10–1000 times greater than that in data section as Fig. 2 shows;
(3) Code section is read all the time, and data section has more read than write.

6 H. Zhang et al.

Fig. 2. Hotness(Average Access Counts): code section has far more access than data
section.

3.2 Motivation

We consider that to exploit the maximum potential of hybrid memory system,
both hardware and software innovations are needed. Besides memory controller
and user program, operating system can also implement data distribution. Under
the von neumann machine architecture [17], the program is organized in con-
stant pattern by compiler in order to make it easy to run. One of the pattern is
the distribution of instruction and data in logical address space, which is saved
in page descriptor and can be recognized by operating system at runtime. That
means operating system has the ability to place the data anywhere in memory as
needed, except reserved space. Since instructions and data of program has their
own access feature, which cater to the features of DRAM and PCM respectively,
the operating system is able to assign them to different memory medium logi-
cally and transparently, making appropriate memory distribution for each data
sections.

Our motivation is to find a better way out at operating system level to
complete the data recognition and distribution in granularity of pages. Our aim
is to get more energy saving with lower cost and overhead than other methods
described before.

To implement and demonstrate this idea, we propose OSDD approach based
on the analysis above. The OSDD allocates and distributes data sections to
different memory medium at system level, without intervening in controller or
user program. The OSDD will exhibit benefits of hybrid system and has several
advantage at the same time. First, it has no extra storage or swapping cost at
runtime. Second, it need no program’s annotation and is transparent to user.

4 Hybrid Main Memory Design

4.1 Overview of Architecture

Based on our observation and research, we design a new data distribution model
OSDD in DRAM-PCM hybrid memory system, in which the data allocation and
distribution is done by memory management module of operating system.

Under traditional memory management, logical memory space is split into
sections by compiler such as code section, static data section and dynamic data

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 7

section etc. And then the sections are split into pages whose size is 4K or 4M,
depending on different architecture. The physical memory space is split into
frames correspondingly and the memory mapping is done by unit of page.

In one process, each data page belongs to one section, whose type are depicted
in LDT (Local Description Table) or GDT (Global Description Table) [11] in
virtual memory descriptor. The LDT structure is displayed as Fig. 3 shows, in
which the tag ‘S’ shows whether the section belong to system or application,
and the tag ‘Type’ shows the section type, code section or data section. When
OS receives the memory request from CPU, it first recognize the section type
from LDT or GDT. Then the OS allocate memory page frames of specified
memory medium and complete the page mapping. In order to minimize the
performance cost, the page mapping and data distribution will not be changed
until the process end. The mapping relationship between logical address and
memory medium is depicted as Fig. 4 shows.

Fig. 3. LDT structure of A process.

Fig. 4. Distribution of data sections of A process.

4.2 Mapping and Allocation Regulation

According to [6,12,24], the read and write latency and energy cost parameters
are described in Table 1. We observe that although the read latency of PCM is
higher than DRAM (around 2 times), their difference in term of write latency
is more noticeable which is an order of magnitude. At the same time, the write
power of PCM is about 4 times than DRAM, which constitute the main power
consumption of PCM. So the number of writes to PCM will be conclusive to over-
all latency and energy cost. From this point of view, together with the analysis
we made in second section, we map code sections and static data sections to
PCM to reduce the write operation to minimum (code section is read only).
That will keep minimum writing power consumption of PCM and zero refresh
power consumption. At the same time, the lifetime of PCM will also benefit from
less writing action. Dynamic data sections are mapped to DRAM to benefit its

8 H. Zhang et al.

Table 1. DRAM and PCM features

Parameter DRAM PCM

Row read power 210 mW 78 mW

Row write power 195 mW 773 mW

Row Act power 75 mW 25 mW

Standby power 90 mW 45 mW

Refresh power 4 mW 0 mW

Row read latency 50 ns 75 ns

Row write latency 50 ns 750 ns

read and write efficiency. What should be point out is, we did not use wear
leveling algorithms of underlying PCM in our current work. In future work, we
plan to include this as part of allocation process.

4.3 System Implementation

We implement the experiments in X86-64 platform. In our experiment, we add
a new memory zone into the kernel, ZONE PCM. In Linux, physical memory
is allocated from a memory zone, which is composed of page frames. There
are three memory zones in original Linux: ZONE DMA is use for DMA pages,
ZONE NORMAL is used for normal pages, and ZONE HIGHMEM is used for
those address beyond virtual address space. We add a set of memory allocation
functions, alloc pcm pages() and free pcm pages() which allocate and deallocate
memory from the zone ZONE PCM. The function alloc pcm pages() derives from
alloc pages(), and allocate page frames which is contiguous in physical memory
space. The function free pcm pages() derives from free pages(), which free the
memory which has no use. The function alloc pcm pages() has two parameters:
gfp mask indicates where the system should allocate the page, which is read
from LDT or GDT, and order of 2 is how many pages should be allocated.

According to OSDD’s idea, if the required pages belong to code section or sta-
tic data section, then they are mapped to PCM bank. And if the required pages
belong to dynamic data section, then they are mapped to DRAM bank. Since
each page in a section has LDT or GDT which has a tag indicating its section
type, the system has chance to recognize their type from the memory request.
If the tag is code section or static data section then gfp mask is ZONE PCM.

We simulate three memory architectures respectively using Gem5. With
Gem5, many new style memory can be simulated by modifying its parame-
ter. We simulate uniform DRAM, uniform PCM and hybrid memory, in which
DRAM and PCM are addressed in one linear space. PCM is simulated by mod-
ifying the read and write latency and power consumption parameters described
in Table 1. The DRAM parameters are based on 78 nm technology [1] and PCM
parameters are obtained from [6,12,24]. Gem5 outputs parameters in detail in
output file, such as read and write counts of instruction and data, and extract

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 9

number of LLC miss rate and execution time etc., we calculate the energy saving
and performance overhead using these parameters.

In order to compare OSDD with other controller based or application based
approach, we also implement PDRAM method with Gem5 as the paper describe,
using the same experiment setup. We test the two methods using the same PCM
parameters as Table 1 describes and benchmarks introduced above.

5 Evaluation

5.1 Methodology and Metrics

In this section, we describe our simulation and design methodology. For our
experiment, we assume a baseline system with 4 GB DRAM. We evaluate it
against two experimental systems: (1) Uniform PCM system, which comprises
of 4 GB of PCM. (2) OSDD based hybrid system, which comprises of 2 GB
DRAM and 2 GB PCM. (3) PDRAM based hybrid system, which also comprises
of 2 GB DRAM and 2 GB PCM. The motivation of the comparison is to show how
heterogeneity in memory organization can result in better overall performance
and energy efficiency.

For workload, we use 7 benchmarks from Splash2 and Parsec3, which repre-
sent different style applications. We execute the benchmarks on Gem5 using a
ALPHA processor running at 2.66 GHz. The simulated processor has two levels
of caches: 64 KB of data and instruction L1 caches, and 4 MB of L2 cache, which
is the same with PDRAM’s experiment environment.

We mainly evaluate the performance of hybrid memory in two dimension,
normalized energy consumption and normalized performance overhead. Using
the same suite of benchmarks, we measure the energy cost and performance
overhead under the circumstance of uniform DRAM, uniform PCM, PDRAM
hybrid and OSDD hybrid memory respectively. Unless otherwise indicating, the
uniform DRAM system is used as the baseline for all comparisons, and the results
are normalized to the baseline.

5.2 Results and Comparison

Figure 5 shows the results of normalized energy consumption, baselined against
the DRAM-only system for 7 benchmarks. We see that the uniform PCM sys-
tem has less energy consumption than hybrid memory (PDRAM and OSDD),
because uniform PCM need no refresh while hybrid memory contains DRAM
access. What is important is, on average, the OSDD has 48 % energy consump-
tion, which is less than controller based method PDRAM (64 %). Specially, for
OSDD, the bench fft, cholesky consumed relatively more energy because they
are computation intensive program and most data accessing is done in DRAM.

Figure 6 shows the result of normalized performance overhead in terms of
execution time, baselined against the DRAM-only system for 7 benchmarks. In
this figure, the normalized DRAM performance is consider as one. We see that

10 H. Zhang et al.

Fig. 5. Comparison of normalized energy consumption.

Fig. 6. Comparison of normalized performance overhead.

hybrid memory has less performance overhead than uniform PCM as a whole.
And on average, OSDD get 6 % performance overhead and PDRAM get 7.2 %,
which are close to each other. What should be pointed out is, for some benches
like ocean, fft, cholesky, raytrace, OSDD get less performance overhead than
PDRAM. But for other benches like lu, radix and barnet, situation is on the
contrary, the reason and analysis will be given in Sect. 5.3 in detail.

From the evaluation, we can see that OSDD use less energy consumption
than PDRAM, under the similar performance overhead. And, as we quote in
Sect. 2.2, the power-aware variable partition [25] method, which based on static
analysis, mentioned in their paper that it reduce 53 % power consumption on
average and increase 2–18 % execution time. This testified that OSDD has better
appropriate data distribution mechanism than controller based and application
based methods.

5.3 Sensitivity Analysis

From the evaluation we can see that, (1) Overall, hybrid memory gain much
less energy consumption than uniform DRAM memory, with small performance
overhead. (2) On average OSDD gain more energy saving than PDRAM, at the

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 11

similar performance overhead. (3) Just as Sect. 5.2 point out, OSDD is suitable
for some benches and not suitable for others. In order to find out the reason of
this phenomenon, we evaluate the “variance of memory access frequency”, which
measures how far a set of memory access count is spread out. A small variance
indicates that the access count tend to be very close to the mean and hence
to each other, while a high variance indicates that the memory access are very
spread out around the mean and from each other. For example, a lower variance
means all the address has almost similar access count, and a higher variance
means maybe 10 % of address occupied 80 % access of the whole program trace.
There are some factor which affect the result of the experiment. The reasonable
analysis are:

(1) Benchmarks have different variance of memory access frequency, which affect
the effectiveness of OSDD. Figure 7 describe the access variance of the seven
benches. Some program has higher access variance (like lu, radix, barnet),
and others has lower variance (like ocean, fft, cholesky and raytrace).

(2) As Fig. 6 shows, for those program which have higher variance such as lu,
radix, barnet, PDRAM has lower performance overhead because it swap the
hot data to DRAM with limited swapping, but OSDD keep frequent access
data in PCM until program end. On the other hand, for those program
which have lower variance such as ocean, fft, cholesky and raytrace, OSDD
has lower performance overhead because PDRAM need frequent swapping
but OSDD need not.

Fig. 7. Variance of memory access frequency.

6 Discussion and Future Work

In this research work, we have implemented a DRAM-PCM hybrid memory
system and showed some advantages compared to existing approach. However,

12 H. Zhang et al.

this hybrid memory has some disadvantages and limits, and we will consider
them in future work.

According to the Fig. 1, data section is usually larger than code section in
one or two order of magnitudes. In our current experiment, the size of DRAM
is 2 GB, which can contain the dynamic data section of each benchmark. But
for large applications, the DRAM will be not enough to contain all the dynamic
data sections. If we expand the size of hybrid memory with the same ratio, the
DRAM still has possibility of space shortage and PCM will perhaps be large
enough to have rest space. And that will decease the effectiveness of the whole
hybrid system. In future work, we plan to swap inactive dynamic data sections
from DRAM to PCM to relieve the space pressure of DRAM, which will be also
implemented at OS level.

From the analysis, we can see that OSDD is more suitable for program whose
memory access is even (with lower variance of memory access frequency). This
is its limitation, our future work will focus on how to refine the mechanism to
make it more universal.

What should be pointed out is, we did not use any wear leveling algorithms
of underlying PCM in our current work. In future work, we plan to include this
as part of allocation process.

7 Conclusion

In this paper, we reveal the question that which part of the system should in
charge of the data allocation in DRAM-PCM hybrid memory, and highlight
the methods and challenges on how to distribute the data between DRAM and
PCM at operating system level. We propose OSDD, an OS-level data distribution
approach, which deliver semantic information of logical address space to memory
management module, helping to allocate data across the hybrid memory. Accord-
ing to the read and write features of different data sections in logic address space,
OSDD distribute appropriate data to corespondent memory medium, with no
extra storage cost or swapping cost. Since it need no program annotation, it is
transparent to user application. We evaluate the system using benchmarks with
varying memory access features and demonstrate that, on average, the system
can achieve up to 52 % energy saving at 6 % performance overhead than uniform
DRAM. Compared with controller based or application based hybrid memory,
OSDD based DRAM-PCM hybrid memory is more suitable for common pro-
gram to get more energy saving at lower performance overhead. And, OSDD
based hybrid memory is more suitable for program or application which has
lower variance of memory access frequency.

Acknowledgements. This work is supported by the Beijing Municipal Science and
Technology Commission of China (Grant No. D151100000815003).

An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory 13

References

1. Drem DDR3 technology. http://www.micron.com/products/dram/ddr3-sdram/.
Accessed 1 Jul 2015

2. Pin - a dynamic binary instrumentation tool. https://software.intel.com/en-us/
articles/pin-a-dynamic-binary-instrumentation-tool. Accessed 1 Jul 2015

3. The parsec benchmark suite. http://parsec.cs.princeton.edu/index.htm. Accessed
10 Jan 2016

4. Splash-2 benchmarks suite. http://www.capsl.udel.edu/splash. Accessed 10 Jan
2016

5. Bathen, L.A., et al.: HaVOC: a hybrid memory-aware virtualization layer for on-
chip distributed ScratchPad and Non-Volatile Memories. ACM (2012)

6. Lee, B.C., et al.: Architecting phase change memory as a scalable dram alternative.
ACM SIGARCH Comput. Archit. News 37, 2–13 (2009)

7. Lee, B.C., et al.: Phase change memory architecture and the quest for scalability.
Commun. ACM 53, 99–106 (2010)

8. Lee, B.C., et al.: phase-change technology and the future of main memory. IEEE
Micro 30(1), 143 (2010)

9. Bienia, C., et al.: PARSEC vs. SPLASH-2: a quantitative comparison of two mul-
tithreaded benchmark suites on chip-multiprocessors. In: 4th International Sym-
posium on Workload Characterization (2008)

10. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. ACM SIGPLAN Not. 40, 190–200 (2005)

11. Bovet, D.P., et al.: Understanding the Linux Kernel. O’Reilly Media, Sebastopol
(2005)

12. Bedeschi, F., et al.: An 8Mb demonstrator for high-density 1.8V Phase-Change
Memories. In: Proceedings of IEEE Symp on VLSI Circuits (2004)

13. Dhiman, G., et al.: PDRAM: a hybrid PRAM and DRAM main memory system.
In: Proceedings of 47th ACM Design Automation International Conference (DAC)
(2009)

14. Yoon, H.B., et al.: Row buffer locality-aware data placement in hybrid memories.
SAFARI Technical report (2011)

15. Yoon, H.B., et al.: Row buffer locality aware caching policies for hybrid memories.
In: IEEE ICCD (2012)

16. Hu, J., et al.: Data allocation optimization for hybrid scratch pad memory with
SRAM and nonvolatile memory. Proc. IEEE Trans. VLSI 21, 1094–1102 (2012)

17. von Neumann, J.: The general and logical theory of automata. Cerebral mecha-
nisms in behavior (1951)

18. Meza, J., et al.: Enabling efficient and scalable hybrid memories using fine-
granularity DRAM cache management. Comput. Archit. Lett. 11, 61–64 (2012)

19. Ramos, L.E., et al.: Page placement in hybrid memory systems. In: ACM ICS
(2011)

20. Qureshi, M.K., et al.: Scalable high performance main memory system using phase-
change memory technology. ACM SIGARCH Comput. Archit. News 37, 24–33
(2009)

21. Qureshi, M.K., et al.: Phase Change Memory: From Devices to Systems. Synthesis
Lectures on Computer Architecture (2011)

22. Mutlu, O., et al.: Memory scaling: a systems architecture perspective. In: Memory
Workshop (IMW) (2013)

http://www.micron.com/products/dram/ddr3-sdram/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://parsec.cs.princeton.edu/index.htm
http://www.capsl.udel.edu/splash

14 H. Zhang et al.

23. Zhou, P., et al.: A durable and energy efficient main memory using phase change
memory technology. ACM SIGARCH Comput. Archit. News 37, 14–23 (2009)

24. Bheda, R.A., et al.: Energy efficient phase change memory based main memory for
future high performance systems. In: Proceedings of IEEE on International Green
Computing Conference and Workshops (2011)

25. T, L., et al.: Power-aware variable partitioning for DSPS with hybrid PRAM and
DRAM main memory. In: Design Automation Conference (DAC) (2011)

Coarse Granularity Data Migration Based Power
Management Mechanism for 3D DRAM Cache

Litiao Qiu(✉), Lei Wang, Hongguang Zhang, Zhenyu Zhao, and Qiang Dou

School of Computer, National University of Defense Technology,
Changsha 410073, Hunan, China

{qiulitiao,hongg_z}@163.com, {leiwang,zyzhao}@nudt.edu.cn,
douq@vip.sina.com

Abstract. 3D-stacked technology is a promising solution to improve the
performance of on-chip memory system. In our work, a 3D DRAM Cache with
high density and wide bandwidth is utilized as the Last Level Cache (LLC). With
the same Cache area, a 3D DRAM Cache shows superior capacity, bandwidth,
cost performance ratio to a SRAM Cache. However, 3D DRAM storage has a
problem of high power consumption. The power consumption of die-stacked
DRAM is 5x compared to plane DRAM. In order to solve this problem, we
proposed a power management mechanism for 3D DRAM Cache in this paper.
The core idea of our mechanism is closing the infrequent accessed banks for
saving power consumption. We design and implement a trace-driven 3D DRAM
Cache simulator based on DRAMSim2. Experiment result of SPEC CPU2006
shown that for most applications, some banks have little access during execution.
We proposed a coarse granularity data migration based power management
mechanism. Compared with the system without power management mechanism,
the static power consumption of some application decreased to 0.75x, a portion
of application reach to 0.375x.

Keywords: 3D-stacked · DRAM cache · Memory system · Power management ·
LLC

1 Introduction

3D stacking technology applies through-silicon-vias (TSV) to connect different dies.
Thus, in the same area, 3D DRAM has a bigger capacity and wider bandwidth compares
to a 2D DRAM. However, 3D DRAM has the problem of high power consumption. In
Fig. 2, power consumption of 3D DRAM is 5x larger than 2D DRAM.

Based on the comparison results between 2D DRAM and 3D DRAM, although 3D
DRAM cache has a smaller area and bigger capacity, we cannot ignore the huge power
consumption caused by 3D DRAM.

This work was supported by the National Nature Science Foundation of China (61402501,
61272139).

© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 15–27, 2016.
DOI: 10.1007/978-981-10-2209-8_2

In recent works, many researchers proposed various way to manage the power of on-
chip memory. They focus their attention on the different cause of power consumption,
dynamic power and leakage power. Some studies dealt with the hit rate of Cache, the
higher the hit rate, the more power can be saved. Other researchers [4] tried to redesign the
framework of Cache, they separate the data array of the Cache into sub-banks. Only acti‐
vate the bank when the corresponding data is needed. In addition to that, in order to save
the dynamic power, activate less tag bits and data in an access is a method adopted by [5].
They access the tag array in the first phase. In the second phase, only the corresponding tag
bits are accessed, can the data referenced. However, in a big capacity LLC, leakage power
accounts a big portion in whole power consumption. Coarse granularity execution is prac‐
tical enough to figure out the power consumption problem of 3D DRAM Cache.

In this paper, we proposed a Coarse Granularity Data Migration power management
mechanism. Based on the access pattern of the application, we choose the unlikely
accessed banks to be powered-off. Thus, we design and implement a simulation platform
which has a core, 3-level Cache (LLC is a 3D DRAM Cache) and 2D main memory.
Experiment result with SPEC CPU2006 shown that in most applications, some banks
have little access during execution. Thus, the static power consumption of some appli‐
cation decreased to 0.75x, a portion of application reach to 0.375x.

The organization of the rest of the paper is as follows: In Sect. 2, we demonstrate
the background and motivation of our work. The main idea of power management in
3D DRAM Cache is shown in Sect. 3. Section 4 gives a detail analysis on experimental
setup and results of our mechanism. Section 5 presents a brief review of power manage‐
ment and 3D-stacked system. Section 6 is the conclusion of the paper.

2 Background and Motivation

Recent works proposed many DRAM-cache prototypes to address the memory band‐
width and latency wall in Last Level cache. Hit ratio, hit latency and tag overhead deter‐
mine the challenges of implementing a DRAM Cache.

In order to reduce the miss rate, a cached DRAM [1] integrates SRAM cache in the
DRAM memory to exploit its locality in memory accesses and storage efficiency. In
such DRAM caches, SRAM tags are placed in the stacked DRAM along with the data
blocks [1, 2]. However, this can potentially require two DRAM accesses per cache
lookup (one for the tag look up and one for data). Thus, in the worst case, it costs double
access latency.

A state-of-art DRAM cache method, Alloy Cache [2], organizes as a direct-mapped
Cache, which is optimized for latency. Although reduce the hit rate, improving the cache
access latency greatly. The DRAM cache model used in our work is inspired by Alloy
Cache, which bursts tag and data in a single stream to wipe out the tag serialization
delay.

Compare to other DRAM caches, Alloy cache has no SRAM tag overhead, low hit
latency and scalability. For a die-stacked DRAM Cache, we can get high effective
capacity and high hit rate as well. Thus, we exploit a die-stacked DRAM cache as our
experimental model.

16 L. Qiu et al.

In our work, Alloy Cache is used as DRAM cache prototype. Our L3 DRAM cache
saves two kinds of information, tag and data. Alloy Cache is an effective latency-opti‐
mized Cache architecture. It alloys or combines the tag and data into one basic unit (Tag
and Data, TAD), instead of separating cache constructions into two parts (tag store and
data store). For Alloy cache streams tag and data in one burst, it can get rid of the delay
because of tag serialization. It helps handle cache misses faster without wasting time to
detect cache miss in the same situation.

In Fig. 1, each TAD represents one set of the direct-mapped Alloy Cache. In our
DRAM cache, every data line has a tag. The address is compared with the tags in DRAM
cache. If it is the same, then hit. Or vice versa. In our paper, for a physical address space
of 64 bits, 41 tag bits are needed. The minimum size of a TAD is thus 72 bytes (64 bytes
for data line and 8 bytes for tag). There are 28 lines in a row of an Alloy Cache.

Row buffer

Addr

DATA

TAG

TAG-AND-DATA (TAD)

Fig. 1. Structure of alloy cache

Fig. 2. Power consumption in baseline and 3D DRAM cache system with no power management

We conduct some experiments on power consumption of die-stacked DRAM. We
run 200 billion instructions for each application. Then, using the trace from Gem5 feed
to DRAMSim2. Comparing to a 2D DRAM, it demonstrates big leakage power
consumption in 3D DRAM. The result is shown in Fig. 2.

Coarse Granularity Data Migration 17

3D-stacked framework shows great merits in capacity and bandwidth. However, as
is shown in Fig. 2, power consumption is a big problem in improving processor perform‐
ance. For 3D DRAM, the power consumption is 5x larger than a 2D DRAM in average.
Thus, the main purpose of our research is to maintain the big capacity of the L3 die-
stacked DRAM Cache, while reduce power consumption as well.

3 Main Idea

The main idea of Coarse Granularity Data Migration based power management mech‐
anism is closing the infrequent accessed banks of 3D DRAM Cache to save power
consumption. How to find the bank that should be closed and how to migrate the data
in these banks are the challenges that we must solve. An offline method to figure out the
access pattern of applications is used in this paper. Figure 3 illustrates the flow of our
Coarse Granularity Data Migration mechanism.

Fig. 3. The flow of coarse granularity data migration method. (the flow is explained below)

Bank closing steps. ①Analyze the access pattern of the benchmarks. Cluster the
banks into three groups according to the references in banks. ②Name these three groups
as Cluster small, medium and big. ③Migrate the data to other banks and close the last
two banks. ④After the bank power-down, remapping the references originally mapping
to the closed bank. ⑤After every interval time, check the access pattern again. If it
changes, open the closed bank and run this mechanism over again.

3.1 Access Pattern Analysis

For exploring the possibility of making full use of the banks in DRAM cache, we analyze
the access pattern of some programs in SPEC CPU2006. The result is demonstrated in
Fig. 4, x-axis represents the bank ID, y-axis is the rows. The rows are separated into 8
parts, every part has 1,024 rows. The right column shows how color reflects access
number. In these hot spot figures, deeper the color, more references in that area.

In Fig. 4, except 437, we can see obvious cluster in each application. For example,
references concentrate in bank 0 and bank1 in 456.hmmer. While in 444.namd, there is
no access in bank 5, 6 and 7. It means some of the banks in an application are not fully
utilized. These infrequent used banks can be closed during its runtime.

18 L. Qiu et al.

3.2 Cluster Banks Using K-Means

In order to reduce power consumption, we can power down those unusually used banks.
Thus, we exploit K-means to find out those banks have little references. Banks are sepa‐
rated into three clusters.

First of all, pick three access number of banks as centroids randomly. Then, it calcu‐
lates the distance from other access number to the centroid. The banks have the closing
access number with one centroid will be allocated to the same cluster. The next step is
calculating the average value of each cluster, regard it as the new centroid. Thus, we
have three new centroids. Calculating the distance between the access number in all
banks and the update centroids. We get three new clusters. Then iterating the process
continuously. Until we get the final three clusters of banks.

In our work, we have 8 banks. With the purpose of closing the unlikely accessed
banks. We divide these 8 banks into three groups. In Cluster big, banks get the most of
the access. So we leave it alone. Our focus is in Cluster small, which has the least number
of the reference.

3.3 Data Migration

Once the banks are decided to shut down, dirty bit of each access in closed banks will
be checked. If data in closed banks is dirty, that is to say, the data in DRAM cache is
different from the data stored in main memory, the data in DRAM cache would write
back to main memory. If data in closed banks is clean, drop it. Table 1 shows the bank
configuration in DRAM cache.

Fig. 4. Access pattern of different applications

Coarse Granularity Data Migration 19

Table 1. Processor and DRAM Cache configuration

Number of cores 1 L3 bus frequency 0.67 MHz
Frequency 2 GHz L3 capacity 128 MB
L1 dcache/icache capacity 64 KB/32 KB Bank 8 banks per rank
l2 Cache capacity 2 MB Die 4
– – Row buffer size 2 KB

After we handle the data in the last two banks, if there is a memory access to these
two banks, migrate it to the corresponding banks. In our work, the first three bits in
access address index the bank ID. In migration process, for identifying the data which
is originally access to the closed banks, we add a migration bit in DRAM cache. 0 is no
migration, 1 represents migrated from other banks.

3.4 Remapping

When two banks are decided to be closed, the future access in bank has the smallest
access number will remapping to the forth bank count backwards. The future access in
bank has the last but one reference number will remapping to the third bank count back‐
wards. What is more, before remapping begins, we set a migration bit in order to know
whether the data is migrated or not. Upon an access comes, it maps to a bank. If this
bank is open, migration bit stay the same. All the access behavior does not change as
well. But when the access mapped to a closed bank. The migration bit switch to 1. In
the meantime, tag bits stay still, only bank bits change.

3.5 Reopen

At every 10,000 ticks, we check the access pattern again. In the new 5000 ticks, if the
distribution of clusters changes, that is, the Small cluster is no more the same, we will
reopen the closed banks and do our power management mechanism over again.

3.6 Example

In application 464.h264ref. Its access pattern shows bank 2, 5, 6 and 7 are in Small
cluster. Bank 1 and 3 are in Medium cluster. The rest bank 0 and bank 4 in Big cluster.
Then we calculate and get that the reference number in Small cluster occupies 0.073 of
Medium cluster. Thus, migrate the data in bank 7 (has least access number) to bank 2
(the forth bank count backwards according to reference number), bank 6 (the last but
one) to bank 5(the third bank count backwards). Meanwhile, set the migration bit of
those migrated data bit to 1. At last, data migration finished.

3.7 Hardware Implementation

Figure 5 shows the possible hardware implementation of our Coarse Granularity Data
Migration power management mechanism. Every bank has a gating signal to control the

20 L. Qiu et al.

state of the bank (open or close). In each rank, there are four banks. A memory controller
is used to manipulate which rank is activated. Rank_Sel chooses the determined rank.
In order to select the desired bank, rank number and bank number are both needed to be
confirmed. In other words, we use Rankx_Bankx to choose the bank we want.

Fig. 5. Hardware implementation of power management

4 Experimental Evaluation

4.1 Experiment Setup

In our experiments, we use GEM5 simulator with a detailed memory model. The
instruction set used is ARM V7 ISA. Table 1 gives the configuration used in our work.
The 3D DRAM Cache used in the experiments is 128 MB.

Experiment Platform. The experiment platform is shown in Fig. 6. It contains 5 major
parts: The processor simulator (Gem5), 3D DRAM Cache model (3D DRAM Cache),

Fig. 6. Infrastructure of the whole experimental platform

Coarse Granularity Data Migration 21

main memory model (2D DRAM), power model (Power model), performance model
(Performance model). Cacti offers timing and power parameter for our 5 parts except
Gem5. Gem5 is configured to generate complete DRAM access traces (after L2
cache).

3D DRAM cache models: We exploit a DRAM simulator DRAMSim2 [6] to imple‐
ment the trace-driven DRAM cache simulator: Thick Cache. This 3D-DRAM cache is
an Alloy Cache [2] based Cache. The 3D DRAM Cache parameters are given by
Cacti-3dd [7]. These parameters are listed in Table 2.

Table 2. CACTI-3DD configuration and parameter result

2D main memory 3D DRAM Cache
Configuration
Capacity 2G 128 MB
Frequency 677 MHz 677 MHz
Die 1 4
Parameter(latency)
t_RCD 5.9164 ns 4.37031 ns
t_RAS 20.3714 ns 5.44791 ns
t_RC 34.5217 ns 6.68482
t_CAS 9.85235 ns 6.54791 ns
t_RP 14.1503 ns 1.7791 ns
Parameter(energy)
Activate energy 0.489495 nJ 0.076035 nJ
Read/write energy 0.543979 nJ 0.367355 nJ
Prefetch energy 0.405572 nJ 0.065765 nJ

Main Memory model: The 2D main memory model is simulated by DRAMSim2 [6].
The configuration and timing parameters for DRAMSim2 are generated by Cacti [7].

Power model: The number of access of the 3D DRAM Cache during simulation is
counted in the Thick Cache simulator. Then the following equation is used to calculate
the power consumption:

(1)

(2)

Performance model: This model is used to calculate the average memory access time
of the 3D DRAM Cache and the baseline system.

Benchmark. In this work, we use 164.gzip/175.vpr/181.mcf from SPEC CPU 2000
and 456.hmmer/458.sjeng/473.astar from SPEC CPU 2006 as our benchmark to esti‐
mate the performance and power of the proposed architecture. In each application, 2
million ticks are used as warmup time. 200 million instruction simulated in the whole
process.

22 L. Qiu et al.

We get the L2 miss trace generated by Gem5. Then the traces are fed into our Thick
Cache simulator to do the performance and power estimation.

4.2 Baseline System

The baseline system in this work is a processor core with L1 Cache and L2 Cache,
without L3 Cache and a plane main memory based on DRAMSim2. The common parts
of these two architectures share the same parameter of each hierarchy, except L3 Cache.
The parameters of processor core and memory system are listed in Tables 1 and 2.

4.3 Implementation

For the one and only difference between baseline system and 3D-stacked system is a L3
3D DRAM Cache, a Cache simulator Dinero [8] is used to verify the accuracy of the
DRAM Cache. We use the same configuration and traces to DRAM Cache and Dinero,
miss rates are compared to see if our DRAM Cache is right. As is depicted in Fig. 7, we
can see our Thick Cache simulator is basically accurate.

Fig. 7. Miss ratio comparison between Dinero and Thick Cache

4.4 Experimental Result

Performance Comparison. For our proposed 3D-DRAM LLC system, we got the
LLC average access time and use it as the metric of performance. The results are shown
in Fig. 8.

As it is depicted in Fig. 8, the performance behavior in these two systems are almost
the same. In some cases, such as 437.lesli3d and 471.omnetpp, 3D DRAM Cache system
shows shorter access time. And in a 3D DRAM Cache system, it has bigger capacity
and no high area consumption, which makes our optimizing system a proper way to
upgrade memory system.

Coarse Granularity Data Migration 23

Power Comparison. In this section, we analysis the power consumption of the
proposed design, including dynamic power and leakage power. Dynamic power results
from writing and reading operations, which is determined by the total amount of the two
kinds of operation. Leakage power comes from the leakage current of DRAM cells.

From the results of SPEC2006, it can be seen that for last level cache, the number
of writing and reading operations are not very large, thus contributing to the fact that
the dynamic power consumption of our design, which is shown in Fig. 9, is far less than
its leakage power consumption, so we can take the leakage power consumption as the
total power consumption approximately.

Fig. 9. Dynamic power consumption

In order to reduce its leakage power, we adopted bank migration and partial power
down. The power results after optimization shown in Fig. 10 are much less. We can see
that the leakage power consumption has decreased obviously, which prove that our
solution is effective.

Fig. 8. Performance comparison between baseline and 3D DRAM Cache system

24 L. Qiu et al.

Fig. 10. Comparison between leakage power before power management and after

5 Related Work

5.1 DRAM Cache

In previous research, many studies have been explored the model of DRAM cache. In
order to reduce the miss rate, Cached DRAM [22] integrates SRAM cache in the DRAM
memory to exploit its locality in memory accesses and storage efficiency. In such DRAM
caches, SRAM tags are placed in the stacked DRAM along with the data blocks [21–
23]. However, this can potentially require two DRAM accesses per cache lookup (one
for the tag look up and one for data). Thus, a state-of-art DRAM cache method, Alloy
Cache [2] proposed to reduce latency. It organizes as a direct-mapped organization.
Although reduce the hit rate, improving the cache access latency greatly. Our DRAM
cache model is inspired by a latency-optimized cache architecture, named Alloy cache
[2] which bursts tag and data in a single stream to wipe out the tag serialization delay.

5.2 Power Optimization of DRAM Cache

DRAM power management approaches basically developed into two parts: those aim to
solve dynamic power such as memory traffic reshaping and increase the locality of
memory reference [9], and those try to figure out leakage power by using decrease
memory access or memory footprint [12]. Recently, there have been a large number of
researches using adaptive power saving ability offered by several-banked DRAM [9–11].

Dynamic Power Management. For saving dynamic power, some techniques reduce
the number of access to the specific memory level by using additional storage structures
[13]. Some techniques utilize frequent accessed data with lower energy mode to reduce
dynamic power per access [14]. Some other techniques perform tag bits match in several-
step manner, while other techniques cut down the required bits for comparison [15].
Also, the techniques mentioned above can be extended to utilize in multiprocessor
systems. In 3D multicore systems, Meng et al. [16] proposed a runtime optimization
technique to maintain performance and power consumption in the same time.

Coarse Granularity Data Migration 25

Leakage Power Management. For saving leakage power, some researchers adaptive
selecting a part of the cache to reduce the power. Based on the power-off granularity,
leakage power management can be classified to way-level, set-level (or bank-level) [17],
cache block-level [18], cache sub-block level [19] or cache sub-array level [12] etc. In
3D integration memory systems, in order to solve temperature and high power consump‐
tion, Woojin Yun and Jongpil Jung et al. [20] propose a dynamic voltage and frequency
scaling (DVFS) scheme which can be adapted to cache bank or a group of cache banks
for 3D-stacked L2 DRAM cache. Thus, they can obtain the supply voltages of different
cache zones (or banks).

6 Conclusion

A key design methodology for improving the performance of processor core lies in
breaking the Memory Wall. In our work, a L3 3D DRAM Cache is used in the new
memory hierarchy to obtain higher capacity and wider bandwidth. However, for each
3D system, power consumption is a critical issue for a better performance. As for a big
capacity LLC, leakage energy consists a big portion of the whole energy consumption.
Thus, a bank closing mechanism is adopted to decrease leakage energy in our design.
First of all, we analyze the access pattern offline of some applications from SPEC CPU
2006, determines which banks are not likely used in execution. Then, we shut them
down. At last, static power consumption of some application decreased to 0.75x, a
portion of application reach to 0.375x. In the future, in order to decrease the dynamic
power in LLC, the migration of data in the process of closing banks can be put in to a
further study.

References

1. Loh, G.H., Hill, M.D.: Efficiently enabling conventional block sizes for very large die-stacked
dram caches. In: Proceedings of Annual International Symposium Microarchitecture, pp.
454–464 (2011)

2. Qureshi, M.K., Loh, G.H.: Fundamendal latency trade-off in architecture dram caches: out
performing impractical sram-tags with a simple and practical design. In: 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 235–246 (2012)

3. Jevdjic, D., Loh, G.H., kaynak, C., Falsa, B.: Unison cache: a scalable and effective die-
stacked dram cache. In: 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 25–37 (2015)

4. Su, C., Despain, A.: Cache design tradeoffs for power and performance optimization: a case
study. In: Proceedings of International Symposium on Low Power Design, pp. 63–68 (1997)

5. Hasegawa, A., Kawasaki, I., Yamada, K., Yoshioka, S., Kawasaki, S., Biswas, P.: Sh3: high
code density, low power. IEEE Micro 15(6), 11–19 (1995)

6. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: a cycle accurate memory system
simulator. IEEE Comput. Archit. Lett. 10(1), 16–19 (2011)

7. Chen, K., Li, S., Muralimanohar, N., et al.: CACTI-3DD: architecture-level modeling for 3D
die-stacked DRAM main memory. In: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 33–38. EDA Consortium (2012)

8. http://self.gutenberg.org/articles/dinero_(cache_simulator)

26 L. Qiu et al.

http://self.gutenberg.org/articles/dinero_(cache_simulator)

9. Amin, A., Chishti, Z.: Rank-aware cache replacement and write buffering to improve DRAM
energy efficiency. In: Proceedings of the 16th ACM/IEEE International Symposium on Low
Power Electronics and Design, pp. 383–388. ACM (2010)

10. Ware, M., Rajamani, K., Floyd, M., Brock, B., Rubio, J., Rawson, F., Carter, J.: Architecting
for power management: the IBMR POWER7 approach. In: HPCA, pp. 1–11. IEEE (2010)

11. Chandrasekar, K., Akesson, B., Goossens, K.: Runtime power-down strategies for real-time
SDRAM memory controllers. In: Proceedings of the 49th Annual DAC, pp. 988–993. ACM
(2012)

12. Yang, L., Dick, R.P., Lekatsas, H., Chakradhar, S.: Online memory compression for
embedded systems. ACM Trans. Embed. Comput. Syst. 9, 1–30 (2010)

13. Kin, J., Gupta, M., Mangione-Smith, W.: The filter cache: an energy efficient memory
structure. In: 30th International symposium on Microarchitecture (MICRO), pp. 184–193
(1997)

14. Udipi, A., Muralimanohar, N., Balasubramonian, R.: Non-uniform power access in large
caches with low-swing wires. In: International Conference on High Performance Computing
(HiPC). IEEE, pp. 59–68 (2009)

15. Kwak, J., Jeon, Y.: Compressed tag architecture for low-power embedded cache systems. J.
Syst. Archit. 56(9), 419–428 (2010)

16. Meng, J., Kawakami, K., Coskun, A.K.: Optimizing energy efficiency of 3-D multicore
systems with stacked DRAM under power and thermal constraints. In: Design Automation
Conference, pp. 648–655. ACM (2012)

17. Ku, J., Ozdemir, S., Memik, G., Ismail, Y.: Thermal management of on-chip caches through
power density minimization. In: International Symposium on Microarchitecture (MICRO),
pp. 283–293 (2005)

18. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior to reduce
cache leakage power. In: 28th International Symposium on Computer Architecture (ISCA),
pp. 240–251 (2001)

19. Alves, M.A.Z., et al.: Energy savings via dead sub-block prediction. In: International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)
(2012)

20. Yun, W., Jung, J., Kang, K., et al.: Temperature-aware energy minimization of 3D-stacked
L2 DRAM cache through DVFS. In: Soc Design Conference, pp. 475–478 (2012)

21. Loh, G.H.: Extending the effectiveness of 3d-stacked dram caches with an adaptive multi-
queue policy. In: Proceedings of the 42nd International Symposium on Microarchitecture,
December 2009

22. Loh, G.H., Hill, M.D.: Efficiently enabling conventional block sizes for very large die-stacked
dram caches. In: Proceedings of the 44th International Symposium on Microarchitecture,
December 2011

23. Qureshi, M., Loh, G.H.: Fundamental latency trade-offs in architecting DRAM caches. In:
Proceedings of the 45th International Symposium on Microarchitecture, December 2012

Coarse Granularity Data Migration 27

A Novel Hybrid Last Level Cache Based
on Multi-retention STT-RAM Cells

Hongguang Zhang1(&), Minxuan Zhang1,2, Zhenyu Zhao1,
and Shuo Tian1

1 College of Computer, National University of Defense Technology,
Changsha 410073, People’s Republic of China
{zhanghongguang14,mxzhang,zyzhao,

tianshuo14}@nudt.edu.cn
2 National Key Laboratory of Parallel and Distributed Processing,

National University of Defense Technology,
Changsha 410073, People’s Republic of China

Abstract. Spin-transfer torque random access memory (STT-RAM) is one of
the most promising substitutes for universal main memory and cache due to its
excellent scalability, high storage density and low leakage power. A much larger
cache capacity in the same die footprint can be implemented with STT-RAM
because its area is only 1/9 to 1/3 that of SRAM. However, the non-volatile
STT-RAM also has some drawbacks, such as long write latency and high write
energy, which limit its application in cache design. To solve the two problems,
we relax the retention time of STT-RAM to optimize its write performance and
energy, and propose a novel multi-retention STT-RAM hybrid last level cache
(LLC) architecture, which is realized with three different kinds of cells. In
addition, we design the data migration scheme to manage its block allocation,
thus improving overall system performance further. The experiment results
show that our multi-retention hybrid LLC reduces the total power consumption
by as much as 96.6 % compared with SRAM LLC, while having almost the
same (at 99.4 %) instruction per cycle (IPC).

Keywords: STT-RAM � Last level cache � Multi-retention � Data migration

1 Introduction

Power has been the dominator of the increasing of CPU’s frequency since one decade
ago. This has generated a considerable volume of research in multi-core processor to
provide sustainable performance enhancement of computer system. However, the gap
of access speed between main memory and processor is becoming larger and has been
the bottleneck of overall system performance. Cache is developed to alleviate this
mismatch problem.

SRAM has been the mainstream of caches for many years because it owns high
access speed, low dynamic power and other good characters. However, with more and
more cores are embedded on chip, caches need larger size. However, increasing
capacity of SRAM caches lead to high leakage power, which takes up the dominator of

© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 28–39, 2016.
DOI: 10.1007/978-981-10-2209-8_3

the microprocessor’s overall power consumption, therefore, researchers are focusing on
alternative substitutes for SRAM.

Spin-transfer torque random access memory (STT-RAM) is regarded as the most
promising replacement for SRAM because it has almost all desired characters of the
universal memory and cache, such as high storage density, fast read access speed and
non-volatility. However, we are faced with two drawbacks of STT-RAM, namely, long
write latency and high write energy, which result in the reduction of system perfor-
mance and the enhancement of dynamic power consumption.

Hybrid cache scheme is proposed to address the write access speed and energy of
STT-RAM. For example, the SRAM/STT-RAM hybrid cache in [7, 8] moves write
intensive data blocks into SRAM region to reduce the average write latency. However,
even a small SRAM partition can bring in very high leakage power. Researchers
discover that relaxing the data retention time could significantly optimize its write
performance, which can even exceed that of SRAM. That makes the multi-retention
hybrid cache architecture possible. In [2], a new cache hierarchy is proposed to
improve the overall system performance with multi-retention STT-RAM cell, and the
outcome is good.

In this paper, we relax the retention time of STT-RAM and propose a novel
multi-retention STT-RAM hybrid last level cache with three kinds of STT-RAM cells,
which is different with the design in [2, 11], to obtain an improvement of overall
performance. We simulate the proposed cache design on architecture simulator, and
collect the test results of benchmarks to analysis the overall system performance and
power consumption.

2 STT-RAM Features

2.1 MTJ Features

The magnetic tunnel junction (MTJ) shown in Fig. 1 is the basic storage device of
STT-RAM. The MTJ has two layers, namely, free layer and reference layer. The
magnetic direction of reference layer is fixed, however, that of free layer can be
switched by current. If the magnetic directions of two magnetic layers are parallel, the
MTJ is in low-resistance state; otherwise it is in high-resistance state.

The most widely used STT-RAM storage cell is one transistor one MTJ (1T1J) at
present. In memory array, the STT-RAM cell is connected to word line (WL), bit line
(BL) and source line (SL). The WL is used to select the specific row, and the voltage
gap between SL and BL is used to complete write and read operation. When executing
a read operation, we add a negative voltage between SL and BL and use a sense
amplifier to get the current flowing throw the MTJ, thus knowing the current resistance
of MTJ. When writing “0” into STT-RAM cell, there is a positive voltage between SL
and BL. However, when writing “1” into STT-RAM, a negative voltage is applied. The
current used to switch the MTJ’s state is called switching current, and its value is
mainly determined by the write pulse width, which is represented by Tw in this paper.

A Novel Hybrid Last Level Cache 29

2.2 MTJ Non-volatility

The MTJ’s non-volatility can be analyzed quantitatively with the retention time of
MTJ. We use τ to represent its retention time. τ is related to the thermal stability factor
Δ and can be calculated with Eq. (1) [1].

s � s0 exp Dð Þ ð1Þ

s0: The attempt time and set as 1 ns.
Δ is derived from Eq. (2).

D ¼ EF

kBT
¼ MsVHK

2kBT
ð2Þ

Ms: The saturation magnetization.
Hk: The effective anisotropy field.
T: The working temperature.
KB: The Boltzmann constant.
V: The volume for the STT-RAM write current.
From Eqs. (1) and (2), we can know that the data retention time of a MTJ decreases

exponentially when its working temperature T increases.
According to the different Tw, MTJ has three regions, namely, the thermal acti-

vation, dynamic reverse and processional switching. Their distribution is shown as
Fig. 2.

The switching current in each working region can be calculated approximately by
Eqs. (3)–(5) [2].

JThermC Tw ¼ JC0 1� 1
D
ln

Tw
s0

� �� �
Tw [20 nsð Þ ð3Þ

Fig. 1. The MTJ design (1T1J). (a) MTJ in high-resistance state. (b) MTJ in low-resistance
state.

30 H. Zhang et al.

JDync Tw ¼ JThermc Tw þ JPrecc Twe �A Tw�TPIVð Þð Þ

1þ e �A Tw�TPIVð Þð Þ 20 ns [Tw [3 nsð Þ ð4Þ

JPrecC Tw ¼ JC0 þ
C ln p

2h

� �
Tw

Tw\3 nsð Þ ð5Þ

ð6Þ

Where JCTw is required switching current, A, C, and TPIV are fitting parameters, JCO
is the threshold of switching current density, e is the electron charge, is the reduced
Planck constant, α is the damping constant, Hext is the external field, η is the spin
transfer efficiency, tF is the free layer thickness.

Based on the above analysis, we can adjust the value of JC and Δ by changing
several related parameters, such as MS, tF, Hk and V.

We get three IC � Tw curves shown in Fig. 3. for STT-RAM cells whose retention
time are 2.5 years (D ¼ 38:9), 3 s (D ¼ 21:8) and 30 μs (D ¼ 10:3). In this paper they
are called HRS, MRS and LRS respectively.

Fig. 2. The three working region of MTJ

Fig. 3. The Ic – Tw for HRS, MRS and LRS MTJ cells

A Novel Hybrid Last Level Cache 31

It is clear that the higher the retention time, the lower the Ic � Tw curve. With the
same switching current, LRS’s write pulse width is the shortest one and HR is the
longest. If their write pulse widths are the same, the switching current required by LRS
is the lowest. The performance difference between non-volatile and volatile STT-RAM
is shown in Fig. 4 [3]. The dotted border is optimal and black line is SRAM. The blue
region is STT-RAM.

3 STT-RAM LLC Design

3.1 Cache Parameters

Although the long retention time of STT-RAM can offer low leakage power con-
sumption, it leads to long write latency and high write energy. To reduce the write
latency and energy, we relax the retention time of STT-RAM to improve its write
performance.

In Sect. 2, we find that the STT-RAM cells whose retention time are relaxed to μs
and ms level can satisfy the access speed of all level caches. So we simulate the
proposed HRS, MRS and LRS cells on NVSim [6] to get their parameters in 1 MB last
level cache design. The results are shown in Table 1 .

Fig. 4. The difference between non-volatile and volatile STT-RAM

Table 1. The parameters for multi-retention STT-RAM cells.

Parameters SRAM LRS MRS HRS

Area/F2 125 21 22 23
Switching Time/ns / 2.0 5.0 10.0
Retention Time / 30 μs 3.0 s 2.5 years
Read Latency/ns 2.735 2.085 2.097 2.210
Read Latency/Cycles 6 5 5 5
Read Energy/nJ 0.181 0.083 0.087 0.099
Write Latency/ns 2.301 2.431 5.427 10.936
Write Latency/Cycles 5 5 11 22
Write Energy/nJ 0.112 0.479 1.016 1.978
Leakage Power/mW 1261.7 26.9 31.1 36.2

32 H. Zhang et al.

From Table 1, it can be seen that the performance varies with different retention
time. LRS’s access speed is even better than SRAM, while HRS’s write latency is
longer than 10 ns.

3.2 Hybrid LLC Architecture

In previous section, we get their overall performance of LRS, MRS and HRS cells. We
find that LRS owns the fastest access speed, so if we adopt LRS to design LLC, the
LLC’s performance can be enhanced significantly. However, it should be noticed that
the data stored in LRS or MRS blocks will be invalid after its short retention time, so we
must use refresh scheme to improve the reliability. For LLC with large capacity (1 MB
or larger), it can be foreseen that the refresh energy and the hardware overhead are
unbearable in this situation. Typically, the hardware overhead is 0.80 %. So it is not
suitable to design LLC with LRS or MRS purely. Considering the existed
SRAM/STT-RAM hybrid cache architecture [13], which fully utilize both the fast write
speed of SRAM and the excellent features of STT-RAM, and other designs in [4, 5], the
hybrid LLC based on volatile STT-RAM is possible. A multi-retention hybrid cache
design is proposed in [2], however, the large capacity of LLC offers more choices, so we
propose to design an optimized novel multi-retention hybrid cache architecture.

We find that if we add a MRS-Region in LRS/HRS hybrid LLC, its performance
can be promoted further and power consumption can be reduced although the hardware
overhead is a bit higher than the original design. The reason why we do not expand
LRS-Region is that the block-refresh and counter-reset happen frequently in LLC in
case that the size of LRS-Region is too large, thus leading to a very high power
consumption. In addition, the large amount of counter requires larger on-chip area and
hardware overhead. These factors make it unsuitable to expand LRS-Region further.
The LRS/MRS hybrid LLC is also one choice, however, the retention time of MRS can
not make sure all data are reliable though the retention time of MRS is longer than
LRS. We still need the refresh scheme, thus contributing to serious refresh power
consumption problem.

Based on the above analysis, the LRS/MRS/HRS multi-retention hybrid LLC is one
of the best choices that we can find at present. we separate the 1 MB LLC into 16 ways,
way0 is LRS-Region and realized by LRS cells, way1–3 is MRS-Region and made by
MRS cells, way4–15 is HRS-Region and consist of HRS cells only.

To improve the reliability of LRS-Region and MRS-Region, we add a
refresh-counter and an access-counter for every LRS or MRS block. The
refresh-counter is used to monitor the duration that the data has been stored in that
block while the access-counter is utilized to record its read access number during the
retention time. The refresh counters are controlled by a global clock whose period is
Tgc. The value of refresh-counter is Nref , and that of access-counter is Nac. At the end of
each Tgc, all refresh-counters will be increased by 1. If there is a read access to one
block, its access-counter is increased by 1. However, if there is a write access to the
block, both its refresh-counter and access-counter are initialized to 0. The maximum
value of refresh-counter Nmax depends on their different retention time. When a LRS or
MRS block’s Nref reaches Nmax, we do not conduct a refresh operation but check its

A Novel Hybrid Last Level Cache 33

Nac. We write it back to HR-Region in case of Nac [5, otherwise write it back to main
memory. The whole scheme shown in Fig. 5 is called Counter-based Writeback
Refresh Scheme (CWRS).

The design of counter is shown as Fig. 6. The hardware overhead of CWRS is (4
bits × 2 × 4)/(64 bytes × 16) = 0.39 %, the overall area needed is
(4 × 125F2 × 2 × 4)/(64 × 8 × 40F2 × 16) = 1.22 %. Based on simulation results,
these counters’ power consumption takes up only less than 1 % of the total power
consumption, which has little influence on the overall performance.

To improve overall system performance, we create a write intensive block pre-
diction table (WIBPT) to predict and monitor write intensive blocks. WIBPT has 64
entries, and each entry consists of an address and a counter. We divide all write
intensive blocks (WIB) into three levels, namely, WIB1, WIB2 and WIB3, to support
the migration scheme in our hybrid LLC.

When a request comes to LLC, firstly we detect what kind of operation it is and if it
is a hit. If it is a miss, we allocate a LRS block for it. If the request is a write hit, we
detect if its address is already in WIBPT. If so, its access counter is increased by 1,
otherwise we add its address to WIBPT and reset the counter to 0. If WIBPT is full, we

Fig. 5. The counter-based writeback refresh scheme

34 H. Zhang et al.

kick the LRU entry and add this new address. Then we detect the value of its counter, if
the counter is less than 4, we define it as WIB1 and do nothing; if it is larger than 4 and
less than 8, we define it as WIB2 and swap it with blocks in MRS-Region; if the
counter is larger than 8 [12], we name it as WIB3 and migrate it to LRS-Region.
A migration operation needs read the data from original cache block firstly, and then
write it to the target. It consumes two read and write operations. This dynamic power is
added into the final results.

The proposed data migration policy is demonstrated by Fig. 7. In this way, we
obtain a better tradeoff between performance and power consumption. To illustrate, the

Fig. 6. The counter design

Fig. 7. The migration scheme

A Novel Hybrid Last Level Cache 35

overall system performance can be improved significantly, while the total power
consumption is much lower than SRAM LLC.

Compared with SRAM/STT-RAM Hybrid LLC, our design can have better overall
performance and leakage power with the same migration scheme. The extra power
consumption that MRS-Region brings in can be ignored because the number of refresh
and reset operations in MRS-Region is limited. However, the refresh circuits of
MRS-Region lead to extra hardware overhead.

4 Simulation

4.1 Experimental Setup

We evaluate proposed multi-retention hybrid LLC on GEM5 [9, 10]. GEM5 is an
universal architecture simulator. It has a highly configurable simulation framework,
including support for various universal ISAs and multiple cache coherence protocols
(MESI, MOESI, etc.).

The configuration for GEM5 is shown as Table 2. The private L1 cache is 32 KB,
the private L2 cache is 256 KB, and the shared L3 cache is 1 MB. The ISA we use is
X86 instruction set.

4.2 Architectural Simulation

We simulate SPEC CPU2006, including 401.bzip2, 403.gcc, 429.mcf, 445.gobmk,
456.hmmer, 458.sjeng and 462.libquantum, on proposed multi-retention hybrid LLC,
and compare its performance [instruction per cycle, (IPC)] as well as power con-
sumption with SRAM LLC. We also simulate high-retention STT-RAM LLC and
SRAM/STT-RAM hybrid LLC (1 SRAM-way and 15 STT-RAM-ways) as samples.
The LRS/HRS hybrid design shares almost the same with SRAM/STT-RAM hybrid
LLC, so we do not simulate it again here. All outcomes are normalized to the results of
SRAM LLC.

The final IPC results are shown as Fig. 8. It can be seen that the overall perfor-
mance of our proposed LLC design is the best one among the three STT-RAM cache
architecture, which is 0.6 % lower than SRAM LLC. The performance of
SRAM/STT-RAM Hybrid LLC is 2.8 %lower than SRAM LLC. The performance of
HRS LLC is the lowest one, at 94.8 %.

Table 2. GEM5 configuration

Computer system Configuration

CPU X86, O3, 2 GHz
L1 Icache Private, 32 KB, 2-way
L1 Dcache Private, 32 KB, 2-way
L2 Cache Private, 256 KB, 8-way
L3 Cache Shared, 1 MB, 16-way
Main Memory 1024 MB, 1-channel

36 H. Zhang et al.

The leakage power consumption results are shown as Fig. 9. The
SRAM/STT-RAM Hybrid LLC has the highest leakage power consumption, at 9.0 %,
while that of Multi-R Hybrid LLC is only 2.7 %.

The dynamic power consumption results are shown in Fig. 10. We can find that the
average dynamic power consumptions of the three STT-RAM-based LLC designs are
all much higher than SRAM. The HRS LLC shares the highest one, at 582 %. The
Multi-R Hybrid LLC (at 401 %) is a bit higher than SRAM/STT-RAM Hybrid LLC (at
382 %).

The overall power consumption shown in Fig. 11 is the sum of leakage and
dynamic power consumption. The overall power consumption of Multi-R Hybrid LLC
is only 3.2 % that of SRAM, which is 52.3 % lower than SRAM/STT-RAM
Hybrid LLC (at 9.1 %).

Fig. 8. The normalized IPC results

Fig. 9. The normalized leakage power consumption

A Novel Hybrid Last Level Cache 37

5 Conclusion

In this paper, we propose a novel hybrid last level cache architecture based on three
different kinds of STT-RAM cells. Each kind of cells has totally different write
performance.

Our simulation results show that the proposed Multi-R Hybrid design has almost
the same overall performance with SRAM LLC (at 99.4 %), while having only 3.2 %
power consumption. In addition, the total on-chip area of Multi-R Hybrid LLC can be
saved by 81.6 % ideally. Compared with SRAM/STT-RAM Hybrid LLC, the Multi-R
Hybrid LLC’s IPC is increased by 2.2 % while its power consumption is reduced by
70 %.

Fig. 10. The normalized dynamic power consumption

Fig. 11. The normalized overall power consumption

38 H. Zhang et al.

Acknowledgements. The project is sponsored by National Science and Technology Major
Project, “The Processor Design for Super Computer” (2015ZX01028) in China and the Excellent
Postgraduate Student Innovation Program (4345133214) of National University of Defense
Technology.

References

1. Jog, A., Mishra, A.K., et al.: Cache revive: architecting volatile STT-RAM caches for
enhanced performance in CMPs. In: IEEE Design Automation Conference, pp. 243–253
(2012)

2. Sun, Z., Bi, X., et al.: STT-RAM cache hierarchy with multiretention MTJ design. IEEE
Trans. Very Large Scale Integr. Syst. 22(6), 1281–1294 (2014)

3. Smullen, C., Mohan, V., et al.: Relaxing non-volatility for fast and energy-efficient
STT-RAM caches. In: IEEE Symposium on High-Performance Computer Architecture,
pp. 50–61 (2011)

4. Li, J., Shi, L., et al.: Low-energy volatile STT-RAM cache design using
cache-coherence-enabled adaptive refresh. ACM Trans. Des. Autom. Electron. Syst. 19
(1), 1–23 (2013)

5. Zhao, J., Xie, Y.: Optimizing band width and power of graphics memory with hybrid
memory technologies and adaptive data migration. In: Proceedings of the International
Conference Computer-Aided Design, pp. 81–87 (2012)

6. NVSim. http://www.rioshering.com/nvsimwiki/index.php
7. Li, Q., Li, J., et al.: Compiler-assisted STT-RAM-based hybrid cache for energy efficient

embedded systems. IEEE Trans. Very Large Scale Integr. Syst. 22(8), 1829–1840 (2014)
8. Raychowdhury, A., et al.: Design space and scalability exploration of 1T-1STT MTJ

memory arrays in the presence of variability and disturbances. In: IEEE International
Electron Devices Meeting, pp. 1–4 (2009)

9. Binkert, N., Beckmann, B., et al.: The gem5 simulator. ACM SIGARCH Comput. Archit.
News 39(2), 1–7 (2011)

10. Gem5. http://gem5.org
11. Sun, Z., Bi, X., Li, H.: Multi retention level STT-RAM cache designs with a dynamic refresh

scheme. In: 44th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 329–338 (2011)

12. Ahn, J., Yoo, S., et al.: Write intensity prediction for energy-efficient non-volatile caches. In:
IEEE International Symposium on Low Power Electronics and Design, pp. 223–228 (2013)

13. Wang, Z., Jimenez, D., et al.: Adaptive placement and migration policy for an
STT-RAM-based hybrid cache. In: 20th IEEE International Symposium on High
Performance Computer Architecture, pp. 13–24 (2014)

A Novel Hybrid Last Level Cache 39

http://www.rioshering.com/nvsimwiki/index.php
http://gem5.org

Overcoming and Analyzing the Bottleneck
of Interposer Network in 2.5D

NoC Architecture

Chen Li, Zicong Wang, Lu Wang, Sheng Ma, and Yang Guo(&)

College of Computer, National University of Defense Technology,
Changsha 410073, China

{lichen,wangzicong,luwang,masheng,

guoyang}@nudt.edu.cn

Abstract. As there are still a lot of challenges on 3D stacking technology, 2.5D
stacking technology seems to have better application prospects. With the silicon
interposer, the 2.5D stacking can improve the bandwidth and capacity of
memory. Moreover, the interposer can be explored to make use of unused
routing resources and generates an additional network for communication. In
this paper, we conclude that using concentrated Mesh as the topology of the
interposer network faces the bottleneck of edge portion, while using
Double-Butterfly can overcome this bottleneck. We analyze the reasons that
pose the bottleneck, compare impacts of different topologies on bottlenecks and
propose design goals for the interposer network.

Keywords: 2.5D stacking technology � Topology � Interposer network �
Performance bottleneck

1 Introduction

Recently, process scaling becomes increasingly difficult to maintain Moore’s law.
Some technologies emerge to continuously develop the semiconductor integrated cir-
cuit, such as multi-core, multi-threading and virtualization technologies. However,
these technologies face the challenges of the Memory Wall [1]. Therefore, the three-
dimensional (3D) stacking technology has emerged to deal with these problems, as it
offers interconnect length reductions, memory bandwidth improvements, heteroge-
neous integration and smaller chip sizes.

Although 3D stacking technology has many benefits to the conventional 2D layout,
there are several challenges that could potentially hinder its adoption, such as the
thermal issue, the absence of EDA tools and testing issues [2]. In comparison, silicon
interposer-based stacking, known as “2.5D stacking” [3], is gaining more traction [4].
As shown in Fig. 1, with 2.5D stacking technology multiple silicon dies can be stacked
side-by-side on a silicon interposer carrier. The 3D-stacked approach is a revolutionary
approach that it needs new co-design and methods for design flow and testing, while
the 2.5D-stacked approach is evolutionary [5]. It side-steps many challenges in 3D
stacking and has been supported by current design tools.

© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 40–47, 2016.
DOI: 10.1007/978-981-10-2209-8_4

Recent years, some commercial 2.5D-stacked products have already emerged [6, 7].
The most widely application of 2.5D stacking technology is the integration of memory
(DRAM) with a multi-core processor. Larger capacities and higher bandwidth for
in-package memory can be offered by the silicon interposer, as it has enough areas for
much memory to be integrated and many thousands of connections available across the
interposer. The interposer memory stacking also requires large bandwidth for
processor-to-memory traffic. In order to continuously increase the bandwidth, previous
work [8, 9] shows that significant routing resources inside the silicon interposer can be
exploited to implement an additional network. We call it interposer network in this
paper.

The topology determines the physical layout and connections between nodes and
channels in the network. Moreover, the number and locations of TSVs depend on the
topology. It is thus clear that the effect of a topology on overall network cost-performance
is profound. There are many topologies can be implemented in the interposer network.
Owing to the simplicity and scalability, theMesh has been widely used in CMPs [10, 11].
In order to reduce the μbump area overhead, the concentrated method is used that four
nodes in CPU multi-core layer connects one node in the interposer network.

In this paper, we conclude that using the concentrated Mesh as the topology of the
interposer network faces the bottleneck of edge portion network, while using Double-
Butterfly can overcome this bottleneck. We analyze the reasons that pose the bottle-
neck, compare impacts of different topologies on bottlenecks and propose design goals
for the interposer network.

2 Target System and Evaluation Methodology

In our 2.5D interposer-based system, a 64-core CPU and 4 stacked DRAMs are stacked
on a silicon interposer [8]. In order to reduce the cost of NoC in the interposer
(TSV/μbump) [12], the topology of our 2.5D NoC architecture is Mesh on the CPU die
and Concentrated Mesh or Double-Butterfly on the interposer die shown in Fig. 2. The
concentrated method means that each of the 16 interposer nodes connects four nodes on
the CPU die. There are totally 8 nodes of memory controllers on left and right sides of
the interposer network. Each one connects a nearby interposer node. Figure 2 also
shows two types of interposer implementations. In the near term, passive type without
active devices in the interposer is a practical way, while active interposer is more likely
to be a 3D integrated way. That is to say all logic/gates are placed on the CPU die and

Silicon
interposer

Multi-core
processor

Stacked
DRAM

Substrate

Fig. 1. 2.5D stacking technology

Overcoming and Analyzing the Bottleneck of Interposer Network 41

only metal routing on the passive interposer. Besides, there are two types of traffic,
including the core-to-core coherence traffic transferred on the CPU die and the core-to-
memory traffic transferred on the interposer die.

We use a cycle accurate interconnection network simulator (Booksim) [13] for the
evaluation. We modify Booksim to implement our 2.5D NoC architecture. As the
comparison will be focused on the interposer layer topologies, all configurations use an
8 × 8 Mesh for the multi-core die. We evaluated the CMesh, CMesh2 and DB (Double-
Butterfly) topologies on interposer layer as shown in Fig. 3. Our NoC designs utilize 4

iR
0

iR
1

iR
2

iR
3

iR
4

iR
5

iR
6

iR
7

iR
8

iR
9

iR
10

iR
11

iR
12

iR
13

iR
14

iR
15

mNode

mNode

mNode

mNode

mNode

mNode

mNode

mNode

iR

Edge
Interposer Router

mNode

Memory NodeCPU Router

iR

·
Center

Interposer Router

iR iR iR iR

CPU layer

Interposer layer

Stacked-DRAM

mNode mNode

CPU layer

Interposer layer

Stacked-DRAM

mNode mNode

a Top View c Side View (passive interposer)

b Side View (active interposer)

Fig. 2. Target system (Color figure online)

Fig. 3. Topologies

42 C. Li et al.

cycles router and 2 cycles link for the interposer layer. There are totally four DRAM
stacks on the interposer. Each DRAM stack provides four memory channels, for a
system-wide total of 16 channels. Each two channels share a memory node. The
interposer layer network dimensions include 8 memory nodes that interface with the
DRAM stacks memory channels.

3 Bottleneck Description and Analysis

3.1 Bottleneck Description

As the 2.5D NoC architecture leverages Mesh on the CPU die, CMesh on the inter-
poser die and memory nodes are located in two sides, the topology of the whole 2.5D
NoC is asymmetric. There are 3 possible performance bottlenecks of the 2.5D NoC
architecture, including the upper layer network (Black nodes), the center portion of the
lower layer (Yellow nodes) and the edge portion of the lower layer (Red nodes), as
shown in Fig. 2(a). Any one of these parts may lead the 2.5D NoC to be saturated,
while other partial networks are still working in unsaturated state.

We evaluate average latencies of messages passing through network nodes in these 3
parts. We leverage the baseline design with XY-Z routing, and results are shown in
Fig. 4. We find that CPU nodes on the upper layer lead the whole network saturation
when memory traffic accounts for 25 % of total traffic. The bisection bandwidth of the
upper layer is two times of the bisection bandwidth of the lower layer. Thus, when
memory traffic occupancy rate is more than 30 %, the lower layer becomes the bottle-
neck. Figure 4 shows that edge nodes on the lower layer lead the whole network satu-
ration when the percentage of memory traffic is larger than 30 %. However, when edge
interposer nodes are saturated, latencies of messages passing through center interposer
nodes are still low. Even when the memory traffic account for larger than 50 % of total
traffic, the edge network of the lower layer is still the performance bottleneck.

First, we suppose that the bottleneck of edge portion comes from the small
bandwidth of edge portion. We evaluate the CMesh2 with more bandwidth in the edge
portion as shown in Fig. 3(b). Compared with CMesh, we add 4 links on each side of
edge portion network. However, the evaluation result shows that the edge portions are

(a) 25% Memory Traffic (b) 30% Memory Traffic (c) 40% Memory Traffic

Fig. 4. Performance bottlenecks of CMesh

Overcoming and Analyzing the Bottleneck of Interposer Network 43

still the performance bottleneck of the whole network. Then, we find that DB over-
comes the bottleneck of edge portion. Workloads in interposer network are balanced
and uniform as shown in Fig. 5(c). In next subsection, we will compare these two
topologies in the interposer network, and then analyze reasons that pose the bottleneck.
Based on the analysis, we will propose design goals of the interposer network in 2.5D
interposer-based system.

3.2 Impacts of Topologies on Bottlenecks

We compare these two topologies and analyze their features in following points: hops
of memory traffic, link utilization, path diversity, bisection bandwidth and Latency-
Injection rate. We can find out impacts of topologies on bottlenecks.

1. Hops of memory traffic
The interposer network mainly used for transferring memory traffic. Those mes-
sages are injected from nodes in multi-core layer to memory nodes on edge sides of
interposer layer. Thus, the average hops of memory traffic are 6 on CMesh and 4.75
on DB according to our computing. The experimental result of average hops in
uniform pattern are 5.7 on CMesh and 4.7 on DB. Obviously, DB has lower average
hops compared with CMesh.

2. Single hop latency and zero load latency
The pipeline latency of router is 4 cycles. The link latency of CMesh is 2 cycles.
The link latency of DB is 2/4/6 (average 3.4 cycles) for links with different length.
Although the average hops of CMesh is larger than DB, their zero load latencies are
nearly the same. That is because the link latency of DB is longer than CMesh, and
lower hops amortize the longer link latency.

3. Link utilization
We compare the link utilization of both topologies in uniform pattern. As shown in
Fig. 3(a), considering different portions of links for CMesh, the utilization ratio of
blue links is 25 %, while the yellow links is 37.5 % and the green links is 50 %.
The other side is symmetrical with this side.
The link utilization of DB is similar to CMesh. For DB, the utilization ratio of blue
links and green links are the same with CMesh. The utilization of yellow links is
43.75 %. The 6.25 % more utilization comes from the case that message from IR0

(a) 25% Memory Traffic (b) 30% Memory Traffic (c) 40% Memory Traffic

Fig. 5. Performance bottlenecks of double-butterfly

44 C. Li et al.

or IR4 need to be transferred to the lower half of the memory channels on the left
side. In this case, routes must divert to the previous stage. We can find that the link
utilization of both topologies are similar and it has little impact on the bottleneck.

4. Path diversity
The XY-Z routing is leveraged in CMesh. As the deterministic routing is leveraged,
there is no path diversity in CMesh. The path diversity of DB is a little complex.
The path diversity of memory traffic which need to be transferred through blue links
are 2, while the path diversity is 1 in other situation.
In some traffic patterns, such as hotspot, no path diversity may make some links fall
into high traffic pressure. If packets are from yellow nodes to the left memory nodes
in DB as shown in Fig. 3(c), it can choose a path with low workload to the
destination node. Thus congestion can be alleviated.

5. Bisection bandwidth
For CMesh, the ratio of bisection bandwidth between the upper layer and the lower
layer is 2:1 (8:4). For DB, the ratio of bisection bandwidth between the upper layer
and the lower layer is 1:1. Only nodes at edge sides can consume packets, while
center nodes are just used as switch.
It answers the reason why the lower layer of network becomes the bottleneck when
the percentage of memory traffic is larger than 30 % for CMesh and 40 % for DB.

6. Latency-Injection rate
Figure 6 shows the performance comparison between CMesh, DB and CMesh2 in
uniform traffic pattern. As shown in Fig. 6(a), when the memory traffic makes up
25 % of the total traffic, their performance are nearly the same. This is because the
saturation of all three topologies are caused by the saturation of CPU layer network
in 25 % memory traffic.
When the memory traffic accounts for 50 % of the total traffic, the performance of
CMesh and CMesh2 are nearly the same, while the average performance gain of DB
over CMesh is 54.5 %. Considering the performance bottleneck in high memory
traffic, we can find that the performance gain of DB comes from overcoming the
bottleneck of the edge portion network. A uniform and balanced network performs
high efficiently. CMesh2 does not overcome the bottleneck of edge network. It
shows that adding bandwidth in edge side is useless.

(a) 25% memory traffic (b) 50% memory traffic

Fig. 6. Performance comparison

Overcoming and Analyzing the Bottleneck of Interposer Network 45

3.3 Summary and Design Goals of Interposer Network

Based on the comparison between CMesh and DB, we know that the link utilization of
them are similar, link utilization is not the key factor of the performance bottleneck.
Both single hop latency and zero load latency also have little impact on the bottleneck.
In fact, the interposer network is similar to GPGPU network that the performance is
more sensitive to interconnect bisection bandwidth rather than latency [14, 15]. On the
contrary, the bisection bandwidth and average hops pose strong impact on the bot-
tleneck. Larger bisection bandwidth makes larger throughput. Lower average hops
reduce contention of the interposer network. Furthermore, compared with CMesh, DB
improves the path diversity giving more routing choices to messages when being
transferred. It leads the load to be balanced. When the workload increases in the
interposer network, the high throughput highlights the advantage of lower contention
and high bandwidth.

Therefore, we can conclude some design goals of the interposer network based on
topologies analysis. First, in order to reduce the contention, we should try best to
reduce average hops between the source and destination nodes. Leveraging long metal
wires is a suitable way in interposer layer network, due to its abundant metal routing
resource. Second, higher throughput needs higher bisection bandwidth. We should
improve the bisection bandwidth through making connections between nodes as many
as possible. Third, the interposer network should provide the path diversity as much as
possible. As all nodes except memory nodes in the interposer network are switches,
they are just used for transferring packets and cannot absorb packets. Thus, deter-
ministic routing algorithms are not as suitable as minimal adaptive routing algorithms
which provide more path diversity. It can balance the workload on the interposer
network.

4 Conclusion

The 2.5D stacking technology leverages an interposer to stack chips and DRAMs.
Making use of the metal layer on the interposer provides fascinating opportunities to
explore new features on 2.5D NoC architecture. In this paper, first we find that the edge
portion of interposer network in CMesh always lead the saturation of the whole 2.5D
network when the memory traffic is larger than 30 % of the total traffic. We compare it
with CMesh2 and DB. DB can overcome this performance bottleneck. Then we ana-
lyze their features and find out reasons that pose this performance bottleneck. At last,
we propose design goals of the interposer network.

In the future, we will focus on the interposer layer network. On one hand, exploit
the design space of interposer layer network; on the other hand, design a high efficient
interposer network for the reply network of GPGPU-Memory 2.5D system.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (No.6133007, No. 61303065), Doctoral Fund of Ministry of Education (20134307120028).

46 C. Li et al.

References

1. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious. ACM
SIGARCH Comput. Archit. News 23(1), 20–24 (1995)

2. Xie, J., Zhao, J., Dong, X., Xie, Y.: Architectural benefits and design challenges for
three-dimensional integrated circuits. In: 2010 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), pp. 540–543, December 2010

3. Deng, Y., Maly, W.P.: Interconnect characteristics of 2.5-d system integration scheme. In:
Proceedings of the 2001 International Symposium on Physical design, pp. 171–175. ACM
(2001)

4. Loh, G.H., Jerger, N.E., Kannan, A., Eckert, Y.: Interconnect memory challenges for
multi-chip, silicon interposer systems. In: Proceedings of the 2015 International Symposium
on Memory Systems, pp. 3–10. ACM (2015)

5. Bolsens, I., Xilinx, C.: 2.5D ICs: Just a stepping stone or a long term alternative to 3d? In:
Keynote Talk at 3-D Architectures for Semiconductor Integration and Packaging Conference
(2011)

6. AMD: Amd radeon r9 fury x graphics card (2015). http://support.amd.com/documents
7. Saban, K.: Xilinx stacked silicon interconnect technology delivers breakthrough FPGA

capacity, bandwidth, and power efficiency. Xilinx White paper: Vertex-7 FPGAs (2011)
8. Jerger, N.E., Kannan, A., Li, Z., Loh, G.H.: Noc architectures for silicon interposer systems:

Why pay for more wires when you can get them (from your interposer) for free? In: 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 458–
470. IEEE (2014)

9. Kannan, A., Jerger, N.E., Loh, G.H.: Enabling interposer-based disintegration of multi-core
processors. In: Proceedings of the 48th International Symposium on Microarchitecture,
pp. 546–558. ACM (2015)

10. Howard, J., Dighe, S., Hoskote, Y., et al.: A 48-core IA-32 message-passing processor with
DVFS in 45 nm CMOS. In: 2010 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), pp. 108–109. IEEE (2010)

11. Wentzlaff, D., Griffin, P., Hoffmann, H., et al.: On-chip interconnection architecture of the
tile processor. IEEE Micro 5, 15–31 (2007)

12. Liu, C., Zhang, L., Han, Y., Li, X.: Vertical interconnects squeezing in symmetric 3d mesh
network-on-chip. In: Proceedings of the 16th Asia and South Pacific Design Automation
Conference, pp. 357–362. IEEE Press (2011)

13. Jiang, N., Becker, D.U., Michelogiannakis, G., Balfour, J., Towles, B., Shaw, D.E., Kim, J.,
Dally, W.J.: A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 86–96. IEEE (2013)

14. Bakhoda, A., Kim, J., Aamodt, T.M.: Throughput-effective on-chip networks for manycore
accelerators. In: Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 421–432. IEEE Computer Society (2010)

15. Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing CUDA
workloads using a detailed GPU simulator. In: Proceedings of the International Symposium
on Performance Analysis of Systems and Software, April 2009

Overcoming and Analyzing the Bottleneck of Interposer Network 47

http://support.amd.com/documents

Micro-architectural Features
for Malware Detection

Huicheng Peng, Jizeng Wei(B), and Wei Guo

Tianjin Advanced Network Key Lab, School of Computer Science and Technology,
Tianjin University, Yaguan Road. 135, Tianjin, China

{penghuicheng,weijizeng,weiguo}@tju.edu.cn

Abstract. As the variety and complexity of attacks continue to increase,
software-based malware detection can impose significant performance
overhead. Recent works have demonstrated the feasibility of mal-
ware detection using hardware performance counters. Therefore, equip-
ping a malware detector to collect and analyze micro-architecture
features of CPUs to recognize malware at running time has become a
promising method. In comparison to the software-based malware detec-
tion, hardware-based malware detection not only reduces the cost of
system performance, but also possesses better detection capacity. How-
ever, hundreds of micro-architecture events can be monitored by hard-
ware performance counters (HPCs) which are widely available in
prevailing CPUs, such as Intel, ARM and so on. In this paper, we take
Intel ivy bridge i3 processor as an example and examine most of these
micro-architectural features. Instead of relying on experience, the Lasso
algorithm is employed to reduce the dimensionality of feature vector to
6 elements. Furthermore, 4 classification methods based on supervised
learning are applied for the selected features. We improve the classifica-
tion accuracy rate of 15 % on average. The results show that the micro-
architectural features of this paper can reveal the behaviors of malware
better.

Keywords: Malware detection · Performance counters · Micro-
architectural features

1 Introduction

Computer systems are becoming pervasive and improve the way of personal life
such as shopping, communication and work, not only promoting economic devel-
opment but also bringing more threats. Malware, short for malicious software,
is created to damage or does other unwanted actions on a computer system. In
most cases, malware is designed because of the motivations of financial gains
[3]. Computer systems are continually under threat of malware. McAfee Labs
2016 Threats Predictions shows the cyber warfare capabilities of nation-states
will continue to grow in scope and sophistication. Cold and hot offensive cyber
attacks will affect political relationships [6].
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 48–60, 2016.
DOI: 10.1007/978-981-10-2209-8 5

Micro-architectural Features for Malware Detection 49

With the diversification of attack methods in malware, in response, the tra-
ditional software-based malware detection tools have grown in complexity. Espe-
cially, various of machine learning methods have been adopted to detect mali-
cious programs on abundant collected software behavior features including sys-
tem call, file using, memory footprint and et al. [4,5]. However, these software
features are still difficult to directly reveal the characteristics of malware. Thus,
some deliberate attackers can bypass the protection of software-based detection
tools. And, protecting the system in real time is also difficult because of compli-
cated detect/classification algorithms.

Demme et al. [1] recently showed that malware can be successfully detected
with micro-architectural features, also called hardware events, obtained from
hardware performance counters (HPCs) which are specialized registers imple-
mented in modern processors. The cost of micro-architectural feature acquisi-
tion is much less than the software feature and the classification model based
on these features has a very good detection rate. They demonstrated the feasi-
bility of hardware detection methods and highlight the increased security from
leveraging hardware. On the basis of this study, Meltem et al. [2] proposed
malware-aware processors augmented with an online hardware-based detector.
They explored hardware implementations and showed that this detector can
effectively classify malware. However, Demme et al. provided little information
about the concrete micro-architectural features and Meltem et al. paid more
attention on features related to memory address and instructions rather than
micro-architectural features.

Previous works put forward the use of instruction set architecture features
and some micro-architectural features to carry out malicious software detection.
But, they just selected micro-architectural features based on personal experi-
ences. Hence, it is difficult to ascertain that if these features can exactly describe
the characteristics of malware. The main contributions of this paper are as
follows:

(1) We only use micro-architectural features, such as branch instructions refer-
ences, D-TLB load misses, I-TLB misses and cache references, to build the
detection model.

(2) In order to raise the accuracy and interpretability of classification models,
we use the Lasso (Least Absolute Shrinkage and Selection Operator) method
[7] to reduce the dimension of feature vectors.

(3) The efficiency of selected micro-architectural features are verified by four
kinds of supervised machine learning algorithms and we improve the classi-
fication accuracy rate of 15 % on average.

The rest of the paper is organized as follows. We provide the background of
malware types, attack methods, hardware performance counters and micro-
architectural features of the Intel ivy bridge processor in Sect. 2. The exper-
imental method and environment are presented in Sect. 3. We describe the
Lasso-based feature selection in Sect. 4, and analyze the experimental results
of various classification models in Sect. 5. We conclude this paper in Sect. 6.

50 H. Peng et al.

2 Background

2.1 Malware

Malware can be broadly classified into the following types.

Viruses. A computer virus is a small program or piece of code that runs on our
computer without our knowing and has ability to replicate itself. Viruses spread
on their own by attaching their code to other programs, or transmitting itself
across networks and bypassing security systems. They often perform harmful
activity on infected computers, such as stealing hard disk space or CPU time,
corrupting data and make the computer stop working.

Worms. A worm is a special type of virus that can replicate itself and spreads
to other PCs, but cannot attach itself to other programs. They may spread using
one or more of the following methods: email programs, instant messaging pro-
grams, file-sharing programs, social networking sites, network shares, removable
drives and software vulnerabilities. Worms almost always cause some damage to
the network by consuming bandwidth, but the virus always targeted computer
corrupt or modify files.

Trojans. A Trojan is a program that attempts to look innocent, but in fact
it is a malicious application. Different from viruses or worms, a trojan doesn’t
spread by itself. Instead, it tries to convince us to download and install them.
Once installed, it can download more malware, or allow hackers to access our
computers.

Adware. Adware refers to a computer program with advertisement, advertising
as a profitable source software. Such software is often forced to install and can not
be uninstalled, which collecting user information for profiting in the background,
threatening user’s privacy, frequent pop-up advertisement, consuming system
resources, making the system run slower and so on.

Spyware. Spyware is a type of software that is installed on a computer and
collects personal information, such as browsing history, email address, credit
card number and key pressed by the user without the user’s knowledge. These
information will be illegally used by the attacker.

Botnet. A botnet is an interconnected network of computers infected with mal-
ware and controlled by a third party. Each computer in the botnet is called a
bot, which is a type of malware that allows an attacker to take control over an
affected computer. They’re typically used to send spam emails, transmit viruses
and engage in other acts of cybercrime.

2.2 Hardware Performance Counters

Hardware performance counters are a set of specialized registers about four
to six in modern processor that provide detailed information about hardware
and software events, such as cache misses, D-TLB load misses, I-TLB misses,

Micro-architectural Features for Malware Detection 51

branch instructions reference and so on. They were originally designed for the
purpose of hardware verification and debugging, but nowadays, they can be used
for CPU scheduling [8], integrity checking [9], performance monitoring [10], and
workload pattern identification [11]. The function of those registers is to monitor
and measure the processor’s performance events. The information obtained from
these counters can be used for tuning system and compiler performance.

Most modern processors provide a general concept of hardware performance
counters and it has different specific names on different processors. Performance
monitoring unit (PMU) was introduced in the Pentium processor with a set
of model-specific performance-monitoring counters MSRs [12]. The performance
monitoring mechanisms and performance events defined for the Pentium, P6
family, Pentium 4 and Intel Xeon processor are not architectural. They are all
model specific. There are two categories of performance events in Intel processor.
One is a set of architectural performance events and the other is a set of non-
architectural performance events. The visible behavior of architectural perfor-
mance events is consistent across processor implementations. But, the available
events are very few only seven. In contrast, there are a large of non-architectural
performance events that can be measured from four configurable performance
counters. These events vary from on processor model to another and associated
with the micro-architecture implement. Hence, we can use these rich micro-
architectural information on mining useful features and train the classification
models.

3 Experimental Setup

3.1 Date Set and Data Collection

In this study, we collect a large number of malware programs from the VirusSign
website [13]. Using the VirusTotal malware classification tools [14], we identified
different types and families of these malware programs. Note that some malware
programs that can cause system crashes are removed from the data set. For sam-
pling normal programs, SPEC2006 benchmarks are adopted. Finally, we analyze
253 malware programs and 180 normal programs in our experiments.

Previous experiments are carried out on a virtual machine environment. In
this paper, we use the VTune tools [15] to collect data from the real machine,
installed with 32-bit Windows 7 operating system and running an Intel Core
i3-3220 (3.30GHz) CPU with 4 GB memory. We disabled the firewall and Win-
dows security services to support malware operations. VTune provides a rich
set of CPU and GPU performance events. Specific hardware event types that
we take into consideration are listed in Table 1. The micro-architectural features
are collected at a sampling rate of 1000 K instructions [16].

3.2 Machine Learning Method

There are a mass of available classifiers. In this paper, we use four different
classification methods: logistic regression, decision tree, support vector machines
and artificial neural networks.

52 H. Peng et al.

Table 1. Types of hardware events.

Event type Description

ARITH Arithmetic operations

BR INST Branch instructions references

BR MISP Mispredicted branch instructions

DTLB LOAD MISSES D-TLB load misses references

DTLB STORE MISSES D-TLB store misses references

ITLB MISSES I-TLB misses references

LOAD Load instructions

STORE Store instructions

ICACHE Instruction cache references

L2 LINES L2 cache lines references

LLC Last level cache references

(1) Logistic regression, a simple linear classification algorithm, is useful because
it can take an input with any value from negative to positive infinity, whereas
the output always takes values between zero and one and to convert this
likelihood to a binary decision. The advantage of logistic regression is low
computational cost and easy to implement in hardware.

(2) Decision tree uses a treelike model of decisions and their possible conse-
quences. The final result is a tree with decision nodes and leaf nodes. A
decision node has two or more branches and leaf node represents a classifica-
tion or decision. The algorithm has low computing cost with good classifying
accuracy, and the output result is easy to understand.

(3) Support vector machines are supervised learning models with associated
learning algorithms that analyze data used for classification. A support vec-
tor machine performs classification by finding the hyperplane that maximizes
the margin between the two classes. The vectors that define the hyperplane
are the support vectors.

(4) Artificial neural networks are relatively crude electronic networks of neurons
based on the neural structure of the brain. They process records one at a
time, and learn by comparing their classification of the record with the known
actual classification of the record. Artificial neural networks are advancing
machine learning algorithms and their classification performance is better,
but, they have higher computational complexity.

Construction and implementation of classifiers need to go through four steps.
Firstly, all samples will be divided into two parts: training and testing data.
And the ratio of train-test set is 70 %–30 %. Before model training, we need
to process the data to optimize the input data. For support vector machines,
they are better to use standardized data to build models. For neural networks,
data normalization is a kind of processing method of data before building the
neural network model. Secondly, basing on the training data, we respectively

Micro-architectural Features for Malware Detection 53

train four classification models by four machine learning algorithms. Thirdly,
basing on these classification models, we use the testing data to make predictions.
Finally, according the predictions, we calculate the necessary evaluation index
and evaluate the performance of classification models.

4 Lasso-Based Feature Selection

4.1 Lasso Algorithm

The lasso is a shrinkage method, which shrinks the regression coefficients by
imposing a penalty on their size [7]. It is introduced to improve the prediction
accuracy and interpretability of regression models by altering the model fitting
process. The lasso select only a subset of the provided variables for use in the
final model rather than using all of them. The lasso estimate is defined by

β̂lasso = argmin
β

N∑

i=1

⎛

⎝yi − β0 −
P∑

j=1

xijβj

⎞

⎠
2

subject to
P∑

j=1

|βj | � t. (1)

We can re-parameterize the constant β0 by standardizing the predictors; the
solution for β̂0 is ȳ, and thereafter we fit a model without an intercept. The
xij is necessary input data, which are the collected micro-architectural features.
Because of the nature of the constraint, making t sufficiently small will cause
some of the coefficients to be exactly zero. Thus the lasso does a kind of con-
tinuous subset selection. If t is chosen larger than t0 =

∑p
1 |β̂j |, then the lasso

estimates are the β̂j ’s. On the other hand, for t = t0
2 say, then the least squares

coefficients are shrunk by about 50 % on average.
We can also convert the lasso problem into the equivalent Lagrangian form

β̂lasso = argmin
β

⎧
⎨

⎩
1
2

N∑

i=1

(yi − β0 −
P∑

j=1

xijβj)2 + λ
P∑

j=1

|βj |
⎫
⎬

⎭ , (2)

which makes explicit shrinkage. Here λ � 0 is a complexity parameter that con-
trols the amount of shrinkage: the larger the value of λ, the greater the amount
of shrinkage. There is a one-to-one correspondence between the parameters t in
(1) and λ in (2). Computing the lasso solution is a quadratic programming prob-
lem, although efficient algorithms are available for computing the entire path of
solutions as λ is varied [21].

4.2 Feature Selection

When we use the data to train the classifier model, it is important to achieve
a balance between over fitting and fitting. One way to prevent over fitting is to
constrain the complexity of the model. Feature selection has become the focus

54 H. Peng et al.

−10 −8 −6 −4 −2

0.
1

0.
2

0.
3

0.
4

log(Lambda)

M
is

cl
as

si
fic

at
io

n
Er

ro
r

36 35 32 33 34 33 31 29 27 22 17 14 10 8 7 7 5 2 1

Fig. 1. Plot for Lasso Algorithm.

of much research in areas of application for which datasets with much more
variables are available [17].

To pick out more representative micro-architectural features for classifica-
tion, the Lasso algorithm is utilized to complete feature selection in this paper.
The Intel processor permits hundreds of events to be monitored using hardware
performance counters. According to previous researches in the literatures, we
examine 65 micro-architectural features [18,19] and collect every event at the
rate of 1000 K instructions by using VTune tools. We implement Lasso feature
selection by using package of glmnet in R language [20]. Based on these config-
urations, we plot the result of feature selection in Fig. 1.

The horizontal axis is the logarithm of the lambda value, which is used to
control the severity of the punishment. If it is set too large, the final model
parameters will tend to zero. In contrast, if its value is too small, the effect of
reducing the dimension will not be good. The vertical axis presents the misclas-
sification error. The number of features is represented by the numbers above the
curve. The value of each lambda is corresponding to the number of features and
the error rate of classification. Each red dot in the graph shows the number of
features corresponding to different lambda and the error rate of classification.
For example, when the red dot represents that the logarithm of the lambda
values is −2, we will get 3 features with 24 % misclassification error. From the
Fig. 1 we can see that the best value of lambda is the lowest point in the red
curve, i.e., the number of features is 17. Because the number of registers for
collecting the micro-architectural features are very few, then picked out micro-
architectural features should be down to a reasonable number if possible, as well
as not increasing the classification errors. As a result, six features are enough to
achieve a good classification and the misclassification error is still low.

These six events are listed in Table 2. The first one is speculative and
retired branches and the second one is speculative and retired direct near calls.

Micro-architectural Features for Malware Detection 55

Table 2. Selected hardware events marking malware.

Event number Description

Event1a Speculative and retired branches

Event2b Speculative and retired direct near calls

Event3c Load operations that miss the first DTLB level, but hit the
second and do not cause a page walk

Event4d Misses in all ITLB levels that cause completed page walk

Event5e Instruction cache and victim cache misses

Event6f L2 cache lines in E state filling L2
a

Event1 is BR INST EXEC.ALL BRANCHES.
b Event2 is BR INST EXEC.TAKEN DIRECT NEAR CALL.
c Event3 is DTLB LOAD MISSES.STLB HIT.
d Event4 is ITLB MISSES.WALK COMPLETED.
e Event5 is ICACHE.MISSES.
f Event6 is L2 LINES IN.E.

Both of these two events are related to branch instructions. The other four
events are related to memory access. DTLB LOAD MISSES.STLB HIT is load-
ing operations that missing the first D-TLB level, but hitting the second and
not causing a page walk. This event is relevant only in case of multiple TLB
levels. ITLB MISSES.WALK COMPLETED is missing in all I-TLB level that
cause completed page walk. ICACHE.MISSES is instruction cache, streaming
buffer and victim cache misses. L2 LINES IN.E counts the number of L2 cache
lines in the exclusive state. The execution paths of malicious software, in order
to achieve the purpose of the attack, often occur very weird behaviors different
from the normal program. Thus, the branch prediction unit will produce differ-
ent judgments. To disguise malware as some legitimate software, attackers might
use a file name of a legitimate Windows file or even inject code into a running
legitimate process. No matter what they do, code has to run, which means it has
to be in memory. Hence, malware program will cause different ways of memory
access. Intel mainstream series processors, such as i3, i5 and i7, all have these
six events. Therefore, our method can be widely applied to modern processors.

5 Experimental Results and Analysis

5.1 Experimental Results

According to the above analysis, we find that there are two types of micro-
architectural feature that can be used to distinguish malware from normal pro-
grams. One is branch prediction relevant and the other is memory access rele-
vant. Firstly, we respectively build classification models for these two types of
hardware events by four classification algorithms. There are logistic regression,
decision tree, support vector machines and artificial neural networks.

56 H. Peng et al.

ROC Curve

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression
Decision Tree
Support Vector Machine
Artificial Neural Network

(a)

ROC Curve

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression
Decision Tree
Support Vector Machine
Artificial Neural Network

(b)

Fig. 2. ROC plots for branch prediction and memory access events.

The receiver operating characteristic (ROC) curve based on branch events is
shown in Fig. 2(a) and the ROC curve based on memory access events is shown in
Fig. 2(b). ROC curve is often used to evaluate the merits of a two value classifier.
As shown in the Fig. 2, the horizontal axis is FP (false positive) rate and the
vertical axis is TP (true positive) rate. In our experiment, FP rate is defined as
Eq. 3,

(FPrate =
FP

FP + TN
), (3)

where FP is an error classification for malicious software and TN is the true
classification for the normal program. TP rate is defined as Eq. 4,

(TPrate =
TP

TP + FN
), (4)

where TP is the correct classification for malicious software and FN is an error
classification for the normal program. The upper left corner of an ROC graph
(0,1) provides the best classification performance with no false positives and
100 % true positive rate. When the ROC curve is closer to the upper left corner,
the better performance of the classifier is achieved.

The four classifiers of branch prediction events can correctly identify about
80 % of malware with about 23 % normal programs being classified as malware
by mistake on average. The four classifiers of memory access events can correctly
identify about 85 % of malware with only 10 % normal programs being classified
as malware on average. It follows that the classifiers of memory access are better
than branch prediction to recognize malware. Hence, we can infer that the ways
of memory access of malware are very different from the normal programs. By
theoretical analysis and experiments, we have proved the conclusions in previous
works [2,16]. Further analysis of the results shows that malware attacks will
change program flow and influence the way of memory access.

Micro-architectural Features for Malware Detection 57

ROC Curve

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression
Decision Tree
Support Vector Machine
Artificial Neural Network

Fig. 3. ROC plot for combining features models.

Then, we combine these two types of events to build the classification models.
The corresponding ROC curve of these models is depicted in Fig. 3. As expected,
if we allow some false positives, classifiers can find more malicious software. The
four classifiers can correctly identify about 93.8 % of malware with only 6.1 %
normal programs being classified as malware on average. The results show that
the collecting hardware events can be used to detect malicious software with high
accuracy. As we can see in the Fig. 3, the classifiers of artificial neural networks
and support vector machine have better classification ability than two other
models. If we take into account the computational complexity, the classification
efficiency of logistic regression and decision tree are also very good.

5.2 Analysis and Evaluation

In order to better evaluate the performance of the four classification models, we
calculate the value of TP rate, FP rate and AUC (Area under the ROC curve),
which are listed in Table 3. Taken the artificial neural network as an example,
the TP rate represents that 95.2 % real malware are successfully picked up and
the FP rate shows that only 2.1 % normal programs are classified as malware
by mistake. The TP rate of logistic regression also reaches up to 91.6 %, but
its FP rate is relatively high (about 10.2 %), which is the highest in the four
classification models.

The reason of using AUC value as the evaluation criteria is that most of
the time ROC curve does not clearly indicate that the effect of which classifier
is better. But as a numerical value, the corresponding AUC is bigger classifier
is better. From the last column of the table, we can see that the classification
performance of artificial neural networks is the best. From TP rate, FP rate and
the ROC curve, we cannot judge which is better between logistic regression and
decision tree. However, according the AUC, we can confirm that the model of
logistic regression is better.

58 H. Peng et al.

Table 3. Classification performance of the algorithms.

Classifier name TP rate FP rate AUC

Logistic Regression 91.6 % 10.2 % 0.968

Decision Tree 90.4 % 8.1 % 0.920

Support Vector Machine 93.9 % 4.1 % 0.988

Artificial neural Networks 95.2 % 2.1 % 0.995

5.3 Performance Comparison

The performances of Demme et al.’s work [1], Meltem et al.’s work [2], and our
work are evaluated by the TP rate and the FP rate. The overall comparison
results of the approaches are shown in Table 4. Our logistic regression classifier
has a much higher TP rate than Demme et al.’s work and Meltem et al.’s at the
same FP rate. The TP rate of our artificial neural networks is higher than the
Meltem et al.’s, while the FP rate is much lower than the Meltem et al.’s. There
are mainly two reasons why we greatly improve the performance of classification.
First, we only use micro-architecture features, so it is more essential to reflect the
behavior of malicious software on hardware level. Second, the micro-architecture
features that lasso algorithm selects are better to distinguish between malicious
software and normal software. The comparison results imply that our classifiers
can identify more malware programs. In other words, they are also possible to
identify the malicious software that other classifiers can not detect.

Finally, we have drawn the conclusion that the behavior of malware at micro-
architectural level has a strong relativity with branch instructions and memory
access and this may help us to directly detect malicious software at the hardware
level. The performance of the classification model trained by micro-architectural
features which is collected at low overhead is effective.

Table 4. Performance comparison of the approaches.

Works Algorithms TP rate FP rate

Demme et al. Decision Tree 82.3 % 10 %

KNN 73.3 % 10 %

Random Forest 68.9 % 10 %

Meltem et al. Logistic Regression 70 % 10 %

Artificial Neural Networks 88 % 20 %

Our work Logistic Regression 91.6 % 10.2 %

Decision Tree 90.4 % 8.1 %

Support Vector Machine 93.9 % 4.1 %

Artificial Neural Networks 95.2 % 2.1 %

Micro-architectural Features for Malware Detection 59

6 Conclusion

A promising approach to detect malicious software is to build malware detectors
in hardware. In this paper, we want to make sure that some micro-architectural
performance events collected by hardware performance counters can be used to
detect malicious software with low overhead. We use a statistical approach to
identify the 6 most easily distinguishable micro-architectural features for normal
programs and malicious software. These features can be divided into two cate-
gories, one of which is related to branch instructions, and the other is related
to memory read and write especially D-TLB, I-TLB and cache relevant. We
demonstrate that there is a difference between malware and normal program in
the relevant behavior of D-TLB, I-TLB, cache and branch prediction. In conclu-
sion, our experimental results show that it can train a very good classification
model by only using the hardware events to detect the malware. The classifier of
artificial neural networks can detect malware with a high detection rate 95.2 %
and an acceptable false positive rate of 2.1 %.

Acknowledgment. Thiswork is supported by theNatural ScienceFoundation ofChina
(No. 61402321) and the Natural Science Foundation of Tianjin (No. 15JCQNJC00100).

References

1. Demme, J., Maycock, M., Schmitz, J., et al.: On the feasibility of online mal-
ware detection with performance counters. ACM SIGARCH Comput. Archit. News
41(3), 559–570 (2013)

2. Ozsoy, M., Donovick, C., Gorelik, I., et al.: Malware-aware processors: a framework
for efficient online malware detection. In: 2015 IEEE 21st International Symposium
on High Performance Computer Architecture, pp. 651–661 (2015)

3. Stone-Gross, B., Abman, R., Kemmerer, R., Kruegel, C., Steigerwald, D., Vigna,
G.: The underground economy of fake antivirus software. In: Schneier, B. (ed.)
Economics of Information Security and Privacy III, pp. 55–78. Springer, New York
(2013)

4. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer:
using system-centric models for malware protection. In: Proceeding of the 17th
ACM Conference on Computer and Communications Security, pp. 399–412 (2010)

5. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC-FSE 07, p. 514 (2007)

6. McAfee Labs Report 2016 Threats Predictions. http://www.mcafee.com/us/
resources/reports/rp-threats-predictions-2016.pdf

7. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.:
Ser. B (Methodol.) 58, 267–288 (1996)

8. Bulpin, J.R., Pratt, I.: Hyper-threading aware process scheduling heuristics. In:
USENIX Annual Technical Conference, General Track, pp. 399–402 (2005)

9. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: Proceedings of the Sixth ACM
Workshop on Scalable Trusted Computing, pp. 71–76. ACM (2011)

http://www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf

60 H. Peng et al.

10. Contreras, G., Martonosi, M.: Power prediction for intel XScale processors using
performance monitoring unit events. In: Proceedings of the 2005 International
Symposium on Low Power Electronics and Design, ISLPED 2005, pp. 221–226.
IEEE (2005)

11. Cohen, I., Chase, J.S., Goldszmidt, M., et al.: Correlating instrumentation data to
system states: a building block for automated diagnosis and control. In: OSDI, p.
16 (2004)

12. Guide, P.: Intel 64 and IA-32 Architectures Software Developers Manual. Volume
3B: System programming Guide, Part 2. Chaps. 18,19 (2011)

13. VirusSign. http://www.virussign.com/index.html
14. VirusTotal. https://www.virustotal.com/
15. Intel VTune Amplifier 2016. https://software.intel.com/en-us/

intel-vtune-amplifier-xe
16. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware

detection using hardware features. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 109–129. Springer, Heidelberg (2014)

17. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

18. Shen, K., Zhong, M., Dwarkadas, S., et al.: Hardware counter driven on-the-fly
request signatures. ACM SIGARCH Comput. Archit. News 36(1), 189–200 (2008)

19. Hoste, K., Eeckhout, L.: Comparing benchmarks using key microarchitecture-
independent characteristics. In: 2006 IEEE International Symposium on Workload
Characterization, pp. 83–92. IEEE (2006)

20. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput.
Graph. Stat. 5(3), 299–314 (1996)

21. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York (2001)

http://www.virussign.com/index.html
https://www.virustotal.com/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

An Energy Efficient Algorithm for Virtual
Machine Allocation in Cloud Datacenters

Ahmad Ali, Li Lu, Yanmin Zhu(B), and Jiadi Yu

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

{ahmadali,luli jtu,yzhu,jiadiyu}@sjtu.edu.cn

Abstract. In cloud datacenters, virtual machine (VM) allocation in a
power efficient way remains a critical research problem. There are a num-
ber of algorithms for allocating the workload among different machines.
However, existing works do not consider more than one energy efficient
host, thus they are not efficient for large scale cloud datacenters. In
this paper, we propose a VM allocation algorithm to achieve higher
energy efficiency in large scale cloud datacenters. Simulation result shows
that, compared with BRS, RR and MPD algorithms, our algorithms can
achieve 23 %, 23 % and 9 % more power efficiency in large scale cloud
environment.

Keywords: Cloud computing · Dynamic Voltage and Frequency Scaling
(DVFS) · Data centers · Bin packing

1 Introduction

Cloud computing [1] is a popular computing service model. Users can easily
access and manage a pool of computing resources like storage, networks, servers
and other client applications in the cloud. This on-demand technology service
helps user speedily release with trivial management efforts [2]. Clouds try to
decrease the price of software and hardware management.

Managing infrastructures cost-efficiently [3] is one of the important tasks in
the cloud. Many famous information technology organizations and companies
have installed big scale datacenters with thousands of computing servers to pro-
vide cloud computing services, such as Google, IBM, Amazon and Microsoft.
The incredible growth in the amount and size of datacenters leads to substan-
tial power consumption. According to the report of Environmental Protection
Agency (EPA) in USA, datacenters consume around 61TWH of energy in 2006
i.e. 1.5 % of the entire power usage. The report estimated that the power con-
sumption will double in each five years. Inside datacenters 40 % power is con-
sumed by computing infrastructures, 45 % is consumed for the cooling machines
and 15 % is lost in the power generation units. The EPA report shows that 70 %
power consumption can be saved by applying state-of-art efficiency methods at
the cooling, power units and computing infrastructure. Table 1 compares the
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 61–72, 2016.
DOI: 10.1007/978-981-10-2209-8 6

62 A. Ali et al.

Table 1. Annual saving in 2011 using state-of-art methods

ICT apparatus 2011 energy usage Power consumption under
state-of-art technique

Infrastructure 42.1 18.1

Network devices 4.1 1.7

Storage 4.1 18

Servers 33.7 14.5

Overall 84.1 36.1

Fig. 1. VM allocation in cloud computing

power consumption of datacenters in 2011 with that under applying the state-
of-art methods [4].

VM allocation and placement technique is one of the background technology
to achieve this efficiency in cloud infrastructure. VM allocation and placement
technique is a method of mapping VMs to physical hosts. After users finish
selecting VMs, they’ll be allocated to different physical hosts for executing user
application. Figure 1 shows that the procedure of VM allocations. VM allocations
have a direct impact on the energy consumption since it is one of important parts
in the Resource Management (RM). The main purpose of the allocation policy
is to allocate the available resources efficiently, i.e., the resource utilization is
maximized to reduce power consumption. Providers can shutdown physical host
as more as possible while ensure their service needs. Thus the power consumption
would be minimized.

To ensure quality of service (QoS), only unused hosts can be shutdown. Thus
the critical step is to allocate VMs efficiently, i.e., increasing the utilization of
hosts. Since the workload is dynamic and future workload is hard to predict,
allocating VM to hosts efficiently is difficult to decide.

An Energy Efficient Algorithm for Virtual Machine Allocation 63

Fig. 2. VM allocation problem as bin packing problem

Efficient VM allocation remains a critical problem. In [5] authors describe
VM allocation as a bin packing problem. They propose a best-fit decreasing on
VM allocation i.e. power-aware BFD (PABFD). PABFD allocate a VM to a host
that will raise least power consumption, it also allocate VMs to a host that has
less cores based on CPU utilization. In [6] authors proposed allocation of VMs
scheduling algorithm to minimized power consumption during task execution in
cloud datacenters environment. In [7] authors proposed VM allocation method.
If request does not map to any VM then they focus on near that most suitable
VM pattern to the customer to check remain in queue. However, these works do
not discuss the condition when more than one energy efficient hosts are available.

In this paper, we concentrate on IaaS clouds, e.g., Amazon EC2. We formulate
the problem of VMs allocation as a bin packing problem. The objective is to
minimize energy consumption in a datacenters. To overcome the disadvantage
of just choosing one host, we proposed Energy Efficient (EE) algorithm by select
most energy efficient host first. The proposed algorithm focus on decreasing
the power consumption in cloud datacenters. To achieve this goal, we adopt
Power Aware (PA), Non-Power Aware (NPA), and Dynamic Voltage Frequency
Scheduling (DVFS) techniques to our algorithm. The experiment result shows
that our algorithm achieves 23 %, 23 % and 9 % higher power efficiency than
BRS, RR and MPD algorithms.

The rest of this paper is organized as follows: we formulate the VM allocation
problem as a bin packing problem in Sect. 2. In Sect. 3 we propose a novel VM
allocation algorithm to achieve higher energy efficiency. In Sect. 4, we evaluate
the proposed technique, and compare the performance with traditional heuris-
tics in an event driven simulator. Sects. 5 and 6 show some related works and
conclusion respectively.

64 A. Ali et al.

2 Problem Fomulation

In this section, we’ll formulate the VM allocation problem as a bin packing
problem.

VM allocation problem can be seen as a bin packing problem. Figure 2
shows the VM allocation problem. VMs are regarded as items and host physical
machines are treated as bins. Each host has fixed volumes of CPUs, which is the
size of each bin.

The computational resources consumed by VMs is regarded as the size of
each item. VMs also consume electricity power when they are running on the
hosts. These powers are seen as the value of each item. Different from typical bin
packing problem, the objective of VM allocation is to minimize the sum power
consumed by VMs. To reduce the power consumption, we minimize the number
of host that users use. Under the framework of bin packing problem, the sum
size of items cannot exceed the capacity of bins, i.e., the sum computational
resources consumed by VMs cannot exceed the capacity of hosts. Thus, VM
allocation problem is formulated as:

min z =
n∑

j=1

Yj (1)

s.t.

n∑

i=1

wixij ≤ cj (2)

n∑

j=1

xij = 1, (3)

where wi is the computational resources consumed by the ith VM, and cj denotes
the capacity of the jth host. Yj is a binary variable, meaning whether binj is
used or not. xij denotes the decision variable, meaning if itemi is placed in binj .

Yj =

{
1, if binj is used
0, otherwise

(4)

xij =

{
1, if itemi is placed in binj

0, otherwise.
(5)

So far, the VM allocation problem is formulated as a bin packing problem.
We treat VMs as items and hosts as bins. The objective of VM allocation is to
minimize the power consumption, i.e., minimize the number of used hosts. The
constraint is to ensure quality of service.

3 Proposed Algorithm

In this section, we propose the Energy Efficient allocator (EE) algorithm to
achieve high energy efficient.

An Energy Efficient Algorithm for Virtual Machine Allocation 65

Fig. 3. Flow chart of the EE algorithm

The basic idea of EE algorithm is greedy, i.e., we always select the most
energy efficient host to place our VMs. If there are more than one EE hosts,
then the allocation is implemented using PABFD. In case PABFD returns more
than one energy efficient hosts, then the more utilized host is nominated to
reduce the number of migrations. The last step is divided into two different
steps. The first one is to select a host that is more utilized to reduce the number
of migrations. The second option is to choose a less utilized host to balance the
utilization. Figure 3 shows the main procedures of EE algorithm.

To show energy efficiency, we first define a metric to evaluate the energy
efficiency. The energy efficiency is the ratio between CPU capacity and energy.

HEE =
Chost

Pmax
, (6)

where Chost is the entire CPU capacity and Pmax is the maximum energy con-
sumption of the host.

Algorithm 1 shows details of the Energy Efficient allocator algorithm. First
in line 4 we check all hosts whether the VM is suitable or not. If it is suitable, the
process will be end. In line 11 we find the most energy efficient host if we have
more hosts available. If this condition is not satisfied, we check the most efficient
host according to MPD. But this step is very expensive because if we do not have
VM but still the author proposed this algorithm and we consider this algorithm
and merge with our proposed algorithm to find the best efficient hosts for VM
allocation. In line 17, we calculate the minimum power consumption. In line 21,

66 A. Ali et al.

if the power difference and the minimum power consumption are equal, we can
find the allocated host and the related host power. In line 27–29, we calculate
decision on utilization based on if there is no min power available. When we
take decision on utilization, it will increase the utilization of hosts. In line 30, we
check the condition for utilization of host. If Uh > Ua is satisfied, we assign host
to allocated host. Otherwise, we check for equality of Uh and Ua, and check the
total mips of host. Then we allocate the host if line 34 condition is satisfied.

In Algorithm 1, function getpowerafterallocation() returns the total power
of host after allocation of VM. Function getutalization() returns CPU current
percentage used while gettotalmips() function returns total MIPS that CPU
supports. Function getmaxpower() returns host maximum power while getpower
function returns host current power usage. Function getMIPS() returns host or
VM maximum MIPS utilization.

The time complexity of our algorithm is O(n). Also the space complexity is
O(n), and n is related to the number of hosts.

4 Evaluation Results

In this section, we conduct a simulation to evaluate the performance our EE
algorithm with BRS, RR and MPD algorithms in CloudSim. We combine these
four algorithms with three techniques, i.e., NPA, PA and DVFS to evaluate the
performance.

4.1 Simulation Setup

To evaluate our proposed allocation algorithm, we conduct several simulations
in an event driven simulation environments, i.e., CloudSim. In CloudSim, the
workloads are represented by cloudlets which are submitted to VMs. VMs are
placed on the available servers (i.e., hosts) in the datacenter. The processing
speed of servers is evaluated by Millions of Instructions Per Second (MIPS)
rating.

To analyze the performance of proposed algorithm, we conduct the sim-
ulations with small, medium and large size datacenters having heterogeneous
machines (Table 2).

– In case of small size datacenters, we choose 10 hosts, 20 VMs and 20 tasks.
– In case of medium size datacenter we have selected 100 hosts, 200 VMs and

200 tasks.
– In case of large size we choose 1000 hosts, 2000 VMs and 2000 tasks.

The detailed configurations for hosts and VMs are as following:

– Hosts: each host has 1 TB of storage, 24 GB RAM, 1 processing entity (PE)
and gigabit Ethernet. And hosts adopt Linux and Xen as operating system
and virtual machine monitor respectively.

– VMs: each VM requires 1 PE; the processing capacity of each VM are 500,
750, and 1000 MIPS which are create in a round-robin fashion.

An Energy Efficient Algorithm for Virtual Machine Allocation 67

Algorithm 1. Allocator EE
Input hostlist, VM
Output allocatedhost
1: Best=0
2: allocatedhost=host
3: for each host in list do
4: if host is suitable for vm then
5: Powerafterallocation= host.getPowerafterallocation()
6: if Powerafterallocation is not null then
7: MIPS=host.getmips()
8: Maxp=host.getmaxpower()
9: Powerefficiency=MIPS/MaxPower

10: MinPower=max value
11: if Powerefficiency >Best then
12: Best=Powerefficiency
13: allocatedhost=host
14: end if
15: if Powerefficiency==Best then
16: Powerdiff=Powerallocation-host.getPower ()
17: if Powerdiff <MinPower then
18: MinPower=Powerdiff
19: allocatedhost=host
20: end if
21: if Powerdiff==MinPower then
22: Pa=allocatedhost.getPower()
23: Ph=host.getPower()
24: if Ph <Pa then
25: allocatedhost=host
26: end if
27: if Ph==Pa then
28: Ua=allocatedhost.getutalization()
29: Uh=host.getutalization()
30: if Uh >Ua then
31: allocatedhost=host
32: end if
33: if Uh==Ua then
34: if host.gettotalmips() >allocatedhost.gettotalmips() then
35: alloactedhost=host
36: end if
37: end if
38: end if
39: end if
40: end if
41: end if
42: end if
43: end for
44: return allocatedhost

68 A. Ali et al.

Table 2. Example for heterogeneous datacenter

Hosts Host1 Host2 Host3 Host4 Host5

MIPS 1000 1500 2000 2500 3000

Power 200 250 300 350 400

– Tasks: every task has 300 bytes of data before and after the processing
(Generalized Cloudsim model); every task consists of 10,000, 15,000, 20,000
and 25,000 MIPS which are create in a round-robin fashion.

In our simulations, we evaluate the performance of algorithms combined with
three datacenter techniques: (1) NPA (which do not support to shutdown unused
machines), (2) PA (which support to shut down unused machines) and (3) DVFS
idle machine consumes 70 % of its energy and totally used machine consumes
100 % of the energy.

4.2 Simulation Results

To validate our proposed algorithm, the results were compared with two classic
scheduling algorithms i.e. Best Resource selection (BRS), Round Robin (RR) and
MPD, which is one Cloudsim power management algorithm in terms of cloudlets
completion time and power consumption [7]. In the BRS policy the machine with
the peak ratio (MIPS in Use/Total no-of-MIPS) is chosen for any VM next in
line. This ensure reducing no-of migrations and have affinity to achieve quicker
outcomes. In case of RR policy, every VM is allocated to a different machine using
circular policy. Machines that can allocate VM are avoided. In case there is no
machines talented to accommodate VMs, the allocation is postponed. MPD is
used as the vital model of power savings in Cloudsim environment. Each coming
VM is allocated to the machine which will consume less power to run the VM.

Figure 4(a), (b) and (c) show the evaluation result under NPA and PA tech-
niques. Figure 4(a) shows the result for small size datacenter. Our proposed
algorithm achieves 21 %, 21 % and 3.7 % higher power efficiency than RR, BRS
and MPD combined with PA technique. Figure 4(b) shows the result for medium
size datacenter. Our proposed algorithm saves 17 %, 16 %, and 6 % more power
than RR, BRS and MPD combined with PA technique in this case. Figure 4(c)
shows the result for large size datacenter. Our proposed algorithm works 19 %,
16 % and 7.1 % better than RR, BRS and MPD combined with PA technique
respectively. Since under NPA technique, all existing algorithms could not make
significant progress, we do not show the improving ratio.

Figure 5(a), (b) and (c) show the evaluation result under DVFS technique.
Figure 5(a) shows the result for small size datacenter. Our proposed algorithm
saves 23 %, 23 % and 9 % more power than RR, BRS and MPD. Figure 5(b) shows
the result for medium size datacenter. Our proposed algorithm works 18 %, 13 %
better than RR, BRS. But MPD performs the same to our proposed algorithm.
Figure 5(c) shows the result for large size datacenter. Our proposed algorithm

An Energy Efficient Algorithm for Virtual Machine Allocation 69

RR-NPA BRS-NPA MPD-NPA EE-NPA RR-PA BRS-PA MPD-PA EE-PA
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
w

er
 C

on
su

m
pt

io
n

(a) Power consumption
evaluations for Small data
center

RR-NPA BRS-NPA MPD-NPA EE-NPA RR-PA BRS-PA MPD-PA EE-PA
0

1

2

3

4

5

6

7

8

Po
w

er
 C

on
su

m
pt

io
n

(b) Power consumption
evaluations for Medium
data center

RR-NPA BRS-NPA MPD-NPA EE-NPA RR-PA BRS-PA MPD-PA EE-PA
0

10

20

30

40

50

60

70

80

Po
w

er
 C

on
su

m
pt

io
n

(c) Power consumption
evaluations for Large data
center

Fig. 4. Power consumption evaluations among different algorithms for different size
data center under NPA and PA techniques

EE-PA-DVFS MPD-PA-DVFS BRS-PA-DVFS RR-PA-DVFS
0

0.05

0.1

0.15

0.2

0.25

0.3

Po
w

er
 C

on
su

m
pt

io
n

EE-PA-DVFS MPD-PA-DVFS BRS-PA-DVFS RR-PA-DVFS
0

0.5

1

1.5

2

2.5

3

Po
w

er
 C

on
su

m
pt

io
n

EE-PA-DVFS MPD-PA-DVFS BRS-PA-DVFS RR-PA-DVFS
0

5

10

15

20

25

30

Po
w

er
 C

on
su

m
pt

io
n

(a) Power consumption
evaluations for Small data
center

(b) Power consumption
evaluations for Medium
data center

(c) Power consumption
evaluations for Large data
center

Fig. 5. Power consumption evaluations of different algorithms for different size data
center under DVFS techniques

show better performance than RR, BRS, and MPD at the ratio of 20 %, 14 %
and 1.1 % respectively.

To evaluate the performance and stability of our algorithm and other three
algorithms, we compare the average power consumption and standard deviation
among them. From Table 3 we can see, our proposed algorithm achieves better
result in both average power consumption and standard deviation than other
three algorithms in case of large size datacenter. Smaller standard deviation
shows higher stability of algorithms. Similarly, from Table 4 we can also see
that, our proposed algorithm works better than other three existing techniques
both in the average and standard deviation.

Table 3. Comparative table for power aware simulation

Experiments RR BRS MPD EE

Large size 33.82 0.084 31.77 0.068 29.25 0.036 27.49 0.032

Small size 0.33 0.0074 0.32 0.0088 0.26 0.0057 0.26 0.0057

70 A. Ali et al.

Table 4. Comparative table for large size DVFS simulation

Experiments RR BRS MPD EE

Large size 26.48 0.057 24.97 0.046 21.44 0.038 21.11 0.034

From the above experiments we can see that the proposed method can save
12.8 % power in case of PA and 12.2 % in the case of DVFS enabled techniques.
From the analysis, we find that our method saves more power in large scale
systems.

5 Related Work

Beloglazov et al. [8] focused on resource management technique that provide
quality-of-service constraint and minimizing operating costs. Performing con-
solidation of VMs according to resource utilization help to save power. Berl
et al. [9] used energy efficient mechanism for cloud computing, specifically in the
area of networks and hardware framework. It also focuses on decreasing power
consumption in software and hardware, improving the load balancing and min-
imizing communication power consumption. Suri et al. [10] design an allocation
algorithm that decrease the load on servers needs to achieve minimum power con-
sumption. In [11], the authors propose a technique that allocates VMs to achieve
the goal of decreasing power consumption in virtualized cloud datacenters.

In [5,12–17] power-aware VM allocation techniques for energy efficient RM
in cloud datacenters were proposed. In [5] authors proposed allocation of VMs
scheduling algorithm to minimized power consumption during task execution in
cloud datacenters environment. This paper also concentrate on to shutdown of
underutilized hosts and DVFS. In [7] authors proposed VM allocation method.
If request does not map to any VM then they focus on near that most suitable
VM pattern to the customer to check remain in queue. They also focused on
to describe concept of cloud to choose an efficient VM to facilitate customers
as well as maintaining QoS and SLA. VM placement are NP-hard problem and
still there is no optimal solution. Also, in [18,19] discuss the VM placement
and [20,21] discuss affinity aware solution to solve complicated problems. In a
datacenters power saving increases by keeping VMs on a physical hosts in an
optima way.

In [22] authors formulated score-based scheduling method as hill-climbing
algorithm, also focus on principle map searching (host, VM) pairs. Where, the
score of each (host, VM) pair is the addition of numerous factors, including
resource requirement, power consumption, software and hardware fulfilment. A
clouds scheduler can use the metric of performance-per-watt to assign VMs to
hosts for energy efficiency. Their proposed approach, i.e. EPOBFs [23] allocates
a host that has maximum MIPS/Watts. In [22] authors discussed PA VM allo-
cation heuristics for power-efficient resource management in cloud datacenter.
A hybrid VM provisioning method is proposed in [24], which is based on two

An Energy Efficient Algorithm for Virtual Machine Allocation 71

methods, (i) On Demand (OD) and (ii) Spare Resources (SR). OD policy start
the resources when they are wanted. To avoid the requests timeout issue, the
authors implemented SR policy to decrease energy consumption on private
clouds and avoid SLA violation.

Our proposed solution differs from these existing techniques. We select a
more energy efficient host for the VM placement.

6 Conclusion

Cloud computing services enable developers and companies flexibly manage their
infrastructure since it provides infinite resources and adopt the pay-as-you-go
pricing model. There are certain risks related to cloud computing such as energy
cost minimization and carbon dioxide emissions reduction. We formulate the
VM allocation problem as a bin packing problem. To achieve power efficiency,
we proposed a VM allocation algorithm to place VMs requests on most energy
efficient physical hosts. We evaluated the proposed method with three existing
algorithms, including BRS, RR and MPD. By using NPA, PA and DVFS enabled
techniques in a simulation environment, our algorithms can achieve 23 %, 23 %
and 9 % more power efficiency than other algorithms.

References

1. Zakarya, M., Khan, A.A.: Cloud QoS, high availability & service security issues
with solutions. IJCSNS 12, 71 (2012)

2. Malik, S.U.R., Khan, S.U., Srinivasan, S.K.: Modeling and analysis of state-of-
the-art VM-based cloud management platforms. IEEE Trans. Cloud Comput. 1, 1
(2013)

3. Hussain, H., Malik, S.U.R., Hameed, A., Khan, S.U., Bickler, G., Min-Allah, N.,
Qureshi, M.B., Zhang, L., Yongji, W., Ghani, N., et al.: A survey on resource
allocation in high performance distributed computing systems. Parallel Comput.
39, 709–736 (2013)

4. Shuja, J., Bilal, K., Madani, S.A., Khan, S.U.: Data center energy efficient resource
scheduling. Clust. Comput. 17, 1265–1277 (2014)

5. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing (CCGrid) (2010)

6. Lago, D.G.d., Madeira, E.R., Bittencourt, L.F.: Power-aware virtual machine
scheduling on clouds using active cooling control and DVFS. In: Proceedings of
the 9th International Workshop on Middleware for Grids, Clouds and e-Science
(2011)

7. Shah, M.D., Prajapati, H.B.: Reallocation and allocation of virtual machines in
cloud computing (2013)

8. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized
cloud data centers. In: Proceedings of the 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing (2010)

9. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,
Pentikousis, K.: Energy-efficient cloud computing. Comput. J. 53, 1045–1051
(2010)

72 A. Ali et al.

10. Binder, W., Suri, N.: Green computing: energy consumption optimized service
hosting. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma,
P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 117–128. Springer,
Heidelberg (2009)

11. Hu, L., Jin, H., Liao, X., Xiong, X., Liu, H.: Magnet: a novel scheduling policy for
power reduction in cluster with virtual machines. In: IEEE International Confer-
ence on Cluster Computing (2008)

12. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28, 755–768 (2012)

13. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized
cloud data centers. In: Proceedings of the 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing (2010)

14. Buyya, R., Beloglazov, A., Abawajy, J.: Energy-effcient management of datacenter
resources for cloud computing: a vision, architectural elements, and open challenges
(2010). arXiv preprint arXiv:1006.0308

15. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurr. Comput. Pract. Exp. 24, 1397–1420
(2012)

16. Qian, H., Lv, Q.: Proximity-aware cloud selection and virtual machine allocation in
IaaS cloud platforms. In: IEEE 7th International Symposium on Service Oriented
System Engineering (SOSE) (2013)

17. Schmidt, M., Fallenbeck, N., Smith, M., Freisleben, B.: Efficient distribution of
virtual machines for cloud computing. In: 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP) (2010)

18. Corradi, A., Fanelli, M., Foschini, L.: VM consolidation: a real case based on Open-
Stack Cloud. Future Gener. Comput. Syst. 32, 118–127 (2014)

19. Kousiouris, G., Cucinotta, T., Varvarigou, T.: The effects of scheduling, workload
type and consolidation scenarios on virtual machine performance and their predic-
tion through optimized artificial neural networks. J. Syst. Softw. 84, 1270–1291
(2011)

20. Sonnek, J., Greensky, J., Reutiman, R., Chandra, A.: Starling: minimizing commu-
nication overhead in virtualized computing platforms using decentralized affinity-
aware migration. In: 39th International Conference on Parallel Processing (ICPP)
(2010)

21. Sudevalayam, S., Kulkarni, P.: Affinity-aware modeling of CPU usage for pro-
visioning virtualized applications. In: IEEE International Conference on Cloud
Computing (CLOUD) (2011)

22. Goiri, I., Julia, F., Nou, R., Berral, J.L., Guitart, J., Torres, J.: Energy-aware
scheduling in virtualized datacenters. In: IEEE International Conference on Cluster
Computing (CLUSTER) (2010)

23. Quang-Hung, N., Thoai, N., Son, N.T.: EPOBF: energy efficient allocation of vir-
tual machines in high performance computing cloud. In: Hameurlain, A., Küng,
J., Wagner, R., Thoai, N., Dang, T.K. (eds.) TLDKS XVI. LNCS, vol. 8960,
pp. 71–86. Springer, Heidelberg (2015)

24. Geronimo, G.A., Werner, J., Westphall, C.B., Westphall, C.M., Defenti, L.: Provi-
sioning and resource allocation for green clouds. In: 12th International Conference
on Networks (ICN) (2013)

http://arxiv.org/abs/1006.0308

Research on Virtual Machine Cluster Deployment
Algorithm in Cloud Computing Platform

Zheng Yao, Wen-Sheng Tang(✉), Sheng-Chun Wang, and Hui Peng

The Department of Computer Teaching, Hunan Normal University, Changsha, 410081, China
154976552@qq.com

Abstract. To address the virtual machine cluster deployment issues in cloud
computing environment, a novel MCSA (Min-cut segmentation algorithm) of
virtual machine cluster is proposed with resource and communication bandwidth
constraints. In this paper, the basic idea is based on the fully consideration on the
CPU, memory, hard-disk and other resource constraints between virtual machine
cluster and physical host, as well as the communication bandwidth constraints
between the virtual machine. We quantified the virtual machine cluster
constructed an undirected graph. In the undirected graph, the nodes represent the
virtual machine, so the weight of a node represents the value of resources, and
the edges represent the communication bandwidth, so the weight of the edge
represents the value of communication bandwidth. Base on the above transfor‐
mations, the resources and bandwidth constrained optimization problem is trans‐
formed into the graph segmentation problem. Next we segment the undirected
graph by minimum cut algorithm, and computing the matching degree of physical
machines. Last we obtained the approximate solution. To validate the effective‐
ness of the new algorithm, we carried out extensive experiments based on the
CloudSim platform.

Keywords: Cloud computing · Virtual machine cluster deployment · Graph
partitioning · Communication bandwidth

1 Introduction

Cloud computing is a product of the development and convergence of conventional
computer technologies and network technologies, such as grid computing, distributed
computing, parallel computing, utility computing, network storage technologies, virtu‐
alization, load balance etc. [1]. To ensure that the users can easily and quickly use
resources through various kinds of terminals, Cloud computing provides available,
convenient, and on-demand network access method to manage the various resources
from cloud effectively and safely according to the demands of users. As the growing
user demands, how to effectively manage resources and make it quickly available to
users becomes the key technology of cloud computing needed to be addressed.

Virtualization technology is the foundation of cloud computing, it is a kind of infra‐
structure and the upper system and software to coupling separation technology, Virtu‐
alization technology through the upper service package to the virtual machine, and

© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 73–84, 2016.
DOI: 10.1007/978-981-10-2209-8_7

manage resources through the deployment of virtual machines. Virtual machine deploy‐
ment is to map the physical resource based on the virtual machine deployment request
according to a reasonable allocation rules. The whole process is to seek optimal deploy‐
ment of physical hosts under a multi-constraint optimization problem. Therefore, effec‐
tive virtual machine deployment model and algorithm will be the key point of the effi‐
cient use of resources.

With in-depth studies on virtual machine deployment algorithms, the resource
mapping of Virtual machine and physical host is developed from earlier one-on-one to
later more-on-one relationship. Besides, Virtual machine deployment also changed from
a single virtual machine mode to the virtual machine cluster. Virtual machine cluster
refers to the communication needs and deployment restrictions of multiple virtual
machine deployment limitation [2]. However, the deployment of the virtual machine
cluster still faces many problems, such as high network communication consumption
between the virtual machine, physical host resources waste problem and so on.

Many researchers have carried out extensive research on the virtual machine clusters
deployment. For different application requirements of users, Paper [3] presents the
sequence deployment strategy and balanced deployment strategy, however, these strat‐
egies only considering CPU resource constraints between virtual machines and physical
host, wasting the physical host resources significantly. To solve the problem, paper [4]
presents a resource matching strategy based on CPU and memory. Compared to paper
[3], the strategy improves the usage of the physical host resources. However, it did not
fully take into account the composition of virtual machines from a variety of resources,
so this strategy cannot meet the needs of users in a variety of applications. To satisfy
the various requirements of users, Paper [5] proposed a performance vector-based algo‐
rithm for virtual machine deployment. However, the deployment process only considers
a single resource constraint of virtual machine and physical hosts. When more virtual
machines exist, although the resource waste reduction in the rate of a single physical
host, the waste of resources in the rate of the overall system does not reduce. Paper [6]
presents a heuristic algorithm based on graph decomposition, which only considers the
deployment of virtual machines on a single physical host. To cope with the problem,
paper [7] proposed a decomposition algorithm. Throughout the deployment process, the
overall rate decreased waste of resources. Paper [8] proposed a decomposition algo‐
rithm. The paper has associated physical resources as a deployment target, but only
considers the communication bandwidth factor.

For the virtual machine cluster deployment issues, we proposed a MCSA based on
constraint of resources and communication bandwidth. The algorithm firstly quantifies
the virtual machines cluster resources and bandwidth, so that the virtual machines cluster
can construct a weighted directed graph. As the weights of the nodes depict resources
and the weight of each edge represents the value of the communication bandwidth. The
double constrained optimization problem of resources and communication bandwidth
can be translated to sub-chart graph partitioning problem. With minimum cut algorithm,
the virtual machine is divided into small clusters from virtual cluster. For each virtual
machines cluster, if its external communication is larger, the internal communication is
smaller and vice versa. Then we calculate the cluster resource matching distance of the

74 Z. Yao et al.

virtual machine cluster and the physical host, which can be determined the approximate
optimal solution of deployment issues.

2 Related Works

Virtual machine is composed of resources (CPU, memory, hard disk and other resources)
which are required by the user. We can consider the virtual machine as entities consisted
of all kinds of resources, in which physical host is serving as containers. Virtual machine
deployment is to establish a resource mapping between virtual machines and physical
host, then under the constraint of related resources, the virtual machine will looking for
the best physical host to deploy. With the Deeping of the study, virtual machine deploy‐
ment has developed from a single virtual machine deployment to the virtual machine
clusters deployment, as shown in Fig. 1 [5].

Fig. 1. Virtual machine cluster deployment model

In the cloud computing environment, application providers usually deployed serv‐
ices in the physical hosting, and these services are generally made by the end user to a
virtual machine. In order to efficiently provide service to users, Virtual machines need
to collaborate with each other to jointly complete the user’s needs. Thus, a plurality of
virtual machines with communication requirements and deployment restrictions consti‐
tute a virtual machine cluster. Figure 1 describes the virtual machine cluster deployment
model. Multiple virtual machines constitute a virtual machine cluster, virtual machines
and physical host are component with the CPU, memory, hard disk, and other resources.
In standby mode, the physical host requires certain resources to run the initial state,
removing the physical hosts in the standby state of the resource, by calculating the
remaining available resources of the physical host resources available to meet the

Research on Virtual Machine Cluster Deployment Algorithm 75

physical host in the case of virtual machine resources required, will deploy a virtual
machine to a physical host. Different deployment constraints, the results for the entire
deployment will have greater impact.

3 Virtual Machine Cluster Deployment Algorithm

3.1 Related Terms

Virtual machine cluster deployment description: n mutually between communication
bandwidth demand virtual machine cluster, m need to deploy to the physical host.

In order to better describe the problem, we introduce the following symbols
(Table 1).

Table 1. Basic terminology

Vars Description
N The number of virtual machines
M The number of physical hosts

The set of physical host to deploy the virtual machine
The CPU total capacity of the physical host i
The memory total capacity of the physical host i
The hard disk total capacity of the physical host i
The CPU demand for virtual machine j

The memory demand for virtual machine j

The hard disk demand for virtual machine j

The CPU match value of the physical host i between virtual
machine j

The memory match value of the physical host i between virtual
machine j

The hard disk match value of the physical host i between virtual
machine j

the figure of the edge weights for virtual machine i between virtual
machine j

The Resource matching vector for virtual machine j between
physical host i

The desired physical host Weighted match vector for virtual
machine j between physical host i

3.2 Virtual Machine Cluster Deployment Model

Virtual machine cluster for physical host deployment process works as follows: first,
according to the communication bandwidth constraints segmented virtual machine cluster,
getting a virtual machine cluster divided. Second, calculating resource matching between
the virtual machine and physical host clusters, and searching for the best physical host

76 Z. Yao et al.

deployment. The deployment process of resources and communication bandwidth
constraints need to be considered at the same time.

1. According to the communication bandwidth constraints, we use the minimum-cut
algorithm [9] for virtual machine cluster segmentation. After segment, it forms the
plurality of virtual machine cluster. The Segmentation strategies are as follows:
(1) Virtual machine is represented as a vertex graph.
(2) Communication bandwidth relationship between virtual machines is defined as

the Edges.
(3) The virtual machine’s resources (such as CPU, memory, hard disk) is expressed

as the figure of peak value , the communication
bandwidth between the virtual machine is expressed as the figure of the edge
weights .Through the above quantitative, the problem of Virtual machine
cluster can be converted into a problem of weighted undirected graph.

(4) The division process of virtual machine cluster is transformed into segmentation
process of diagram. The segmentation of process is divided by the minimum-
cut algorithm, so graph G can be divided into a plurality of sub-graph G1, G2…
Gn. As shown in Fig. 2.

Fig. 2. Weighted undirected graph

2. Computing resource requirements of the virtual machine cluster, according to the
physical host resources condition, seeking the best physical host through resource
constraints.

The virtual machine cluster converted into a weighted undirected graph, we use the
minimum-cut algorithm to divide weighted undirected graph, and get a number of
weighted undirected graph after divided. The weighted undirected graph represents the
virtual machine cluster. Next, Virtual machine cluster choose physical host to deploy.

Research on Virtual Machine Cluster Deployment Algorithm 77

In order to improve resource utilization, we should choose the optimal physical hosts to
deploy. In this paper, we use the Euclidean distance cluster to represent the virtual
machine and physical host resources matching degree.

The various resources matching:

(1)

(2)

(3)

Calculating the virtual machine and the physical hosts a variety of cluster resources
match, getting resources match vector .

In order to meet the needs of users for different resources, we weighted distance
vector to represent user demand for resources. Weighted vector . Finally,
get the desired physical host Weighted match vector:

(4)

Destination physical host Match:

(5)

Type L is the matching degree of the physical host between virtual machine clusters.
With the L value reduced, the match degree of the physical host between virtual machine
clusters is become well.

3.3 System Communication Bandwidth Utilization Rate

Communication bandwidth utilization rate (The communication bandwidth occupancy
rate) R refers to the value of virtual machine cluster bandwidth utilization and the ratio
of the communications bandwidth in the whole system. represents the
communication bandwidth between two virtual machines, T represents the virtual
machine cluster deployment environment. On the process of virtual machine deployment
to host, some virtual opportunities deployed on the same host, for the external commu‐
nication bandwidth of the virtual machine transformed the internal communication of
the host. The communication of the whole system will not result in a greater impact.
Therefore, when the virtual machine is deployed to the different physical host, T is 1,
when the virtual machine is deployed in the same physical host, T is 0. And represents
the total bandwidth. So Communication bandwidth utilization rate is expressed as:

(6)

78 Z. Yao et al.

3.4 The Analysis of System Resource Waste Rate

Because of different deployment strategies, there are large differences in Virtual
Machine Deployment Results. For example, when the distribution of resources on the
physical host is uneven, it is like to cause the entire system to waste resources. So, in
this article, we calculate the physical host resources waste rate to reduce the waste of
the resources of the system. Wastage rate refers to the average ratio value between
different resources and the whole physical server, as shown in Equation.

(7)

(8)

(9)

Optimized resource wastage rate can be expressed as:

(10)

3.5 Virtual Machine Cluster Deployment Algorithm Process

In this paper, algorithm is based on double constraints of the resources and communi‐
cation bandwidth, and we quantify the resources and bandwidth to form a weighted
undirected graph, where the vertex weights graph represents the resources, right side of
the figure represents the value of the communication bandwidth, the double constraints
of resources and communication bandwidth optimization problem can be transform into
a graph of graph partition problems, we use the minimum cut algorithm to break up the
Weighted undirected graph. Next, calculate the approximate solution of the problem.

(1) Initialize the data center, randomly generated virtual machine and the physical host.
Get resource requirements of the virtual machine cluster , communication
bandwidth between the virtual machine , the list of hosts’ available resources
of all hosts .

(2) Modeling for virtual machine cluster deployment problem, quantify the virtual
machine cluster, get weighted undirected graph.

(3) Converted the virtual machine cluster to weighted undirected graph and use the
minimum-cut algorithm to divide weighted undirected graph.

(4) After segmentation, calculate the resources matching distance of virtual machine
cluster and physical host calculation, if physical host can be deployed it, we will build
the virtual cluster to deploy on physical host. If there is no, then jump step (3).

(5) Cycle all virtual machines cluster list, until all the virtual machines clusters
deployed over.

Research on Virtual Machine Cluster Deployment Algorithm 79

The deployment process is shown in Fig. 3 below:

start

Information of Virtual machine and
Physical host

Virtual machine cluster model

Computing resources matching distance,
select a minimum value of L to

determine the physical host

Output Deployment Results

end

minimum cut segmentation

Virtual machine cluster deploy to
physical host

Output virtual machine cluster

Is there a physical host can be
deployed

no
yes

Fig. 3. Virtual machine cluster deployment algorithm flow chart

The Algorithm is described as follows:

80 Z. Yao et al.

4 Simulation and Analysis

In this paper, we conduct simulations based on the Cloudsim 3.0 [10] with the operation
of windows 7 64-bit. The JDK version adopted in the paper is jdk1.6.0 _43. We compare
greedy algorithm, a single resource constraint algorithm and article of virtual machine
cluster allocation algorithm to analyst is System resources waste rate and Communica‐
tion bandwidth occupancy rate. Simulation results validate that the algorithm has a good
performance compared to other algorithms.

4.1 Simulation Platform

For the simulation platform, according to this paper, we have expanded our simulation
platform by recompiling CloudSim3.0.3, and the writing simulation programs. First, we
initialize a data center, and each data center contains a number of physical hosts. In the
data center, we use using a random way to produce physical resources and virtual
machine hosts. At the same time, by expanding the classes, Datacenter, Host, virtual
machine and DataCenteBoker, we realize the underlying physical and virtual machine
simulation. The experiment procedure of physical machines and virtual machine strat‐
egies are as follows:

(1) Virtual machine
Using random strategy, generate virtual machine allocation request queue, in which
the CPU is generated randomly from 1 to 6 nuclear, memory and hard disk are also
randomly generated. For each generation of virtual machine memory, the quantity
is 512 M integer times and hard disk is the integer times of 16 G.

(2) Physical host
Custom Datacenter Characteristics class, generate the corresponding Datacenter
and physical Host. Including CPU, memory, hard drive 10 integer times randomly
generated by the virtual machine.

(3) The communication bandwidth of virtual machine.
Using randomly generated strategy, generate virtual machine communication band‐
width matrix between 0–9.

4.2 Results Analysis

1. System resources waster rate
System resources waste rate refers to the average resources waste rate of the physical
hosts deployed with virtual machines. It is to note that in the paper, we only consider
the CPU, memory and hard disk. This can measure the system resource utilization.
Figure 4 depicts the physical host resources waste rate differences between the
various algorithms. The Fig. 4 shows that with the increasing of virtual machine
requests, the algorithm proposed in this paper can gradually reduce system resource
waste rate and tends to be stable. For the three kinds of algorithms, the resource
waste rate of MCSA algorithm is the lowest, followed by the single resource
constraints algorithm, greedy algorithm is the worst. As we can see from the figure,

Research on Virtual Machine Cluster Deployment Algorithm 81

MCSA algorithm has good performance lies in that when allocating resources, we
taken the approximation degree of virtual machine cluster between physical hosts
into consideration. Specifically, if the degree is closer, it means more balanced use
of resources after the distribution of the physical host, the greater the variety of
resources available extent and the smaller the rate of physical hosts waste of
resources. As the greedy algorithm does not adopt any optimization mechanism in
resources allocation, it has the highest waste rate.

40 80 120
0.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 w
as

te
rat

e

The number of virtual machines

Greedy algorithm
Single constrint algorithm
MCSA algorithm

Fig. 4. system resources waste rate

2. System bandwidth occupancy rate
Communication bandwidth occupancy rate refers to the ratio between the commu‐
nication bandwidth of each virtual machine cluster and communication bandwidth
needed for the whole system in the physical host. It represents communication band‐
width occupying degree of the whole system when running a virtual machine cluster.
As it can be seen from the Fig. 5, with the increasing number of virtual machines,
MCSA algorithm can keep the communication bandwidth occupancy rate at a low
level. The reason lies in that it divides the virtual machine cluster with into several
virtual machines cluster with a minimum cut algorithm which has lower communi‐
cation and bandwidth demands. Meanwhile the virtual machine cluster with larger
communications bandwidth demands redeployed on the same physical host. The
single constraint algorithms occupy larger communication bandwidth as it only
considers the resources of the virtual machine between cluster and physical host.
The greedy algorithm did not consider any allocation optimization. It has the largest
communication bandwidth occupied.

To sum up, in the situation where the virtual machine in the cluster requires frequent
communication, the proposed virtual machine cluster deployment algorithm in the paper
can keep a low system resource waste rate, stays small system communication band‐
width, and achieves high network utilization.

82 Z. Yao et al.

5 Conclusions

In this paper, to cope with the Virtual machine cluster deployment issues in cloud
computing platform, we translate the virtual machine cluster deployment into optimi‐
zation problems under multiple constraints. We presented a MCSA algorithm based on
the double constraints of virtual machine resources and communication bandwidth. The
algorithm firstly quantifies the resources and the communication bandwidth in the virtual
machine cluster and separates the virtual machine cluster by minimum cut algorithm of
graph theory. Then based on the segmentation of virtual machine cluster, the algorithm
can effectively select the target physical host. The simulation results validate that it can
reduce the resource waste rate and the system communication bandwidth utilization rate
significantly. For further research, we aim to explore the combination of virtual machine
energy consumption and resource equilibrium problems.

Acknowledgment. The authors would like to thank the anonymous reviewers for their helpful
and constructive comments. This work is supported by education reform Item of Hunan Normal
University (Grant [2014]75). Program for Excellent Talents in Hunan Normal University (Grant
no.ET61008).

References

1. Tu, H.-K., Zhou, H., Lin, R.-H.: Design and implementation of enhanced parallel computing
framework system in cloud. New Ind. 12, 33–40 (2012)

2. Wang, G., Ma, Z., Sun, L.: Deployment of virtual machines with clustering method based on
frame load awareness. J. Comput. Appl. 33(5), 1271–1275 (2013)

3. Yuan, J.: The Research on Multi-VM Fast Deployment Mechanism. Huazhong University of
Science & Technology, Wuhan (2008)

40 80 120
0.0

0.2

0.4

0.6

0.8

1.0

 Greedy algorithm
 Single constraint algorithm

MCSA algorithm

Co
mm

un
ica

tio
n b

an
dw

idt
h o

cc
up

an
cy

 ra
te

The number of virtual machines

Fig. 5. System bandwidth occupancy rate

Research on Virtual Machine Cluster Deployment Algorithm 83

4. Cao, W., He, J., Sun, Z.: Research on Mechanism of Deployment Virtual Machine in Mode
of IaaS. Comput. Technol. Dev. 10, 105–108 (2012)

5. Yang, X., Ma, Z., Sun, L.: Performance Vector-based algorithm for virtual machine
deployment in infrastructure clouds. J. Comput. Appl. 32(1), 16–19 (2012)

6. Meng, X., Pappas, V., Li, Z.: Improving the scalability of data center networks with traffic-
aware virtual machine placement. INFOCOM, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)

7. Nguyen Van, H., Dang Tran, F., Menadue, J.M.: Autonomic virtual resource management
for service hosting platforms. In: Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, pp. 1–8. IEEE Computer Society (2009)

8. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to virtual network
components. In: INFOCOM 2006, 25th IEEE International Conference on Computer
Communications, Proceedings, pp. 1–12. IEEE (2006)

9. Zhang, J., Li, B.: Research of image segmentation based on graph theory and minimum cut
set algorithm. Laser Technol. 29(6), 863–866 (2014)

10. Calheiros, R.N.: CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw. Pract. Exper. 41(1),
23–50 (2011)

84 Z. Yao et al.

H-TDMS: A System for Traffic
Big Data Management

Xingcheng Hua1, Jierui Wang1, Li Lei1, Bin Zhou2, Xiaolin Zhang2,
and Peng Liu1(B)

1 College of Information Science & Electronic Engineering, Zhejiang University,
Hangzhou 310027, China

{hua2009x,jrw,leili,liupeng}@zju.edu.cn
2 Zhejiang Uniview Technologies Co., Ltd., Hangzhou 310051, China

{zhoubin,zhangxiaolin}@uniview.com

Abstract. Massive traffic data is produced constantly every day, caus-
ing problems in data integration, massive storage, high performance
processing when applying conventional data management approaches.
We propose a cloud computing based system H-TDMS (Hadoop based
Traffic Data Management System) to capture, manage and process the
traffic big data. H-TDMS designs a configurable tool for data integra-
tion, a scalable data scheme for data storage, a secondary index for fast
search query, a computing framework for data analysis, and a web-based
user-interface with data visualization service for user interaction. Exper-
iments on actual traffic data show that H-TDMS achieves considerable
performance in traffic big data management.

Keywords: Traffic big data · Cloud computing · Data integration ·
Secondary index · Data analysis

1 Introduction

The last few years have witnessed an explosion of traffic data due to the rapid
improvement in Intelligent Transportation System (ITS). Surveillance system
plays an important role in modern intelligent traffic management and produces
massive and complex traffic data every day. Usually traffic data is stored as
records, which are metadata extracted from the collected media information
such as images and videos. The volume of records of a big city in China may
exceed one hundred billion in a year.

In order to fully exploit traffic big data potential, there remain many tech-
nical challenges that must be addressed. The most critical challenges of traf-
fic big data management system are: (1) integrating data from heterogeneous
sources in different formats to solve the problem of Data Island (data sets in iso-
lated storages with different specifications); (2) providing high availability and
scalability to support large volume of collected data; (3) equipping enormous
processing capacity to handle the analyzing of the traffic data; and (4) providing
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 85–96, 2016.
DOI: 10.1007/978-981-10-2209-8 8

86 X. Hua et al.

diverse mining algorithms and models for deep analysis, such as criminal detec-
tion and risk pre-alarming [6,10,14,20]. All these problems call for well-adapted
infrastructures which can efficiently handling traffic big data integration, index-
ing and query, and mining and analysis.

Cloud computing in current era plays a critical role when conventional data
platforms fail in the “Big Data” scenario. Hadoop [1] is a popular framework
for cloud computing running on commodity hardware. With the advantage of
Hadoop, we propose a cloud computing based system H-TDMS, providing traffic
big data management to support decision making and knowledge discovery. This
proposed system has several key features:

(1) Flexible data import and distributed data storage
H-TDMS integrates a flexible and efficient tool to capture and extract data
from various databases and provides a storage system for massive traffic
data with high performance and sufficient scalability based on a distributed
database.

(2) Fast data indexing and query
H-TDMS adopts a secondary index structure to build a lightweight and
powerful search engine. The answer of a search query is returned back within
a tolerable response time limit, usually in seconds.

(3) Intelligent analysis and mining
H-TDMS integrates and encapsulates diverse algorithms and models for traf-
fic characteristics analysis and criminal detection. It provides both on-line
and off-line data processing services to support traffic management and pub-
lic security issues.

(4) Web-based user-interface and data visualization
H-TDMS provides a web-based user-interface to hide the complexity for
accessing and managing data. Analysis results are interpreted by data visu-
alization to help produce and comprehend insights from massive traffic data.

The rest of the paper is organized as follows. Section 2 outlines the the back-
ground and related work. Section 3 presents our design in detail. Section 4 gives
the evaluation results based on the prototype system and Sect. 5 concludes.

2 Related Work

Big data and cloud computing have brought great opportunities for manag-
ing data. Hadoop is a framework for cloud computing, including a distributed
file system HDFS (Hadoop Distributed File System) and a parallel processing
framework MapReduce. Based on HDFS, HBase [2] is developed as a scalable,
distributed database that supports data storage for large tables. Sqoop [4] is
an open source software used for efficiently transferring data between Hadoop
and structured relational databases (e.g., PostgreSQL [5]). Spark [3] is a fast
framework for large-scale data processing. Compared with MapReduce, Spark
runs some programs faster due to its in-memory computing.

H-TDMS: A System for Traffic Big Data Management 87

Hadoop was proven to be an efficient framework for big data storage and
query. Hadoop-GIS [7] stored large scale spatial data in HDFS and built a spa-
tial index to support high-performance spatial queries. SpatialHadoop [9] was
designed specifically to handle huge datasets of spatial data, which employed
a two-level spatial index structure and some efficient spatial operations. Lee et
al. [11] presented a lightweight spatial index for big data stored in HBase. Le and
Takasu [15] proposed a scalable spatio-temporal data storage for ITS based on
HBase and a spatio-temporal index structure using a hierarchical text-encoding
algorithm. However these systems supported limited query constraints. As we
know, more complex search queries should be provided for traffic big data.

Data mining has attracted wide attention as an approach to discovering infor-
mation from traffic data. Moriya et al. [13] developed an algorithm using feature-
based non-negative matrix factorization to predict the number of accidents and
cluster roads to identify the risk factors. Benitez et al. [8] presented a two-
step trajectory pattern recognition process including a k-means clustering and a
classification over a Self-Organizing Map. Yue et al. [19] proposed a multi-view
attributes reduction model for discovering the patterns to manage traffic bot-
tleneck. Lv et al. [12] utilized a deep learning approach considering the spatial
and temporal correlations inherently to predict the traffic flow. Xu and Dou [17]
implemented an assistant decision-supporting method for urban transportation
planning. Since so many works studied accident detection, pattern recognition,
traffic flow prediction, investment decision, etc., diverse data mining approaches
could be adopted in H-TDMS.

Several traffic big data platforms, based on cloud computing, were researched
in recent years. RTIC-C [18] was a system designed to support traffic history data
mining based on MapReduce framework. Kemp et al. [10] presented a big data
infrastructure for managing data and assisting decision making for transport sys-
tems using service oriented architecture. Xiong et al. [16] discussed the design
of ITS, including the current situation and future trend of related research and
development areas. Different from these solutions, H-TDMS focuses more on
how to provide data integration, search query, data analysis and user interac-
tion in one system for traffic big data management, and achieve considerable
performance based on cloud computing techniques.

3 System Design

Cloud computing is an inevitable trend for traffic data processing due to its
great demands on big data analysis and mining. H-TDMS constructs three lay-
ers to meet these demands, as shown in Fig. 1. The data layer stores all the
massive traffic data and provides high read/write performance when supporting
transparent usage of physical resources. The processing layer provides diverse
modular functions for upper layer services, and helps improve performance by
parallel-based data processing. The application layer provides the entrances for
users to call functions of the lower layers as well as http-based services for end
users to access and use H-TDMS.

88 X. Hua et al.

HTTP Service

Applications

Data
Import

Business Data

Fast Search Engine
Intelligent Analysis

Engine

Application
Layer

Processing
Layer

Data Layer
Original Traffic Data

Index
Data
Clean

Data Visualization

Fig. 1. H-TDMS architecture

3.1 Data Collection and Storage

Traffic data is stored as records in heterogeneous databases in different for-
mats due to historical reasons (e.g., different times of construction, different
application scenarios, and different equipment manufacturers). H-TDMS aims
to integrate all kinds of data into one distributed database to fully exploit their
potential. There is a critical need to flexible import data from various databases.
A data import tool is designed as shown in Fig. 2. Though the process of crawling
real-time data from the surveillance system is not shown in the figure, H-TDMS
supports collecting real-time data into its storage system directly as well.

Relational
Databases

HDFS
Sqoop

Transform
Program

XML
File

HBase
BulkLoad

Import Tool

HFile
<rule>
 <column>passTime2</column>
 <oper>5</oper>
 <src_info>
 <src_column>pass_time</src_column>
 <src_format>yyyy-MM-dd HH:mm:ss</src_format>
 </src_info>
 <dst_info>
 <dst_format>s</dst_format>
 </dst_info>
</rule>

Fig. 2. Data import tool

Sqoop is used for transferring data between HDFS and structured relational
databases, which are frequently applied to store traffic data. The transform pro-
gram is capable of transforming the data to the target format and storing it in
the low-level storage files of HBase called HFiles. The HFiles are moved to the
regions of a table by BulkLoad, which is a function native supported by HBase.
Both Sqoop and the transform program are based on MapReduce to accelerate
their processes. An XML file which specifies the transform rules including the
target field of a record, the source field of a record and the transform operation
between them, is another input used in the transform program to guarantee the
flexibility of the import tool. An example of time transformation is shown in
Fig. 2.

H-TDMS: A System for Traffic Big Data Management 89

Row #1

Rowkey
Column Family #1 Column Family #2

Column Qualifier #1 Column Qualifier #2 Column Qualifier #3

Timestamp #1

Timestamp #N

Data

Data

Cell

...

Fig. 3. HBase four-dimensional data model

H-TDMS builds a storage system based on HBase due to its high perfor-
mance and scalability. The HBase data model is shown in Fig. 3. A well-adapted
data scheme is designed to store traffic record data. A complete record consists
of a list of fields including the information about a vehicle and its passing events.
Table 1 shows the format of the obtained record. Every day all records are stored
in a table named by date (e.g., Table 20160101) for management reasons. Each
record is indexed with a unique rowkey calculated according to the recordId and
stored in a row of the table. Some key fields such as PlateCode and TollgateCode
are stored in a cell separately and others like pic1Name and relateVideoAddr
are concatenated and stored in one cell to obtain the most considerable perfor-
mance. Because there is a trade-off between one-column based and multi-column
based table structures. The former achieves faster import speed but less access
flexibility while the latter is just the opposite.

Table 1. Record format

There is a lot of business data to be stored while the system is running, includ-
ing fundamental data like road network information and result data generated
by some applications. As a result, many different HBase tables are constructed
to hold the corresponding data for maintenance and extension.

3.2 Fast Search Engine

A fast search engine is implemented to support search query, especially multi-
condition search and fuzzy search. Equipped with this engine, user could search
out the records whose fields containing the specified values within a tolerable

90 X. Hua et al.

response time limit. Since data access is done by relating rowkeys to values in
HBase. The problem here is how to figure out the rowkeys of the required records
as soon as possible.

H-TDMS builds a secondary index and uses a customized calculation method
to figure out the required rowkeys. Logically data in HBase tables is stored
in alphabetical order of rowkeys, which are used as a primary index in fact.
However there is no way but scanning and filtering the whole table to search
out the required records if the rowkeys are not known. Unfortunately, the filter
operation in HBase is quite slow and inefficient. HBase would get all the records
in a table and then check the content to find out the records that contain the
specified values. Instead of using filter operation, a secondary index is designed to
relating the specified values to their rowkeys. Figure 4 (a) shows the construction
of table Index Tollgate for instance. There is one index table for one specified
field of a record and all index information for that field goes into the same
index table. When a row is put into the record table, the index information
is put into the corresponding index tables. Table Index Time is constructed in
another way shown in Fig. 4 (b), utilizing the timestamps generated by a convert
function. Any time interval can be specified by setting the range of timestamp.
To support fuzzy search of plateCode, table Index PlateX is constructed similar
as table Index Tollgate, but a special management is employed. When a row is
put into the record table, seven rows of index data are generated and put into
table Index PlateX at the same time as shown in Fig. 4 (c). A fuzzy search of
plateCode can be decomposed into several scans, in which the prefixes can be
obtained by shifting the plateCode. As the rowkeys with the same prefix are
stored at a near place in HBase, the scans can be completed very soon. Other
index tables such as table Index Color and table Index Speed are constructed in
a similar way as table Index Tollgate.

Rowkey
... Tollgate ...

ID1 ... G1 ...

Rowkey
... ID1 ...

G1_20160101 ... 1 ...

Table_20160101

Index_Tollgate

cf

cf

Rowkey
info

20160101

Timestamp1 1

Index_Time

... 1

cf

TimestampN 1
20160102 ... 1

(a) (b)

Convert (passTime, ID1)

20160101_0_ A12345

20160101_1_A12345

...

20160101_5_ 45 A123

Rowkey

Index_PlateX

(c)

20160101_6_ 5 A1234

Fig. 4. Construction of index tables

Based on the index tables, the fast search engine defines two basic opera-
tions “OR” and “AND” to calculate the index information. Index information is
obtained from the index tables and stored in bit sequences, in which the positions
of “1”s represent the rowkeys in record tables. “OR” and “AND” are bit-wise
operations which are quite fast for processor to perform. The whole process is

H-TDMS: A System for Traffic Big Data Management 91

divided into several sub-processes according to the time condition, usually by
the day. In a sub-process, a multi-condition search is decomposed into several
steps. Firstly, the search engine decomposes the conditions to get the corre-
sponding index data from the index tables. For each kind of index information,
each row of the index data is stored as a bit sequence, which is initialized with
“0”s and inserted with “1”s according to the index data. Then all bit sequences
are calculated by “OR”/“AND” operations to generate a unique bit sequence
for each kind of index information. The calculating logic is determined based on
the search conditions in advance. Finally the result bit sequence is generated by
calculating the bit sequences of all kinds of index information and the rowkeys
of required records are obtained by figuring out the offsets of the “1”s. All of the
sub-processes are performed in parallel but commited sequential to make sure
that the response can be returned as quickly as possible.

The fast search engine composes of the secondary index and the fast cal-
culation method as discussed above. The secondary index is constructed when
the original record data is imported and only sparse “1”s are stored in the index
tables. The calculation method takes full advantage of processor’s basic bit oper-
ations to improve the performance. Both of them make the engine lightweight
and powerful.

3.3 Intelligent Analysis Engine

In modern society, people’s everyday life has a close connection with traffic issues.
In other words, a lot of knowledge can be achieved from the massive traffic data
and then be used in traffic management and public security areas. To mine
and utilize the knowledge, an intelligent analysis engine is developed based on
the fusion of physical, cyber and cognitive spaces. The three-dimensional space
model is shown in Fig. 5 (a).

Model Library

Semantic Parsing

Feature Library

Statistics
Methods

Data Mining
Techniques

Human
Experience

Intelligent Analysis Engine
Cyber Space

Cognitive
Space

Physical
Space

Topics,
Events,

etc

Behavior
and Experience,

Social
Relationship,

etc

Location,
Monitoring DaTa,

etc

Decision Making,
Predicting,

etc

(a) (b)

Fig. 5. (a) Three-dimensional space model. (b) Intelligent analysis engine

The conventional analysis methods of pattern recognition and data mining
usually collect related data from the physical space which is consisted of fun-
damental data such as location and monitoring data and process them in the
cyber space to form events and topics such as traffic jams. However human’s

92 X. Hua et al.

Valid Data

Preprocessing

Processing
Tasks

Algorithm
Selection

Selection Recognition Application

Feedback

Model Evaluation

Design Support

Data
Storage

Algorithm
Library

Model
Library

Fig. 6. General process model

experience and judgements are very important and useful in the traffic man-
agement and public security areas. Human’s feedback will help evaluate and
improve the models generated/used during the data processing. So we introduce
the human cognitive space which is consisted of human’s knowledge into the
analysis process. The intelligent analysis engine is hierarchical with three lay-
ers as shown in Fig. 5 (b). The semantic parsing layer is applied to define and
describe technical terms such as the congestion level of the road section, the
speed limit, peak accident times, etc. The algorithm layer integrates and encap-
sulates various algorithms, including data mining techniques, statistics methods,
and human experience. The library layer is adopted to store the features of the
traffic and analysis models for prediction, classification, etc.

The intelligent analysis engine is constructed based on Spark instead of
MapReduce, because data mining and statistics algorithms benefit a lot from
Spark’s in-memory computing. Since there is no general one fits all solution in
Hadoop, application development is always ad hoc. However, the general process
can be modeled as shown in Fig. 6. Human plays an important role during the
process, providing professional experience, evaluating results and returning feed-
back to H-TDMS. Some of the H-TDMS’s applications are illustrated and eval-
uated in detail in Sect. 4.

3.4 User-Interface and Data Visualization

A web-based user-interface is implemented to provide interaction between user
and H-TDMS. A set of RESTful web services are created to exchange data.
End users access and use H-TDMS through web browsers. Many operations are

(a) (b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ASH

A
D

P

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Centroids
Outliers

Fig. 7. (a) Sunburst view for a vehicle’s activities. (b) Vehicle cluster analysis

H-TDMS: A System for Traffic Big Data Management 93

defined to allow users to combine their flexibility and creativity. In order to
gain insights from the complex analysis results, data visualization is applied to
transform various types of data into appropriate visual representations. Figure 7
illustrates two examples of data visualization. Figure 7 (a) is the sunburst view
for a vehicle’s activities and Fig. 7 (b) shows the result of vehicle cluster analysis.

4 System Evaluation

A prototype system is built on a Hadoop cluster using 3 nodes. One master node
takes charge of both cluster management and data processing while the other two
slave nodes are only responsible for data processing. The system environment
is shown in Table 2. We evaluate our design using actual traffic data of a city
in south China, which contains more than 100 million records with a size about
40 GB per month.

Table 2. System environment

Hadoop environment

Hadoop version 2.6.0

Sqoop version 1.4.5

HBase version 1.0.0

Spark version 1.3.0

Node environment

CPU Intel(R) Core(TM) i7-3770 @ 3.40 GHz

Memory 32 GB

OS Ubuntu Server 12.04 LTS (64-bit)

4.1 Data Import and Preprocessing

The actual traffic data is imported from a PostgreSQL database. Several record
sets with different sizes are selected to evaluate the import tool. The performance
is shown in Fig. 8 (a). As is evident from the linear regression line, the speed
of data import keeps stabile and exceeds 15 million records per minute when
the number of records ranges from 20 to 400 million. The main reason for this
stability is that the import tool fully utilizes all the processor resources of the
cluster during its MapReduce process.

The traffic data is organized and categorized by the intelligent engine, uti-
lizing statistics methods, to extract necessary information for later use. For
instance, many spatial and temporal features of vehicle activities and the infor-
mation about road conditions are summarized based on the historical vehicle
trajectory data, which is generated by combining the relating records.

94 X. Hua et al.

(a)

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400

)s(e
mit trop

mi

number of records (million)

(b)

0

20

40

60

80

100

120

140

160

180

0

100

200

300

400

500

600

0 20 40 60 80 100 120

nu
m

be
r o

f r
es

ul
ts

) s(e
m it gnissecorp

number of records (million)

processing time

number of results

Fig. 8. (a) Performance of data import. (b) Fake plate vehicle detection

4.2 Search Query

Several typical query groups are executed to demonstrate the performance of the
search engine. The response times of the queries in the same group differ only tens
of milliseconds and an example of each group and its result are listed in Table 3.
Query1, Query2 and Query3 are used to get the records of a specified time inter-
val, a specified vehicle and a specified tollgate, respectively, and their response
times are less than 300 milliseconds. Query4 to Query9 are the most frequently
used search query types, in which the plate number of a vehicle is known or
partly known. For a search query with a complete plate number such as Query4
and Query5, the response times are less than 500 milliseconds. The response
time of the search queries with more tollgates increases a little as more index
information is calculated. Although complex fuzzy search queries like Query6,
Query7, Query8, and Query9 have longer response times, they can still return
results in just a few seconds. Compared Query9 with Query8, the response time
does not increase exponentially along with the time interval’s growth because of
the process division and parallel computing of the search engine.

Table 3. Performance of the search engine. (The Dash (-) represents an unspecified
value, the Question Mark (?) indicates an unknown character, and the Star (*) depicts
at least an unknown character.)

H-TDMS: A System for Traffic Big Data Management 95

4.3 Fake Plate Vehicle Detection

A fake plate vehicle is a vehicle using a plate number that is the same as another
legal one. Based on the idea that a vehicle can not appear in more than one loca-
tion within a short time, H-TDMS employs an application, utilizing trajectory
data and road conditions, to detect fake plate vehicles. The number of records
analyzed ranges from 12 to 102 million. Figure 8 (b) shows the processing time
of the application and the number of fake plate vehicles detected. It takes H-
TDMS less than 10 minutes to process 100 million records, revealing the high
data processing capability of H-TDMS. The result can be verified by checking
the related image and video data.

4.4 Vehicle Cluster Analysis

A case in point to show the usability and scalability of H-TDMS based on users’
flexibility and creativity is the vehicle cluster analysis, which can be applied
to support risk pre-alarming through outlier detection. The user-interface of H-
TDMS provides entrances for users to access data and call functions to construct
their own applications. We firstly define a feature vector and then apply rules
and precedence to the data to create it. The feature vector is consisted of a
vehicle’s activity of daily period (ADP) and activity of specified hours (ASH),
which represent the temporal features of the vehicle. Then a k-means clustering
algorithm is applied to classify 1 million vehicles’ feature vectors. The result is
shown in Fig. 7 (b). It is convenient for users to construct, run and tune their
own applications through the web-based user-interface of H-TDMS.

5 Conclusion

Big data has brought great opportunities for resolving transportation problems.
In this paper, we provide H-TDMS for traffic big data management based on
cloud computing. Our evaluation shows that H-TDMS achieves considerable per-
formance in data integration, search query, data analysis, and provides usability
and scalability for users to combine their flexibility and creativity. In our future
work, we plan to develop more customized mining services and encapsulate more
open interfaces to support more application functionalities.

References

1. Apache hadoop. http://hadoop.apache.org. Accessed 10 Apr 2016
2. Apache hbase. http://hbase.apache.org. Accessed 10 Apr 2016
3. Apache spark. http://spark.apache.org. Accessed 10 Apr 2016
4. Apache sqoop. http://sqoop.apache.org. Accessed 10 Apr 2016
5. Postgresql. https://www.postgresql.org. Accessed 10 Apr 2016
6. Adiba, M., Castrejon-Castillo, J.C., Oviedo, J.A.E., Vargas-Solar, G., Zechinelli-

Martini, J.L.: Big data management challenges, approaches, tools and their limi-
tations. In: Yu, S., Lin, X., Misic, J., Shen, X.S., (eds.) Networking for Big Data,
pp. 43–56. Chapman and Hall/CRC, February 2016

http://hadoop.apache.org
http://hbase.apache.org
http://spark.apache.org
http://sqoop.apache.org
https://www.postgresql.org

96 X. Hua et al.

7. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.: Hadoop GIS: a
high performance spatial data warehousing system over mapreduce. Proc. VLDB
Endowment 6(11), 1009–1020 (2013)

8. Benitez, I., Blasco, C., Mocholi, A., Quijano, A.: A two-step process for clustering
electric vehicle trajectories. In: IEEE International Electric Vehicle Conference
(IEVC), pp. 1–8. IEEE (2014)

9. Eldawy, A., Mokbel, M.F.: A demonstration of spatialhadoop: an efficient mapre-
duce framework for spatial data. Proc. VLDB Endowment 6(12), 1230–1233 (2013)

10. Kemp, G., Vargas-Solar, G., Da Silva, C.F., Ghodous, P., Collet, C., Lopezamaya,
P.: Towards cloud big data services for intelligent transport systems. In: ISPE
International Conference on Concurrent Engineering, vol. 2, pp. 377. IOS Press
(2015)

11. Lee, K., Ganti, R.K., Srivatsa, M., Liu, L.: Efficient spatial query processing for big
data. In: ACM International Conference on Advances in Geographic Information
Systems, pp. 469–472. ACM (2014)

12. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big
data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873
(2015)

13. Moriya, K., Matsushima, S., Yamanishi, K.: Traffic risk mining from heterogeneous
road statistics. In: IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pp. 1–10. IEEE (2015)

14. Shah, N.K.: Big data and cloud computing: pitfalls and advantages in data man-
agement. In: International Conference on Computing for Sustainable Global Devel-
opment (INDIACom), pp. 643–648. IEEE (2015)

15. Van Le, H., Takasu, A.: A scalable spatio-temporal data storage for intelligent
transportation systems based on hbase. In: IEEE International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 2733–2738. IEEE (2015)

16. Xiong, G., Zhu, F., Dong, X., Fan, H., Hu, B., Kong, Q., Kang, W., Teng, T.: A
kind of novel its based on space-air-ground big-data. IEEE Intell. Transp. Syst.
Mag. 8(1), 10–22 (2016)

17. Xu, X., Dou, W.: An assistant decision-supporting method for urban transporta-
tion planning over big traffic data. In: Zu, Q., Hu, B., Gu, N., Seng, S. (eds.) HCC
2014. LNCS, vol. 8944, pp. 251–264. Springer, Heidelberg (2015)

18. Yu, J., Jiang, F., Zhu, T.: Rtic-c: a big data system for massive traffic infor-
mation mining. In: International Conference on Cloud Computing and Big Data
(CloudCom-Asia), pp. 395–402. IEEE (2013)

19. Yue, X., Cao, L., Chen, Y., Xu, B.: Multi-view actionable patterns for manag-
ing traffic bottleneck. In: Workshops at the Twenty-Ninth AAAI Conference on
Artificial Intelligence (2015)

20. Zheng, X., Chen, W., Wang, P., Shen, D., Chen, S., Wang, X., Zhang, Q., Yang,
L.: Big data for social transportation. IEEE Trans. Intell. Transp. Syst. 17(3),
620–630 (2016)

GLDA: Parallel Gibbs Sampling for Latent
Dirichlet Allocation on GPU

Pei Xue1, Tao Li1,2(B), Kezhao Zhao1, Qiankun Dong1, and Wenjing Ma3

1 College of Computer and Control Engineering,
Nankai University, Tianjin 300071, China

litao@nankai.edu.cn
2 State Key Lab. of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China
3 Laboratory of Parallel Software and Computational Science,

State Key Laboratory of Computing Science, Institute of Software, Chinese Academy
of Sciences, Beijing, China

Abstract. With the development of the general computing ability of
GPU, more and more algorithms are being run on GPU, to enjoy much
higher speed. In this paper, we propose an approach that uniformly accel-
erate Gibbs Sampling for LDA (Latent Dirichlet Allocation) algorithm on
GPU, which makes the data load to the cores of GPU evenly to avoid the
idle waiting for GPU, and improves the utilization of GPU. We use three
text mining datasets to test the algorithm. Experiments show that our
parallel methods can achieve about 30x speedup over sequential training
methods with similar prediction precision. Furthermore, the idea that
uniformly partitioning the data bases on GPU can also be applied to
other machine learning algorithms.

Keywords: CUDA · Parallel LDA · Topic model · Data partition ·
Machine learning

1 Introduction

With the development of social networks, huge amount of text messages are pro-
duced every day. Text mining algorithms can extract and analyze useful infor-
mation from a large collection of texts. Among them, LDA (Latent Dirichlet
Allocation) algorithm based on Gibbs sampling [3] is a mature topic cluster-
ing algorithm. Gibbs sampling is a Markov-chain Monte Carlo method to per-
form inference. We simply call LDA algorithm based on Gibbs sampling as LDA
algorithm in this paper. LDA algorithm can accurately extract the text theme
and latent semantic [12,18], and it has been widely used in the field of micro
blog recommendation, news search, semantic analysis, etc. However, due to the
increasing amount of data on the Internet, running it on a CPU is usually time-
consuming. Thus how to accelerate the LDA algorithm efficiently has become a
hot topic.

c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 97–107, 2016.
DOI: 10.1007/978-981-10-2209-8 9

98 P. Xue et al.

LDA does not take the order of words and documents into account, so it
can be parallelized on multiple platforms. There are two common ways to do
it: parallelize LDA algorithm based on distributed platform or based on shared
memory multi-core platform. In the first scenario, with the increase of node
number, the communication cost is also increased [22], which has a bad effect on
performance. Also, the amount of work on a single node in a distributed cluster
is still large. The problems of node communication and computation of the loose
coupled line are solved by tightly coupled shared memory platform. However, the
traditional data partition according to documents leads to severe load imbalance
on different cores. Thus, all the cores have to carry out data synchronization
after each iteration (all have to wait for the core with largest amount of data),
which lead to a lot of idle waiting or even stagnation. In addition, LDA parallel
sampling will cause data writing and reading conflict on tightly coupled shared
memory platform. Therefore, how to make full use of multi-cores computing
power and avoid large idle waiting time is also a big problem.

With the development of hardware architecture, GPU (Graphics Processing
Unit) [1] has super computing power with multi-cores and high memory band-
width. Every core has equal computing power and memory bandwidth, and all
cores share one global memory in GPU [23]. NVIDIA Kepler [1] compute archi-
tecture of GPU has a high performance on parallel computing. Also, through-
put of global memory atomic operations on Kepler is substantially improved.
We use CUDA (Compute Unified Device Architecture) programming model for
GPU parallel computing. CUDA is designed by NVIDIA, and provides a good
programming framework for accelerating the LDA topic clustering algorithm.

In this paper, we propose a new parallel LDA model based on the GPU
architecture. This model is able to partition the data uniformly to different
threads, and thus can avoid idle waiting and improve the utilization of the GPU
cores. We propose a double data rotation method with atomic operation to
solve data reading and writing conflicts, which improves the performance. We
use different datasets to test the performance of this model, and prove that this
model can achieve the same prediction accuracy as their sequential method on
CPU.

The rest of the paper is organized as follows. Related works are introduced
in Sect. 2. Section 3 present the basic introduction to LDA model using Gibbs
sampling. In Sect. 4, we introduce our new parallel model based on GPU. In
Sect. 5, we used different datasets to test the speedup and perplexity of the new
algorithm. We conclude this paper in Sect. 6.

2 Related Work

The parallel methods of LDA algorithm fall in two main categories: (1) LDA
parallel algorithm based on loosely coupled distributed platform [13,19]. (2) LDA
parallel algorithm based on tightly coupled shared memory platform [9,12]. The
main loosely coupled distributed parallel LDA algorithm is as follows. Newman
et al. [16] proposed to Approximate Distributed LDA algorithm (AD-LDA).

GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU 99

Asynchronous Distributed LDA model (AS-LDA) proposed by Asuncion et al.
[17]. AD-LDA algorithm was improved with Message Passing Interface (MPI)
and MapReduce by Chen et al. [5]. There are also some tightly shared memory
parallel LDA algorithms. Yan et al. [21] introduced a parallel model of Gibbs
sample inference for LDA on GPU, Masada T et al. [14] introduced a parallel
model of Collapsed Variational Bayesian (CVB) inference for LDA on GPU.

Parallel LDA algorithm based on loosely distributed platform partitions the
documents to different nodes. Each sampling consists of two parts: (1) every
node in distributed form samples its own data; (2) Communication between dif-
ferent nodes, so that the data of each node can be updated. With the number of
nodes increasing, communication costs between different nodes will also gradu-
ally increase [13,16,17,19]. In addition, the calculation ability of one single node
is still large. These two aspects will affect acceleration performance seriously.
Parallel LDA algorithm based on tightly coupled shared memory platform can
solve the communication problem in distributed platform. Yan et al. [21] pro-
posed a data partition scheme running on GPU where documents and words are
both divided into P disjoint subsets, and loading to P threads. To avoid access
conflict in parameter matrices, the input document-word matrix is partitioned
into independent data blocks with non-overlapping rows and columns. A pre-
processing algorithm is used to balance the number of words in data blocks so
that different threads can scan with no-conflict in blocks and do a synchroniza-
tion step. However, the number of words in one document may be several times
of another document and there may be uneven distribution of different words in
one document. Therefore, it is difficult for absolute data block balancing, and
faster threads need to wait for the slowest one, which causes longer locking time
or even stagnation. The preprocessing algorithm running on GPU adds some
extra time. In this paper, we propose a new partition scheme that data can be
truly and evenly loaded to the threads of GPU’s kernel. Moreover, We propose
a double data rotation method with atomic operation to solve data reading and
writing conflicts.

3 LDA Algorithm Based on Gibbs Sampling

We briefly review the LDA model based on Gibbs sampling now. LDA [4] is
an unsupervised classification algorithm, which can be used to identify the hid-
den topic information of large-scale document sets. It uses the bag of words
method, taking each document as a vector of word frequency, and converting
text information to numerical vectors which are easier to be modeled. Docu-
ment j of D documents is a multinomial distribution denoted by θ as a mixture
over T latent topics, and each topic k is a multinomial distribution with a word
vocabulary having W distinct words, denoted by ϕ. Both θ and ϕ have Dirichlet
prior distribution [4] respectively with super parameters α and β, the formula is
denoted as:

θk|j ∼ Dirichlet[α], ϕw|k ∼ Dirichlet[β] (1)

100 P. Xue et al.

Fig. 1. LDA topic generation model diagram

Gibbs sampling process is to produce every word of documents with prior
distribution θ and ϕ. This generation process can be represented by Fig. 1.

As is shown in Fig. 1, the document set D is a collection of T topics. Each
document represents a probability distribution over the topics, and each topic
represents a probability distribution over the words. So the probability of the
document j on topic k is θjk. When word xij is assigned to topic zij , the prob-
ability of the word w on topic zij can be denoted as ϕzijw. When sampling the
word wij (the ith word in document j) in LDA, the current topic zij of word
wij is sampled by the conditional probability formula:

P (zij = k | z¬ij , x, α, β) ∝
n¬ij
xijk

+ β

n¬ij
k + Wβ

(n¬ij
j k + α) (2)

In formula (2), nxijk denotes the number of ith word in document j assigned
to the topic k, njk denotes the number of words in document j assigned to topic
k, and n¬ij

k =
∑

w n¬ij
kw . Superscript ¬ij means the variable is calculated as if

word xij is removed from the training data. Paramter W Parameter.
The precess of LDA algorithm is described as follows:

Step 1: For each document and each word in the document, assign a topic
randomly.

Step 2: According to Formula (2), sample the words of the documents.
Step 3: Repeat step 2, until the subject distribution convergences.

It is assumed that the algorithm get converge after n iterations, in each
iteration it needs to sample N words in documents D, and each time of sampling
should traverse T topics, so the time complexity of the algorithm is close to
O(n×N ×T). When the dataset is large, the corresponding N and T is relatively
large, so the total time complexity is relatively large, therefore parallel algorithm
is needed.

GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU 101

4 Parallel LDA Training on GPU

4.1 Data Partition

In LDA algorithm, we need not consider the order of documents in a dataset
and the order of words in a document. This provides a good theoretical basis
to parallelize LDA algorithm. The common data partition scheme is to divide
the documents into a number of partitions, and distributing the partitions to
different nodes or cores, then all the nodes or cores update their data after syn-
chronization and communication. However, as mentioned in Sect. 2, the number
of words in one document may be several times of another document. For syn-
chronization, we must wait for the node or core which has the documents with
the most number of words. On GPU architecture, we also face this problem of
load imbalance. Therefore, we propose a partition scheme that distribute the
data evenly on the threads.

Our data partition scheme is motivated by the following observation: When
we sample the documents dataset, we are sampling the words in it, since a
document is a vector of words frequency in LDA. So we just put the words in
different documents into the same dataset. In each iteration, we just count the
number of words of the dataset, denoted as N , and distribute them over K
threads. We do not consider the document subscript of the word, so each thread
loads N/K words. In CUDA, a kernel can be executed by multiple equally-
shaped blocks, and every block has its blockId; one block can have many threads,
and every thread has its threadId [10,11]. the number K of total threads in
kernel is calculated by blockDim × gridDim. We count the thread’s id with
blockIdx.x × blockDim + threadIdx.x, every thread loads N/K words ranging
form id × N/K to (id + 1) ∗ N/K.

Actually the data partition scheme may cause a problem that the words from
one document may be distributed to different threads. So when different threads
sample the data on GPU in parallel, it may cause writing conflict. Multiple
threads may access the same value of document-topic matrix Ndk at the same
time when they occasionally process the words of one document simultaneously.
We call this document-topic conflict. Besides document-topic conflict, multiple
threads may access the same value of the word-topic matrix Nwk or topic vector
Zk at the same time. When they occasionally process the same word or the
same topic simultaneously, we call it word-topic conflict and topic-vector conflict
respectively. This issue may lead to wrong inference results and operation failure.
In this paper, we use atomic operation to solve this problem, and more details
will be described in the next section.

4.2 GLDA Algorithm

In the processing of the LDA algorithm, the most time consuming part is Gibbs
sampling, so the main goal of parallelizing LDA algorithm is to parallelize Gibbs
sampling. On GPU, the words in the document set D are equally divided into

102 P. Xue et al.

S part, with each part denoted as V1, V2, ..., VS . Each thread processes approxi-
mately N/S words. In Gibbs sampling on GPU, the topic matrix of words Nwk,
the topic matrix of documents Ndk, topic capacity matrix Zk (the number of
words assigned to topic k), are all stored in the global memory of one GPU.
Since data are divided evenly, the matrix Nwk, Ndk, Zk may all encounter read-
ing conflict and writing conflict. Writing conflict has been illustrated in Sect. 4.1.
When we use atomic operation to sample Nwk, Ndk, Zk, it means this operation
is performed without interference from other threads, when we used the atomic
operation to write other threads could not read from it, we call it reading conflict.
So we adopt double data rotation strategy to reduce the waiting time. We adopt
double data rotation strategy to solve reading conflict problem. Each of these
three matrices has a “reading copy” N”

dk, N
”
wk, Z

”
k respectively in each iteration.

The data of each thread s is sampled from:

P (Zijs = k | z”ij , x, α, β) ∝
n”ij
xijk

+ β

n”ij
k + Wβ

(n”ij
j k + α) (3)

where superscript ”ij denotes the variable word xij is from the reading copy
matrix. Since the data in the “reading copy” are from the last iteration, they
are not affected by the updating operation of the threads, therefore we can ensure
that all the threads are seeing consistent values of the 3 matrices. When writing
the sampling result to the matrices in each thread, we use atomic operation to
avoid writing conflict. Atomic operation is completed by hardware in only a few
clock cycles, and therefore very efficient. The overhead is almost neglectable on
NVIDIA Kepler [1] compute architecture of GPU. Each time the Gibbs sample
is completed, the reading matrix is updated by the result of the sampling with
threads and the process is very fast. The pseudo code of this algorithm is shown
in Algorithm 1.

Algorithm 1. Parallel Gibbs Sampling
Input: Document data collection
Count words number of dataset: N
Equally divide the words into S part:V1, V2, ..., VS

Initialized the matrix Ndk, Nwk, Zij for writing.
Initialized the matrix N”

dk, N
”
wk, Z

”
ij for reading.

repeat
for each Processor s in parallel with data Vs do

for each Word in Vs do
read from matrix N”

dk, N
”
wk, Z

”
ij

atomic sample writing matrix Ndk, Nwk, Zij according to Formula (3)
end for

end for
Synchronization step for Ndk, Nwk, Zij

Update N”
dk ← Ndk, N

”
wk ← Nwk, Z

”
ij ← Zij

until convergence
Output: Ndk, Nwk, Zij .

GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU 103

In the pseudo code, we divide the words into S disjoint subsets according
to the number of words, and distribute them to S threads. In each iteration, S
threads parallelly read data from matrix N”

dk, N
”
wk, Z

”
ij and sample the results

into Ndk, Nwk, Zij with atomic operation, and then we update N”
dk, N

”
wk, Z

”
ij

with Ndk, Nwk, Zij . Finally the results is convergent.

5 Experiments

5.1 Experimental Environment

Hardware Environment. We used a machine with an Inter(R) Core(TM) i7-2600
CPU with frequency of 3.40 GHz. The host memory size is 6 GB. Our GPU is an
NVIDIA Tesla K40, which has 2880 cores and each core at 745 MHz. The K40
GPU has 12 GB global memory, and the memory bandwidth is 288 GB/s.
Software Environment. We adopted CUDA toolkit [8] as our GPU development
environment, and CUDA programs run on a Single Program Multiple Threads
(SPMT) fashion [7]. Our program is written in C language, and we used an
NVCC compiler to compile the program. The toolkit and compiler run on Ubuntu
14.04 with 64-bit Linux kernel.

In this paper, we used three common data sets of different sizes to test
the performance of our algorithm. These three data sets are commonly used
in natural language processing. They are KOS data set, RCV1 data set, and
Enron data set. The attribute of the data sets is shown in Table 1. We randomly
extracted 90 % of all word tokens as the training set, and the remaining 10 % of
word tokens are the testing set.

Table 1. Datasets used in the experiments

dataset Number of documents (D) Vocabulary Size (W) Number of word tokens (N)

KOS 3430 6906 467700

RCV1 23149 47151 2798000

Enron 39861 28102 6400000

Tesla K40 adopted the NVIDIA Kepler compute architecture. According to
the number of SM(Streaming Multiprocessor) and SP(Streaming Processor) in
K40 [2,6], we set the thread block number to 192 and thread number in each
block to 256.

For each dataset, we set α = 0.5 and β = 0.01 in all experiments, which
results in good quality in practice. For each dataset, we also tested the impact
of different number of the topics. We set the number of topics K to 20, 40, and
60 in each dataset. In addition, we set the number of iterations L to 100, 150,
200, and 250, in order to test the impact of different iterations.

104 P. Xue et al.

5.2 Speedup in Experiments

We compared our parallel method with the serial code on a single core on the
CPU. All CPU implementations are compiled by gcc compiler with -O3 opti-
mization. We did our best to optimize the code of the original C language serial
program, such as using better data layout and reducing redundant computation.
The run time of the final CPU code is almost twice as fast as the initial code.
The parallel and serial experimental results for each data set are shown in Fig. 2.

(a) KOS (b) RCV1 (c) Enron

Fig. 2. Speedup

The results prove that more than 30x speedup is achieved for parallel algo-
rithm with all the three datasets. For example, the running time of RCV1 dataset
(K = 40, L = 200) in serial is 379.76 s, while our parallel algorithm on GPU only
takes 11.48 s. As is shown in the experimental results, our method on the KOS
dataset can achieve almost 38x speedup under different topic numbers and dif-
ferent iterations, on the RCV1 data set can achieve almost 35x speedup, and on
the Enron data set can achieve almost 30x speedup. We can see that the larger
the data set, the lower the speedup. Our analysis is that when we use GPU
to deal with the data set, we must first copy the data set from host memory
to the global memory in GPU. Then, after running the algorithm in GPU, we
copy the result from the global memory to host memory. The data transmission
between the CPU-GPU heterogeneous system is through the PCIe bus, whose
bandwidth can only reach 5–6 G/s. The time of data copy is proportional to the
size of data set. Thus we can infer that the copy time of a bigger data set is
longer, so the speedup is a little smaller. However, the time of data transmission
only accounts for a small part of the total running time when the amount of
data is large enough. As shown in the Fig. 2, with more iterations, the propor-
tion of data transmission decreases, so the speedup increases. In summary, our
algorithm can achieve a high performance from different data sets we tested, and
at least 25x speedup can be achieved.

5.3 Perplexity in Experiments

We measure the performance of the parallel algorithms using test set perplexity
[15,20]. Perplexity is usually used to measure the quality of the data mining model.

GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU 105

The smaller the perplexity finally converges to, the better the quality of the model
is.Test setperplexity isdefinedas exp (− 1

Ntest log p(Xtest) [20].ForLDAalgorithm
model, we compute the likelihood p(Xtest) by averaging M = 10 samples at the
end of 250 iterations from different chains. The log likelihood log p(Xtest) is defined
as:

log p(Xtest) =
∑

j,w

log
1
M

∑

M

∑

k

θSk|jϕ
S
w|k, (4)

where

θSk|j =
α + nS

k|j
Kα + nS

j

, ϕS
w|k =

β + nS
w|k

Wβ + nS
k

. (5)

Each data set is split into a training set and a test set. When running the
test set after each iteration, we copy the current sample results from the global
memory in GPU to the host memory, and then calculate the perplexity value
according to Formula (2) in each iteration. The perplexity results of the three
data sets is shown in Fig. 3.

(a) KOS (b) RCV1 (c) Enron

Fig. 3. Perplexity

For each data set, we computed the perplexity value of different number of
topics (K = 20, 40, 60), and in each test we set the iterations to 250. We observe
that the perplexity values of KOS generally converge to 1300 by 100 iterations,
the perplexity values of RCV1 generally converge to 1200 by 50 iterations, and
the perplexity of Enron generally converge to 2500 by 100 iterations. On the
one hand, the perplexity values of the three data set are all convergent, and for
each data set, the value the perplexity converges to with different topic numbers
is not of much difference. On the other hand, the convergent speed of different
data set is approximately the same, but the convergent value is different. That
is mainly because that different data sets have distinctive internal structures.

In conclusion, we calculated the perplexity value with different data sets and
different topic numbers in our parallel algorithm, and the perplexity values in
our experiment are convergent and reasonable, which verified the correctness and
accuracy of our algorithm. We also compared the perplexity values of our parallel
method with that of the serial method under the same parameter conditions, and

106 P. Xue et al.

the results of serial algorithm are basically the same. We did not show the serial
perplexity results in the figures, because their images are overlapped.

6 Conclusions

LDA algorithm is commonly used in the field of text mining with high time com-
plexity. In this paper we simply introduced the background of the GPU structure
and the CUDA Programming Model, and then simply reviewed the LDA algo-
rithm, and finally we proposed a new parallel LDA algorithm of partition data
uniformly. We used different data sets to test the speedup and perplexity of this
new algorithm and achieved good result. There are two main contributions of our
new algorithm: (1) a new data partition scheme which can load the data evenly
on each thread, and (2) a new way to solve the reading and writing conflict in
GPU.

In the future, we can use multiple GPUs to parallelize the LDA algorithm,
and further improve the data copy strategy of CPU-GPU heterogeneous to
reduce the time of data transmission in the heterogeneous system as far as pos-
sible.

Acknowledgments. This work is supported by the natural science fund of Tianjin
City No. 16JCYBJC15200, the Open Project Fund of State Key Laboratory of Com-
puter Architecture, Institute of Computing Technology, Chinese Academy of Sciences
No. CARCH201504, the special Research Fund for the Doctoral program of Higher
Education No. 20130031120029, and the Open Fund of provincial and ministerial level
scientific research institutions, Civil Aviation University of China No. CAAC-ISECCA-
201502.

References

1. Nvidia cuda. http://www.nvidia.com/cuda
2. Aila, T., Laine, S.: Understanding the efficiency of ray traversal on GPUs. In:

Proceedings of the Conference on High Performance Graphics 2009, pp. 145–149.
ACM (2009)

3. Blei, D.M.: Introduction to probabilistic topicmodels. http://www.cs.princeton.
edu/blei/papers/Blei2011.pdf

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

5. Chen, W.Y., Chu, J.C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.: Collaborative
filtering for orkut communities: discovery of user latent behavior. In: Proceedings
of the 18th international conference on World wide web, pp. 681–690. ACM (2009)

6. Cook, S.: CUDA programming: a developer’s guide to parallel computing with
GPUs. Newnes (2012)

7. Wu, E., Liu, Y.: General calculation based on graphics processing unit (in Chinese).
J. Comput. Aided Des. Comput. Graph. 16(5), 601–612 (2004)

8. Zhang, H., Li, L., Lan, L.: Research on the application of the general calculation
of GPU (in Chinese). Comput. Digit. Eng. 33(12), 60–62 (2005)

http://www.nvidia.com/cuda
http://www.cs.princeton.edu/blei/papers/Blei2011.pdf
http://www.cs.princeton.edu/blei/papers/Blei2011.pdf

GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU 107

9. Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. In: 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–10. IEEE
(2010)

10. Li, T., Liu, X., Dong, Q., Ma, W., Wang, K.: HPSVM: Heterogeneous parallel
SVM with factorization based ipm algorithm on CPU-GPU cluster. In: 2016 24th
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pp. 74–81. IEEE (2016)

11. Li, T., Wang, D., Zhang, S., Yang, Y.: Parallel rank coherence in networks for
inferring disease phenotype and gene set associations. In: Wu, J., Chen, H., Wang,
X. (eds.) ACA 2014. CCIS, vol. 451, pp. 163–176. Springer, Heidelberg (2014)

12. Liu, X., Zeng, J., Yang, X., Yan, J., Yang, Q.: Scalable parallel em algorithms
for latent dirichlet allocation in multi-core systems. In: Proceedings of the 24th
International Conference on World Wide Web, pp. 669–679. International World
Wide Web Conferences Steering Committee (2015)

13. Liu, Z., Zhang, Y., Chang, E.Y., Sun, M.: Plda+: parallel latent dirichlet allocation
with data placement and pipeline processing. ACM Trans. Intell. Syst. Technol.
(TIST) 2(3), 26 (2011)

14. Masada, T., Hamada, T., Shibata, Y., Oguri, K.: Accelerating collapsed variational
Bayesian inference for latent dirichlet allocation with nvidia CUDA compatible
devices. In: Chien, B.C., Hong, T.P., Chen, S.M., Ali, M. (eds.) IEA/AIE 2009.
LNCS, vol. 5579, pp. 491–500. Springer, Heidelberg (2009)

15. Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models
for text and citations. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 542–550. ACM (2008)

16. Newman, D., Smyth, P., Welling, M., Asuncion, A.U.: Distributed inference for
latent dirichlet allocation. In: Advances in Neural Information Processing Systems,
pp. 1081–1088 (2007)

17. Smyth, P., Welling, M., Asuncion, A.U.: Asynchronous distributed learning of topic
models. In: Advances in Neural Information Processing Systems. pp. 81–88 (2009)

18. Tang, J., Huo, R., Yao, J.: Evaluation of stability and similarity of latent dirichlet
allocation. In: Software Engineering (WCSE), 2013 Fourth World Congress on.
pp. 78–83. IEEE (2013)

19. Tora, S., Eguchi, K.: Mpi/openmp hybrid parallel inference for latent dirichlet
allocation. In: Proceedings of the Third Workshop on Large Scale Data Mining:
Theory and Applications. pp. 5. ACM (2011)

20. Wang, Y., Bai, H., Stanton, M., Chen, W.Y., Chang, E.Y.: PLDA: Parallel Latent
Dirichlet Allocation for Large-Scale Applications. In: Goldberg, A.V., Zhou, Y.
(eds.) AAIM 2009. LNCS, vol. 5564, pp. 301–314. Springer, Heidelberg (2009)

21. Yan, F., Xu, N., Qi, Y.: Parallel inference for latent dirichlet allocation on graph-
ics processing units. In: Advances in Neural Information Processing Systems.
pp. 2134–2142 (2009)

22. Yan, J.F., Zeng, J., Gao, Y., Liu, Z.Q.: Communication-efficient algorithms for
parallel latent dirichlet allocation. Soft Computing 19(1), 3–11 (2015)

23. Zhang, S., Li, T., Dong, Q., Liu, X., Yang, Y.: Cpu-assisted gpu thread pool model
for dynamic task parallelism. In: Networking, Architecture and Storage (NAS),
2015 IEEE International Conference on. pp. 135–140. IEEE (2015)

High Performance Stencil Computations
for Intel� Xeon PhiTM Coprocessor

Luxia Feng, Yushan Dong, Chunjiang Li(B), and Hao Jiang

School of Computer, National University of Defence Technology,
Changsha, Hunan, China

932744732@qq.com, yushandong@hotmail.com,

{chunjiang,haojiang}@nudt.edu.cn

Abstract. Stencil computations are a class of computational kernels
which update array elements according to some stencil patterns, and they
have drawn more attentions recently. The Intel Xeon Phi coprocessor,
which is designed for high performance computing, has not been fully
evaluated for stencil computations. In this paper, we present a series of
optimizations to accelerate the 3-D 7-point stencil code on Intel Xeon
Phi coprocessor. We focus on how to exploit the performance potential
of many cores and wide-vector unit in each core. In order to exploit data
locality, we use loop tiling and we propose a method for calculating the
block size while tiling. The achieved performance brings a speedup of
211.6 in comparison with the serial code.

Keywords: Stencil computation · Intel� Xeon PhiTM coprocessor ·
Vectorization · Loop tiling

1 Introduction

Stencil computations [1,2] are an important class of code, and they are commonly
found in a variety of applications. Stencil computations described a structured
grid of points in N dimensions. The fixed set of neighboring points whose values
are required to calculate the new value of one point is usually called a stencil.
The stencil [3] defines how the value of a point should be computed from the
values of itself and its neighbors.

Intel Xeon Phi Coprocessor [4] is the very first product of the Intel Many
Integrated Core (MIC) architecture [5]. Intel Xeon Phi coprocessor offers more
than 50 cores and more than 200 hardware threads, and each core contains a
512-bit vector unit (SIMD). It can deliver peak performance of 1 teraFLOP/s
for double precision floating point calculations. Intel Xeon Phi coprocessors were
already deployed in the fastest supercomputer Tianhe-2 [7]. Programming for the
Intel Xeon Phi coprocessors is mostly like programming for a shared memory
multi-processing system. But, when transplant stencil code to Intel Xeon Phi,
lots of performance tuning is still inevitable. In this paper, we evaluate the per-
formance of a 3-D 7-point stencil computation on Intel Xeon Phi coprocessors
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 108–117, 2016.
DOI: 10.1007/978-981-10-2209-8 10

High Performance Stencil Computations for Intel� Xeon PhiTM Coprocessor 109

with a serious of optimizations. In summary, our work makes the following con-
tributions:

1. Multi-level parallelism (multi-threading for outermost loop and vectorization
for the innermost loop) is leveraged to make use of the massively parallel
processing power of Intel Xeon Phi.

2. In order to exploit data locality, loop tiling is used for further optimization.
And a tile size calculation suitable for Intel Xeon Phi is also devised.

The rest of this paper is organized as follows. Section 2 analyzes the tar-
get stencils. Section 3 presents an overview of the Intel Xeon Phi architecture.
Section 4 describes various performance optimization techniques we applied.
Section 5 gives the performance evaluation. Section 6 introduces some related
works. In Sect. 7, a summary of our work and some directions for future work
are presented.

1 for (t = 0; t < niter; t++) {

2 for (z = 0; z < nz; z++) {

3 for (y = 0; y < ny; y++) {

4 for (x = 0; x < nx; x++) {

5 cur[z,y,x] = cc*old[z,y,x] + cw*old[z,y,x-1] + ce*old[z,y,x+1]+

+]x,y,1-z[dlo*bc+]x,1+y,z[dlo*sc+]x,1-y,z[dlo*nc6

;]x,y,1+z[dlo*tc7

8 } } }

9 swap (cur, old) ;

10 }

Fig. 1. 3-D 7-point stencil code

2 Target Stencils

As Fig. 1 shows, We choose 3-D 7-point stencil code as the target because it’s typ-
ical stencil code with medium complexity. The old[] array contains the current
volume data and the cur[] array is used to store the results of the current time
step iteration. The outermost loop is the number of time steps requested and the
inner triple loops (lines 2–8) applies the stencil calculations to each dimension
using the previous value of the target point and six nearest neighboring points.
After being processed for current time step, the two array pointers are swapped
(line 9). Besides, the data type of all arrays is double-precision floating-point,
and the weights should satisfy the Eq. 1.

cc + cw + ce + cn + cs + cb + ct = 1 (1)

From the stencil code shown in Fig. 1, it is obvious that there is no data
dependence for each iteration of time step, so the outmost loop can be paral-
lelized. And there is no data dependence in the innermost loop, so the innermost

110 L. Feng et al.

loop can be vectorized. Besides, each update of a signal point requires 13 double-
precision float-point operations, so (nx × ny × nz) × 13 × count operations are
performed in all. Meanwhile, (nx× ny× nz)× sizeof(double)× 3× count bytes
data is loaded or stored. Hence, the compute/fetch ratio is calculated as Eq. 2.
The ratio clearly indicates that the stencil code is memory-intensive.

(nx× ny × nz) × 13
(nx× ny × nz) × sizeof(double) × 3 × count

= 0.54Flops/B (2)

3 Architecture of the Intel Xeon Phi

The Intel Xeon Phi coprocessor is composed of a silicon chip (containing the
cores, caches and memory controllers), GDDR5 memory chips, flash mem-
ory, system management controller, miscellaneous electronics and connectors
to attach into a computer system. The x86-based cores, the memory controllers,
and the PCI Express system I/O logic are interconnected with a high speed
ring-based bidirectional on-die interconnect. Figure 2 illustrates the architec-
ture of Intel Xeon Phi [6]. Each core supports SIMD, and the vector processing
unit (VPU) executes the newly introduced Intel Initial Many Core Instructions
(IMCI) with 512-bit vector length. And each core also supports four hardware
threads. Each core has 32 KB private L1 instruction cache, 32 KB private L1 data
cache and 512 KB shared L2 cache. The L2 caches are fully coherent and they
can supply data to each other on-die. The memory subsystem is comprised of
high speed GDDR5 memory. Besides, the Intel Xeon Phi coprocessor runs Linux
operating system (OS) that is a minimal and embedded Linux environment with
the Linux Standard Base core libraries.

Fig. 2. Architecture of Intel� Xeon PhiTM coprocessor

Intel Xeon Phi coprocessor supports three working modes, including native,
offload and symmetric. In the native mode, it runs as a share-memory many-core
processor. In the offload mode, it acts as a coprocessor. In the symmetric mode,
it behaves just like an equivalent node with the general purpose host processor.

High Performance Stencil Computations for Intel� Xeon PhiTM Coprocessor 111

4 Performance Optimizations

As an x86-based SMP-on-a-chip, we can still use the code shown in Fig. 1 with-
out any modification, and put it as the baseline for subsequent performance
optimizations and evaluations.

4.1 Parallelization and Vectorization

As a share-memory many-core processor, parallelizing the code to execute on all
cores is the first challenge. Fortunately, the simple and powerful OpenMP [8],
which is the prevalent standard API for shared memory multiprocessing, brings
us convenience. As the analysis shown in Sect. 2, each iteration of the time steps
of the 3-D 7-point stencil code can be parallelized. Then an OpenMP parallel
for loop pragma can be added before the z loop. Line 2 of the code shown in
Fig. 3 displays the method of parallelization. THNUM parameter is used to specify
the number of thread in parallelization.

1 for (t = 0; t < niter; t++) {

2 #pragma omp parallel for num_threads(THNUM) private(x,y)

3 for (z = 0; z < nz; z++) {

4 for (y = 0; y < ny; y++) {

5 #pragma simd

6 #pragma vector nontemporal

7 for (x = 0; x < nx; x++) {

8 boundary processing and indices linearizing

9 cur[c] = cc*old[c] + cw*old[w] + ce*old[e] +

;]t[dlo*tc+]b[dlo*bc+]n[dlo*nc+]s[dlo*sc01

11 } } }

12 swap (cur, old) ;

13 }

Fig. 3. 3-D 7-point stencil code with parallelizing optimizations

Each core in Intel Xeon Phi coprocessor has a 512-bit VPU and its crucial to
effectively utilize it for achieving high performance. Because there is no depen-
dency in the innermost loop, SIMD directives that force the compiler to vectorize
the iterations in the innermost loop (line 5 in Fig. 3). However, alignment of the
store addresses is required. When the length of the array is not the multiples of
64, the malloc() are replaced with mm malloc() with a second parameter of
64 specifying the byte alignment of the arrays.

4.2 Loop Tiling for Data Locality

Another important optimization is to exploit data locality for L2 cache. We
applied multi-level loop tiling [9] to exploit data locality. In this scheme, a signal

112 L. Feng et al.

sweep of the grid is partitioned into cubic blocks. Within a single iteration of the
time-step loop t, it partitions the 3-D domain of size (nx×ny×nz) into blocks
of size (tx × ty × tz), so that grid points which are close in space are grouped
to be modified together. Each grid point in every block can remain in cache to
compute new values of points without fetching from memory. And the size of
the block should satisfy the Eq. 3.

(tx× ty × tz) × sizeof(DType) × Tp ×Nm < Scache (3)

Where DType represents the data type, Tp is the number of thread in each core,
Nm is the amount of array read from memory, and Scache represents the capacity
of cache. For example, the capacity of L2 cache in each core of Intel Xeon Phi
coprocessor is 512 KB. While running two threads on a core with streaming store,
the number of double-precision floating-point grid point in each block is 32 K at
most. Leopol [10] have found that when the 3-D domain of size N3 is tiled to
achieve higher performance, the suggested size of blocks is (N × s × (s × L

2)).
Where L is the size of cache line (64 B), and s is the only parameter calculated
to satisfy the target platform. Keeping the x not to be partitioned can achieve
preferable vectorization of the inner loop. Corresponding to the Eq. 3, Eq. 4 can
be achieved.

(N × s× (s× L

2
)) × Tp ×Nm < Scache (4)

Figure 4 illustrates the result of applying conventional loop tiling to improve
cache reuse of the 3-D 7-point stencil code shown in Fig. 1, where the partitioned
blocks with a single sweep of the grid are assigned to different threads to be
evaluated simultaneously.

1 for (t = 0; t < niter; t++) {

2 #pragma omp parallel for num_threads(THNUM) private(xx, yy, x, y, z)

3

4 for (yy = 0; yy < ny; yy+=ty) {

5 for (zz = 0; zz < nz; zz+=tz) {

6 for (xx = 0; xx < nx; xx+=tx {

7 for (z = zz; z < zz+tz; z++) {

8 for (y = yy; y < yy+ty; y++) {

9 #pragma simd

10 #pragma vector nontemporal

{)++x;xt+xx<x;xx=x(rof11

gniziraenilsecidnidnagnissecorpyradnuob//21

+]e[dlo*ec+]w[dlo*wc+]c[dlo*cc=]c[ruc31

;]t[dlo*tc+]b[dlo*bc+]n[dlo*nc+]s[dlo*sc41

15 } } } } } }

16 swap (cur, old) ;

17 }

Fig. 4. 3-D 7-point stencil code with loop tiling

High Performance Stencil Computations for Intel� Xeon PhiTM Coprocessor 113

5 Performance Evaluation and Analysis

5.1 Hardware and Software Configuration

To evaluate the effectiveness of the optimization methods presented in this paper,
we measure performance of the 3-D 7-point stencil code on two kinds of plat-
forms: Intel Xeon Phi coprocessor and Intel Xeon processor. The basic specifi-
cations of the platforms are listed in Table 1.

Table 1. The specifications of experiment platform

Intel Xeon E5-2670 Intel Xeon Phi 31S1P

(Sandy bridge) coprocessor (Knights corner)

Cores 16 (8 × 2) 57

Logical core count 32 (16 × 2) 228 (57 × 4)

SIMD width(64-bit) 2(SSE), 4(AVX) 8 (IMCI)

Clock frequency 2.6 GHz 1.1 GHz

Memory size/type 128 GB/DDR3 8 GB/GDDR5

Peak DP/SP FLOPs 345.6/691.2 GFLOP/s 1.065/2.130 TFLOP/s

Peak memory bandwidth 85.3 GB/s 320 G/s

Cache 32 KB L1-D 32 KB L1-I,
256KB L2, 20 MB L3

32 KB L1-D, 32KB L1-I,
512 KB/Core L2

Host OS Linux Redhat 4.4.5-6

Compiler Intel Compiler Version 15.0.0

5.2 Performance Results

For performance evaluation, we define the N as 512, and the performance of the
stencil code in Fig. 1 is used as the baseline. About the size of tiling, Eqs. 3 and
4 have shown the method of calculation. For the evaluation on Intel Xeon Phi
31S1P, s is 4 while running two threads for a core.

Figure 5 shows the run time and speedup of 3-D 7-point stencil code achieved
with different optimization techniques. We can find that significant improve-
ments in performance over the baseline are achieved for Intel Xeon Phi after
applying the optimizations we devised. With the basic optimizations, 3-D 7-
point stencil code achieves performance speedup of 160.51. The loop tiling gives
another 32 % improvement over the basic optimization. That is about 212 times
improvement from the original single-threaded baseline. Besides, we can find
that the parallel code with SIMD achieves much higher performance than the
code without SIMD optimization.

114 L. Feng et al.

Fig. 5. Performance of the baseline and the optimized code on Intel� Xeon PhiTM

31S1P

Fig. 6. Performance of stencil code on Intel� Xeon PhiTM 31S1P with different core
counts

5.3 Scalability

In order to investigate the effectiveness of our parallel strategy, we evaluate
the performance of our stencil code with incrementally increasing the number
of logical threads from 1 to 224. When the size of 3-D domain is 5123, the
performance of stencil code with different count of threads is shown in Fig. 6. The
relative speedup is compared with serial code. We can see that the performance of
stencil computations increases proportionally with the number of threads. Three
threads per core provide the best performance, and it achieves the speedup of
90.66. When the number of thread is 228, the performance decreased. The main
reason might be that more context switch of threads involves more overhead.
However, the speedup of the optimized kernel demonstrates good scalability of
parallelization.

5.4 Overall Performance Comparison

Using the stencil code in Fig. 5, the performance comparisons between Intel Xeon
Phi coprocessor and Intel Xeon processor with different optimization techniques
and thread counts is shown in Fig. 7. In Fig. 7(a), ‘base’ means the performance

High Performance Stencil Computations for Intel� Xeon PhiTM Coprocessor 115

of the serial code; ‘openmp’ means using OpenMP for task parallelism; ‘simd’
means using vectorization for data parallelism; ‘tiling’ means using loop tiling
to improve data locality. The number on top of each bar represents the speedup
of performance improvement achieved compared to the corresponding optimiza-
tion of Xeon processor. We find our optimization strategies achieve better per-
formance on both Xeon processor and Xeon Phi coprocessor. Although Xeon
achieves a higher performance of base stencil code than Xeon Phi, the perfor-
mance of Xeon processor is 1.292 times and 4.210 times lower than Xeon phi
coprocessor for parallelization and vectorization. The main reason is that Xeon
processor has a higher clock frequency, and Xeon Phi coprocessor has wider vec-
tor processing unit and more cores. Figure 7(b) shows the performance of stencil
code over increasing numbers of cores on Xeon and Xeon Phi. Except for the
increasing performance with more parallelism, the main difference is the flat-
tening of performance on Xeon after initial scaling due to the memory-bound
nature of the problem. Based on these results, in terms of performance for our
stencil code, we conclude that one Xeon Phi card is 5.1 times faster than one
Xeon processor.

(a) Performance with Different Optimizations (b) Performance with Different Thread Counts

Fig. 7. Performance comparisons between Xeon and Xeon Phi

6 Related Work

As a class of popular iterative kernels in scientific and engineering computation,
stencil computations have received considerable attention. Since 2014, Interna-
tional Workshop on High-Performance Stencil Computations (HiStencils) [1] is
convened each year. HiStencils focuses on the optimizations of stencil computa-
tions involving all fields. The target platforms have been changed from the tra-
ditional single core CPU to symmetric multiprocessing on-a-chip, even to some
kinds of accelerators, such as NVIDIA GPU [11,12]. Rahman [14] et al. mod-
eled the relationship between performance improvements achieved by different
optimizations and their efficiency of utilizing various hardware components on
multi-core architectures, which can be used to effectively guide the optimization

116 L. Feng et al.

of different stencil kernels. Schäfer A and Fey D [11] chose the Jacobi method to
evaluate a set of algorithms on NVIDIA GPGPU. Maruyama N. and Aoki T. [12]
evaluated the performance of 3-D 7-point stencil on NVIDIA Fermi GPU with
a series of memory access optimizations, such as spatial blocking and Temporal
Blocking. Also, there were lots of work about optimizing application kernels on
Intel MIC. Yang You et al. [13] accelerated the wave propagation forward mod-
eling on the CPU, GPU, and MIC with various optimizations. Qinglin Wang [15]
and Xiantao Cui accelerated a kind of parallel algorithm on Intel MIC respec-
tively, and achieved a considerable speedup compared with Intel Xeon CPU. Gao
T. et al. [16] evaluated the performance of the graph search algorithm on MIC.

But for Intel Xeon Phi, few optimization work for stencil computation has
been published yet. Furthermore, GPU and Xeon Phi are quite different on
architecture and programming, the optimization method for GPU can not be
transplanted to Xeon Phi directly.

7 Conclusions and Future Work

In this paper, a series of optimization techniques were devised for 3-D 7-point
stencil code on Intel Xeon Phi coprocessor, including multi-threading, vectoriza-
tion and data locality exploitation. Our evaluations show that the vectorization
and loop tiling are essential for the stencil computations to achieve higher per-
formance.

However, the best performance is only 4.8 percent of the peak performance on
the target Xeon Phi. This suggests the performance of the stencil computations
could be further improved, and more optimizations should be explored in the
future. Firstly, the task-level parallelism is limited in the signal iteration of
time step, so that more overhead of OpenMP is existence. Maybe, time skewing
and pipelined parallelization can be considered. Secondly, as a data-intensive
application, data prefetch might be applied to stencil codes for hiding memory
latency.

Acknowledgments. The work described in this paper is partially supported by
the project of National Science Foundation of China under grant No.61170046 and
No.61402495.

References

1. HiStencils. http://www.exastencils.org/histencils/. Accessed 15 Apr 2015
2. Stencil code. http://en.wikipedia.org/wiki/Stencil code/. Accessed 15 Apr 2015
3. Michael, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns

for Efficient Computation. Elsevier, Amsterdam (2012)
4. Intel Corporation. Intel R© Xeon PhiTM coprocessor system software developers

guide, March 2014
5. Duran, A., Michael, K.: The Intel R© many integrated core architecture. In: Interna-

tional Conference on High Performance Computing and Simulation (HPCS). IEEE
(2012)

http://www.exastencils.org/histencils/
http://en.wikipedia.org/wiki/Stencil_code/

High Performance Stencil Computations for Intel� Xeon PhiTM Coprocessor 117

6. James, J., Reinders, J.: Intel R© Xeon PhiTM Coprocessor High-performance Pro-
gramming. Newnes, Oxford (2013)

7. Top 500 list. http://www.top500.org/. Accessed 1 June 2016
8. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory

Parallel Programming, vol. 10. MIT press, Massachusetts (2008)
9. Xue, J.: Loop Tiling for Parallelism. Springer Science & Business Media, Berlin

(2000)
10. Leopold, C.: Tight bounds on capacity misses for 3D stencil codes. In: Sloot,

P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002,
Part I. LNCS, vol. 2329, pp. 843–852. Springer, Heidelberg (2002)

11. Schäfer, A., Fey, D.: High performance stencil code algorithms for GPGPUs. Pro-
cedia Comput. Sci. 4, 2027–2036 (2011)

12. Maruyama, N., Takayuki, A.: Optimizing stencil computations for NVIDIA Kepler
GPUs. In: Proceedings of the 1st International Workshop on High Performance
Stencil Computations, Vienna (2014)

13. You, Y., et al.: Evaluating multi-core, many-core architectures through accelerat-
ing the three-dimensional LaxCWendroff correction stencil. Int. J. High Perform.
Comput. Appl. 28(3), 301–318 (2014)

14. Rahman, S.M., Faizur, Q.Y., Apan, Q.: Understanding stencil code performance on
multicore architectures. In: Proceedings of the 8th ACM International Conference
on Computing Frontiers. ACM (2011)

15. Wang, Q., et al.: Accelerating embarrassingly parallel algorithm on Intel MIC. In:
International Conference on Progress in Informatics and Computing (PIC). IEEE
(2014)

16. Tao, G., et al.: Using the intel many integrated core to accelerate graph traversal.
Int. J. High Perform. Comput. Appl. 28(3), 255–266 (2014)

http://www.top500.org/

RLDRPSO: An Efficient Heuristic Algorithm
for Task Partitioning

Xiaofeng Qi(B), Xingming Zhang, and Kaijian Yuan

National Digital Switching System Engineering and Technological R&D Center,
Zhengzhou 450000, China

qxxxxf@gmail.com

Abstract. Task partitioning is the critical step in the co-design of recon-
figurable embedded system. Particle Swarm Optimization (PSO) has
been used for fast task partitioning. However, PSO has the problems
of local extremum and low precision, leading to the poor partitioning
quality and unsatisfied performance. In this paper, Reverse Learning
Dynamic Radius Particle Swarm Optimization (RLDRPSO) task par-
titioning algorithm was proposed to solve these problems. Firstly, the
fitness function was designed according to the system model. Then,
DRPSO was proposed to extend the solution space and improve the
accuracy. Finally, reverse learning strategy was proposed to degenerate
solution periodically and solve the problem of local extremum. Experi-
mental results show that RLDRPSO increases the partitioning quality
by 20 %–45 % and the average performance of system by 7 %–9 %.

Keywords: Task partitioning · Radius particle swarm optimization ·
Reverse learning

1 Introduction

Task partitioning is the critical step in the co-design of reconfigurable embedded
system, which has a dominant effect on the system performance. It determines
which components of the system are implemented on hardware and which ones
on software [1]. Traditional methods of task partitioning are made by hand. As
the embedded system becomes more and more complex, it is difficult for task par-
titioning in embedded system. Then many researchers put attention on task par-
titioning algorithms, turning to use automatic methods to solve this problem [2].

Task partitioning is a problem of multi-objective optimization. Using Mixed
Integer Linear Programming(MILP) [3] and Dynamic Programming(DP) [4]
could find global optimal solution in theory to achieve the best system per-
formance. However, these methods search for the whole solution space blindly.
Particularly in the case of large-scale amount of tasks, these methods run for a
long time.

Then, many researchers used heuristic methods [5], like Genetic Algo-
rithm(GA) [6], Simulated Annealing(SA) [7], Ant Colony Optimization (ASO) [8]
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 118–129, 2016.
DOI: 10.1007/978-981-10-2209-8 11

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 119

and Particle Swarm Optimization(PSO) [9], as the partitioning strategy. PSO in
these heuristic methods has simple parameters, executes rapidly and costs less [9].
So, we choose PSO to solve the problem of task partitioning in this paper.

While, the disadvantages of PSO are the unsatisfied approximate solution and
local extremum. To solve inherent defects of PSO, early literatures proposed the
optimized parameters. In the initial stage of PSO, the convergence is accelerated
by the individual learning factor. In the latter part, the search is performed by
the global learning factor. The improvement of this strategy is not obvious. Yang
[10] proposed CLPSO task partitioning algorithm, which changed the structure
of PSO and led the population to converge on the global optimal solution by
a alterable leader. CLPSO is unreliable for unstable results. Luo [11] proposed
ICPSO task partitioning algorithm, which combines the PSO and immune clone
algorithm to extend the solution space through cloning and mutation. Hu [12]
combined PSO and simulated annealing algorithm, which delays the convergence
to avoid the local extremum. These methods have the problems of premature
and poor accuracy and result in unsatisfied task partitioning quality.

Above all, we propose RLDRPSO task partitioning algorithm to improve the
task partitioning quality system performance. RLDRPSO includes the optimized
parameters, structure and combined algorithm. DRPSO algorithm is used to
search for optimum solution dynamically, which expands the solution space and
improves the accuracy. When judging the results falling into the local extremum,
the algorithm uses reverse learning mechanism to degenerate solution in a certain
extent, so as to overcome the problem of local extremum and search for better
solution on this basis. Experimental results show that the proposed algorithm
can effectively improve the partitioning quality and performance of the system.

This paper is organized as follow. Section 2 introduces the task partitioning
model. In Sect. 3, we propose RLDRPSO task partitioning algorithm. Then the
proposed algorithm is compared with typical algorithms in Sect. 4. The fifth
section points out shortcomings of the proposed algorithm and the direction for
further study.

2 Problem Definition

2.1 System Structure

The general structure of configurable embedded system model is presented in
Fig. 1 [13].

CPU is the processor for software tasks, which contains the local mem-
ory(LM). FPGA or ASIC is the processor for hardware tasks. The communi-
cation among tasks is realized by bus and shared memory. We suppose that
execution time, energy consumption, area of hardware resources and the com-
munication time and energy consumption in CPU or FPGA are known. In this
model, tasks oriented two-way division.

120 X. Qi et al.

Fig. 1. Embedded system model [13]

2.2 Generalized Task Partitioning

According to the task granularity, an application needs to be decomposed into
a number of tasks, which is represented by Data Flow Graph(DFG):

G = {V,E} (1)

DFG G is a directed acyclic graph that contains a set of nodes V and edges E.
Each node vi ∈ V represents a task that needs to be performed in processor
cores. Each side eij ∈ E indicates that the data is transferred from vi to the
task vj via the bus. The number of tasks is n. ∀vi, i ∈ [1, n] contains multiple
attributes:

vi = {xi, TSi, THi, ESi, EHi, Ai} (2)

xi is the candidate partitioning location of vi. For the task is divided into two
directions, xi ∈ {0, 1}. xi = 1 means vi performed in the CPU and xi = 0 means
vi performed in the FPGA. TSi, THi are the execution time of vi in CPU or
FPGA respectively. ESi, EHi are the energy consumption of vi in CPU or FPGA
respectively. Ai indicates the hardware area resources needed to perform vi in
FPGA. The hardware area resources usually mean the cost of the system design.

Generally speaking, the goal of task partitioning is to minimize the execution
time and energy consumption of the system under system constraints, so as to
achieve the goal of improving the system performance. For the problem of two-
way partitioning in heterogeneous embedded systems, the target is to solve the
optimal solution X:

X = {x1, x2, ..., xn} (3)

In G, V is divided into {Vs, Vh}. Vs represents a collection of tasks performed
in CPU, and Vh represents a collection of tasks performed in FPGA or ASIC,
Vs ∪ Vh = V and Vs ∩ Vh = ∅. In the co-design of embedded system, the hard-
ware area resource is limited. For the generalized task partitioning, the principle
is to make full use of limited area resource and at the same time minimize the exe-
cution time and energy consumption. Therefore, in this paper we will not focus
on tasks sensitive to time and energy, but discuss the limited area resource under
this generalized principles. At the same time, the communication time and energy

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 121

consumption between each task are ignored in the bus structure. The objective
function to describe the task partitioning problem is in formula (4):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
[

n∑
i=1

THi · xi +
n∑

i=1

TSi · (1 − xi)
]

min
[

n∑
i=1

EHi · xi +
n∑

i=1

ESi · (1 − xi)
]

n∑
i=1

Ai · xi < Amax

(4)

T (x),E(x),A(x) respectively represent the time, energy consumption and
area overhead of a particular application. Amax is the largest area on the FPGA
for performing tasks.

2.3 PSO Task Partitioning Algorithm

In the classical PSO task partitioning algorithm, each particle represents a
candidate partition solution. PSO randomly generated m candidate partition
solutions, X1,X2, ...,Xm. Number of tasks is n. Xi = {xi1, xi2, ..., xid, ..., xin}
is n-dimensional vector in Euclidean space Rn and xid is the dth element.
PSO updates partitioning solutions by iteration. The number of iterations is
K ∈ N∗. The current iteration number is k ∈ [1,K]. Each xid corresponds to an
updating rate of vid. Updating speed vector is Vi = {vi1, vi2, ..., vid, ..., vin},
meaning the updating speed of candidate partition solution, which should
be controlled within a certain range |vid|<vmax d. Velocity threshold vector is
Vmax = {vmax 1, ..., vmax d, ..., vmaxn}. PSO uses the fitness function f(X) to eval-
uate the candidate partitioning solution, so as to find the optimal partitioning
solution. f(X) is determined by the target of the system, as shown in formula (4).
It is used to measure the degree of the candidate solution to adapt to the system
constraints. X∗

1 ,X∗
2 , ...,X∗

n are the optimal partition solutions in the updating
processes of Xi. X∗

g =
{
X∗

g1,X
∗
g2, ...,X

∗
gn

}
is the optimal partition solution in

X∗
1 ,X∗

2 , ...,X∗
n. In each iteration, the candidate partition solution is guided by

X∗
i and X∗

g . In the kth generation, xid and vid correspond to xk
id and vk

id. The
updating formula is as follow:

{
vk+1
id = ω · vk

id + c1r1(X∗
id − xk

id) + c2r2(X∗
gd − xk

id)
xk+1
id = xk

id + vk+1
id

(5)

The updating formula of PSO task partitioning algorithm is composed of
three parts. The first part is the inertia part, ω is the inertia factor, which is
used to measure the effect of the current updating rate. The second part is the
part of self-cognition, which reflects the memory of the particle’s own historical
experience. The third part is the social cognitive part, which reflects the historical
experience of the cooperation and knowledge sharing among the particles. c1 and
c2 are learning factors, which respectively indicate the effect of the individual
optimal solution and the global optimal solution on the direction of population
updating. r1 and r2 are random number between [0,1].

122 X. Qi et al.

3 RLDRPSO Task Partitioning Algorithm

In RLDRPSO task partitioning algorithm, we first design learning factors and
the fitness function. With the idea of “divide and conquer”, DRPSO selects
regional optimal value and global optimal solution from the regional optimal
solution. In the latter part of the algorithm, if the candidate partitioning solu-
tion falls into local optimal solution, this algorithm triggers reverse learning
mechanism to degenerate partitioning solution, jumping out of local extremum.
On the basis, the optimal solution is solved.

3.1 Learning Factors and Fitness Function

ω, c1 and c2 in PSO are in linear form, expressed as follows:

ω = ωmin +
(ωmax − ωmin)(K − k)

K
(6)

c1 = (c1max − c1min) · k

K
+ c1min (7)

c2 = (c2max − c2min) · K − k

K
+ c2min (8)

In the initial stage of the algorithm, ω and c1 are larger and c2 is smaller. Vi

and X∗ have a great influence on solution updating, which not only ensures the
solution space but also increases the speed of updating. At the later stage of the
algorithm, c2 increases, which means the impact of X∗

g on the updating process
is larger. ω and c1 decrease, which means the impact of X∗ on the updating
process is small. As a result, the updating speed is reduced and the accuracy of
the solution increases.

According to formula (4), we evaluate candidate partitioning solutions from
three aspects, the hardware area, task execution time and energy consumption.
After that, we normalize the processing and design fitness function. Generally, if
the hardware area of partitioning solution needed is larger than the area system
provided, the task will not be performed. So, the fitness function is designed in
the formula (9):

f(x) = a · e
A(x)−Amax

δA
·ma ·

∣∣∣∣
A(x) − Amax

δA

∣∣∣∣ + b · T (x)
δT

+ c · E(x)
δE

(9)

A(x), T (x) and E(x), respectively, are the hardware area, execution time and
energy consumption in one partitioning solution. δA, δT and δT , respectively, are
the normalization factor of area, execution time and energy consumption. δA =
max{max A−Amax, Amax −min A}, δT = max T −min T , δE = max E −min E.
a, b and c are influence factors. Punishment factor is shown as follow:

ma =
{

1, A(x) ≤ Amax

k,A(x) > Amax
(10)

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 123

In this penalty mechanism, if the candidate partitioning solution is not in
excess of the hardware area system provided, the fitness value decreases in the
form of the exponential function. Otherwise, the fitness value increases rapidly
according to current iteration number. When the iteration is small, the pun-
ishment is light, offering an opportunity for the candidate partitioning solution
correcting the error. When the number of iterations is larger, the punishment is
large. Penalty mechanism no longer tolerates the wrong candidate partitioning
solution. The fitness function is in good agreement with the actual situation.

3.2 Reverse Learning

In order to solve the problem that PSO algorithm is easy to fall into the local
extremum, which makes the system cannot reach the prospective performance,
we design a reverse learning mechanism (RL) for the task partitioning algorithm.
The idea of reverse learning is to jump out of the local extremum when algorithm
predicates solution falling into local extremum. The reverse learning mechanism
first initializes xi and vi of each partitioning solution, the initial location of the
worst solutions W 0

i and the worst location of each individual solution W k
i . After

Lth reverse learning, the result jumps out of local extremum. In the reverse learn-
ing mechanism, l indicates the number of the current reverse learning iteration.
RL’s updating formula is as shown in (11):

{
vl+1
id = ω · vl

id + c3r3(xl
id − W l

id) + c4r4(xl
id − W 0

id)
xl+1
id = xl

id + vl+1
id

(11)

The distance between solutions is in the Euclidean distance. The distance
between W 0

i must be large enough in order to ensure that the W 0
i can pull the

result out the local extreme value. When choosing W 0
i , their distance is greater

than the preset distance R =
√

n.
In the reverse learning mechanism, the updating speed threshold changes to

RVmax = 2 · Vmax, making the candidate partitioning solution jumping out of
local extremum rapidly under the leading of W 0

i and W k
i (Table 1).

Table 1. RL mechanism

124 X. Qi et al.

3.3 RLDRPSO

In this paper, we improve RPSO [14] algorithm to solve the problem of task
partitioning. Generally speaking, at the initial stage of the algorithm, Xi is far
from the optimal solution. Using a larger radius to search Xi is conducive for
fast convergence. In the late stage of the algorithm, Xi is near from the optimal
solution. Reducing radius can improve the search accuracy. The basic idea of
DRPSO is to dynamically adjust the region size of each candidate partition
solution according to the number of iteration. The global optimal solution is
selected from these region optimal solutions. Set radius r. r varies linearly with
the number of iteration, as shown in formula (12):

r =
K − k

K
· n (12)

The distance between solutions is in the Euclidean distance. Firstly, Choose
the optimal individual solution location as the center of the circle, whose radius
is r. Then randomly select neighbor solutions in this circle. Find the region
optimal solution XR

i = {XR
i1, ...,X

R
id, ...,X

R
id}. DRPSO’s updating formula is

shown as follow:
{

vk+1
id = ω · vk

id + c1r1(XR
id − xk

id) + c2r2(X∗
gd − xk

id)
xk+1
id = xk

id + vk+1
id

(13)

Combined with the reverse learning mechanism mentioned in the last sub-
section, when the solution falls into local extremum, RL helps the result to jump
out of local extremum (Table 2).

Table 2. RLDRPSO task partitioning algorithm

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 125

4 Experimental Results

4.1 DFG Data and RLDRPSO Parameters

Researchers usually use TGFF [15] to generate DFG and attributes as the test-
bench for task partitioning algorithm. According to the research [10], we use
TGFF to generate the DFG and the hardware area, execution time and power
consumption of each task. The range of the specified task attributes is shown in
Table 3.

Table 3. Task attributes’ value [8,10]

Task attribute Range

FGPA area/unit [50,150]

power consumption/W [0.15,0.55]

time/ns [75,225]

CPU area/unit 0

power consumption/W [0.25,0.65]

time/ns [200,400]

Task partitioning algorithms run in Visual Studio 2010, Xeon Intel 2680 CPU
2.8 GHz, RAM 4 GB, Window7. Besides RLDRPSO task partitioning algorithm,
we also select the standard PSO task partitioning algorithm [9], ICPSO task
partitioning algorithm [8] and CLPSO task partitioning algorithm [10] for com-
parison. In order to ensure the comparability, the experiment uses the same PSO
parameters. The parameters are shown in Table 4.

Table 4. RLDRPSO constant parameters

DRPSO RL

K 100 R 10

ωmax 0.9

ωmin 0.4 ω 0.7

c1max 2 c3 0.7

c1min 1.85

c2max 2 c4 0.3

c2min 1.85

vmax 0.8 rvmax 1.6

4.2 Results

To evaluate the performance of the system, the algorithm is designed to punish
the task sensitive to area. So we first study the performance of the algorithm

126 X. Qi et al.

under different area. HAR refers to the ratio of the hardware area restriction to
the total hardware area. MR is the probability that the task partitioning solution
cannot satisfy the system constraints. When the task partitioning solution can-
not meet the requirements of the system, it needs to be resolved, which increases
the execution time of the algorithm. The smaller MR is, the higher the proba-
bility of the algorithm finding the optimal solution is, that is, the space of the
solution is larger. The smaller the fluctuation is, the higher the reliability of the
algorithm is. Figure 2 shows that algorithms have a certain MR, especially the
CLPSO task partitioning algorithm is not reliable. When the HAR is more than
80 %, the MR of RLDRPSO is 0, and the fluctuation is small. It reflects that
the RLDRPSO can effectively expand the space of the candidate partitioning
solutions.

Fig. 2. MR in different HARs

In the next experiment we discuss the influence of HAR on algorithm perfor-
mance. In order to compare the performance of each algorithm, the fitness value
of the optimal solution is normalized to the fitness value of the general proces-
sor. From Fig. 3, in the conditions of presence of a certain MR, the performance
improvement of all algorithms is almost same. When the HAR is more than 70 %,
the performance of the RLDRPSO algorithm is still growing compared to other
algorithms. Therefore, RLDRPSO task partitioning algorithm has a significant
effect on the improvement of the system performance under large HAR.

Figure 4 is the relation of the fitness value with the iteration number, reflect-
ing the partitioning process of algorithms. It can be seen from the figure that
PSO, ICPSO and CLPSO algorithm have converged in the initial stage of
the algorithm, falling into the local extremum. While RLDRPSO algorithm
with reverse learning mechanism can jump out of the local extremum, con-
verging toward the global optimal solution. In the figure, the steep part in
RLDRPSO algorithm curve indicates the reverse learning process. Each time the
reverse learning mechanism is triggered, the partitioning process has a signifi-
cant improvement effect. In the case that the number of tasks is 500, RLDRPSO

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 127

Fig. 3. Performance in different HARs

Fig. 4. Iterative process of different algorithms

improves the partitioning quality of 45 % compared to the PSO task partition-
ing algorithm and 39 % compared to the ICPSO task partitioning algorithm and
20 % compared to the CLPSO task partitioning algorithm. The reverse learning
mechanism can effectively solve the local extremum and RLDRPSO algorithm
enhance the accuracy of the solution. Finally, RLDRPSO task partitioning algo-
rithm can improve the partitioning quality. As a result, the system performance
is improved.

Figure 5 shows the effect of proposed algorithm in different number of tasks.
RLDRPSO task partitioning algorithm improved the performance of the sys-
tem significantly. Compared to PSO task partitioning algorithm, the average
performance of the system is improved by 7 %. Compared to the ICPSO task
partitioning algorithm, the average performance of the system is improved by
6.3 %. Compared to the CLPSO task partitioning algorithm, the average perfor-
mance of the system is improved by 4.9 %.

128 X. Qi et al.

Fig. 5. Performance in different task numbers

5 Conclusions

In this paper, an integrated heuristic algorithm RLDRPSO is proposed, which
can improve the task partitioning quality and the performance of system.
Dynamic radius strategy and the reverse learning mechanism are proposed
to solve the problem of the current task partitioning algorithm. Experimen-
tal results show that the algorithm can effectively improve the performance of
the system.

The algorithm still has some defects, such as the existence of MR and the
blindness of the reverse learning mechanism. Blindness means that the global
optimal value which is resolved by reverse learning has the probability of being
worse than the former global optimal value. Next research will conduct the dis-
crimination and retention mechanisms to overcome these defects.

Finally, tasks can be executed simultaneously in different processing cores
in heterogeneous system. Emerging reconfigurable system changes the existing
system model. There is another problem of task scheduling. The combination of
partitioning and scheduling will be the trend of future research.

References

1. Pu, W.: Efficient heuristic and tabu search for hardware/software partitioning. J.
Supercomput. 66(1), 118–134 (2013)

2. Mann, Z., Orb, A.: Optimization problems in system-level synthesis. In: Proceed-
ings of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its
Applications (2003)

3. Ma, Y., Liu, J., Zhang, C.: HW/SW partitioning for region-based dynamic partial
reconfigurable FPGAs. In: 2014 32nd IEEE International Conference on Computer
Design (ICCD), pp. 470–476. IEEE (2014)

4. Jemai, M., Ouni, B.: Hardware software partitioning of control data flow graph on
system on programmable chip. Microprocess. Microsyst. 39(4), 259–270 (2015)

5. Ernst, R., Henkel, J., Benner, T.: Hardware-software cosynthesis for microcon-
trollers. IEEE Des. Test Comput. 4, 64–75 (1993)

RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning 129

6. Liang, H., Sinha, S., Warrier, R., et al.: Static hardware task placement on multi-
context FPGA using hybrid genetic algorithm. In: International Conference on
Field Programmable Logic and Applications. IEEE (2015)

7. Liang, Z., Cheng, X., Zheng, T., et al.: Hardware/software partitioning based on
greedy algorithm and simulated annealing algorithm. J. Comput. Appl. 7, 030
(2013)

8. Wang, D., Li, S., Dou, Y.: Collaborative hardware/software partition of coarse-
grained reconfigurable system using evolutionary ant colony optimization. In: Asia
and South Pacific Design Automation Conference, pp. 679–684. IEEE Computer
Society Press (2008)

9. Bhattacharya, A., Konar, A., Das, S., et al.: Hardware software partitioning prob-
lem in embedded system design using particle swarm optimization algorithm. In:
International Conference on Complex, Intelligent and Software Intensive Systems,
pp. 171–176. IEEE Computer Society (2008)

10. Yang, D.: Research on SoC Hardware/Software Partitioning Methodology Based
on Particle Swarm Algorithm. Xidian University (2014)

11. Luo, L., He, H., Liao, C., et al.: Hardware/Software partitioning for heterogeneous
multicore SOC using particle swarm optimization and immune clone (PSO-IC)
algorithm. In: 2010 IEEE International Conference on Information and Automation
(ICIA), pp. 490–494. IEEE (2010)

12. Hu, D.: The Research of Hardware/Software Partitioning Based on Partical Swarm
Optimazation and Simulated Annesling and Clustering Algorithm. East China
Normal University (2014)

13. Sha, E., Wang, L., Zhuge, Q., et al.: Power efficiency for hardware/software parti-
tioning with time and area constraints on MPSoC. Int. J. Parallel Program. 43(3),
1–22 (2013)

14. Anantathanvit, M., Munlin, M.A.: Radius particle swarm optimization for resource
constrained project scheduling problem. In: 2013 16th International Conference on
Computer and Information Technology (ICCIT), pp. 24–29. IEEE (2014)

15. Dick, R., Rhodes, D., Wolf, W.: TGFF: task graphs for free. In: International
Workshop on Hardware/software Codesign, pp. 97–101. IEEE (1998)

A Fine-Granular Programming Scheme
for Irregular Scientific Applications

Haowei Huang1(B), Liehui Jiang2, Weiyu Dong1, Rui Chang1, Yifan Hou1,
and Michael Gerndt3

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou 450000, Henan, China

haowei.huang@yahoo.com
2 China National Digital Switching System Engineering and Technological

Research Center, Zhengzhou 450000, Henan, China
3 Fakultaet Fuer Informatik, Technische Universitaet Muenchen,

85748 Garching Bei Muenchen, Germany

Abstract. HPC systems are widely used for accelerating calculation-
intensive irregular applications, e.g., molecular dynamics (MD) simula-
tions, astrophysics applications, and irregular grid applications. As the
scalability and complexity of current HPC systems keeps growing, it is
difficult to parallelize these applications in an efficient fashion due to
irregular communication patterns, load imbalance issues, dynamic char-
acteristics, and many more. This paper presents a fine granular program-
ming scheme, on which programmers are able to implement parallel sci-
entific applications in a fine granular and SPMD (single program multiple
data) fashion. Different from current programming models starting from
the global data structure, this programming scheme provides a high-level
and object-oriented programming interface that supports writing appli-
cations by focusing on the finest granular elements and their interactions.
Its implementation framework takes care of the implementation details
e.g., the data partition, automatic EP aggregation, memory manage-
ment, and data communication. The experimental results on SuperMUC
show that the OOP implementations of multi-body and irregular appli-
cations have little overhead compared to the manual implementations
using C++ with OpenMP or MPI. However, it improves the program-
ming productivity in terms of the source code size, the coding method,
and the implementation difficulty.

1 Introduction

HPC is currently experiencing very strong growth in all computing sectors.
Many HPC systems are used for accelerating different kinds of calculation-
intensive applications including quantum physics, weather forecasting, climate
research, oil and gas exploration, molecular dynamics, and so on [1–4]. The major
programming interfaces are OpenMP [5,6], MPI [7–9], and CUDA [10,11]. In
addition, a large number of high-level programming models have been devel-
oped to improve the programming productivity and implementation efficiency
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 130–141, 2016.
DOI: 10.1007/978-981-10-2209-8 12

A Fine-Granular Programming Scheme for Irregular Scientific Applications 131

as well, e.g., High Performance Fortran (HPF) [12,13], Charm++ [14–16], and
Threading Building Blocks (TBB) [17,18]. All these high-level programming
approaches are designed to obtain better programming productivity using higher
level abstraction or automatic parallelization. However, it is still complicated
for programmers to manage irregular scientific applications in an efficient and
scalable fashion in terms of decomposing the computational domain, manag-
ing irregular communication patterns among processes, and manipulating data
migration among processes, maintaining computational load balance, and so on.
For example, a molecular dynamics (MD) simulation [19] is a form of N-body
[20] computer simulation in which molecules interact with other molecules within
a certain domain for a period of time. The molecules may move in the domain
according to the interactions with others, which changes their storage layout
and communication pattern during execution. In order to improve the perfor-
mance of such irregular applications, researchers apply linked cells algorithms
and bi-section decomposition method which needs runtime re-distribution.

Different from current programming models starting from the global data
structure, we present a fine granular programming scheme for irregular scientific
applications. It provides a programming interface that supports writing applica-
tions by focusing on the finest granular elements and their interactions. They are
organized as an Ensemble, which manages the elements, topologies, and high-
level operations. By using the high-level operations explicitly, developers can
control the actions of the elements including communication, synchronization,
and parallel operations. In this paper, we introduce an abstract machine model,
programming interface, and implementation framework ported on different types
of systems on SuperMUC [21].

2 Abstract Machine Model

As can be seen from Fig. 1, the machine model is an abstract architecture com-
posed of a Control Processor (CP) and a large number of distributed Fine Gran-
ular Processors (FGPs). The major interactions between the CP and FGPs are
described as follows:

1. Explicit communication among FGPs: It is triggered by the CP explicitly.
Point-to-Point communication between FGPs is not supported due to low
efficicency.

2. Parallel computations of FGPs: It starts the computation of FGPs in the
form of parallel operations.

3. Collective operations among FGP : The CP is able to trigger collective oper-
ations on a set of FGPs. All the participating FGPs start the operations
cooperatively to get collective results.

4. Collective operations between CP and FGPs: The CP can access the local
memory of FGPs in the machine by explicit collective operations.

132 H. Huang et al.

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FPG

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FPG

FGP

FGP

FGP

FGP

Ensemble-based Machine Model

C
on

tro
l P

ro
ce

ss
or

Fig. 1. Abstract machine model

3 Programming Interface

An object-oriented(OO) programming interface is designed on top of the abstract
machine model. It consists of a template hierarchy starting from three top-
level base templates ElementaryPoint, Ensemble, and Topology. These base
templates have derived templates called application-specific templates, which
support multi-body, irregular grid, and regular grid applications respectively.
User-defined entities with local properties and operations can be defined as
C++ classes derived from the application-specific templates. The organization
is shown in Fig. 2.

Definition 1. An ElementaryPoint(EP) is a software entity that represents the
finest granular computational object in the domain of an application. The ensem-
ble is a software container that stores a set of EPs and manages their local infor-
mation, communication patterns, and computation. A topology defines a commu-
nication pattern resulting from the need for the information of a set of EPs in
the ensemble. The EPs can exchange their status based on certain topologies.

MultiBodyEP

ElementaryPoint

IrrGridEP

ReGridEP

MultiBodyEnsemble

IrrGridEnsemble

ReGridEnsemble

MultiBodyTopology

IrrGridTopology

ReGridTopology

Ensemble Topology
Base Template

Application-Specific Template

Multi-Body

Irregular Grid

Regular Grid

Fig. 2. Organization of the template hierarchy

A Fine-Granular Programming Scheme for Irregular Scientific Applications 133

The base templates for creating elementary points are ElementaryPoint and
its derived templates MultiBodyEP, IrrGridEP, and ReGridEP. Ensemble and
its derived templates are used to create the ensemble of an application. The
major high-level operations in Ensemble are described as follows:

1. SC-update: It supports exchanging the complete information as well as partial
information of EPs in the ensemble based on a certain topology.

2. parallel : It triggers member functions of EPs to execute in parallel. The tem-
plate parameter is a function object adapted from a member function of
ElementaryPoint.

3. collective: The collective operation currently consists of allReduceOp and
reduceOp. allReduceOp provides collective reduction operations that return
the result in all the involved EPs.

4. getNghbList : This operation is called by an individual EP in order to get a
list of its neighboring EPs from the ensemble based on a topology. After
it is accomplished, the EP can access data in the neighbor list for local
computations.

Topology is used to create topologies, which keep the communication patterns
of EPs. The major operations of Topology are shown as follows:

1. initialization: It initialize the internal data structures of Topology.
2. createNeighborList : If the topology is the root topology, it creates the neighbor

EP list for the EPs.
3. updateTopology : It rebuilds a new topology according to the runtime infor-

mation or the information specified by the users.

4 Implementation Framework

The implementation framework consists of machine-specific libraries including a
sequential library, an OpenMP-based library, and an MPI-based library ported
on SuperMUC. It is currently designed for multi-body and irregular grid applica-
tions. A single ensemble-based program can be compiled and linked to different
executables by these libraries.

4.1 OpenMP-Based Library

It aggregates the computation of a group of EPs and binds it to a single thread.
On NUMAs, all the EPs are initially stored in the physical memory of the socket
running the master thread. It is not efficient that the threads residing on other
sockets have to access the EPs by non-local memory accesses. Therefore, we
apply a reallocation and re-indexing strategy to distribute EPs across different
physical memory of the sockets.

134 H. Huang et al.

Reallocation and Re-Indexing to Manage EPs and Their Shadow
Copies. The OpenMP-based library integrates METIS [22] library to distribute
the EPs across physically distributed memory. The indirection array is gener-
ated from the output of METIS. It gives the information of the thread affin-
ity of all the EPs. The size of the array is the size of EP Set called numEP .
The numEP/numSocket elements of the indirection array keeps the identifiers
of EPs stored in the physically memory of the sockets sequentially.The indi-
rection array is organized in such a way. The the first numEP/numSocket
elements of the indirection array (indices from 0 to numEP/numSocket − 1)
stores the identifiers of EPs stored in the physically memory of socket#0.
The second numEP/numSocket elements (indices from numEP/numSocket
to 2 ∗ numEP/numSocket − 1) stores the identifiers of EPs stored in the phys-
ical memory of socket#1, and so on and so forth. The pseudo code of the EP
reallocation is shown in Algorithm 1.

Algorithm 1. The EP reallocation

void r e a l l o c a t i o n (){
EP ∗EP Set = (EP∗) mal loc (numOfEPs ∗ s izeof (EP)) ;

#pragma omp p a r a l l e l for
for (i =0; i<numOfEPs ; i++)

EP Set [i] = Buf EP [i n d i r e c t i o n [i]] ;
f r e e (Buf EP) ;

}

In order to avoid frequent accesses to the indirection array, we create indexO-
rigin2New and indexNew2Origin arrays to manage the re-indexing translation.
The indexOrigin2New array is used for the translation from orignial indices to
new indices, while indexNew2Origin is used for the translation from the new
indices back to orignial indices. Both indexOrigin2New and indexNew2Origin
are organized in such a way. The indexNew2Origin array and the indirection
array described above have the same organization. The indexOrigin2New array
is generated from indexNew2Origin according to the rule:

indexOrigin2New[indexNew2Origin[i]] = i;

For example, 8 EPs are resided on socket#0 and socket#1, the partition-
ing result generated from METIS is [0, 1, 0, 1, 1, 0, 0, 1], then the indirection is
[0, 2, 5, 6, 1, 3, 4, 7], the indexNew2Origin array is: [0, 2, 5, 6, 1, 3, 4, 7], while the
indexOrigin2New array is [0, 4, 1, 5, 6, 2, 3, 7].

4.2 MPI-based Library

The MPI-based library implements the programming interface in C++ with
MPI. It employs both the domain decomposition and efficient graph partitioning
algorithms to achieve optimal EP distribution and communication.

A Fine-Granular Programming Scheme for Irregular Scientific Applications 135

Storage of EPs and their Shadow Copies. Each process keeps different
subsets of the EPs in the ensemble according to an EP distribution, which is
determined by the root topology and an optimal EP distribution generated from
METIS.

Ensemble Management. As the machine model is mapped on a distributed
memory machine, the master thread is duplicated and resided across all the
processes. Each process keeps an ensemble, which stores a subset of the EPs,
their shadow copies, and references to topologies. The implementation of the
Ensemble operations are described below:

1. SC-Update: It triggers communication among processes according to a topol-
ogy specified in the operation and EP distribution algorithms.

2. getNghbList : It is a local operation implemented on each process. It only
references local EPs stored in loc SC Set according to the topology specified
in the operation.

3. parallel : Multiple processes executing EPs’ member functions in parallel.
4. collective: A collective operation of EPs is translated into local collective

operations and collective operations among MPI processes.

Topology Management. The topology is managed in a distributed fashion.
Each process keeps the root topology, which maintains the neighbor EP list for
the local EPs.

MultiBodyTopology. Each process keeps the root MultiBodyTopology topol-
ogy, which maintains the neighbor EP list for all the local EPs. The generation of
the neighbor EP list in the multi-body topology is based on the parallel Linked
Cells algorithm, which is presented in Algorithm2.

Algorithm 2. Creation of neighbor EP list
1. Forall ep in local process

1) Get cell id localidCell of ep
2) Get ids of neighbor cell localidCell
3) Get neighbor cells local NghbCells
4) Get EPs in the local nghbCells and determine whether the distance between the

EPs in local localidCell and ep is smaller than the cut-off radius
5) If yes, put the address of EP
6) Create neighbor EPs for ep

End for
2. updateTopology() and go to Step 1

136 H. Huang et al.

IrrGridTopology. Similar to the multi-body topology, each process keeps the
root irregular grid topology, which maintains the neighbor EP list for the EPs
in loc EP Set according to the id-based graph and EP distribution as well. The
memory organization of local EPs and their SCs in a single process is shown in
Fig. 3. The organization integrates the PARTI/CHAOS library [23]. The shadow
copies of local EPs are allocated in the memory as an array, the SCs of remote
EPs are stored after the local shadow copies with the indices from n to n + m.

EP0 EP1 EPn-1 EPn EPn+1 EPn+2 EPn+3 ... EPn+m...

Local Eps: EP0 EP1 EPn-1

Local SCs:

Pi Pi+1 Pi+j...

Remote EP copies

Fig. 3. Local EPs and SC organization

Communication Optimizations. Different communication optimizations are
applied in the implementation of the MPI-based library.

1. Aggregated send receive buffer management : Each process keeps an aggre-
gated send and receive buffer. The EPs in loc EP Set are copied into the
aggregated send buffer, while EPs received from remote processes are stored
in the aggregated receive buffer.

2. Communication reduction: It guarantees that an EP is only sent once while
a group of remote EPs usually require the it for local computation. It can
reduce the communication volume significantly.

3. Communication coalescing : A process collects many EPs destined for the
same process into a single message, which is stored in the aggregated send
buffer. The objective of communication coalescing is to reduce the number of
message startups to avoid the “too many short messages” problem.

4. Automatic adjustment of communication patterns according to the update of
topologies: For multi-body and irregular grid applications, the communication
pattern is usually irregular and adaptive. The MPI-based library update the
communication pattern accordingly based on runtime information.

5 Experimental Results

5.1 Overview

This section presents the experimental results of multi-body and irregular appli-
cations implemented by a manual program and an ensemble-based program. The
manual program is implemented in C++, and parallelized with OpenMP and
MPI, while the ensemble-based program is implemented by linking the libraries
of the implementation framework.

A Fine-Granular Programming Scheme for Irregular Scientific Applications 137

5.2 Experiment Platform

The experimental platform is a number of fat nodes on SuperMUC. A fat node
is based on the Intel Westmere-EX processor. It is a shared memory NUMA
machine with four sockets, each of which has one Intel Xeon Processor E7-4870
processor and 64 GB of memory. The processor has 10 cores running at the
frequency 2.4 GHz with a peak performance of 9.6 GFlops.

5.3 Irregular Grid Applications

Overview. The computational kernel is a simplified version from FIRE [24]. The
maximum number of the iterations N is set to 128. The grid size is 128×128×128,
each has 26 nearest neighbors based on the Moore neighborhood. The local values
of a point at a time step are determined by the values of its neighbor points at
its previous time step according to the arithmetical operations:

valueN+1 = 1
numOfNeighbors+1 (

∑i=numOfNeighbors
i=1 Neighbor[i].valueN +

valueN)

OpenMP Comparison. The execution time of the program on Grid128 using
2, 4, 8, 16, 32 threads is shown Fig. 4. Neither of the programs scale well when
the number of threads is increased to 32. The main reason is that non-continuous
memory accesses cause a large number of L2 and L3 cache misses. Therefore,
we applies the re-indexing and data reallocation strategy to improve the per-
formance on large irregular grids. We can see that the ensemble-based program
implemented by the OpenMP-based library with the re-indexing and realloca-
tion strategy scales well up to 32 threads and achieves much better performance
than the ensemble-based implementation without re-indexing.

Fig. 4. Execution time of OpenMP programs (Color figure online)

MPI Comparison. The execution time and speedup curves comparison of
both programs are shown in Fig. 5. It tells that the MPI-based library can get
good performance while the number of processes increases with around 20 %

138 H. Huang et al.

Fig. 5. Execution time comparison with MPI (Color figure online)

overhead compared to the manual MPI program. The ensemble-based program
obtains comparative performance and its overhead is stable while scaling up to
256 processes. The execution time and speedup curves are shown in Fig. 5.

5.4 Molecular Dynamics Simulation

Overview. The computational kernel of the MD programs is based on the trun-
cated Lennard-Jones(L-J) potential formula, and the simulation domain is a 3D
cubic domain. Each molecule in the domain keeps a randomly generated posi-
tion and interacts with its neighbor molecules located within the cut-off radius
region. The positions of all the molecules are updated according to the molecule-
to-molecule interactions and the equations of motion. In the experiments, the
number of the molecules is set to 128K (131,072), the number of iteration steps
is 8. The cut-off radius is set to 1, the size of the cubic simulation domain is 8.

OpenMP Comparison. The execution time and speedup curves of both pro-
grams is shown in Fig. 6. We can see that the overhead of the ensemble-based
program becomes higher when the number of threads increases.

The overhead mainly originates from two aspects:

– The creation of the neighbor list is not efficient as expected because of its
vector-based data structure.

– The parallel operation that doesn’t scale very well because of memory band-
width of the nodes on SuperMUC. Different from irregular grid applications,
each molecule in an MD simulation typically has hundreds of neighbor mole-
cules, which greatly increases the memory overhead.

MPI Comparison. In order to balance the computational load, the manual
program uses METIS to decompose the molecules according to the linked cells,
while the ensemble-based program links to the MPI-based library. The execution
time and speedup curves of both programs is shown in Fig. 7.

A Fine-Granular Programming Scheme for Irregular Scientific Applications 139

1T 2T 4T 8T 16T 32T

Manual OpenMP Program 136.7 116.6 67.5 34.8 18.4 11.5

Ensemble based Program 156.6 137.6 120 79.5 42.9 33

0

20

40

60

80

100

120

140

160

180
Ex
ec
uti

on
Ti
m
e
(s
ec
on

ds
)

OpenMP Implementation Comparison
(128K)

1T 2T 4T 8T 16T 32T

Manual OpenMP Program 1.00 1.17 2.03 3.93 7.43 11.89

Ensemble based OpenMP Program 1.00 1.14 1.31 1.97 3.65 4.75

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Sp
pe

du
p

OpenMP Speedup Comparison (128K)

Fig. 6. Execution time and speedup curves of OpenMP MD programs (Color figure
online)

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program 129.7 62.1 35.9 20.5 9.67 4.29 2.61 1.78 1.77

Ensemble based Program 160.8 83.3 44.1 24.2 12.3 6.33 3.69 2.48 2.86

0

20

40

60

80

100

120

140

160

180

Ex
ec
uti

on
Ti
m
e
(s
ec
on

ds
)

MPI Implementation Comparison (128K)

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program 1.00 2.09 3.61 6.33 13.41 30.23 49.69 72.87 73.28

Ensemble based Program 1.00 1.93 3.65 6.64 13.07 25.40 43.58 64.84 56.22

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Sp
ee

du
p

MPI Speedup Comparison (128K)

Fig. 7. Execution time and speedup curves of MPI MD programs (Color figure online)

The experimental results show that the ensemble-based implementations of
multi-body and irregular applications are a bit slower than the manual imple-
mentations using C++ with OpenMP or MPI because of the internal function
overheads. However, it improves the programming productivity in terms of the
source code size, the coding method, and the implementation difficulty. For irreg-
ular grid applications, it saves around 80 % lines of code, while for multi-body
applications, the percentage is more than 95 %.

6 Conclusion and Future Work

The fine granular programming scheme is applied to implement irregular scien-
tific applications in a fine granular and SPMD fashion. The experimental results
show that with acceptable and reasonable overhead, the ensemble-based pro-
gramming improve the programming productivity and make parallel program-
ming easier and more straightforward. In the future, we mainly focus on the
support for more application areas, e.g., adaptive grid applications. In addition,
the implementation for CPU+GPU hybrid architectures can also be exploited
in the future in order to take advantages of hybrid programming.

140 H. Huang et al.

References

1. Board, J.A., Hakura, Z., Elliott, W., Gray, D., Blanke, W., Leathrum, J.F.: Scal-
able implementations of multipole-accelerated algorithms for molecular dynamics.
In: 1994 Proceedings of the Scalable High-Performance Computing Conference,
pp. 87–94, May 1994

2. Boyd, D., Milosevich, S.: Supercomputing and drug discovery research. Perspect.
Drug Discovery Des. 1, 345–358 (1993). http://dx.doi.org/10.1007/BF02174534

3. Clementi, E., Chin, S., Corongiu, G., Detrich, J., Dupuis, M., Folsom, D., Lie,
G., Logan, D., Sonnad, V.: Supercomputing and super computers: for science
and engineering in general and for chemistry and biosciences in particular. In:
Theophanides, T. (ed.) Spectroscopy of Inorganic Bioactivators. NATO ASI Series,
vol. 280, pp. 1–112. Springer, Netherlands (1989)

4. Kremer, K.: Supercomputing in polymer research. In: Gentzsch, W., Harms, U.
(eds.) HPCN-Europe 1994. LNCS, vol. 796, pp. 244–253. Springer, Heidelberg
(1994)

5. Board, O.A.R.: OpenMP Application Program Interface. OpenMP, Specification
(2011). http://www.openmp.org/mpdocuments/OpenMP3.1.pdf

6. Chapman, B., Jost, G., Pas, R.: Using OpenMP: Portable Shared Memory Par-
allel Programming (Scientific and Engineering Computation). The MIT Press,
Cambridge (2007)

7. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Com-
plete Reference. The MPI Core, vol. 1, 2nd edn. MIT Press, Cambridge (1998)

8. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco (1996)

9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, Cambridge (1994)

10. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide (2007)

11. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
CUDA. Queue 6(2), 40–53 (2008). http://doi.acm.org/10.1145/1365490.1365500

12. Schreiber, R.: An introduction to HPF. In: Perrin, G.-R., Darte, A. (eds.) The Data
Parallel Programming Model. LNCS, vol. 1132, pp. 27–44. Springer, Heidelberg
(1996)

13. Kennedy, K., Koelbel, C.: High performance fortran 2.0. In: Pande, S., Agrawal,
D.P. (eds.) Compiler Optimizations for Scalable Parallel Systems. LNCS, vol. 1808,
pp. 3–43. Springer, Heidelberg (2001)

14. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented sys-
tem based on C++. SIGPLAN Not. 28(10), 91–108 (1993). http://doi.acm.org/
10.1145/167962.165874

15. Kale, L.V., Ramkumar, B., Sinha, A.B., Gursoy, A.: The CHARM parallel pro-
gramming language, system: Part I - Description of language features. Parallel
Program. Lab. Tech. Rep. #95-02 1, 1–15 (1994)

16. Kale, L.V., Ramkumar, B., Sinha, A.B., Saletore, V.A.: The CHARM parallel
programming language, system: Part II - The runtime system. Parallel Program.
Lab. Tech. Rep. #95-03 1, 1–14 (1994)

17. Intel: TBB (Intel Threading Building Blocks). In: Padua, D. (ed.) Encyclopedia of
Parallel Computing, p. 2029. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/BF02174534
http://www.openmp.org/mpdocuments/OpenMP3.1.pdf
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/167962.165874
http://doi.acm.org/10.1145/167962.165874

A Fine-Granular Programming Scheme for Irregular Scientific Applications 141

18. Russell, G., Keir, P., Donaldson, A.F., Dolinsky, U., Richards, A., Riley, C.:
Programming heterogeneous multicore systems using threading building blocks.
In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586,
pp. 117–125. Springer, Heidelberg (2011)

19. Molner, S.P.: The art of molecular dynamics simulation (Rapaport, D. C.). J.
Chem. Educ. 76(2), 171 (1999). http://pubs.acs.org/doi/abs/10.1021/ed076p171

20. Aarseth, S.J.: Gravitational N-Body Simulations. Cambridge University Press,
Cambridge (2003). http://dx.doi.org/10.1017/CBO9780511535246

21. LRZ: SuperMuc petascale system (2012). https://www.lrz.de/services/compute/
supermuc/systemdescription/

22. Karypis, G., Kumar, V., MeTis: Unstrctured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0 (1995). http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.38.376

23. Das, R., shin Hwang, Y., Uysal, M., Saltz, J., Sussman, A.: Applying the
CHPAOS/PARTI library to irregular problems in computational chemistry and
computational aerodynamics, in Mississippi State University, Starkville, MS,
pp. 45–56. IEEE Computer Society Press (1993)

24. Bericht, I., Gerndt, M.: Parallelization of the AVL FIRE benchmark with SVM-
Fortran (1995)

http://pubs.acs.org/doi/abs/10.1021/ed076p171
http://dx.doi.org/10.1017/CBO9780511535246
https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376

Programmable Two-Particle Bosonic-Fermionic
Quantum Simulation System

Yang Wang, Junjie Wu(B), Yuhua Tang, Huiquan Wang, and Dongyang Wang

State Key Laboratory of High Performance Computing, College of Computer,
National University of Defense Technology, Changsha, China

junjiewu@nudt.edu.cn

Abstract. Quantum computing promises to outperform its classical
counterpart substantially. In the past decades, there has been tremen-
dous progress. However, few previous researches have involved program-
mable systems. Quantum computing is mainly implemented in physics
laboratories. This paper proposes a programmable structure. Using the
entangled states of photon pairs, we have constructed the whole pro-
grammable system including a classical host, constructed with computer
and circuits, and a quantum “coprocessor”, used for two-particle quan-
tum simulations. A quantum “program” with both classical statements
and quantum statements is executed for a certain computation task. The
experiment shows high similarity of 95.2 % to theoretical result in boson
simulation and 97.1 % in fermion simulation, which demonstrates the
feasibility of our programmable system.

Keywords: Quantum computing · Quantum simulation · Program-
mable · Entanglement · Quantum coprocessor · Quantum program

1 Introduction

Quantum computing is one of the most fascinating technology in the Post-Moore
era [31]. It studies computation techniques based on quantum mechanics which
promises to outperform its classical counterpart fundamentally. This field was
initiated and developed by Paul Benioff in 1980 [3], Richard Feyman in 1982 [11]
and David Deutsch in 1985 [8]. In 1994, Peter Shor developed a quantum algo-
rithm solving the integer factorization problem in polynomial time, whereas the
well-known classical algorithm takes exponential time [24]. Since the integer fac-
torization forms the base of RSA scheme, a widely used public-key cryptography
scheme, quantum computing came to attract more attentions.

There are various technologies [16], such as photons [1,2,22], trapped atoms
[21,26], quantum dots [14], superconductors [6], nuclear magnetic resonance
(NMR) [25], that can be used for the implementation of quantum computing. On
the one hand, researchers have been studying how to reduce decoherence that
hinders the scalability of quantum systems. On the other hand, a lot of efforts
have been made to construct small-scale quantum devices to demonstrate quan-
tum algorithms. In 2001, Shor’s algorithm was demonstrated on a 7-qubit NMR
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 142–156, 2016.
DOI: 10.1007/978-981-10-2209-8 13

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 143

computer to factor 15 [28]; in 2012, an all-bulk optics system was constructed at
the University of Bristol to factor 21 [20]; in 2013, a quantum boson sampling
machine is devised using photons [4,12,27]. Besides, D-Wave systems, although
doubted about its quantum speedup, has been built based on Ising model and
superconductor technology [9,10,13,17].

Most of these work implemented quantum algorithm [19] only with quantum
hardware [5,13,18,20,30], just like classical Application Specific Integrated Cir-
cuits (ASIC). They did not run programs as a classical computer. Here, we focus
on the programmability of a quantum system, and have implemented a demo
system based on photons. The main contributions are listed in the following:

– We propose a programmable structure for two-particle bosonic and fermionic
quantum simulation, which completes a certain task controlled by a program.
Such a program consists some classical statements and some quantum ones.
These quantum statements are executed on the corresponding quantum com-
putation units.

– We have implemented our programmable structure based on entangled pho-
tons. To the best of our knowledge, this is one of rare programmable quantum
computation systems. Previous work, except D-Wave systems, did not involve
any concept of programming.

In the rest of this paper, we first introduce some preliminary knowledge for
our simulation system, then report on the structure and implementation of a
programmable two-particle bosonic-fermionic quantum simulation system, and
finally present the test and evaluation of our system.

2 Preliminary

Quantum State and Entanglement. Quantum state is used to describe the
state of a quantum system. It is denoted by a vector in Hilbert space, |ψ〉. In
quantum mechanics, a special quantum state, denoted by α|ψ1〉+β|ψ2〉, is called
a superposition of |ψ1〉 and |ψ2〉, if |ψ1〉 and |ψ2〉 are both quantum states where
the system stays. The coefficients satisfy |α|2+|β|2 = 1. However, if we measure1

the quantum system at α|ψ1〉 + β|ψ2〉, the state collapses to |ψ1〉 or |ψ2〉 with
the probability information. The probability of the possible result |ψ1〉 (|ψ2〉) is
|α|2 (|β|2).

A photon can be horizontal polarized or vertical polarized. The polarization
state means the oscillating direction of the electrical field of a photon. We can
use |H〉 to express a horizontal polarized state and |V 〉 a vertical one. A photon
at the superposition state of 1√

2
(|H〉 + |V 〉) corresponds to the polarization of

45◦, as shown in Fig. 1.
As for a quantum system with more than one photon, with 2 photons for

example, the system at the state with two horizontal polarized photons is denoted
by |HH〉. The system with two vertical polarized photons is denoted by |V V 〉.
1 Strictly, the measurement is done in the base of |ψ1〉 and |ψ2〉.

144 Y. Wang et al.

Fig. 1. Superposition and entanglement

It also can be at a superposition state, 1√
2
(|HH〉 + |V V 〉), which is a special

state in quantum physics, called entanglement. As is shown in Fig. 1, it cannot
be written as a tensor product of two quantum states, while a non-entangled
state can be written as a tensor product. The second photon must be in |H〉
(|V 〉) no matter how far it is from the first one, if we detect the first photon
at the state |H〉 (|V 〉). The special phenomenon is often portrayed as quantum
non-locality. There are other types of entangled states in two-photon system,
such as 1√

2
(|HH〉−|V V 〉), 1√

2
(|HV 〉+ |V H〉) and 1√

2
(|HV 〉−|V H〉). The latter

two are used in our simulation system.

Bosons and Fermions. In quantum mechanics, there are two kinds of identical
particles: bosons (photons, alpha particles, etc.) and fermions (electrons, protons,
neutrons, etc.). Identical particles are particles that cannot be distinguished
from each other substantially. Suppose the two particles in Fig. 2 have the same
internal properties, such as the spin, the frequency. In classical physics, the
situation in which the first particle stays at r1 and the second particle at r2
is different from the situation in which the first particle stays at r2 and the
second one at r1. The former situation is described in |r1(1)r2(2)〉, and the
latter in |r1(2)r2(1)〉. ra(b) indicates the particle b stays at ra. However, it is
impossible to distinguish the first particle from the second one. In this case, the
system goes into a superposition of |r1(1)r2(2)〉 and |r1(2)r2(1)〉. If the particles
are bosons with property of exchange symmetry, the superposition state will
be 1√

2
(|r1(1)r2(2)〉 + |r1(2)r2(1)〉). If the particles are fermions with exchange

antisymmetry, the superposition state will be 1√
2
(|r1(1)r2(2)〉 − |r1(2)r2(1)〉).

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 145

Fig. 2. Quantum identical particles: bosons and fermions

Simulating Two Bosons (Fermions) with Polarization-Entangled Pho-
ton Pairs. Photons are bosons as stated in the preceding paragraph. However,
the symmetric and antisymmetric entangled photon pairs can mimic two non-
interacting bosonic and fermionic particles respectively. The brief principle is
derived as follows.

Suppose the quantum simulation network is denoted by a unitary matrix U .
If the network has N input ports and N output ports, U will be an N × N
matrix. With two identical particles injected into the input port Im and In (m
and n indicate the port number), the system evolves to the quantum state:

N∑

i=1

N∑

j=1

UImOi
UInOj

| . . . , 1Oi
, . . . , 1Oj

, . . .〉,

where UImOi
is the element of U in row Im and column Oi. | . . . , 1Oi

, . . . , 1Oj
, . . .〉

denotes that there are a particle in output port Oi and a particle in output port
Oj , with no particles in other ports.

146 Y. Wang et al.

If the input particles are two identical bosons, the quantum state will be
written as

1
2

N∑

i=1

N∑

j=1

[
(UImOi

UInOj
+ UImOj

UInOi
]| . . . , 1Oi

, . . . , 1Oj
, . . .〉] .

The probability of finding a particle in output ports Op and Oq respectively is

Pboson =
{ |UImOi

UInOj
+ UImOj

UInOi
|2 p �= q

1
2 |UImOi

UInOj
+ UImOj

UInOi
|2 p = q

.

However, if the input particles are two identical fermions, the quantum state
and the probability will be

1
2

N∑

i=1

N∑

j=1

[
(UImOi

UInOj
− UImOj

UInOi
]| . . . , 1Oi

, . . . , 1Oj
, . . .〉] ,

Pfermion =
{ |UImOi

UInOj
− UImOj

UInOi
|2 p �= q

0 p = q
.

If we inject two photons at entanglement state 1√
2
(|HIm

VIn
+ VIm

HIn
〉) or

1√
2
(|HIm

VIn
− VIm

HIn
〉), the former state will lead to bosonic behavior and the

latter fermionic behavior. As for the 1√
2
(|HIm

VIn
− VIm

HIn
〉) input, the output

quantum state is

1√
2

N∑

i=1

N∑

j=1

[
(UImOi

UInOj
− UImOj

UInOi
)|HOi

VOj
〉] .

The probability of detecting one photon in Op and one in Oq is

P =
{ |UImOi

UInOj
− UImOj

UInOi
|2 p �= q

1
2 |UImOi

UInOj
− UImOj

UInOi
|2 p = q

.

It is obvious that the probability of detecting two photons in two distinct
output ports is the same as that of two fermions. Therefore, we can use a
polarization-entangled photon pair at 1√

2
(|HIm

VIn
− VIm

HIn
〉) to simulate the

behavior of two fermions.

3 Structure

As is shown in Fig. 3, we design a structure that adopts a quantum “coproces-
sor” for two-particle bosonic-fermionic quantum simulation. Unlike most previ-
ous quantum experiments with only quantum devices, our structure consists of a
computer, home-made circuits and quantum elements used for quantum experi-
ments. A user-designed “program” with both classical statements and quantum

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 147

Fig. 3. Structure of the system

statements is executed by the monitor program on computers. When quantum
statements are executed, the host will schedule the quantum coprocessor through
the controlling driver or the measurement circuits. The driver is applied to receive
commands to adjust the entangled states. The measurement circuits are applied
to transfer the measured data from quantum parts to the computer.

The quantum coprocessor is constructed with a polarization-entangled two-
photon source, an interference-based optic network and several avalanche pho-
todiodes (APDs). The two-photon source produces photon pairs in a certain
entangled state controlled by commands. The adjustment is accomplished by a
motorized cage rotator, on which a half-wave plate is mounted. The produced
photon pairs are send to the interference-based optic network to carry out the
simulation. The APDs output electrical signals once they detect photons from
optical network. The measurement circuits complete the coincidence counting
which is a typical task in photonic experiments.

In this structure, quantum information, carried by photons, only exists in
the quantum “coprocessor”; i.e., quantum state like entanglement only occurs in
the quantum part. When simulating two bosons, the quantum part employs the
entanglement of 1√

2
(|HV 〉 + |V H〉). When simulating two fermions, it employs

the entanglement of 1√
2
(|HV 〉+|V H〉). Besides, two anyons can also be simulated

by other entangled states.

148 Y. Wang et al.

4 Implementation

We have implemented the proposed structure based on photonic system as shown
in Fig. 4. The scheme of the quantum coprocessor is shown in Fig. 5. In the
following subsection, we will introduce the scheme in detail.

Fig. 4. System implementation

Fig. 5. Scheme of quantum coprocessor for two-particle bosonic-fermionic quantum
simulation

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 149

4.1 Polarization-Entangled Two-Photon Source

We implement the two-photon source using spontaneous parametric down-
conversion (SPDC) [15]. In SPDC, a high-frequency photon can split into a
pair of low-frequency photons in accordance with the law of conservation of
energy and law of conservation of momentum when it enters a nonlinear crystal.
The process of SPDC happens randomly with extremely low probability, which
makes the experiment challenging.

A two-crystal geometry is used to construct the polarization-entangled two-
photon source. When a vertically polarized photon enters the specially-designed
nonlinear crystals, down-conversion will only occur in the first crystal. The emit-
ted light cones will be horizontally polarized, due to the type-I coupling. Sim-
ilarly, with a horizontally polarized pump injected, down-conversion will only
occur in the second crystal, producing otherwise identical cones of vertically
polarized photon pairs. A 45◦-polarized pump photon will lead to the same
probability of down-conversions in either crystal (neglecting losses from passing
through the first crystal). The possible down-conversion processes in the two
adjacent nonlinear crystals are coherent with one another, as long as the emit-
ted spatial modes for a given pair of photon are indistinguishable for the two
crystals. Consequently, the photons in the state 1√

2
(|HH〉 + eiφ|V V 〉) will auto-

matically be created. φ is determined by the details of the phase matching and
the crystals thickness, and in our experiment we adjust the wave plate group to
set different φ for different simulation.

Figure 5 shows the experimental setup used to produce and characterize the
entangled photons. The pump beam at 405 nm is directed to the two crystals
after passing through: a half-wave plate (HWP) and a polarizing beam splitter
(PBS) to adjust the power (|H〉); a rotatable HWP to adjust the polarization
(1√

2
(|H〉 + |V 〉)); and a wave plate group to set φ in the final output state

(1√
2
(|H〉 + eφp |V 〉))2. The nonlinear crystals are β-barium borate (BBO). The

optic axis of each BBO is cut at 33.9◦. For this cut the degenerate-frequency
photons(1√

2
(|HH〉+eiφ|V V 〉)) at 810 nm are emitted into a cone of half-opening

angle 3◦. An HWP is added to one down-conversion path to get the state of
1√
2
(|HV 〉+eiφ|V H〉). Interference filters (IFs) centered at 810 nm with full width

at half maximum (FWHM) of 5 nm are placed to reduce the background noise
and select only these (nearly) degenerate photons.

4.2 Interference-Based Optic Network

The interference-based optic network in Fig. 5 completes the quantum simulation
task of the system. Beam splitters (BSs) with transmittance rate of 50 % transmit
a particle with 50 % probability and reflect it with 50 % probability [23]. If we
send a classical particle into any input port of the network, each output port will
emit the particle with a probability of 0.25. If we send two classical particles into
2 The phase φ in down-converted photons is determined by φp in the pump beam and

accumulated phase of photons in the optic path.

150 Y. Wang et al.

Table 1. Probabilities of output particles in different ports of the network

Port No. Classical particles Bosons Fermions

A B C D A B C D A B C D

A 0.0625 0.0625 0.0625 0.0625 0.125 0.25 0 0 0 0 0.25 0.25

B 0.0625 0.0625 0.0625 0.0625 0.25 0.125 0 0 0 0 0.25 0.25

C 0.0625 0.0625 0.0625 0.0625 0 0 0.125 0.25 0.25 0.25 0 0

D 0.0625 0.0625 0.0625 0.0625 0 0 0.25 0.125 0.25 0.25 0 0

it, the probability of detecting one particle in port i and one in port j will be
0.0625 (0.25 × 0.25). i and j are A, B, C or D. The probabilities of all cases are
listed in Table 1. However, if we send two bosons into the network, it is impossible
to detect bosons from A and C simultaneously because of the interference in the
first BS; i.e., the two bosons will either be reflected or transmitted by the first
BS. This phenomenon is called photon-bunching in physics. If two fermions are
input into the network, they will exhibit antibunching behaviour. Table 1 shows
all probabilities in classical, bosonic and fermionic situations. Note that two
classical particles are distinguished from each other as discussed in the preceding
section. The situation that port A output the first particle and B the second one
is different from the situation that A output the second particle and B the first
one. We will always get the probability of 1 when summarizing all probabilities
of these 16 situations (0.0625 × 16 = 1). As for the quantum particles, the two
identical particles cannot be distinguished from each other. Therefore, there is
no difference between AC and CA in Table 1. In addition, it is impossible for the
measurement circuits to distinguish coincidence AC from CA in the experiments.

The key of the experiment is to realize identical, which requires the minimum
distance difference between entangled photons arriving at the first BS. If the
distance difference is greater than 40µm, the coherent length of down-converted
pump, the two particles will be distinguishable.

4.3 Interface Between Classical Host and Quantum Coprocessor

There is a two-way information flow between classical host and quantum
coprocessor. The information flow from quantum coprocessor to classical host
relies on the measurement circuits, while the information flow from classical host
to quantum coprocessor relies on the driver.

From Quantum Coprocessor to Classical Host. APD will output an elec-
trical pulse in the width of 8 ns once it detects a photon. The pulses from different
APDs are sent into a coincidence counting circuits to count the coincident events
in a duration time. A coincident event is defined as two pulses arising in a coin-
cidence window. In our experiment, the coincidence window is set to 10 ns. As
is discussed above, the coincidence count between A and B is apparently more
than that between A and C in a two-boson quantum simulation, which is in

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 151

contrast to the situation for fermions. We have implemented the circuits on a
Xilinx FPGA development board.

From Classical Host to Quantum Coprocessor. The information sent from
classical host to quantum coprocessor is to adjust φ in the entangled state of
1√
2
(|HV 〉+eiφ|V H〉). This task is completed by rotating an HWP on a motorized

cage rotator. Once the rotator driver receives commands from the host, it will
drive the rotator to the target position. The overall function of the wave plate
group can be expressed as the product of Jones matrices in Eq. (1).

1√
2

(
1 −i
−i 1

) (
cos2θ sin2θ
sin2θ −cos2θ

)
1√
2

(
1 −i
−i 1

)
= e−i2θ

(
1 0
0 ei(π+4θ)

)
(1)

The fast axis of each QWP is set at 45◦ with respect to the horizontal axis.
When the state of the input pump laser beam is 1√

2
(|H〉+ |V 〉), the output state

will be e−i2θ√
2

(|H〉+ei(π+4θ)|V 〉). We can adjust φ in the final entanglement state
by rotating the HWP in the wave plate group. The phase prefactor cannot be
detected in our system.

4.4 Quantum “Program”

We use Python to implement the monitor program executing a quantum “pro-
gram”. As is shown in Fig. 6, the monitor program communicates with quantum
coprocessor and schedule a quantum program. Figure 6 gives an example of a
quantum program to simulate fermionic behavior. The statements began with
QUANTUM are quantum statements used to interact with quantum hardware.

Fig. 6. Moniter program and an instance of quantum “program”

152 Y. Wang et al.

They are encapsulated into python functions. The sample code gets the coinci-
dence counts and controls the entangled state according to the comparison of
the counts. It will find a position with the maximum coincidence count between
port A and C, which exhibits the fermionic behavior.

5 Evaluation and Analysis

The performance of the system strongly depends on the quality of polarization-
entangled two-photon source. Therefore, we first evaluated the polarization-
entangled state and then evaluated the final state.

5.1 Polarization-Entangled Two-Photon Source

There are several typical methods to evaluate the quality of an entangled-photon
source. We have measured the polarization correlations, the CHSH inequality3

and the fidelity. The measurement was performed with the pump laser of 63 mW,
coincidence window of 10 ns and counting duration of 0.5 s.

Polarization Correlations. The polarization correlations were measured with
adjustable polarization analyzers, consisting of a polarizer in front of each cou-
pler. The polarizer in one path was fixed at 0◦ or 45◦, while the polarizer in
the other path was rotated. The coincidence rate displayed sinusoidal fringes
with nearly perfect visibility. As is shown in Fig. 7, the visibilities are 98.28%
(1√

2
(|HV 〉+ |V H〉)) and 99.65% (1√

2
(|HV 〉+ |V H〉)) respectively, with a polar-

izer fixed at 45◦. With a polarizer fixed at 45◦, the visibilities are 98.55%
(1√

2
(|HV 〉 + |V H〉)) and 97.48% (1√

2
(|HV 〉 + |V H〉)) respectively.

CHSH Inequality. CHSH inequality is another method to evaluate the quality
of the entanglement [7]. We obtained 2.72 of S and 15−σ violation in 0.5 s using
Eqs. (2) and (3). In 50 s, we obtained 2.41 of S and 94 − σ violation.

E(x, y) =
N(x, y) + N(x⊥, y⊥) − N(x⊥, y) − N(x, y⊥)
N(x, y) + N(x⊥, y⊥) + N(x⊥, y) + N(x, y⊥)

(2)

S = |E(−45◦,−22.5◦)|+ |E(−45◦, 22.5◦)|+ |E(0◦,−22.5◦)|+ |E(0◦, 22.5◦)| (3)

Fidelity. We calculated the density matrix by quantum state tomography [29],
and got the fidelities of 94% (1√

2
(|HV 〉+ |V H〉)) and 92% (1√

2
(|HV 〉− |V H〉)).

3 CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt,
who derived the inequality.

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 153

0 50 100 150

0

500

1,000

Degrees with another fixed at 0◦

C
o
in

ci
d
en

ce
s

p
er

0
.5

s
1√
2
(|HV 〉 + |V H〉)

0 50 100 150
0

0.5

1

· 104

Degrees with another fixed at 0◦

si
n
g
le

s
p
er

0
.5

s

1√
2
(|HV 〉 − |V H〉)

0 50 100 150

0

200

400

600

800

Degrees with another fixed at 45◦

C
o
in

ci
d
en

ce
s

p
er

0
.5

s

1√
2
(|HV 〉 + |V H〉)

0 50 100 150
0

0.5

1

· 104

Degrees with another fixed at 45◦

si
n
g
le

s
p
er

0
.5

s

1√
2
(|HV 〉 − |V H〉)

Fig. 7. Correlation of two photons in polarization.

5.2 Two-Particle Bosonic-Fermionic Simulation

The control program adjusted the simulation system to the target states auto-
matically. The similarity(S) of fermionic simulation can be calculated as Eq. (4).

S =

(
Σi,j

√
PijDij

)2

Σi,jPijΣi,jDij
(4)

Pij is the ideal probability of coincidence between port i and port j given in
Table 1. Dij is the experimental coincidence count between port i and port j.

We have tried several quantum programs with different algorithms to test
the system. The similarity for bosonic simulation is 95.2% and for fermionic
simulation 97.1%. There are several factors accounting for the experimental
error. First, the dither of the system, including source and detector, influences
the count rates, which are the essential input of the script. Second, the quantum
programs still have potential to be optimized.

154 Y. Wang et al.

6 Conclusion

This paper has proposed a programmable structure for two-particle bosonic
and fermionic quantum simulation and implemented the whole system based
on entangled photons. The evaluation of the experiment has shown the feasi-
bility of this programmable system. Quantum computing is an interdisciplinary
field of physics and computer science. We expect to improve our system with
the help of methods from both physics and computer science.

Acknowledgements. We gratefully acknowledge the work of Xun Yi for his quantum
state tomography program and Yong Liu for his software user-interface design. We
also appreciate the helpful discussion with Yingwen Liu, Xuan Zhu, Jiangfang Ding,
Hongjuan He and Shichuan Xue. This work was supported by the Open Fund from
HPCL No. 201401-01.

References

1. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8(4),
285–291 (2012)

2. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of
quantum computation. Nat. Phys. 9(11), 727–731 (2013)

3. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical
hamiltonian model of computers as represented by turing machines. J. Stat. Phys.
22(5), 563–591 (1980)

4. Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph,
T.C., White, A.G.: Photonic boson sampling in a tunable circuit. Science
339(6121), 794–798 (2013)

5. Cai, X.D., Weedbrook, C., Su, Z.E., Chen, M.C., Gu, M., Zhu, M.J., Li, L., Liu,
N.L., Lu, C.Y., Pan, J.W.: Experimental quantum computing to solve systems of
linear equations. Phys. Rev. Lett. 110, 230501 (2013)

6. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198),
1031–1042 (2008)

7. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test
local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

8. Deutsch, D.: Quantum theory, the church-turing principle and the universal quan-
tum computer. Proc. R. Soc. A Math. Phys. Eng. Sci. 400(1818), 97–117 (1985)

9. Dickson, N.G., Amin, M.H.: Algorithmic approach to adiabatic quantum optimiza-
tion. Phys. Rev. A 85, 032303 (2012)

10. Douglass, A., King, A.D., Raymond, J.: Constructing SAT filters with a quantum
annealer. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 104–120.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 9

11. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6),
467–488 (1982)

12. Franson, J.D.: Beating classical computing without a quantum computer. Science
339(6121), 767–768 (2013)

http://dx.doi.org/10.1007/978-3-319-24318-4_9

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System 155

13. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N.,
Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C.,
Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich,
C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson,
B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346),
194–198 (2011)

14. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681),
133–137 (1998)

15. Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright
source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)

16. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.:
Quantum computers. Nature 464(7285), 45–53 (2010)

17. Lanting, T., Przybysz, A.J., Smirnov, A.Y., Spedalieri, F.M., Amin, M.H., Berkley,
A.J., Harris, R., Altomare, F., Boixo, S., Bunyk, P., Dickson, N., Enderud, C.,
Hilton, J.P., Hoskinson, E., Johnson, M.W., Ladizinsky, E., Ladizinsky, N., Neufeld,
R., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Uchaikin, S.,
Wilson, A.B., Rose, G.: Entanglement in a quantum annealing processor. Phys.
Rev. X 4, 021041 (2014)

18. Lu, C.Y., Browne, D.E., Yang, T., Pan, J.W.: Demonstration of a compiled version
of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99,
250504 (2007)

19. Lu, K., Zhang, Y., Xu, K., Gao, Y.: Approximate maximum common sub-graph
isomorphism based on discrete-time quantum walk. In: International Conference
on Pattern Recognition, pp. 1413–1418 (2014)

20. Martin-Lopez, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’Brien, J.L.:
Experimental realization of Shor’s quantum factoring algorithm using qubit recy-
cling. Nat. Photonics 6(11), 773–776 (2012)

21. Monroe, C.: Quantum information processing with atoms and photons. Nature
416(6877), 238–246 (2002)

22. O’Brien, J.L.: Optical quantum computing. Science 318(5856), 1567–1570 (2007)
23. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osel-

lame, R.: Two-particle bosonic-fermionic quantum walk via integrated photonics.
Phys. Rev. Lett. 108(1), 140–144 (2012)

24. Shor, P.W.: Algorithms for quantum computation: discrete log and factoring
(extended abstract). Proc. Annu. Symp. Found. Comput. Sci. IEEE Comput. Soc.
124–134 (1994)

25. Somaroo, S., Tseng, C.H., Havel, T.F., Laflamme, R., Cory, D.G.: Quantum sim-
ulations on a quantum computer. Phys. Rev. Lett. 82, 5381–5384 (1999)

26. Sørensen, J.J.W.H., Pedersen, M.K., Munch, M., Haikka, P., Jensen, J.H., Planke,
T., Andreasen, M.G., Gajdacz, M., Mølmer, K., Lieberoth, A., Sherson, J.F.:
Exploring the quantum speed limit with computer games. Nature 532(7598), 210–
213 (2016)

27. Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X.M., Bar-
bieri, M., Datta, A., Thomas-Peter, N., Langford, N.K., Kundys, D., Gates, J.C.,
Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Boson sampling on a photonic chip.
Science 339(6121), 798–801 (2013)

28. Steffen, M., Vandersypen, L., Breyta, G., Yannoni, C., Sherwood, M., Chuang, I.:
Experimental realization of Shor’s quantum factoring algorithm. Am. Phys. Soc.
414(6866), 883–887 (2002)

156 Y. Wang et al.

29. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomog-
raphy. Phys. Rev. A 66, 012303 (2002)

30. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V.,
Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature
434(7030), 169–176 (2005)

31. Yang, X.J., Dou, Y., Hu, Q.F.: Progress and challenges in high performance com-
puter technology. J. Comput. Sci. Technol. 21(5), 674–681 (2006)

An Introduction to All-Optical Quantum
Controlled-NOT Gates

Hongjuan He, Junjie Wu(B), and Xuan Zhu

State Key Laboratory of High Performance Computing,
National University of Defense Technology, Changsha, China

junjiewu@nudt.edu.cn

Abstract. Quantum computer promises to outperform classical com-
puter fundamentally, due to its quantum superposition. Any operations
to N qubits can be decomposed into several single-qubit operations and
two-qubit controlled-NOT (CNOT) operations in theory. Linear opti-
cal quantum computing (LOQC) is one of the most prominent physical
quantum systems, which has the advantage of long coherent time and
convenience in implementing single qubit operations. However, the real-
ization of two-qubit CNOT gate is the greatest challenge for LOQC,
because two photons cannot directly interact with each other by nature.
KLM protocol proves the feasibility of LOQC and spurs quantity of
research on schematic design and experimental demonstration of CNOT
gates by using linear quantum optics system. These researches are very
important and nontrivial for LOQC, and this paper gives an overview
of different schemes of the proposed CNOT gates and the experimental
demonstration.

Keywords: Quantum computing · LOQC · Quantum circuit · CNOT
gate

1 Introduction

Quantum computer promises to outperform classical computer fundamentally,
due to its quantum superposition [26]. N qubits in a special superposition quan-
tum state can represent 2N numbers, while N classical bits only represent one
of them. Thus, a quantum operation to these N qubits operates all 2N numbers
simultaneously. According to this quantum feature, a lot of quantum algorithms
have been developed which achieves a speedup, in complexity theory, of classical
best algorithms.

Any operations to N qubits can be decomposed into several single-qubit oper-
ations and two-qubit CNOT operations in theory. Therefore, how to implement
them is crucial to realizing quantum computing for all kinds of physical systems,
including photons [16], trapped ions [3], quantum dots [27,28], superconductors
[12] and so on. These systems have their own advantages and disadvantages.
Take photon system for example, it has longer coherence time than most other

c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 157–173, 2016.
DOI: 10.1007/978-981-10-2209-8 14

158 H. He et al.

systems. Besides, single-qubit optical gates are easy to implemented using linear
optical elements including beam splitters, wave plates, phase shifters, mirrors,
etc. [8,10,11,18]. Thus, quantum computation using photons is called LOQC.

However, the realization of two-qubit CNOT gate is the most challenge in
LOQC, because two photons cannot directly interact with each other by nature.
It was believed that optical nonlinearities, stronger than those available in con-
ventional non-linear media, are essential for LOQC. In 2001, Knill, Laflamme
and Milburn proved that it is possible to realize quantum computing by using
linear optics, single photons (ancilla), and single photon detectors (also called
post-selection), which has been famous as the KLM protocol [8]. The proto-
col proves the feasibility of LOQC and spurs quantity of research on schematic
design and experimental demonstration of CNOT gates by using linear quantum
optics system [4,7,13,20–24]. These researches are very important and nontrivial
for LOQC.

2 LOQC

2.1 Qubits

A qubit is an elementary unit in quantum computer, which plays the similar role
as classical bit. In LOQC, a qubit is usually a single photon with two modes on
one certain degree of freedom such as spatial modes and polarization modes [10].

A photon encoded in spatial modes is called a spatial qubit or a dual-rail
qubit. The spatial qubit has a choice of two different modes |0〉L = |1, 0〉 and
|1〉L = |0, 1〉. If a single photon occupies path 0 and a vacuum state in path 1, it
is the logical |0〉L. Vice versa, logical |1〉L. Different spatial modes mean different
paths.

When the photons internal polarization degree of freedom is used to be the
two modes, we call the photon a polarization qubit. In general, a photon hor-
izontally (H-) polarized represents the logical 0, and a photon vertically (V-)
polarized represents the logical 1. A polarization qubit and a spatial qubit can
interconvert into each other. In quantum computing, a photon can live in the
superposition state, so a qubit contains information of both logical 0 and logi-
cal 1. While in classical computing, one bit can only be either 0 or 1.

2.2 Optical Components

There are fundamental building blocks in LOQC, such as half-wave plates
(HWPs), quarter-wave plates (QWPs), several different beam splitters and so on.

Wave Plates. HWPs and QWPs are common wave plates that can manipulate
the polarization encoded photons, and they are made of birefringent crystals
that induce a relative phase shift. Its needed that the incident light should be
perpendicular to the plain of HWPs and QWPs. The effect of the two wave
plates is characterized by the angle θ rotating from the optical axis to horizontal

An Introduction to All-Optical Quantum Controlled-NOT Gates 159

Fig. 1. Schematic diagrams of several BSs and orientations of the HV and FS bases.

polarization, which decides how the polarization amplitudes are split. Usually, we
mark the HWP with rotating angle θ as HWP(θ). An arbitrary unitary operation
U on a single qubit can realized by three wave plates: QWP(α), HWP(β) and
QWP(γ).

Beam Splitters. A Beam Splitter (BS) is a significant component to operate
spatial qubits in LOQC [10]. It is a device that can redistribute the amplitudes of
two spatial inputs, which is decided by the reflection probability R. In addition,
transmission probability T can be deduced by R, since R + T = 1. The most
common one is 1/2BS, which represents R = 1/2. A matrix describing its effect
is UBS as follows:

where ai and bj can be comprehended as the amplitude of the input or output
in port ai and bj respectively, as shown in Fig. 1.

A BS designed to configure parameters with respect to the polarization of
the input qubits, called polarizing beam splitter (PBS). It means that PBS can
deal with both spatial and polarized information of input photons. The most
common PBS transmits H-polarized photons and reflects V-polarized photons
totally. Through rotation, PBS can be in different bases, such as HV and FS
bases shown in Fig. 1 [23]. In this paper, we mark them as PBS-HV (or PBS)
and PBS-FS respectively shown in Fig. 1.

Another important subclass of PBS is the polarization dependent beam split-
ter (PDBS) [7]. A PDBS is characterized by two parameters, transmission prob-
ability for horizontal polarization, tH , and for vertical polarization, tV , in both
output modes. A PDBS used latter with parameters of tH = 1 and tV = 1/3,
transmits H-polarized photons totally and V-polarized photon with probability
1/3, while reflects V-polarized photons with probability 2/3.

2.3 Quantum Circuit Model

Analogous to an electrical circuit of a classical computer, a quantum circuit
builds a quantum computer, containing wires and several elementary quantum
gates [17]. Wires are used to transfer information and quantum gates manipulate
it. Classical gates cannot be used to quantum computing, since they cannot deal
with the quantum superposition.

Quantum gates in circuit model can be divided into the single and the mul-
tiple qubit gates [14]. A single qubit gate is to convert a single qubit from one

160 H. He et al.

Fig. 2. The equivalence relation of CNOT and CZ gates shown by quantum circuits.

form to another. The commons are quantum NOT gate, X gate and Z gate. NOT
gates effect is exchanging the state of 0 and 1, and the Z gate is to add negative
sign to logical 1.

CNOT gate is an important multiple qubit quantum gate. It contains the
control qubit and the target qubit. The goal of CNOT gate is to flip the logical
state of the target photon if the control photon is logical 1, while do nothing
if logical 0. The control qubit remains unchanged. Another multiple qubit gate
is the controlled phase gate (CZ gate). The operation of CZ gate is that if
the control and target qubits are both logical 1, π phase shift is induced. The
CNOT gate can be realized by the CZ gate with two Hadamard gates on input
and output of target qubit, as Fig. 2 shown.

3 Schemes of CNOT Gates and Experimental
Demonstrations

Since the CNOT gate is universal and important, researchers propose a lot of
schemes to implement it. Those schemes all require post-selection based on KLM
protocol that leads to nonlinearity required by the CNOT gate operation. In this
review, we divide those schemes into four classes, that is, the CNOT gate based
on bases transformation, the CNOT gate based on path interference, the CNOT
gate based on interference of polarized photons and the simplified CNOT gate
particular for special cases.

3.1 CNOT Gates Based on Bases Transformation

This subsection introduces one fundamental CNOT gate [22,23] and two
improved CNOT gates based on the fundamental one [4,21,24]. They all use
polarization encoded qubits and the photon horizontally polarized represents
the logical 0, and the photon vertically polarized represents the logical 1.

A Fundamental CNOT Gate. The fundamental CNOT gate is demonstrated
by T.B. Pittman et al. Fig. 3(a) shows its schematic graph and two detecting
bases. The flip of target qubit is caused by bases transformation on PBS-FS that
reflects S-polarized photons and transmits F-polarized photons totally.

In the device, two single photons are incident on a PBS-FS, respectively
formed as control and target input qubits. A polarization-sensitive detector
including two single photon detectors and a PBS in path 2 completes the post-
selection operation.

An Introduction to All-Optical Quantum Controlled-NOT Gates 161

Fig. 3. The CNOT gate based on bases transformation (a) Schematic graph and two
detecting bases [23] (b) experimental setup of the CNOT gate [22]

Considering the case that the target photon is an arbitrary polarization state,
| in〉1 = αH1 +βV1, and the control photon is V-polarized, | in〉2 = V2, the total
initial state can be written in FS bases:

Ψin = |in〉1 ⊗ |in〉2 = [
α√
2
(F1 − S1) +

β√
2
(F1 + S1)] ⊗ 1√

2
(F2 + S2)

The PBS-FS transforms it into:

Ψ2′1′ =
1
2
[α(F2′F1′ − S2′S1′) + β(F2′F1′ + S2′S1′)] +

1√
2
ΨII

Where II includes the amplitudes of the unsuccessful cases that D2 doesn’t
receive one or only one photon. Rewriting the amplitudes in mode 2 back in HV
bases:

Ψ2′1′ =
1
2
[Hd(αV1′ + βH1′) + Vd(αH1′ + βV1′)] +

1√
2
ΨII

If we accept the outputs of first term, D2 detects only one H-polarized photon,
the output collapses to the state αV1+βH1. This is a flip of the input state when
the control state is V-polarized.

The case that control photon state is H-polarized keeps the output of target
state unchanged, by using the same device and post-selection operation as above
case.

In summary, when the detector receives only one H-polarized photon, the
CNOT gate succeeds with a probability of 0.25, which can be increased to 0.5
by using feed-forward control techniques [24].

Figure 3(b) shows experimental setup according to Fig. 3(a), and graphic rep-
resentation of all components which are used for all following figures. All process
be-fore PBS2 are to generate arbitrary input state of control and target qubits.
PBS2 realized the PBS-FS in Fig. 3(a). Rather than rotating the PBS through
45◦, it is more convenient to rotate the photons polarization and the detector
bases by HWPs. Polarization-sensitive detector is realized by a rotatable polar-
ization analyzer θ2′ and a single photon detector, which can only detect one

162 H. He et al.

polarized state at any given time. By rotating θ2′ , any polarized states can be
measured. θ1′ and D1′ are used to measure the output states in path 1′. Exper-
imental results show that the mean error is approximately 8% when averaged
over all possible input states.

An Improved CNOT Gate with a Single Ancilla Photon. In order to
preserve the information of control qubit in the first device, an improved scheme
adopting a single ancilla photon is proposed based on the first CNOT [21], shown
in Fig. 4(a). The function of the gate is realized by the fundamental CNOT gate,
the lower PBS-FS. The additional upper PBS and the single ancilla photon are
used to copy the control photon state, which is called quantum encoder, and
output into two ports. One is acted as the output of the control qubit, and
the other is to interact with the target qubit to implement CNOT operation.
Therefore, a CNOT gate with both target and control output is implemented.
When a coincidence of three detectors happens and detector DA receives only
one H-polarized photon, the gate succeeds with probability of 1/8, which can be
increased to 1/4 by using feed-forward control techniques.

In detail, the single ancilla photon is generated in state (Ha+Va)/
√

2, and the
control qubit is arbitrary state αH + βV . When the ancilla photon and control
photon are mixed on the upper PBS, the output state is αHaH+βHaV +αVaH+
βVaV . Through post-selection that one and only one photon is detected in both
output ports, the state αHaH + βVaV is chosen, which copies the control state.

The experimental setup is shown Fig. 4(b). The block of initial state prepa-
ration is to prepare three photons with required polarized states. Then three
photons are incident into A, C and T port, respectively acting as the ancilla,
control and target qubits. The lower PBS in Fig. 4(a) rotated 45◦ with respect to
the upper one is accomplished by a fpc (calibrated fiber polarization controller)
between the two PBS. Post-selection and qubit analysis are realized by polarizers
and single-photon detectors DA,C,T .

Fig. 4. The CNOT gate with single ancilla photon [21]. (a) Schematic graph (b) exper-
imental setup.

An Introduction to All-Optical Quantum Controlled-NOT Gates 163

An Improved CNOT Gate with Entangled Ancilla Photon Pair.
Another improved CNOT gate proposed by Pittman et al. [23] is demonstrated
by Gasparoni et al. [4]. The scheme requires an entangled ancillary pair pho-
ton and two simpler gates, as Fig. 5(a) shown. The lower fundamental CNOT
gate and the upper quantum encoder have been analyzed above. The encoder
together with the maximally entangled Bell state copies the control qubit into
ports b1 and a4. Port b1 is the output of control qubit, and the photon from a4 is
to interact with the target qubit on PBS2 to implement the function of CNOT
gate. When detector D3 receive F-polarized state and D4 detects H-polarized
state simultaneously, the CNOT gate succeeds with probability 1/16, which can
be increased to 1/4 by using feed-forward control techniques.

The experimental setup is shown in Fig. 5(b). Pump laser passes through
BBO twice and generates two pairs of entangled photons. One pair entangled
photon pair acts as the entangled Bell state, and the other pair is disentangled
into two single photons by passing through appropriate polarizers. Two single
photons are transformed into any initial state by HWPs, and act as the control
and target photons respectively. Photons in path a2 and a4 interfere on PBS2,
and photons in a1 and a3 interact on PBS1. Finally, the CNOT gate is realized
by post-selection, with the fidelity of about 80%.

Fig. 5. The CNOT gate with entangled ancilla photon pair [4] (a) schematic graph (b)
experimental setup.

3.2 A CNOT Gate with Path Interferences

This subsection recommends the fourth CNOT gate, a gate with path inter-
ferences [6,25]. The control and the target qubits of this gate are both spatial

164 H. He et al.

Fig. 6. A CNOT gate with path interference [18]. (a) Schematic graph. (b) A polariza-
tion qubit and a spatial qubit converted into each other. (c) The schematic experimental
realization.

encoded. For control qubit, if a single photon occupies of path C0 and a vacuum
state in path C1, it is the logical 0, and vice versa, logical 1.

Under the condition of the coincidence Cout and Tout photon detection, the
gate works as follows shown in Fig. 6(a): if the input of control qubit Cin is
logical 0, the two target modes, T0 and T1, are interfering classically twice on
two 1/2BSs. In this case, there is no change of target state, because there is no
interaction between the control and target qubits. However, when Cin is logical
1, the control and target photons interfere non-classically at the middle 1/3BS.
There are two indistinguishable cases: one is that both C1 and T+ reflect on
1/3BS causing π phase shift, and the other is that both transmit through the
1/3BS. That two cases interfere with each other leading to the target flipping.
The other two 1/3BSs are used to balance the amplitude of the non-interference
output. This CNOT gate succeed with probability 1/9.

J.L. O’Brien et al. reported the demonstration of that CNOT gate in
NATURE [18], as shown in Fig. 6(c). The generated photons are initially polar-
ization encoded, and then are transformed to spatial encoding. To go from polar-
ization encoding to spatial encoding needs a PBS and a HWP in the experiment
shown in Fig. 6(b), and vice versa. In the experimental setup, two input polar-
ized qubits pass through the first PBS and are transformed into spatial encoding.
Two HWPs(22.5◦) implement two 1/2BSs, where the two classical interferences
happen, and the middle HWP(OA = 62.5◦) implements the three 1/3BSs. The
second PBS translates the polarized information after HWP(62.5◦) into spatial
modes to complete post-selection. Experimental fidelity is 84 %.

An Introduction to All-Optical Quantum Controlled-NOT Gates 165

3.3 A CNOT Gate with Polarized Photons Interference

This is a CNOT gate with polarized photon interference [7,13,20]. Two input
qubits are polarization encoded, and H-polarization is logical 0, V-polarization
is 1. Implementation of the CNOT gate is shown in Fig. 7. This gate is realized
mainly by three PDBSs. PDBS0 with parameters of tH = 1 and tV = 1/3,
and two PDBSa/b have reverse parameters, tH = 1/3 and tV = 1. Whats
more, reflection on PDBS0 once causes a π/2 phase-shift. The flip of target
state when control state is 1, is realized by the process of a π phase shift and
two HWPs(22.5◦) in input and output of target qubit. The phase shift is caused
by interference of two indistinguishable cases when two V-polarized photons
are mixed on PDBS0. One case is that both of the two photons transmit with
probability 1/3, and the other case is that both of them reflect with probability
2/3 leading to a phase shift totally. The other two subsequent PDBSs are used
to balance the output amplitudes. HWPs, QWPs and PBSs are to analyze the
output state and post-selection. The gate succeeds when two detectors obtain
a coincidence in the output with probability of 1/9 and experimental fidelity
is 81.8 %.

Fig. 7. Implementation of the CNOT gate with polarized photons interference [7].

3.4 A Simplified Version of CNOT Gate with a Particular Target
Qubit State

Five schemes of CNOT gate described previously are all for the arbitrary control
and target states. However, there are some special applications that the target
state is bases logic in quantum circuits, for example, target state is the initial
state, logical 0 or 1.

The CNOT gate with target state being logical 0 is easy to be realized by
only one PBS and one HWP, as Fig. 8(a) shown [2,15]. The control qubit state
is arbitrary, written as αH +βV , while the target qubit state is H. Target qubit

166 H. He et al.

Fig. 8. A simplified version of CNOT gate with bases target qubit state. (a) The input
of target qubit is H-polarized state. (b) The input of target qubit is V-polarized state.

state is transformed to be state (H + V)/
√

2 after HWP(22.5◦). Thus (αHH +
βV H + αHV + βV V)/

√
2 is the state of whole system. When passing through

the PBS-HV, state (αHH + βV V)/
√

2 is obtained under the condition of a
coincidence of the two outputs, with success probability 1/2.

We can also realize the special CNOT gate that the target qubit is V-polarized
state in the similar way, as Fig. 8(b) shown.

3.5 Comparison and Analysis

In this subsection, we compare and analyze the difficulty of interferences, re-
sources consuming and success terms of the six different implements of CNOT
gates above.

Interferences. Subwavelength path interferences occur only when the path
lengths maintain stable in subwavelength, about the order of 1µm. It is a harsh
term in lab, so it requires additional stabilization technology and equipment.
However, the stability requirements of second order interference are relaxed to
the coherence length of the qubit photons, about 150µm, and can be fulfilled
easily without any stability methods. Thus the realization of subwavelength path
interference is much more difficult than that of second order interference.

Table 1 shows the comparison of the interference in CNOT gates demon-
strated. Only the 4th scheme is spatial encoded, and only it contains subwave-
length path interferences. We have discussed that the realization of this gate is
very difficult, and such difficulty will restrict its application for scalable LOQC.
Compared with the 4th CNOT gate, the other CNOT gates just require at most
two second order interferences, thus they all can be implemented more easily.

Resources Consuming. We roughly divide resources required into three parts,
the number of required qubits, components and detectors. From the Table 2 we
can see that, the 3rd and the 2nd CNOT gates need 4 and 3 single photons and
the others are all require 2 photons. For required components and detectors, the
first and last one require less and the others are almost similar. The terms in

An Introduction to All-Optical Quantum Controlled-NOT Gates 167

Table 1. Comparison of the interferences in CNOT gates demonstrated

Scheme number Encoded mode Subwavelength Second order

1st polarization 0 1

2nd polarization 0 2

3rd polarization 0 2

4th path 2 1

5th polarization 0 1

6th polarization 0 1

Table 2. Resources requirement of the demonstrated CNOT gates

Scheme number Qubits number Component Detector number

1st 2 PBS*1+polarizer*1(PBS*2) 2(3)

2nd 3 PBS*2+polarizer*1(PBS*3) 2(4)

3rd 4 PBS*2+polarizer*2(PBS*4) 2(4)

4th 2 PBS*2+HWP*4 2

5th 2 PDBS*3+HWP*2 2

6th 2 PBS*1+HWP*1 2

Table 3. Success terms of the CNOT gates

Scheme number Indication Probability Function

1st state 1/4(1/2) loss

2nd state 1/8(1/4) destructive

3rd state 1/16(1/4) non-destructive

4th coincidence 1/9 destructive

5th coincidence 1/9 destructive

6th coincidence 1/2 limited

brackets are all response to the case using feed-forward control techniques to
increase success probability in Table 3, which requires more resources and are
more complex.

Success Terms. In Table 3, the success indications of the first three CNOT
gates are all states. It means that the CNOT gates succeed when detectors receive
particular states, which needs one more polarizer or PBS (with one additional
detector). While the success indication of the last three is a coincidence detection
of two output photons. The success probability indicates that the last scheme
provides the highest probability. The 1st one can also reach highest using feed-
forward control techniques, while requires more resources and are more complex.

168 H. He et al.

The first scheme realizes a CNOT gate that losses the information of the con-
trol qubit, and the last one is limited to the cases that target qubit is logical 0 or
1. The destructive CNOT gates work only when all output ports each detect one
photon simultaneously. Without reliable quantum nondestructive measurement
(QNM) [9], the detection of the post-selection will destruct the output photons
of control and target, so the gates are called destructive gates. Although those
CNOT gates preserve the information of control qubit, its destructive property
make it difficult to apply to scalable quantum computing. The only one non-
destructive CNOT gate is the 3rd one, since its two outputs are not needed to
detect by post-selection operation. As Fig. 5 shown, if D3 and D4 detect one
particular photon simultaneously, the CNOT gate is successful.

Summary. Generally, the more powerful the CNOT gate is, the more resources
it requires. The nondestructive gate is very useful in scalable quantum computing
that contains multiple CNOT gates, but it costs more resources than the others.
The fifth CNOT gate maybe a promising candidate to implement the scalable
quantum computing together with QNM, since it is not resource-consuming and
easier to be realized than the others that implement the same function. And
from the view of the optical experimental setups, the 5th are simpler.

It may be more efficient to adopt different scheme of CNOT gate according
to practical requirements. For example, if the target qubit state is logical 0 or
1, we use the sixth CNOT gate. For the CNOT gate in the middle of circuits,
we could adopt the third scheme. Therefore, we combine several schemes to
realize a quantum circuit in order to maximize resource efficiency. Until now,
the scale of quantum circuits is so small that the scheme of quantum gate is
chosen manually. However, in the future, when the scale of quantum circuits
grows larger and larger, the choice would have to be made automatically which
is similar to the function of compilers in classical computer.

4 Implementation of Quantum Algorithms
in the Quantum Circuit Model

The above sections introduce the all-optical quantum CNOT gates, and analyze
their properties. This section introduces the application of the CNOT schemes
to several important quantum algorithms.

Before describing details, we give an overview of the development of linear
optical quantum computer, compared with the classical computers [29,30]. As
shown in Fig. 9, the hierarchical structure of classical computer is mainly divided
into three levels, software, architecture and hardware. Those three phases would
be passed through to implement an algorithm on classical computer. While for
quantum computers, there are no software and architecture till now. Thus, a
quantum algorithm is directly implemented by the quantum circuits and optical
components, just like achieving an algorithm on FPGA.

An Introduction to All-Optical Quantum Controlled-NOT Gates 169

Fig. 9. Hierarchical structure of quantum computer and classical computer.

4.1 Application of CNOT Gates for Shors Quantum Factoring
Algorithm

Shors algorithm [26] is the most famous and prominent quantum algorithm. It
can factor large numbers in polynomial time on a quantum computer, while the
best classical method need exponential time. ChaoYang Lu et al. report an all-
optical demonstration of a compiled version of the algorithm [15]. They choose
to factorize 15, the simplest instance. This experiment proof-of-principle proves
that Shors algorithm can be realized by using photonic qubits.

The simplified quantum circuit of Shors algorithm and experimental setup
are shown in Fig. 10(a) and (b). Two consecutive CNOT gates are the kernel of
the circuit. Considering the target qubits of both CNOTs are logical 0, the 6th
CNOT scheme is adopted. Two target qubits are both transformed from H to
(H ± V)/

√
2 by HWPs(22.5◦). In Fig. 10(c), three H ± V polarized photons are

Fig. 10. Shors algorithm [15]. (a) The quantum circuit for N = 15. (b) Experimental
setup. (c) Two consecutive 6th CNOT gate.

170 H. He et al.

incident into two PBSs from three spatial modes. The post-selection operation is
a coincidence of three outputs which occurs only when all photons are reflected
or transmitted. After that operation, entangled state HHH±V V V is outputted,
which is the required result of the two CNOT gates.

4.2 Application of CNOT Gates for Solving Systems of Linear
Equations

Harrow, Hassidim and Lloyd [5] propose a powerful quantum algorithm to solve
systems of linear equations that is a very practical problem. It shows that quan-
tum computers can solve this problem exponentially faster than classical ones in
some situations. In 2013, two groups independently demonstrated the algorithm
based on different photonic quantum circuits [1,2]. They both realize the sim-
plest instance of the algorithm for solving 2 × 2 linear equations on a quantum
computer for various input vectors, demonstrating the working principle of the
quantum algorithm.

Application of the Simplified CNOT Gate. The simplified quantum circuit
designed by X.-D. Cai et al. is shown in Fig. 11 [2]. It uses four qubits. Two
CNOTs are contained in the circuit. Because the target qubits of both CNOTs
are H-polarized, the 6th scheme is adopted to implement the two consecutive
CNOT as 4.1 does.

Fig. 11. The 1st optimized quantum circuit for solving systems of linear equations.

Application of the Third and Fifth CNOT Gates. Another different
implementation is reported by Stefanie Barz et al. [1]. As shown in Fig. 12,
optimized quantum circuit contains two separate CNOT gates. Figure 13 shows
its experimental implementation, where the two CNOT gates respectively adopt
the 3rd and the 5th schemes.

Fig. 12. The 2nd optimized quantum circuit for solving system of linear equations.

An Introduction to All-Optical Quantum Controlled-NOT Gates 171

Fig. 13. Experimental implementation of the optimized circuit.

As previous discussion of the 3rd scheme, the valid outputs of CNOT1 are
passed to CNOT2 without measurement. This non-destructive CNOT gate can-
not be replaced by destructive one, except that the destructive CNOT gates are
combined with QNM. CNOT2 is realized by the 5th scheme and succeeds when
the coincidence of two final detectors occurs. They choose this scheme because
it is more stable and efficient.

In the scalable quantum computing, the output of the former gate usually
pass to the next one. Destructive CNOT gates without QNM are less useful, since
they have to measure outputs to judge if it succeeds, leading to destruction. In
fact, we have to measure the output of each destructive CNOT gates one by one.

Summary. Comparing the two demonstrations, we observe that the same quan-
tum algorithm can be compiled into different circuits, leading to different realiza-
tion and resources consuming. The simpler quantum circuits optimize to be, the
less resources will consume to implement them. Therefore, optimizing circuits is
very important and necessary.

5 Discussion

Despite of great progress made in all-optical CNOT gates, there are still some
problems to be solved, such as low success probability and low efficiency [19]. In
addition to the technology of controlling photons, the technologies of generating
and detecting photons in lab are also significant to optical quantum comput-
ing. LOQC based on photonic qubits requires large number of indistinguishable
single photons that depend on the generation technology of photon sources.
Post-selection is to realize two-qubit quantum gates, therefore, the efficiency
and accuracy of single photon detectors is crucial for LOQC.

172 H. He et al.

References

1. Barz, S., Kassal, I., Ringbauer, M., Lipp, Y.O., Dakic, B., Aspuruguzik, A.,
Walther, P.: Solving systems of linear equations on a quantum computer (2013).
arXiv:1302.1210v1

2. Cai, X.D., Weedbrook, C., Su, Z.E., Chen, M.C., Gu, M., Zhu, M.J., Li, L., Liu,
N.L., Lu, C.Y., Pan, J.W.: Experimental quantum computing to solve systems of
linear equations. Phys. Rev. Lett. 110(23), 1983–1988 (2013)

3. Ding, S., Maslennikov, G., Hablutzel, R., Loh, H., Matsukevich, D.: A quantum
parametric oscillator with trapped ions (2015). arXiv:1512.01670v1

4. Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a
photonic controlled-not gate sufficient for quantum computation. Phys. Rev. Lett.
93(2), 020504 (2004)

5. Harrow, A.: A quantum algorithm for solving linear systems of equations. Phys.
Rev. Lett. 103(10), 150502 (2008)

6. Hofmann, H.F., Takeuchi, S.: Quantum phase gate for photonic qubits using only
beam splitters and postselection. Phys. Rev. A 66(2), 207–212 (2001)

7. Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics
controlled-phase gate made simple. Phys. Rev. Lett. 95(21), 210505 (2005)

8. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computa-
tion with linear optics. Nature 409(6816), 46–52 (2001)

9. Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum nondemolition detectors
constructed with linear optics and projective measurements. Phys. Rev. A 66(6),
317–322 (2002)

10. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.:
Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1),
135–174 (2007)

11. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.:
Quantum computers. Nature 464(7285), 45–53 (2010)

12. Lahaye, M.D., Rouxinol, F., Hao, Y., Shim, S.B., Irish, E.K.: Superconducting
circuitry for quantum electromechanical systems. In: Proceedings of SPIE - The
International Society for Optical Engineering, vol. 9500 (2015)

13. Langford, N.K., Weinhold, T.J., Prevedel, R., Resch, K.J., Gilchrist, A., O’Brien,
J.L., Pryde, G.J., White, A.G.: Demonstration of a simple entangling optical gate
and its use in bell-state analysis. Phys. Rev. Lett. 95(21), 210504 (2005)

14. Lipp, Y.O.: Experimental realization of an interferometric quantum circuit to
increase the computational depth. Ph.D. thesis, University of Vienna, Vienna
(2011)

15. Lu, C.Y., Browne, D.E., Yang, T., Pan, J.W.: Demonstration of a compiled version
of shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett.
99(25), 250504 (2007)

16. Murray, E., Ellis, D.P., Meany, T., Floether, F.F., Lee, J.P., Griffiths, J., Jones,
G.A.C., Farrer, I., Ritchie, D.A., Bennett, A.J., et al.: Quantum photonics hybrid
integration platform. Appl. Phys. Lett. 107(17), 171108 (2015)

17. Nielsen, M.A., Chuang, I.L., Grover, L.K.: Quantum computation and quantum
information. Am. J. Phys. 70(5), 558–559 (2012)

18. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration
of an all-optical quantum controlled-NOT gate. Nature 426(6964), 26–47 (2003)

19. O’Brien, J.L.: Optical quantum computing. Science 318(5856), 67–70 (2008)

http://arxiv.org/abs/1302.1210v1
http://arxiv.org/abs/1512.01670v1

An Introduction to All-Optical Quantum Controlled-NOT Gates 173

20. Okamoto, R., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Demonstration of an optical
quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95(21),
210506 (2005)

21. Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-
NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3),
032316 (2003)

22. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of non-deterministic
quantum logic operations using linear optical elements. Physics 88(25 Pt. 1), 222–
223 (2001)

23. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations
using polarizing beam splitters. Phys. Rev. A 64(6), 656–656 (2001)

24. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of feed-forward control
for linear optics quantum computation. Phys. Rev. A 66(5), 357–364 (2002)

25. Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-
NOT gate in the coincidence basis. Phys. Rev. A 65(6), 440–444 (2002)

26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

27. Singh, M., Pacheco, J.L., Perry, D., Garratt, E., Eyck, G.T., Bishop, N.C., Wendt,
J.R., Manginell, R.P., Dominguez, J., Pluym, T.: Electrostatically defined silicon
quantum dots with counted antimony donor implants. Appl. Phys. Lett. 108(6),
133–137 (2016)

28. Taylor, R.L., Bentley, C.D.B., Pedernales, J.S., Lamata, L., Solano, E., Carvalho,
A.R.R., Hope, J.J.: Fast gates allow large-scale quantum simulation with trapped
ions (2016). arXiv:1601.00359v1

29. Yang, X.J., Dou, Y., Hu, Q.F.: Progress and challenges in high performance com-
puter technology. J. Comput. Sci. Technol. 21(5), 674–681 (2006)

30. Yang, X., Liao, X., Xu, W., Song, J., Hu, Q., Su, J., Xiao, L., Lu, K., Dou, Q.,
Jiang, J.: Th-1: Chinas first petaflop supercomputer. Front. Comput. Sci. China
4(4), 445–455 (2010)

http://arxiv.org/abs/1601.00359v1

Performance Analysis of Sliding Window Network
Coding in MANET

Baolin Sun1(✉), Chao Gui1, Ying Song1, Hua Chen2(✉), and Xiaoyan Zhu3

1 School of Information and Engineering, Hubei University of Economics, Wuhan 430205, China
{blsun,prisong}@163.com, gui_chao@126.com

2 Department of Public Basic Course, Wuhan Technology and Business University,
Wuhan 430065, China

qiuchen_1022@163.com
3 School of Mathematics and Computer Science, Jianghan University, Wuhan 430056, China

zhuxy@jhun.edu.cn

Abstract. Network coding (NC) enables us to mix two or more packets into a
single coded packet at relay nodes and improve performances in mobile ad hoc
networks (MANETs). Sliding window network coding is a variation of NC that
is an addition to data packet streaming and improves the data delay on MANETs.
In this paper, we propose a Sliding Window Network Coding in MANETs
(SWNCM). SWNCM preserves the degree distribution of the encoded data
packets through the recombination at the nodes. SWNCM enables to control the
decoding complexity of each sliding window independently from the data packets
received and recover the original data. The performance of the SWNCM is studied
using NS2 and evaluated in terms of the network throughput, encoding overhead,
decoding delay, packet transmission rate when data packet is transmitted. The
simulations result shows that the SWNCM with our proposition can significantly
improve the network throughput and achieves higher diversity order.

Keywords: MANET · Sliding window · Network coding · Performance analysis

1 Introduction

With the wide application of wireless communication technology, the traditional local
area network couldn’t satisfy people’s needs, so the Mobile Ad Hoc Networks
(MANET) appeared and developed rapidly [1–5]. Recently, wide attention has focused
on a transmission mode called data packet transmission to maximize the link utilization
of a given wireless channel.

The advantages of network coding (NC) come however at the price of additional
computational complexity, mainly due to the packet encoding and decoding process.
Random linear network coding is a feasible encoding tool for network coding, especially
for the non-coherent network, and its performance is important in theory and application.
In [3], Guang et al. study the performance of random linear network coding for the well-
known butterfly network by analyzing some failure probabilities. In multi-user cooper‐
ative networks, network coding in higher Galois Field has been proved with solid

© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 174–183, 2016.
DOI: 10.1007/978-981-10-2209-8_15

performance improvement over binary codes. Xiao et al. [4] proposed the use of diver‐
sity network codes (DNCs) over finite fields so as that the destination is able to rebuild
the user information from a minimum possible set of the coded packets. The network
encoder is on the top of channel encoder, and the network decoder is combined with
channel decoder leveraging the tentative decisions from channel decoder.

This paper proposes a Sliding Window Network Coding in MANETs (SWNCM).
We apply network coding over GF(2q) on symbols rather than on packets to fully exploit
the advantages of network coding including sliding window, increase traffic and robust‐
ness. The performance of the SWNCM is studied using NS2 and experimentation to
assess the encoding efficiency, the decoding complexity of SWNCM enabled mobile
node. The SWNCM is shown to achieve significant performance gain.

The rest of the paper is organized as follows. Section 2 discusses the some related
work. Section 3 describes models of sliding encoding window model in MANETs. Some
simulating results are provided in Sect. 4. Finally, the paper concludes in Sect. 5.

2 Related Works

In [5], Chen et al. considered the transmission scenario of network coding in which the
cluster head node sends encoded signals to sink node over a lossy and noisy wireless
channels. The application of compressed sensing conception was explored to break the
limitations and improve the performance of network coding when the mutual correla‐
tions of information are existent. Qin et al. [6] proposed an energy-saving scheme for
wireless sensor networks based on network coding and duty-cycle (NCDES). The
scheme determines the node’s status based on the ID information which embedded in
data information. When combining network coding and duty-cycle in wireless sensor
networks, it will reduce transmission coding coefficients and retransmissions. Jiang
et al. [7] proposes an energy-efficient multicast routing approach to achieve the data
forwarding in the multi-hop wireless network. Analysis of the multi-hop networks
energy metric and energy efficiency metric. Then the corresponding models are given
network coding is used to improve network throughput. Antonopoulos et al. [8] proposed
a network coding-based cooperative ARQ (NCCARQ) scheme for wireless networks.
Compared to simple cooperative ARQ protocols, the proposed solution improves up to
80 % the energy efficiency of the system without compromising the offered QoS in terms
of throughput and delay.

Considering the feature of strong node mobility in mobile ad hoc networks, Wang et al.
[9] proposed a hop-by-hop network coding algorithm based on ad hoc networks. In [10],
Halloush et al. develop Multi-Generation Mixing (MGM), which is a generalized approach
for generation based network coding. The proposed MGM framework allows the encoding
among generations for the purpose of enhancing NC decodability. Guo et al. [11] ques‐
tioned whether these requirements are enough when there are various intersecting nodes
along a path, and they proposed a new coding-aware routing metric, Free-Ride-Oriented
Routing Metric (FORM), able to exploit a larger number of coding opportunities, regard‐
less of the number of flows and intersecting nodes. Kiss et al. [12] proposes a scalable

Performance Analysis of Sliding Window Network Coding in MANET 175

approach for increasing transmission reliability in wireless sensor networks, based on a
cooperative scheme that uses Reed–Solomon codes as network code.

Vazintari et al. [13] proposes an effective NC scheme intended for sparse DTNs
comprising nodes of limited storage capacity. They aim at demonstrating the drastic
overhead reduction accomplished when the application of NC reinforced by the optimal
MMA proposed is combined with either the Epidemic or the PRoPHET protocol. In [14],
Ploumidisa et al. explores the throughput and delay that can be achieved by various
forwarding schemes, employing multiple paths and different degrees of redundancy,
focusing on linear network coding. The analytical framework is generalized for an arbi‐
trary number of paths and hops per path. In [15], Chen et al. explores a multipath trans‐
mission scheme employing network coding for providing better rate-delay trade-offs,
being also adjustable according to QoS constraints. In [16], Zhang et al. investigate the
impact of imperfect CSI on the performance of analog network coding (ANC) for a two-
way relaying system based on opportunistic relay selection (ORS). An exact and gener‐
alized closed-form expression for system outage probability is presented in a Rayleigh
flat-fading environment. Liu et al. [17] describes the model for the dynamic decode-
and-forward (DDF) protocol and network coding (NC) (DDF-NC) cooperative commu‐
nications system. Shen et al. [18] propose a novel routing protocol named Location-
Aware Routing Protocol (LARP) for UWSNs, where the location information of nodes
is used to help the transmission of the message.

Although some network coding algorithms are proposed to improve network
performance, most of these approaches do not consider mobile data packet streaming
scenario. In our work, we target mobile multimedia streaming networking problem in
wireless networks. By constructing the appropriate network coding structure, we can
achieve the higher free viewpoint multimedia streaming.

3 Sliding Encoding Window Model

We now focus to the sliding window and the random network coding approaches. When
using this approach, not all data packets need to be coded together in a generation, just
the ones in the same window. This simplifies the solving of the Gaussian-elimination
on the receiver side, but requires constant feedback between the nodes to determine
which packets have been seen at the receiver and thus remove them from the sender’s
linear combinations.

3.1 Network Model

The network model is a generalization of the insertion-only data packet model in which
we seek to compute function f over only the most recent elements of the data packet.

The network model is represented as G = (V, E) where V represents the set of nodes
in the network and E denotes the set of directed edges. Each link (i, j) E means that
node i can transmit to node j. We assume links are symmetric that if (i, j) E; (j, i) E
as well. Whether two links interfere with each other depends on the interference model
adopted.

In the present paper, as both the probabilistic selection of the coding coefficients and
the number of packets to be stored are independently decided at each MANET node, the

176 B. Sun et al.

proposed scheme, data packet flows from a single source node to a single destination
node. This scheme, when data packet is need to transfer, the source node to encode data
packet operation, the destination nodes are allowed to decode the received coded packets
whereas intermediate nodes can only forward randomly created linear combinations of
incoming packets. The destination nodes would have to wait until reception of all the
packets of a generation. Figure 1 visualizes the network model in MANETs.

Source Node

Destination Node

Intermediate Node

1

S

2

3

4
6

5

7
8

9

D

Fig. 1. Network Network model in MANETs.

The random linear network coding (RLNC) scheme [17] adopts a block transmission
strategy which can approach the capacity with less feedback overhead. Because this
RLNC scheme can provide near-capacity performance and it becomes more attractive
in several industrial standards recently. In addition, it works over non-binary Galois
Field and can seamlessly combine with network coding. The proposed scheme is illus‐
trated in Fig. 2, in which we use network codes over finite fields, on top of channel
coding, to encode relayed and local messages. The network coding scheme is time-
invariant in each relay node. The information messages D1 and D2 of node 1 and node
2, respectively, are realized over GF(2q). Network coding is also in GF(2q). All trans‐
mission blocks are subject to independent fading.

1

D1

2

3

D2

D1+D2

D1+2D2

D1

D2 D2

D1

Fig. 2. Two-node cooperative networks with proposed designed network codes over finite fields.

3.2 Sliding Encoding Window Construction

SWNCM adopts the encoding strategy similar to RLNC [3], but the block of packets to
be encoded in each slot is sliding forward at a constant speed V. For each packet P to
transmit, the source selects the blocks (x0, x1, …, xN−1) and coding coefficients (c0, c1, …,
cN−1) to combine with in a sliding encoding window of size 1 ≤ W ≤ N, If the coefficient
is chosen from F(2q), number of choices of coding vectors would be (2q−1). Obviously,
the all zero vector has to be avoided. The size of the sliding window W = e − f + 1, for N
elements, there are N − W + 1 possible sliding windows of size W. A sliding encoding

Performance Analysis of Sliding Window Network Coding in MANET 177

window of size W is a sequence of blocks (xf, …, xe) where 0 ≤ f, e ≤ N − 1 and f ≤ l and
e – f + 1 = W. We define fi and ei the leading edge and the trailing edge of the i-th sliding
encoding window. Figure 3 shows the encoding vector for sliding encoding windows.

…

Packets sequence number

T
im

e slot

xf xl

Fig. 3. Encoding vector of CC-SWNC.

After overhearing the coded symbols from the source, the destination node attempts
to decode the original packets through Gauss elimination approach. A typical example
of the decoding process is shown in Fig. 4, in which the Gauss-Jordan Elimination can
be performed progressively as the coded packet arrives and finally the original packets
can be retrieved when the reduced matrix has full rank.

Received symbols

Decoded Undecoded

Fig. 4. Decoding vector of CC-SWNC.

In this paper, we use a linear network coding scheme. The linear network coding
scheme is an encoding method such that coding vector ci = (ci0, ci1, …, ciN−1) is given,
and input packet X = (x0, x1, …, xN−1) is converted into output packet Pi by the following
expression.

(1)

Then, the elements ci of the encoding vector g are set to one with probability p = 0.5
for i [f, e], with probability p = 0 otherwise. The destination node can decode input

178 B. Sun et al.

packets because the coding vector ci = (ci0, ci1,…, ciN−1) and output packet data P = (P0,
P1, …, PN−1) are obtained from the received packets, and an inverse matrix exists in G.

3.3 Network Coding Over Data Packet Streams

Network coding has been shown to dramatically improve network performance;
however, implementing it can be a challenge. In order to develop practical coding tech‐
niques, random linear network coding (RLNC) [3] has been used by a large number of
coding schemes because of its simplicity and effectiveness in most network scenarios.
Each node selects coefficients over the Galois field randomly and independently. There‐
fore computational complexity of this scheme is significantly lower than its centralized
counterpart. The coefficients are uniformly distributed, the probability of being able to
randomly find an admissible network code is a function of the field size, the number of
receivers, and also of the number of links involved in the graph G. Assume that we want
to send a file consisting of data packets pi, i P, where P is the set of data packet indexes.
Within these data packet streams, RLNC can be used to add redundancy by treating each
pi as a vector in some finite field F(2q). Random coefficients αij F(2q) are chosen, and
linear combinations of the form are generated. These coded packets are
then inserted at strategic locations to help overcome packet losses in loss networks.

Management of the coding windows for these data packets network coding schemes
generally fall within the following sliding window based scheme. In sliding window
scheme, data packets are dynamically included or excluded from linear combinations
based on various performance requirements.

In addition, the code window is greater, its decoding complexity and communication
overhead is greater, also. Algorithm describes the policy for the sliding-window coding
scheme shown in Fig. 3.

4 Simulation Experiments

In this section, simulation results are presented and discussed concerning the perform‐
ance of the enhanced by the innovative SWNCM scheme proposed. We use the NS-2
simulator [19] to evaluate the Cooperative Communication with Sliding Window
Network Coding in wireless networks (SWNCM).

4.1 Simulation Scenario

We evaluate SWNCM in a data packet streaming scenario where one source distributes
a data packet sequence to multiple cooperating receiver nodes.

MANET nodes follow the Random Waypoint (RWP) Mobility Model. To study how
the proposed scheme is affected by the nodes mobility, the node speed ranges have been
in [0, 20] m/s speed. Nodes are randomly and uniformly located over a 1000 m × 1000 m
area, with a node transmission range of 250 m [20]. The network sparseness may be
quantified by the mean node degree, i.e. the average number of neighbors in the network,

Performance Analysis of Sliding Window Network Coding in MANET 179

ρ = π·d·r2, where d and r are the node density and the transmission range, respectively.
The results of the simulation are positive with respect to performance.

We analyze the performance of SWNCM from the point of view of the encoding
efficiency. The encoding efficiency of SWNCM depends on the generation size N and
on the sliding encoding window size W (W = 100). The SWNCM algorithm was
compared with NCCARQ algorithm [8] and PRoPHET [13] in MANETs environment.
The corresponding simulation parameters are summarized in Table 1.

Table 1. Simulation parameters

Number of nodes 100
Network area 1000 m × 1000 m
Transmission range 250 m
Simulation time 600 s
Transmission range 250 m
Node density (d) 4
Sliding encoding window size W = 100
Communication model Constant Bit Rate (CBR)
Message size (bmsg) 512 bytes/packet
Examined algorithm NCCARQ [8], PRoPHET [13]

4.2 Simulation Results

The results shown in Fig. 5, the packet throughput of SWNCM is always higher than
that of NCCARQ and PRoPHET that with the network size increasing. Therefore we
can conclude that, with sliding window network coding in wireless links, SWNCM can
complete data packet transmission faster and perform better than NCCARQ and
PRoPHET in MANETs. SWNCM is effective in improving the network throughput.

Network Size

T
hr

ou
gh

pu
t(

kb
ps

)

100

200

300

400

0 20 40 60 80 100

SWNCM
NCCARQ
PRoPHET

Fig. 5. Network throughput vs. Network size.

Figure 6 show that, the encoding overhead of SWNCM is smaller than that of
NCCARQ and PRoPHET, which means that SWNCM can transmit data packet faster
than NCCARQ and PRoPHET. SWNCM reduces the encoding overhead the better.

180 B. Sun et al.

Figure 5 shows the encoding overhead of SWNCM, NCCARQ and PRoPHET, which
use the sliding window network coding that minimize the encoding overhead.

Network Size

E
nc

od
in

g
ov

er
he

ad
 (

%
)

10

20

30

40

0 20 40 60 80 100

SWNCM
NCCARQ
PRoPHET

Fig. 6. Network throughput vs. Network size.

In Fig. 7, we test the SWNCM performance in decoding delay. It can be seen from
Fig. 7 that, using sliding window network coding, decoding delay is reduced. We can
also observe that the sliding window network coding more gracefully than other algo‐
rithm when network size increases. It demonstrates that SWNCM scheme is more suit‐
able as the variation of the network size increases.

Network Size

D
ec

od
in

g
de

la
y

(µ
s)

10

20

30

40

0 20 40 60 80 100

SWNCM
NCCARQ
PRoPHET

Fig. 7. Decoding delay with different network size.

Network Size

Pa
ck

et
 tr

an
sm

is
si

on
 r

at
e

(%
)

70

80

90

100

0 20 40 60 80 100

SWNCM
NCCARQ
PRoPHET

Fig. 8. Packet transmission rate with different network size.

Performance Analysis of Sliding Window Network Coding in MANET 181

The results shown in Fig. 8 reveal that, the packet transmission rate of SWNCM is
always higher than that of NCCARQ and PRoPHET. The main reason is that the data
packets by the NCCARQ and PRoPHET has lower packet transmission rate than
SWNCM has, so the NCCARQ and PRoPHET take more time to transmit the same
amount of data than SWNCM algorithm does. The Fig. 8 shows that SWNCM enable
to increase by a factor of network size load by sliding window network coding.

5 Conclusion

This paper discusses network coding problem, which may deal with the sliding window
network coding model for researching in MANETs. It presents a Sliding Window
Network Coding in MANETs (SWNCM). We propose an efficient approach to construct
sliding window and network coding coefficients in a pseudo-random manner on each
node. We provide a thorough description of sliding window and network coding in
MANETs (SWNCM), a novel class of network codes. The performance of the SWNCM
is studied using NS2 and experimentation to assess the network throughput, encoding
overhead, decoding delay, packet transmission rate of SWNCM enabled mobile node.
The SWNCM is shown to achieve significant performance gain.

Acknowledgment. This work is supported by The National Natural Science Foundation of China
(No. 61572012), The Key Natural Science Foundation of Hubei Province of China (No.
2014CFA055, 2013CFB309). A Project Funded by the Priority Academic Program Development
of Jiangsu Higher Education Institution (PAPD). Jiangsu Collaborative Innovation Center on
Atmospheric Environment and Equipment Technology (CICAEET).

References

1. Sun, B.L., Gui, C., Song, Y., Chen, H.: A novel network coding and multi-path routing
approach for wireless sensor network. Wireless Pers. Commun. 77(1), 87–99 (2014)

2. Sun, B.L., Song, Y., Gui, C., Luo, M.: Network coding-based priority-packet scheduler multi-
path routing in MANET using fuzzy controllers. Int. J. Future Gener. Commun. Netw. 7(2),
137–147 (2014)

3. Guang, X., Fu, F.W.: On random linear network coding for butterfly network. Chin. J.
Electron. 20(2), 283–286 (2011)

4. Xiao, M., Skoglund, M.: Multiple-user cooperative communications based on linear network
coding. IEEE Trans. Commun. 58(12), 3345–3351 (2010)

5. Chen, S., Meng, W., Wang, K., Sun, Z.: Compressive network coding for error control in
wireless sensor networks. Wireless Netw. 20(8), 2605–2615 (2014)

6. Qin, T.F., Li, L.L., Yan, L., Xing, J., Meng, Y.F.: An energy-saving scheme for wireless
sensor networks based on network coding and duty-cycle. J. Beijing Univ. Posts Telecommun.
37(4), 83–87 (2014)

7. Jiang, D.D., Xu, Z.Z., Li, W.O., Chen, Z.H.: Network coding-based energy-efficient multicast
routing algorithm for multi-hop wireless networks. J. Syst. Softw. 104, 152–165 (2015)

8. Antonopoulos, A., Verikoukis, C., Skianis, C., Akan, O.B.: Energy efficient network coding-
based MAC for cooperative ARQ wireless networks. Ad Hoc Netw. 11(1), 190–200 (2013)

182 B. Sun et al.

9. Wang, Y., Xu, H., Jia, P.F.: Design and analysis of a network coding algorithm for ad hoc
networks. J. Central South Univ. 22(4), 1358–1365 (2015)

10. Halloush, M., Radha, H.: Network coding with multi-generation mixing: a generation
framework for practical network coding. IEEE Trans. Wireless Commun. 10(2), 466–473
(2011)

11. Guo, B., Li, H., Zhou, C., Cheng, Y.: Analysis of general network coding conditions and
design of a free-ride-oriented routing metric. IEEE Trans. Veh. Technol. 60(4), 1714–1727
(2011)

12. Kiss, Z.I., Polgar, Z.A., Stef, M.P., Bota, V.: Improving transmission reliability in wireless
sensor networks using network coding. Telecommun. Syst. 59(4), 509–521 (2015)

13. Vazintari, A., Vlachou, C., Cottis, P.G.: Network coding for overhead reduction in delay
tolerant networks. Wireless Pers. Commun. 72(4), 2653–2671 (2013)

14. Ploumidisa, M., Pappasb, N., Sirisc, V.A., Traganitis, A.: On the performance of network
coding and forwarding schemes with different degrees of redundancy for wireless mesh
networks. Comput. Commun. 72, 49–62 (2015). doi:10.1016/j.comcom.2015.05.001

15. Chen, P.-Y., Ao, W.-C., Chen, K.-C.: Rate-delay enhanced multipath transmission scheme
via network coding in multihop networks. IEEE Commun. Lett. 16(3), 281–283 (2012)

16. Zhang, C.S., Ge, J.H., Li, J.: Performance analysis and enhancement for opportunistic analog
network coding with imperfect CSI. Wireless Pers. Commun. 72(4), 2945–2956 (2013)

17. Liu, W.-C., Shih, C.-H.: The Performance of systems featuring dynamic decode-and-forward
and network coding. Wireless Pers. Commun. 80(2), 521–541 (2014)

18. Shen, J., Tan, H.W., Wang, J., Wang, J.W., Lee, S.Y.: A novel routing protocol providing
good transmission reliability in underwater sensor networks. J. Internet Technol. 16(1), 171–
178 (2015)

19. The Network Simulator - NS-2. http://www.isi.edu/nsnam/ns/
20. Waxman, B.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–

1622 (1988)

Performance Analysis of Sliding Window Network Coding in MANET 183

http://dx.doi.org/10.1016/j.comcom.2015.05.001
http://www.isi.edu/nsnam/ns/

A Model for Evaluating and Comparing Moving
Target Defense Techniques Based

on Generalized Stochastic Petri Net

Guilin Cai(B), Baosheng Wang, Yuebin Luo, and Wei Hu

College of Computer, National University of Defense Technology, Changsha, China
cc cai@163.com, wangbaosheng@126.com, luoyuebin@nudt.edu.cn,

huwei@nscc-tj.gov.cn

Abstract. Moving Target Defense has been proposed as a way to alter
the asymmetric situation of attacks and defenses, and there has been
given a great number of related works. Currently, the performance eval-
uation of these works has largely been empirical, but lacks the application
of theoretical models. Further, the evaluation is usually for a specific app-
roach or a category of MTD approaches, and few work has been taken
to compare different MTD techniques. In this paper, we consider a Web
server as a deployment scenario for the three typical kinds of MTD tech-
niques, and develop a generalized abstract performance evaluation and
comparison model for existing MTDs through using generalized stochas-
tic Petri Net (GSPN). We also take a case study to describe the usage of
the model. The model enables us to analyze and understand the benefits
and costs of an MTD approach, and can be viewed as an attempt to fill
the gap of MTD comparison.

Keywords: Moving target defense · Generalized stochastic petri net ·
Evaluation model

1 Introduction

With the rapid growth of information technologies, Internet has become a
national key infrastructure. However, cyber-attacks (such as IP prefix hijack-
ing [1], botnet [2], DDoS attack [3]) can still be found everywhere, and major
security incidents have been frequently reported in recent years (such as the
PRISM [4], the Heartbleed Bug [5], eBay data leakage). Such security disasters
are repeatedly showing that, the security of the Internet is always facing severe
challenges. One of the major reasons of the severe Internet security situation
is that the network configurations nowadays are typically deterministic, static,
and homogeneous [6,7]. These features reduce the difficulties for cyber attackers
scanning the network to identify specific targets and gather essential informa-
tion, which gives the attackers the advantages of building up, launching and
spreading attacks. Therefore, in the struggle between cyber network attack and
defense, the attackers typically have asymmetric advantages and the defenders
are always disadvantaged by being passive.
c© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 184–197, 2016.
DOI: 10.1007/978-981-10-2209-8 16

A Model for Evaluating and Comparing Moving Target Defense Techniques 185

To alter the asymmetric situation between attacks and defenses, Moving Tar-
get Defense (MTD) is proposed as one of the “game-changing” themes in cyber-
security [6,8], which attempts to create, evaluate, and deploy mechanisms and
strategies which are diverse, continually shift and change over time to increase
complexity and costs for attackers, limit the exposure of vulnerabilities and
opportunities for attack, and increase system resiliency [6]. Currently, there has
been proposed a multitude of MTD approaches. The performance evaluation for
these MTD approaches is usually empirical, but lacks the application of theoret-
ical models. Until now, only three related works introduced existing urn models
to the MTD area, and use them to evaluate the performance of Network Address
Shuffling [9], Port Hopping [10], and combination of deception defense and move-
ment (actually, Network Address Shuffling) [11], respectively. Furthermore, there
lacks the comparison between different MTD techniques except the work of Jun
Xu [12]. Petri Net (PN) is created as a mathematical tool to describe and model
the information system, and system performance evaluation is one of its most
successful applications [13]. In this paper, we attempt to introduce Petri Net
theory into MTD area for evaluating and comparing different MTD techniques.

To build the generalized abstract evaluation model for MTD system, we choose
a Web server as the deployment platform. There are two reasons to consider this
scenario. The one is that Web server is an very important target in network,
which is worth deploying MTD to increase its security and resiliency. The other
is that the three main typical MTD techniques (Software Transformations (ST),
Dynamic Platform Techniques (DPT), and Network Address Shuffling (NAS)
[14]) can be deployed on a Web server alone or simultaneously. Specifically, an
MTD approach based on ST can be used on server application to improve its
capacity against attacks from network. The DPT can be used on the running plat-
form of the Web server to complicate the attacks. Meanwhile the NAS approaches
can also be applied to server’s network address to confuse attacker.

In our prior research, we have analyzed the running patterns of MTD tech-
niques that provide proper defense [14]. In this paper, we will extend classic
process of Web service, describe a complete process of service and defense of a
Web server which can deploy the three typical MTD techniques, and develop a
generalized abstract performance evaluation model for existing MTD approaches
through using generalized stochastic Petri Net (GSPN). Then we take an MTD
approach in NAS category as a use case to describe the usage of the proposed
model. For simplicity, we have only modeled the situation that MTD is per-
formed when the system is serving in this paper. Modeling and discussing a
more realistic service and defense process is our future work.

2 Problem Formulation

2.1 Petri Net

A basic Petri Net (PN) [13] can be viewed as a directed graph, in which the
nodes are Places and Transitions, and the edges are Arcs. It is usually described
as a 3 tuple, i.e., PN = (S, T ;F).

186 G. Cai et al.

– S: S represents the set of places, which describes the local state of system.
A place is usually represented as a circle graphically.

– T: T represents the set of transitions, which describes the event or the actions
that induces state change. A transition is usually denoted as a rectangle or a
line graphically.

– F: F represents the set of arcs. Arcs connect the Place and Transaction to
describe the relationship between the local states and events. An arc is usually
denoted as an directed arc graphically.

The three basic elements of a basic Petri Net has the following four properties.
The first one is S ∪ T �= ∅. The second one is S ∩ T = ∅. The third one is
F ⊆ (S ×T)∪ (T ×S). The forth one is dom(F)∪ cod(F) = S ∪T , and in which
dom(F) = {x|∃y : (x, y) ∈ F}, cod(F) = {x|∃y : (y, x) ∈ F}.

A place from which an arc originates is considered to be an input place of
a transition in which the arc terminates. A place in which an arc terminates is
considered to be an output place of a transition from which the arc originates.
Token, is another important sign in Petri Nets. It is usually denoted as solid dot
and contained in places to represent the state of the Petri Net, i.e., its dynamic
change in the place is used to represent the different state of the system. One
specific distribution of tokens over a Petri Net can be used to represent a specific
state of described system and called marking.

The dynamic behavior of a PN is managed and controlled by its firing rule.
If all the input places of a transition contain at least one token, the transition is
enabled and it can be fired to cause the state change of the system. If a transition
is fired, all of its input places would remove a token, and all of its output places
would add a token.

2.2 SPN and GSPN

The concept of time is not introduced into basic PN. If there is a random delay
between a transition’s enabling and firing, in other words, each transition is
associated with a fire rate, the PN is extended to become a Stochastic Petri Net
(SPN) [13].

Generalized Stochastic Petri Net (GSPN) [13] is an extension of SPN. There
are two main differences between GSPN and SPN. The one is that the transitions
in GSPN can be divided into two sub-types, immediate transitions and timed
transitions. The other is there exists inhibitor arcs in GSPN. A Generalized
Stochastic Petri Net model is usually described as a 6 tuple, i.e., GSPN =
(S, T ;F,W,M0, λ).

– S: the definition is same to the basic PN.
– T : In GSPN, transitions can be divided into two category, Immediate Tran-

sitions and Timed Transitions. T = T1 ∪ T2, T1 = {t1, t2, ..., tm} denotes the
timed transitions and each of which is associated with a random delay time
between enabling and firing, and they are usually represented as empty rectan-
gles graphically. Meanwhile T2 = {tm+1, tm+2, ..., tn} denotes the immediate

A Model for Evaluating and Comparing Moving Target Defense Techniques 187

transitions which can be fired randomly and the delay is zero, and they are
usually represented as solid rectangles or lines.

– F : In GSPN, there exists inhibitor arcs, which can only form places to tran-
sitions, and make the enabled conditions to be disenabled.

– W : W is the weight function for the arcs, and it satisfies F → N+.
– M0: M0 is the initial marking, and it satisfies that, ∀s ∈ S : M0(s) ≤ K(s), in

which K : S → N+ ∪ {∞} is the place capacity function.
– λ: λ = {λ1, λ2, ..., λm}, and it is set of the firing rates corresponding to the

timed transitions. Each rate is the average firing times of transition in unit
time.

3 A GSPN Model for Evaluating MTD Techniques

In this paper, we choose a Web server that deploys MTD techniques as an
evaluation scenario. We firstly describe the process of Web service and defense of
the example evaluation scenario. We assume that only in the process of serving,
there may occur the event of timer expiring which according the periodic or
unfixed attack surface shifting, or a security alert.

(1) The Web server system is ready to provide service after completing its func-
tionality and defense configuration.

(2) User send the synchronize request to acquire the current network address
of server. If the server deploys one or more of the approaches based on
Software Transformations, Dynamic Platform Techniques, and the Network
Address Shuffling approach in mutation pattern, the synchronization is usu-
ally achieved by routing update and DNS request/respond. If the server
deploys the NAS in hopping pattern, the synchronization is usually achieved
by time synchronization scheme, or exchanging the hopping pattern infor-
mation, or pre-setting the same function and initial value [15].

(3) After obtaining the service address, user can establish connection with the
server. And then user would send its service request and wait for the service.

(4) During the process of service, the deployed MTD approach would shift the
attack surface of the Web system according to the pre-setting scheme (the
timer expires) or an anomalous event.

If there deploys ST or DPT, it needs to preserve or migrate the current
service state (such as connections, data) for the new variant or platform to
pursue the task of the previous variant or platform.

If NAS is deployed, there are two cases.

A. If there is aid mechanism to ensure that the ongoing connections would not
be broken down (such as MT6D [16], RHM [17], spatio-temporal address
mutation [18]), the system would continue to provide service.

B . Otherwise, we would consider the two sub-cases.
a . If the NAS is in hopping pattern, the two sides are fully aware of the

hopping pattern information (including the hopping sequence and hop-
ping timeless) of both, or one side (e.g. the clients) is fully aware of the

188 G. Cai et al.

hopping pattern information of the other side (e.g. the server). Then
the user can get the service address timely, and it can directly establish
the connection with server.

b. If the NAS is in mutation pattern, the user do not know the shuffling
information of the server, thus it has to send the synchronization request
and wait for connection.

Next, we model the process of service and defense using GSPN as Fig. 1. In most
of existing MTD approaches, it usually shifts to a new variant/platform/address
after a time interval controlled by a timer. What’s more, some of them would shift
according to a security alert, such as ChameleonSoft [19], TALENT [20], and MAS
[21]. The shifting based on fixed or adjustable time interval can be described as
time transition, while the shifting driven by the security alert can be described
as immediate transition. Therefore, we choose GSPN as the modeling tool. The
places correspond to the system state in the process of service and defense, and
the transitions correspond to the actions in the process of service and defense.

Pr

Psy

Pc

Ps

PST PDPT PNAS

tt-e

ts-end

ts-sw

Pn-v

tp-sw

Pn-p

ta-sw

ta-e

1α 2α

3γ

tsy

tc

ts-req

Pn-a

hopθ

n holdϕ −

holdϕ

mutθ

Pr-con

PtPn

Pa-e Pt-e

Pd

td1 td2

tST tDPT tNAS

ts-pre ts-mig

tc-s

tr-con

th-c tm-c

1λ

2λ0λ

3λ

4λ

5λ

6λ

7λ

8λ

tn

9λ

1γ
2γ

tcl

1β 2β

Fig. 1. The GSPN model for the Web server deployed typical MTD Technology.

The signification of the places and transitions in Fig. 1 are described as follows
(seen in Tables 1 and 2).

In Table 2, in addition to the signification of transitions, we also describe the
types of each transition. What’s more, we take Timed as the abbreviation of
timed transition, and Immed as the abbreviation of immediate transition.

A Model for Evaluating and Comparing Moving Target Defense Techniques 189

Table 1. Signification of the places.

Places Signification

Pr System is ready to provide service

Pt The timer is counting

Pn There is no security alert

Pt−e The timer expired

Pa−e There is an anomalous event

Psy System is in the state of synchronization

Pc System is in the state of establishing connection

Ps System is serving

Pd System is in the state of defense

PST System is changing its software variant to provide service

Pn−v System is using a new variant to serve

PDPT System is changing the properties of its platform

Pn−p System is with new properties of its platform

PNAS System is changing its network address

Pn−a System is with the new address

Pr−con User re-connects with the server

In this model, we use an inhibitor arc from Pt−e to td1, which means that
when there are tokens in place Pa−e, Pt−e, and Ps, only the transition td2 can
be fired, and the transition td1 is disenabled. In real system, when the system
is serving, and if the timer expires or there is a security alert, the system would
respond to the two events to defense. What’s more, the alternative actions for
responding to the two events (i.e., td1 and td2) belonged to the same set of actions
which consists of the three actions named software transformations, changing
the properties of running platform, and shuffling the system’s network address,
respectively. As a result, when the system is serving, and the timer expires
meanwhile there is a security alert, the system just needs to respond to one
event. The corresponding representation in the GSPN model is that only one
transition, td1 or td2, needs to be fired. Here we assume that transition td2 can
be fired, and the transition td1 is disenabled.

In this model, we define five random switches.
The first one is for the immediate transitions tn and ta−e. We define that

the probability that the transition ta−e fires is α1, and the probability that the
transition tn fires is α2 (i.e., p(ta−e) = α1, and p(tn) = α2), which describes the
probability that there is a security alert, or not, respectively. Their values satisfy
that

190 G. Cai et al.

Table 2. Signification of the transitions.

Transitions Type Signification

tt−e Timed Timer expires during the process of service

ta−e Immed Security alert occurs during the process of service

tn Immed There is no security alert occurs

tsy Timed Send synchronization request to get service address

tc Timed Establish connection with server

ts−req Timed Send service request

ts−end Timed User obtains the required service, and the service
terminates normally

td1 Immed System cleans the alert and responds to the security alert

tcl Immed Clean the alert

td2 Immed System responds to the event of timer expiring

tST Immed System chooses the defense approach based on Software
Transformations

ts−sw Timed Switching the software variant

ts−pre Timed Preserving the service state

tDPT Immed System chooses the defense approach belonging to
Dynamic PlatformTechniqu

tp−sw Timed Switching the properties of running platform

ts−mig Timed Migrating the service state

tNAS Immed System chooses the defense approach belonging to Network
Address Shuffling

ta−sw Timed Switching the server’s network address

tc−s Immed Server continues the service

tr−con Immed User starts to re-connect with the server

th−c Immed User initiate the re-connection in hopping pattern

tm−c Immed User initiate the re-connection in mutation pattern

α1 + α2 = 1, α1, α2 ∈ {0, 1}
The second one is for the immediate transitions tcl and td1. we define the

random switch is that, under the condition M(Ps) = 1,
⎧
⎪⎪⎨

⎪⎪⎩

p(tcl) = β1 =
M(Pt−e)

M(Pa−e) + M(Pt−e)
,

p(td1) = β2 =
M(Pa−e)

M(Pa−e) + M(Pt−e)
,

if M(Pt−e) �= 1 or M(Pa−e) �= 1;

{
p(tcl) = β1 = 1,

p(td1) = β2 = 0,
if M(Pt−e) = M(Pa−e) = 1.

A Model for Evaluating and Comparing Moving Target Defense Techniques 191

The third one is for the immediate transitions tST , tDPT , and tNAS . We
define that P (tST) = γ1, P (tDPT) = γ2, and P (tNAS) = γ3. In other words, γ1,
γ2, and γ3 represent the probability of that the system would deploy the defense
approach based on Software Transformations, or deploying the defense approach
belonging to Dynamic Platform Techniques, or deploying the defense approach
belonging to Network Address Shuffling, respectively. Their values satisfy that

γ1 + γ2 + γ3 = 1, 0 ≤ γ1, γ2, γ3 ≤ 1

In addition, we call one attack surface shifting a round. We assume that in
each round, the values of γ1, γ2, and γ3 satisfy that γ1, γ2, γ3 ∈ {0, 1}. It means
that different types of MTD approaches can be chosen in different rounds, but
only one type of MTD techniques can be used in each round.

The forth one is for the immediate transitions tc−s and tr−con. We define
that p(tc−s) = ϕhold and p(tr−con) = ϕn−hold. ϕhold and ϕn−hold represent the
probability whether the defense approach is equipped with the aid mechanism
to keep the ongoing connections active, or not, respectively. The values of ϕhold

and ϕn−hold are determined by the designer, and they satisfy that

ϕhold + ϕn−hold = 1, ϕhold, ϕn−hold ∈ {0, 1}

The fifth one is for the immediate transitions th−c and tm−c. We define that
p(th−c) = θhop and p(tm−c) = θmut. θhop and θmut represent the probability
of using the NAS approach in hopping pattern or NAS approach in mutation
pattern, respectively. The values of θhop and θmut relate to the defense policy
selected by defender, and they satisfy that

θhop + θmut = 1, θhop, θmut ∈ {0, 1}

4 A Case Study

We have modeled the process of service and defense of a Web server that deploys
typical MTD techniques through using GSPN in Sect. 3. Now we will present a
case study to describe the usage of our model.

We choose the RHM [17] as a case study. Firstly we obtain the GSPN model
for RHM form the generalized model shown in Fig. 1.

In RHM, each host is associated with an unused address range (i.e., the
set of virtual IPs). RHM uses a two-phase mutation approach which consists of
LFM (Low Frequency mutation) and HFM (High Frequency mutation) to assign
vIP. A LFM interval contains multiple HFM intervals. In each LFM interval,
a random network address range denoted as VAR (virtual address range) is
selected for each MT (Moving Target) host using SMT (Satisfiability Modulo
Theories). Then in each HFM interval, a random vIP within the VAR assigned
during last LFM is selected for the MT host. Comparing to the operational cost
in each HFM interval, the operational cost in each LFM interval can be ignored.
More importantly, for the users, only the HFM interval associates with them

192 G. Cai et al.

and may influence them. Therefore, we should only consider the timer for HFM.
In addition, RHM is designed to only respond to the event of timer expiring.

The RHM is an approach in the category of NAS, and thus γ1 = 0, γ2 = 0,
γ3 = 1. In addition, as described previously, RHM has the aid mechanism to
ensure that ongoing connections would not be broken down during the shifting.
Therefore, ϕhold = 1 and ϕn−hold = 0.

Because of these properties of RHM, the GSPN model for RHM can be
simplified as shown in Fig. 2 form Fig. 1. what’s more, in Fig. 2, the transitions
td2 and tNAS are immediate transitions, thus the two transitions can merge, and
the place Pd can be removed. The transition tc−s is also an immediate transition,
and thus the place Pn−a can be removed. Therefore, we can get the final GSPN
model for RHM as shown in Fig. 3.

Fig. 2. The GSPN model for RHM. Fig. 3. The final GSPN model for RHM.

Then, we can use PIPE2 (Platform-Independent Petri Net Editor 2) [22,23]
to analyze the performance of RHM. PIPE2 is an open-source tool for the perfor-
mance evaluation of GSPN models. With its easy-to-use graphical user interface,
user can easily construct and analyze a GSPN model, obtain the set of tangible
states and the basic performance parameters (such as the steady state distribution
of tangible states, throughput of timed transitions, the staying time of tangible
states, and so on).

We firstly draw the model in Fig. 3 in PIPE, as shown in Fig. 4.

A Model for Evaluating and Comparing Moving Target Defense Techniques 193

Fig. 4. The GSPN model for RHM in PIPE.

To ensure the boundness and safeness of this model, we set K(P0) = 1 and
K(P1) = 1, i.e., the capacities of place P0 and P1 are both set to 1 in Fig. 4.
Then we set the firing rates as follows: λ0 = 1.2 for the transition T0, λ1 = 36
for the transition T1, λ2 = 72 for the transition T2, λ3 = 180 for the transition
T3, λ4 = 1 for the transition T4, λ6 = 4 for the transition T6. Thereafter, we take
the GSPN analysis to get the set of tangible states (Fig. 5) and the steady state
distribution for the tangible states (Fig. 6), and we also can obtain the values of
some parameters as shown in Figs. 7, 8, 9, and 10.

Based on above results, we can take some further analysis, such as the average
delay of service, average throughput of system, the operational efficiency for
each link of system, and so on. Here we take the average delay of service as an

Fig. 5. The set of tangible states. Fig. 6. The steady state distribution of
tangible states.

194 G. Cai et al.

Fig. 7. The Sojourn times for tangible
states.

Fig. 8. The token probability density.

Fig. 9. The average number of tokens
on a place.

Fig. 10. The throughput of timed tran-
sitions.

example. The computation of the average delay is based on Little’s law [24],
which is described as

N = λT

N is the average number of tokens for this system, and it can be calculated
as N = u(P1) +

∑6
i=3 u(Pi) = 1.04687. λ is the token flowing rate of transition,

and here it can be calculated as λ = R(T0, P1)+R(T1, P3) = 1.62742. Therefore,
the average delay of service is T = N/λ = 0.64 (unit time).

For comparison, each evaluator should design his own rule. In other words,
he can assign a weight for each chosen performance parameter according to his
specific requirement. For each MTD approach, the evaluator can compute the
values of each parameter, and then get a final result based on the values of
performance parameters and their associated weight for comparison.

5 Related Work

Petri Net has been proposed by Carl Adam Petri in 1962, and it has many
extensions and has been wildly applied in many filed. However, the application
of Petri Nets in the MTD area is still few.

A Model for Evaluating and Comparing Moving Target Defense Techniques 195

Leyi S et al. have used Stochastic Petri Net to evaluate the performance of
service hopping system proposed by them [25]. After obtaining the steady-state
probabilities of all states in the underlying continuous-time Markov chain, they
analyzed the average latency and throughout of the hopping system. Thereafter
they also discussed the relationships between the two parameters and the effi-
ciency of synchronization and data swapping.

W C Moody et al. have used Stochastic Petri Nets to model a defensive
maneuver cyber platform which utilizes moving target defense and deceptive
defense tactics [26]. The use SPN to describe each node comprised the platform
and the whole system, and discuss the trade-offs between security and operations
in the defensive maneuver cyber platform. Specifically, they enumerated the
categorized the state space of the model, and discuss the transition firing rate
impact.

Compared with the existing works, there are three main advantages in our
work:

The first one is that the model we proposed is a generalized abstract model,
and it is suitable for all the three typical categories of MTD technology. The
literature [25] has modeled a service hopping system, which can be classified as
Network Address Shuffling. The moving target defense technique described in
literature [26] is can be classified as dynamic platform techniques. Either the
Network Address Shuffling, or the combination of dynamic platform techniques
and deceptive defense, is one category of MTD techniques.

The second one is that the model can be used to compare different MTD
approaches. Each MTD approach can be represented as a specific GSPN model,
and the values of its performance parameters can be obtained. Then, based on
the comparison rule designed by the evaluators, the approaches can be compared.

The third one is that the model can not only evaluate an MTD system
that only deploys one specific MTD techniques, but also can evaluate an MTD
system that deploys more than one kind of MTD techniques. In this case, the
corresponding GSPN model is an unfolding form of Fig. 1.

6 Conclusion and Future Works

In this paper, we use a Web server system as the deployment scenario, and
introduce GSPN to model existing three main types of MTD techniques. Then
we take as a case study to describe the usage of this model, which can help
the subsequent researcher. The proposed model is suitable for the three typical
MTD techniques or the combination of them. However, it is still not suitable
the MTD techniques that incorporate deceptive defense, and which maybe our
future direction.

In this paper, we have only modeled the situation that MTD is performed
when the system is serving. Actually, a timer can expire or a security alert may
occur at any time from sending a synchronization request to ending the service
successfully. In other words, MTD can be performed in any state of Psy, Pc and
Ps. For simplicity, we only consider the situation that MTD is performed in the

196 G. Cai et al.

state Ps. In the future work, we will take the situation that MTD is performed
in the state Ps and Pc into account, model and discuss a more realistic service
and defense process.

References

1. Liu, Y., Peng, W., Jinshu, S.: A study of IP prefix hijacking in cloud computing
networks. Secur. Commun. Netw. 7(11), 2201–2210 (2014)

2. Wang, T.-Z., Wang, H.-M., Liu, B., Ding, B., Zhang, J., Shi, P.-C.: Further ana-
lyzing the sybil attack in mitigating peer-to-peer botnets. KSII Trans. Internet Inf.
Syst. 6(10), 2731–2749 (2012)

3. Wang, F., Wang, H., Wang, X., Jinshu, S.: A new multistage approach to detect
subtle DDoS attacks. Math. Comput. Model. 55(1), 198–213 (2012)

4. Prism. https://en.wikipedia.org/wiki/PRISM (surveillance program). Accessed 18
Nov 2013

5. The heartbleed bug. http://heartbleed.com/. Accessed 1 Oct 2014
6. NITRD, CSIA, and IWG: Cybersecurity game-change research and development

recommendations. http://www.nitrd.gov/pubs/CSIA IWG NITRD. Accessed 20
Aug 2013

7. CSIA: Trustworthy cyberspace: strategic plan for the federal cybersecurity
research and development program. The United States Government. http://www.
whitehouse.gov/sites/default/files/microsites/ostp/fed cybersecurity rd strategic
plan 2011.pdf. Accessed 10 Dec 2012

8. Chong, F., Lee, R.B., Acquisti, A., Horne, W., Palmer, C., Ghosh, A.K.,
Pendarakis, D.: National cyber leap year summit 2009 co-chairs report.
NITRD. https://www.nitrd.gov/nitrdgroups/index.php?title=Category:National
Cyber Leap Year Summit 2009. Accessed 1 Jan 2014

9. Carroll, T.E., Crouse, M., Fulp, E.W., Berenhaut, K.S.: Analysis of network
address shuffling as a moving target defense. In 2014 IEEE International Con-
ference on Communications (ICC), pp. 701–706, June 2014

10. Luo, Y.B., Wang, B.S., Cai, G.L.: Effectiveness of port hopping as a moving target
defense. In: 2014 7th International Conference on Security Technology (SecTech),
pp. 7–10, December 2014

11. Crouse, M., Prosser, B., Fulp, E.W.: Probabilistic performance analysis of moving
target and deception reconnaissance defenses. In: Proceedings of the Second ACM
Workshop on Moving Target Defense, MTD 2015, pp. 21–29. ACM, New York
(2015)

12. Xu, J., Guo, P., Zhao, M., Erbacher, R.F., Zhu, M., Liu, P.: Comparing different
moving target defense techniques. In: Proceedings of the First ACM Workshop on
Moving Target Defense, pp. 97–107. ACM (2014)

13. Lin, C.: Performance Evaluation of Computer Networks and Computer Systems
(in Chinese), 1st edn. Tsinghua University Press, Beijing (2001)

14. Cai, G., Wang, B., Luo, Y., Li, S., Wang, X.: Characterizing the running patterns
of moving target defense mechanisms. In: 2016 18th International Conference on
Advanced Communication Technology (ICACT), pp. 191–196, January 2016

15. Cai, G., Wang, B., Wang, X., Yuan, Y., Li, S.: An introduction to network address
shuffling. In: 2016 18th International Conference on Advanced Communication
Technology (ICACT), pp. 1–2, January 2016

https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
http://heartbleed.com/
http://www.nitrd.gov/pubs/CSIA_IWG_NITRD
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf
https://www.nitrd.gov/nitrdgroups/index.php?title=Category:National_Cyber_Leap_Year_Summit_2009
https://www.nitrd.gov/nitrdgroups/index.php?title=Category:National_Cyber_Leap_Year_Summit_2009

A Model for Evaluating and Comparing Moving Target Defense Techniques 197

16. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: The blind man’s
bluff approach to security using IPv6. IEEE Secur. Priv. 10(4), 35–43 (2012)

17. Al-Shaer, E., Duan, Q., Jafarian, J.H.: Random host mutation for moving target
defense. In: Pietro, R., Keromytis, A.D. (eds.) SecureComm 2012. LNICST, vol.
106, pp. 310–327. Springer, Heidelberg (2013)

18. Jafarian, J.H.H., Al-Shaer, E., Duan, Q.: Spatio-temporal address mutation for
proactive cyber agility against sophisticated attackers. In: Proceedings of the First
ACM Workshop on Moving Target Defense, pp. 69–78. ACM (2014)

19. Azab, M., Hassan, R., Eltoweissy, M.: Chameleonsoft.: a moving target defense
system. In: 2011 7th International Conference on Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom), pp. 241–250, October
2011

20. Okhravi, H., Comella, A., Robinson, E., Haines, J.: Creating a cyber moving tar-
get for critical infrastructure applications using platform diversity. Int. J. Crit.
Infrastruct. Prot. 5(1), 30–39 (2012)

21. Huang, Y., Ghosh, A.K.: Introducing diversity and uncertainty to create moving
attack surfaces for web services. In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang,
C., Wang, X.S. (eds.) Moving Target Defense. Advances in Information Security,
vol. 54, pp. 131–151. Springer, New York (2011)

22. Bonet, P., Lladó, C.M., Puijaner, R., Knottenbelt, W.J.: Pipe v2.5.: a petri net tool
for performance modelling. In: Proceedings of the 23rd Latin American Conference
on Informatics (CLEI) (2007)

23. Dingle, N.J., Knottenbelt, W.J., Suto, T.: Pipe2: a tool for the performance evalu-
ation of generalised stochastic petri nets. ACM SIGMETRICS Perform. Eval. Rev.
36(4), 34–39 (2009)

24. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications, 2nd edn. Wiley, Chichester (2002)

25. Shi, L., Jia, C., Lv, S.: Performance evaluation of service hopping system using
stochastic petri net. Acta Scientiarum Naturalium Universitatis Nankaiensis 42(1),
72–75 (2009). (in Chinese)

26. Moody, W., Hongxin, H., Apon, A.: Defensive maneuver cyber platform modeling
with stochastic petrinets. In: International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing (CollaborateCom), pp. 531–538.
IEEE (2014)

Subway Timetable Adjusting Method Research
of Bi-directional Trains Arriving at a Station

Asynchronously

Dan Yan1,2, Jianhua Mao1, Xuefeng Liu1, and Minglai Yang2,3(&)

1 School of Communication and Information Engineering,
Shanghai University, Shanghai, China

15026903162@126.com, {mjh,xf02}@shu.edu.cn
2 Shanghai Advanced Research Institute,

Chinese Academic of Science, Shanghai 201210, China
yand@sari.ac.cn, yangminglai@sari.ac.cn

3 Shanghai Institute of Technology, Shanghai 201418, China
yangminglai@163.com

Abstract. Metro transmits, as the backbone of urban public transit, plays an
important role in alleviating congested traffic and shaping low-carbon and
comfortable trip mode. With the rapid development of urban rail transit, the
traffic of the city cannot be separated from the subway; however, large passenger
flow triggers heavy traffic accident easily and reduces the degree of comfort
greatly, especially when up and down trains arriving at the same station
simultaneously. To implement urban railway transit system optimization and to
achieve the goal of up and down trains arrive at a station asynchronously,
situations of trains arriving at the platform are studied, and a quantitative
analysis of different time periods and different types of platforms are completed.
The definition of the train conflict time of arriving at a station simultaneously is
given. Through the derivation and calculation of the total use of the subway
conflict time, to identify the key variables that affect the conflict time, a solution
of using greedy algorithm to adjust conflict time is proposed. Simulation
through Visual C++ platform demonstrates that the algorithm can provide
optimal railway timetables while satisfying operational constraints. Comparative
analysis of the results showed that: if passenger flow is considered, departure
time, interval time and dwell time are invariant, only adjusting the morning
peak-hours is 19.76 % superior than the unadjusted state, while adjusting the
morning and evening peak-hours is 34.85 % prior. The models can be further
expanded to develop models and algorithms for estimating the conflict time of
up and down trains and reduce the conflict time.

Keywords: Metro transit � Train conflict time � Greedy algorithms �
Enumeration method � Timetable optimization

1 Introduction

With the quick and continuous development of urban rail transport services, the sub-
way becomes the preferred means of transport and effectively solves the problem of
urban traffic congestion, as it’s high passenger volume, efficient and convenient,

© Springer Science+Business Media Singapore 2016
J. Wu and L. Li (Eds.): ACA 2016, CCIS 626, pp. 198–210, 2016.
DOI: 10.1007/978-981-10-2209-8_17

punctual, fair and orderly [1]. However, the high-density traffic aggregation leads to
metro internal environmental comfort and safety problems. Theoretical research and the
actual situation show that when the up and down trains arrive at the station simulta-
neously, a steady stream of traffic, coupled with the passengers up and down the line to
get off the train at the same time, it is likely to cause large-scale traffic congestion once
the number of passengers exceeds the station capacity. Therefore, avoiding subway
arriving simultaneously at the morning and evening peak-hours is one of the key points
to reduce passenger flow density, improve operational efficiency, service quality and
keep public safety. The existing schedule formulation models are Periodic Event
Scheduling Problem (PESP) model [2, 3], and much subway timetable optimization
research is based on this model [4]. There are following schedules optimization
methods: reducing costs and passengers waiting time optimization method; section
algorithm [5], algorithms based on different period [6], algorithms based on variable
operational requirements [7], algorithms based on variable running time [8], algorithms
based on security constraints, heuristic algorithm [9], stochastic optimization methods
[10–12], the genetic algorithm method, and a method to maximize the use of regen-
erative braking energy [13–15].

In this paper, combined with the actual situation and needs of Shanghai Metro Line
2, and according to the theoretical derivation of the subway time schedule, the theo-
retical model of using minimum conflict time to solve the problem of passenger flow
congestion is proposed. Through the model, an adjusting timetable for peak-hours is
available. This method of optimal adjustment of time schedule has reduced the conflict
time, and achieved the goal of up and down trains arriving at the same station in rush
hours asynchronously. Compared with the traditional timetable schedule optimization
method, this paper has solved the congestion problem in a new dimension, with low
computational complexity and easy implementation.

2 Metro Dispatcher Model

To study how to avoid the conflict of bi-directional trains arrive at the subway station
simultaneously in peak-hours as far as possible, the definition of up and down trains
arriving at the station simultaneously is given. By analyzing the congestion situation,
subway dwell time can be divided into two sections: one section is from train arrival
time to the train gate closing time (passenger having completed getting on and off the
train); another section is from train gate closing to the train departure time. While the
main subway conflict time is the former, the definition of conflict time in this paper is
that the smallest arrival time difference of up and down lines reaching a station minus
the time of first train leaving the station except τ.τ is an adjusting parameters, which is
currently defined to be the time from closing the door time to departure time of the first
departure train. Thus the following studies are carried out.

Subway Timetable Adjusting Method Research 199

2.1 The Time-Factor Model

2.1.1 Building Model Analysis
The up and down trains reach the station simultaneously will cause traffic congestion
easily when passenger flow is huge, so the research of this paper should take the impact
of passenger flow into account. Typically, the greater the traffic is, the greater influence
that the up and down trains reaching the platform simultaneously will be, for the
platform is more crowding. As the actual situation is that only when the traffic reaches a
certain level, the above problems will occur and the research of how to avoid up and
down trains arriving simultaneously makes sense. According to Shanghai Metro Line
No. 2 Statistics provided by Shanghai Shentong Metro Group Co., Ltd, firstly, the
capacities of stations are preliminarily measured. The average capacity of stations is
7318 people per hour and standard deviation is 1701.

2.1.2 Model Assumption
There are four or eight carriages grouping marshalling railway in Shanghai subway.
And the area size of each station is different. But before the urban rails’ construction,
the passenger flow, station sizes and length of which grouping marshalling railways
and other factors are considered. So in this paper, we only consider the impact on the
number of passengers, exceeding factors such as the sizes of the metro stations and
railway length when the passengers number factor model. That is to say that the model
assumption is the station capacity of each station is equal.

2.1.3 Time-Factor Model Building
Time and passenger number factor (time-factor) is a variable that reflects the degree
of traffic congestion by average number of passengers per hour. The greater the pas-
sengers flow is, the greater likelihood of congestion will be, and the higher requirement
of reducing the conflict time will be. And during the same amount of conflict time, the
impact on passenger congestion is greater, therefore, the time-factor is bigger.

The factor is defined according to following facts: when passenger number is small,
the situation that the two trains arrive at a station simultaneously will not cause con-
gestion. And when the passenger number is close to the average number of the station
capacity, the number and time factor can be considered as 1. When the number becomes
lager, more detail classifications are given because the affection degree is more obvious.
And mathematically, it is essential to ensure that the definition of the time-factor is
continuous. The relationship between the above parameter and time-factor can be
expressed by the following formula:

s:t:

0\ ¼ X\ m
2 d ¼ 0

m
2 \ ¼ X\m d ¼ 1
m\ ¼ X\2m d ¼ 1 � X

m
2m\ ¼ X\3m d ¼ 2 � X

m � 2
3m\ ¼ X\4m d ¼ 3 � X

m � 5
X[¼ 4m d ¼ 4 � X

m � 9
d[¼ 10 d ¼ 10

8>>>>>>>><
>>>>>>>>:

ð1Þ

200 D. Yan et al.

where

X = the number of passengers,
m = the average number of station capacity,
d = the time-factor.

As is show in formula (1), time-factor is solved basing on mean and variance.

2.2 Railway Conflict Time Model

2.2.1 Building Model Analysis
Metro up and down trains are likely to arrive at a station simultaneously due to features
such as a short station distance, travel speed and high traffic density. What’s more, the
stranded large passenger flow makes the station passenger congestion. If up and down
trains reach the station asynchronously, the peak congestion can be alleviated in a large
degree. The time of up and down trains staying at the same station is defined as the
Railway conflict time. Thus reducing the conflict can be a solution to the metro
staggering problem.

2.2.2 Model Assumptions
In order to establish a reasonable mathematical model, the model presented in this
paper relies on several key assumptions:

• Train running time is invariant. In reality, the railway operation speed will be
affected by subway traffic, weather and human impact, resulting in running time
fluctuations. In this study, we will ignore the impact of fluctuations in the running
time of a conflict of time.

• This model only considers single-line subway operation situations but not the
complex underground network. In actual situation, the complex subway network is
difficult to build a proper model let alone simulation. To simplify the model,
combined with the project requirements, this model will be based on Shanghai
Metro Line 2 to find a peak-hours adjusting solution.

2.2.3 Model Building
This paper aims to find an optimal schedule to adjust the passenger flow congestion due
to the up and down trains arriving at a station simultaneously in order to improve the
service quality and safety of metro (Tables 1 and 2).

Model variables are defined as following table:

• Definitions of Collection.
• Parameters

There are n trains leaving from subway station during a period of time t (t is less
than the subway running time of a full working day) within, as any train that is
operating, the total conflict time S can be expressed by the following formulation:

Subway Timetable Adjusting Method Research 201

S ¼
Xn

i¼0

Xn

j¼0
Tij ð2Þ

where Tij = the total conflict time of train i and train j.
Then the target of the shortest conflict time Min (S) can be solved by minimizing

the total conflict time:

Min Sð Þ ¼ Minð
Xn

i¼0

Xn

j¼0
TijÞ ð3Þ

Next, the representation of Tij is next goal.
Assuming that the train is an up line train and train j is a down line train. The

conflict time of trains i and j can be as represented in Fig. 1.

Table 1. Collection table

Number Set Meaning

1 I, J Train collection. i, j represents the trains i, j
2 K Station collection. k represents the k-th site
3 T Conflict time collection. Tij represents train i and j total time of conflict
4 C Reaching station time collection.Cik represents the time of train i reach the

k station
5 O Leaving station time collection. Oik represents the time of train i leave the

k station
6 R Railway running time collection. Rk represents the train running time that

train moves from k station to k − 1 station
7 B Departure time collection. Bi represents the departure time of train i
8 P Train travel time.Pik represents dwell time of train i in station k
9 △t Train regulation time collection. Mtik that represents regulation time of train

i in station k
10 N Stations number of trains have travel. Ni represents the total number of

stations that train i has arrived

Table 2. Parameter lists

Symbol S F t n

Meaning Total
conflict
time

Conflict time calculation
functions,
F Cik;Oik;Cjk;Ojk
� �

represents conflict time
function related to the
reaching and leaving
time

Trains
operating
time

The number of
trains sent from
the subway
during a period
of time

202 D. Yan et al.

The train Conflict time calculation can be written as:

F Cik;Oik;Cjk;Ojk
� � ¼

0 Cik [Ojk jj Cjk [Oik

Ojk�Cik Cik [Cjk && Ojk\Oik

Oik�Cjk Cik\Cjk && Ojk [Oik

8<
: ð4Þ

For a train i, departure time from the subway is Bi, the running time from station
k − 1 to station k is Rik. The dwell time of the station k is Pik, regulation time of train
i is Mtik at station k. Then the entire operation cycle of train i can be shown in Fig. 2.

Then for station k, its train reaching station time and departure time can be
described by Eq. (5a) and (5b):

Cik ¼ Bi þ Ri1 þ . . .þRikð Þþ Pi1 þ . . .þPik�1ð Þþ Mti1 þ . . .þMtik�1ð Þ ð5aÞ

Oik ¼ Bi þ Ri1 þ . . .þRikð Þþ Pi1 þ . . .þPikð Þþ Mti1 þ . . .þMtikð Þ ð5bÞ

The dwell time Pik is constant. In the formula, Cik and Oik are linear functions of
the k parameters: Mti1; . . .;Mtik.

In the Eq. (4), F Cik;Oik;Cjk;Ojk
� �

is a linear function with respect to
Cik;Oik;Cjk;Ojk, referring to the formula (2), for the trains i, j, the total conflict time of
train i and train j can be defined in (6).

Tij ¼
XN1

1

XN2

1
F Cik;Oik;Cjk;Ojk
� � ð6Þ

From the above derivation, it is clear that Tij is also a liner function about Bi,
Mti1; . . .;Mtik. The total conflict time S is a linear function of B1; . . .;Bi, Mti1; . . .;Mtik.
It means that S is a multi-parameter linear function [16, 17].

Conflict time

Fig. 1. Single station train collision time map

Fig. 2. The train arrival time diagram

Subway Timetable Adjusting Method Research 203

3 Solution to Metro Staggering Regulation

3.1 Solution of Subway Time-Factor

According to the definition of formula (1), the time-factors of Shanghai Metro Line 2
from GLR (Guang Lan Road) station to XJD (Xu Jing Dong) station are calculated.

As is show in Fig. 3, time-factor of each station has high values at morning and
evening peak time. The results coincide well with the conclusion that the congestion
situation is more serious at morning and evening peak-hours through the investigation
and theoretical analysis in Sect. 2.1.

In the processes of building timetable adjustment model, considering the time
factor, excludes meaningless calculations in the case of small passenger flow which
would not cause large-scale congestion even arrive simultaneously. So the model
synthetically studies the impact that different scale of passenger flow makes.

3.2 The Solution to Metro Peak Load Shifting

3.2.1 The Solution to Scheduling Problem Based on Greedy Algorithm
Through the above analysis, we can see that, by the solution of adjusting the train
departure time or dwell time, the total subway conflict time is influenced. Thus it plays
a regulatory role in up and down trains reaching a station simultaneously.

By formula (6), it is easy to figure out that the problem to be solved is an optimal
solution of multi-parameter linear equations. In processes of seeking optimal solutions
for multi-parameter linear equations, it’s too conflicted to consider the influence of all
the parameters, so greedy algorithm is proposed to simplify the multi-parameter
problem. A greedy algorithm is an algorithm that follows the problem solving heuristic
of making the locally optimal choice at each stage with the hope of finding a global

Fig. 3. The time-factor graph

204 D. Yan et al.

optimum [18–20]. Then, it comes to the specific data and formula analysis. In the
formula (5a), (5b), by comparing the relevant parameters of Cik, Oik, mathematically,
it’s not difficult to figure out:, Ci1 / Bi, Oi1 / ðBi;Mti1Þ, Ci2 / ðBi;Mti1Þ,
Oi2 / ðBi;Mti1;Mti2Þ. . .. For each Cik and Oik, Bi will inevitably affect them, and the
impact of other parameters is much less. For related variables Bi, Mti1; . . .;Mtik, of Cik,
Oik, it’s too tough to build a model including all of the adjustment program. According
to the greedy algorithm thinking, we only take the main variables into account.
Therefore, both Cik and Oik can be approximately regard as a linear function with
respect to Bi. Similarly, Tij is deduced to be a linear function with respect to Bi. Finally,
the total conflict time S proves to be a linear function respect to Bi. The optimal
solution can be evaluated by adjusting the subway departure time.

Time is a continuous variable. Nevertheless, in order to simplify the processing, a
method of discretization is applied to time. The smallest unit is second in the model.
According to needs of project, in terms of subway headway time, the range of adjusting
time is 3 min (180 s) or less. Here, the exhaustive method is applied to adjust the
conflict time [21]. The basic idea is that making a measurement of the answer
according to the available conditions. So in this paper, in order to gain the best load
shifting regulation scheme, through enumerating all adjusting time from −180 s to
180 s, total conflict time is calculated.

3.2.2 Algorithm Flowchart
According to the greedy algorithm based on constraints, the proposed algorithm pro-
cedure is shown as the following figure. The reference value is the total conflict time
before optimization (Fig. 4).

3.2.3 Adjustment Scheme and Research Results
The case of this paper is aimed to reduce the total conflict time of Shanghai Metro Line
2 from East Xujing to Guanglan Road in a normal working day. The main three factors
can be found by analyzing the results of this research: whether to consider traffic
factors, considering all stations or only consider the transfer station, morning and
evening peak adjustment is an adjustment. So there are 9 models to choose. But by
comparison, considering the passengers flow, all stations, the morning and evening
peak- hours is the optimal scheme. Here are several results of the above schemes are
listed in Table 3 and Figs. 5 and 6.

(1) The total time of conflict before adjusting
Above the foundation in Sect. 2.1, through simulation computation, the total
conflict time factor is 63,086 s.

(2) Regardless of morning and evening peak
It can be obtained from the figure, when adopting the full line of adjustment
scheme, 159 s (159 s ahead of the up train departure), minimum conflict time is
44,194 s.

(3) Morning and evening peak
It can be obtained from the figure, when the morning rush hour adjustment time is
135 s (the first up train departs 135 s early), minimum conflict time is 23,537 s;

Subway Timetable Adjusting Method Research 205

Fig. 4. Algorithm structures diagram

206 D. Yan et al.

when the evening peak adjustment time is 165 s (the first up train departs 135 s
early), minimum conflict time is 17,567 s, the total time of 41,104 s conflict.

Note:

• Passenger: No represents without considering the impact of passenger flow, that is
to say time-factor isn’t added to the model, not the number of added time factor; yes
means considering the time-factor.

• Consider all stations: No means only considering the transfer station, yes means
considering all stations on Line 2;

• Morning and evening peak: NO represents the full range of adjustment, the morning
and evening peak adjusted separately.

• Adjustment: adjusted here via the above line in advance (deferred downlink) time is
positive, 1 refers to the full range of adjustment, by means 2, 3, 4 morning peak and
evening peak time are adjusted.

With optimization effects of the various schemes compared, considering the
morning and evening peak-hours is prior than only consider the morning peak-hours.
The reason is obvious that: the morning adjusting has no effect to the evening adjusting,
and the former give an optimization to evening adjusting. Consider the time-factor helps
to obtain a scientific more comprehensive, more scientific result. Eventually, under the
consideration of passenger flow, the morning and evening peak-hours are considered to
adjust respectively. The new conflict time table is calculated and the optimal railway
timetable is obtained.

It takes a lot of related work papers to complete this paper successfully. Do pre-
liminary research such as formulating and optimizing metro timetables, and building
optimization model; achieve further studies about how to solve the problems and the
solution to the model; try to collect actual and helpful data for the model, and make
algorithm simulations; analysis above researches and simulation results.

Fig. 5. The conflict time of Shanghai metro Line 2 (Adjusted)

Subway Timetable Adjusting Method Research 207

4 Conclusion

The primary objective of the study is to build a simulation model for optimizing the
timetable to avoid the up and down line trains reach the station simultaneously in
peek-hours. In addition, the greedy algorithm theoretically proves to be optimal.
Firstly, the problem is analyzed comprehensively. Secondly, a time-factor model is
proposed. Then an adjusting model of greedy algorithm is presented to verify the
availability for the problem. Finally, based on the operation data from Shanghai Metro
Line 2, we have performed numerical examples to prove that the proposed algorithm

(a) Adjusting the morning peak-hours

(b) adjusting the evening peak-hours

Fig. 6. The maximum and minimum peak time of conflict of Shanghai metro Line 2 (Adjusted)

208 D. Yan et al.

can reduce the total conflict time by 19.76 % on average for morning peak-hours
adjusting and 34.85 % for morning and evening peak-hours adjusting.

The simulation results show that the optimization algorithm proposed in this paper
can effectively reduce the subway conflict time. This model has some reference value in
guiding the safety performance improvement and subway train schedule optimization
design. In many problems, a greedy strategy does not in general produce an optimal
solution, but nonetheless a greedy heuristic may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time. There are four usual
operation levels in the subway system and the system will automatically adjust its
operation level to adjust the arrival time, so the small amplitude fluctuations will not
cause too much impact on the application of the method. In addition, the computation
time is short enough to apply the algorithm to the onboard control system for a
real-time adjustment of the timetable.

References

1. Peng, P., Liu, Y.: The impact of metro development on urban modernization. Urban Insight
(2012)

2. Nachtigall, K.: Periodic network optimization with different arc frequencies. Discrete Appl.
Math. 69, 1–17 (1996)

3. Peeters, L.W.P.: Cyclic Railway Timetable Optimization. Erasmus University Rotterdam,
Rotterdam (2003)

4. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM J. Discrete Math. 2(4), 550–581 (1989)

5. Odijk, M.A.: A constraint generation algorithm for the construction of periodic railway
timetables. Transp. Res. Part B: Methodol. 30(6), 455–464 (1996)

Table 3. Various adjustment programs comparison table

Factors
No.

Passenger Consider
all
stations

Morning
and
evening
peak

Adjustment
method (s)

The total
conflict time
before
adjusting (s)

The total
conflict time
after adjusting
(s)

Optimization
effect

1 No No No 185 5786 4796 17.02 %
2 No No Yes Morning:

180,
Evening:
230

5780 4732 18.13 %

3 Yes No Yes Morning:
171,
Evening:
−177

29973 24049 19.76 %

4 Yes Yes Yes Morning:
135,
Evening:
165

63086 41104 34.85 %

Subway Timetable Adjusting Method Research 209

6. Nachtigall, K.: Periodic network optimization with different arc frequencies. Discrete Appl.
Math. 69(1), 1–17 (1996)

7. Cordone, R., Redaelli, F.: Optimizing the demand captured by a railway system with a
regular timetable. Transp. Res. Part B: Methodol. 45(2), 430–446 (2011)

8. Kroon, L.G., Peeters, L.W.P.: A variable trip time model for cyclic railway timetabling.
Transp. Sci. 37(2), 198–212 (2003)

9. Odijk, M.A., Romeijn, H.E., van Maaren, H.: Generation of classes of robust periodic
railway timetables. Comput. Oper. Res. 33(8), 2283–2299 (2006)

10. Kroon, L., Maróti, G., Helmrich, M.R., et al.: Stochastic improvement of cyclic railway
timetables. Transp. Res. Part B Methodol. 42(6), 553–570 (2008)

11. Khan, M.B., Zhou, X.: Stochastic optimization model and solution algorithm for robust
double-track train-timetabling problem. IEEE Trans. Intell. Transp. Syst. 11(1), 81–89
(2010)

12. Yugang, Z., Baohua, M., Yu, J.: Stick buffer time based on train running time deviation
subway train operation diagram. China Railway Sci. 2(1), 118–121 (2011)

13. Albrecht, T.: Reducing power peaks and energy consumption in rail transit systems by
simultaneous train running time control. WIT Trans. Built Environ. 74 (2004)

14. Chen, J.F., Lin, R.L., Liu, Y.C.: Optimization of an MRT train schedule: reducing maximum
traction power by using genetic algorithms. IEEE Trans. Power Syst. 20(3), 1366–1372
(2005)

15. Kim, K.M., Oh, S., Han, M.: A mathematical approach for reducing the maximum traction
energy: the case of Korean MRT trains. Power 219, 15.3 (2010)

16. Wang, S.: Research on randomized greedy algorithm for k-median problem. Comput. Sci. 1
(7), 98–101 (2011)

17. Toint, P.L.: On sparse and symmetric matrix updating subject to a linear equation. Math.
Comput. 31(140), 954 (1977)

18. Abalakin, I.V., Kozubskaya, T.K.: A multi-parameter family of schemes of high accuracy
for a linear transport equation. Matematicheskoe Modelirovanie 7, 55–66 (2007)

19. He, Z., Li, H., Miao, J., et al.: Research on Greedy train rescheduling algorithm (2009)
20. He, Z.: Research on improved greedy algorithm for train rescheduling. In: International

Conference on Computational Intelligence and Security, pp. 1197–1200. IEEE (2011)
21. Park, J.K., Lee, K.H., Lee, J.H., et al.: An exhaustive method for characterizing the

interconnect capacitance considering the floating dummy-fills by employing an efficient field
solving algorithm. In: 2000 International Conference on Simulation of Semiconductor
Processes and Devices, SISPAD 2000, pp. 98–101. IEEE (2000)

210 D. Yan et al.

Author Index

Ali, Ahmad 61

Cai, Guilin 184
Chang, Rui 130
Chen, Hua 174

Dong, Qiankun 97
Dong, Weiyu 130
Dong, Yushan 108
Dou, Qiang 15

Fan, Jie 1
Feng, Luxia 108

Gerndt, Michael 130
Gui, Chao 174
Guo, Wei 48
Guo, Yang 40

He, Hongjuan 157
Hou, Yifan 130
Hu, Wei 184
Hua, Xingcheng 85
Huang, Haowei 130

Jiang, Hao 108
Jiang, Liehui 130

Lei, Li 85
Li, Chen 40
Li, Chunjiang 108
Li, Tao 97
Liu, Peng 85
Liu, Xuefeng 198
Lu, Li 61
Luo, Yuebin 184

Ma, Sheng 40
Ma, Wenjing 97
Mao, Jianhua 198

Peng, Hui 73
Peng, Huicheng 48

Qi, Xiaofeng 118
Qiu, Litiao 15

Shu, Jiwu 1
Song, Ying 174
Sun, Baolin 174

Tang, Wen-Sheng 73
Tang, Yuhua 142
Tian, Shuo 28

Wang, Baosheng 184
Wang, Dongyang 142
Wang, Huiquan 142
Wang, Jierui 85
Wang, Lei 15
Wang, Lu 40
Wang, Sheng-Chun 73
Wang, Yang 142
Wang, Zicong 40
Wei, Jizeng 48
Wu, Junjie 142, 157

Xue, Pei 97

Yan, Dan 198
Yang, Minglai 198
Yao, Zheng 73
Yu, Jiadi 61
Yuan, Kaijian 118

Zhang, Hongbin 1
Zhang, Hongguang 15, 28
Zhang, Minxuan 28
Zhang, Xiaolin 85
Zhang, Xingming 118
Zhao, Kezhao 97
Zhao, Zhenyu 15, 28
Zhou, Bin 85
Zhu, Xiaoyan 174
Zhu, Xuan 157
Zhu, Yanmin 61

	Preface
	Organization
	Contents
	An OS-level Data Distribution Method in DRAM-PCM Hybrid Memory
	1 Introduction
	2 Background and Related Work
	2.1 DRAM and PCM
	2.2 Related Work
	2.3 Data Sections in Logical Address Space

	3 Observation and Motivation
	3.1 Observation
	3.2 Motivation

	4 Hybrid Main Memory Design
	4.1 Overview of Architecture
	4.2 Mapping and Allocation Regulation
	4.3 System Implementation

	5 Evaluation
	5.1 Methodology and Metrics
	5.2 Results and Comparison
	5.3 Sensitivity Analysis

	6 Discussion and Future Work
	7 Conclusion
	References

	Coarse Granularity Data Migration Based Power Management Mechanism for 3D DRAM Cache
	Abstract
	1 Introduction
	2 Background and Motivation
	3 Main Idea
	3.1 Access Pattern Analysis
	3.2 Cluster Banks Using K-Means
	3.3 Data Migration
	3.4 Remapping
	3.5 Reopen
	3.6 Example
	3.7 Hardware Implementation

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Baseline System
	4.3 Implementation
	4.4 Experimental Result

	5 Related Work
	5.1 DRAM Cache
	5.2 Power Optimization of DRAM Cache

	6 Conclusion
	References

	A Novel Hybrid Last Level Cache Based on Multi-retention STT-RAM Cells
	Abstract
	1 Introduction
	2 STT-RAM Features
	2.1 MTJ Features
	2.2 MTJ Non-volatility

	3 STT-RAM LLC Design
	3.1 Cache Parameters
	3.2 Hybrid LLC Architecture

	4 Simulation
	4.1 Experimental Setup
	4.2 Architectural Simulation

	5 Conclusion
	Acknowledgements
	References

	Overcoming and Analyzing the Bottleneck of Interposer Network in 2.5D NoC Architecture
	Abstract
	1 Introduction
	2 Target System and Evaluation Methodology
	3 Bottleneck Description and Analysis
	3.1 Bottleneck Description
	3.2 Impacts of Topologies on Bottlenecks
	3.3 Summary and Design Goals of Interposer Network

	4 Conclusion
	Acknowledgements
	References

	Micro-architectural Features for Malware Detection
	1 Introduction
	2 Background
	2.1 Malware
	2.2 Hardware Performance Counters

	3 Experimental Setup
	3.1 Date Set and Data Collection
	3.2 Machine Learning Method

	4 Lasso-Based Feature Selection
	4.1 Lasso Algorithm
	4.2 Feature Selection

	5 Experimental Results and Analysis
	5.1 Experimental Results
	5.2 Analysis and Evaluation
	5.3 Performance Comparison

	6 Conclusion
	References

	An Energy Efficient Algorithm for Virtual Machine Allocation in Cloud Datacenters
	1 Introduction
	2 Problem Fomulation
	3 Proposed Algorithm
	4 Evaluation Results
	4.1 Simulation Setup
	4.2 Simulation Results

	5 Related Work
	6 Conclusion
	References

	Research on Virtual Machine Cluster Deployment Algorithm in Cloud Computing Platform
	Abstract
	1 Introduction
	2 Related Works
	3 Virtual Machine Cluster Deployment Algorithm
	3.1 Related Terms
	3.2 Virtual Machine Cluster Deployment Model
	3.3 System Communication Bandwidth Utilization Rate
	3.4 The Analysis of System Resource Waste Rate
	3.5 Virtual Machine Cluster Deployment Algorithm Process

	4 Simulation and Analysis
	4.1 Simulation Platform
	4.2 Results Analysis

	5 Conclusions
	Acknowledgment
	References

	H-TDMS: A System for Traffic Big Data Management
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Data Collection and Storage
	3.2 Fast Search Engine
	3.3 Intelligent Analysis Engine
	3.4 User-Interface and Data Visualization

	4 System Evaluation
	4.1 Data Import and Preprocessing
	4.2 Search Query
	4.3 Fake Plate Vehicle Detection
	4.4 Vehicle Cluster Analysis

	5 Conclusion
	References

	GLDA: Parallel Gibbs Sampling for Latent Dirichlet Allocation on GPU
	1 Introduction
	2 Related Work
	3 LDA Algorithm Based on Gibbs Sampling
	4 Parallel LDA Training on GPU
	4.1 Data Partition
	4.2 GLDA Algorithm

	5 Experiments
	5.1 Experimental Environment
	5.2 Speedup in Experiments
	5.3 Perplexity in Experiments

	6 Conclusions
	References

	High Performance Stencil Computations for Intel"472 Xeon Phi� Coprocessor
	1 Introduction
	2 Target Stencils
	3 Architecture of the Intel Xeon Phi
	4 Performance Optimizations
	4.1 Parallelization and Vectorization
	4.2 Loop Tiling for Data Locality

	5 Performance Evaluation and Analysis
	5.1 Hardware and Software Configuration
	5.2 Performance Results
	5.3 Scalability
	5.4 Overall Performance Comparison

	6 Related Work
	7 Conclusions and Future Work
	References

	RLDRPSO: An Efficient Heuristic Algorithm for Task Partitioning
	1 Introduction
	2 Problem Definition
	2.1 System Structure
	2.2 Generalized Task Partitioning
	2.3 PSO Task Partitioning Algorithm

	3 RLDRPSO Task Partitioning Algorithm
	3.1 Learning Factors and Fitness Function
	3.2 Reverse Learning
	3.3 RLDRPSO

	4 Experimental Results
	4.1 DFG Data and RLDRPSO Parameters
	4.2 Results

	5 Conclusions
	References

	A Fine-Granular Programming Scheme for Irregular Scientific Applications
	1 Introduction
	2 Abstract Machine Model
	3 Programming Interface
	4 Implementation Framework
	4.1 OpenMP-Based Library
	4.2 MPI-based Library

	5 Experimental Results
	5.1 Overview
	5.2 Experiment Platform
	5.3 Irregular Grid Applications
	5.4 Molecular Dynamics Simulation

	6 Conclusion and Future Work
	References

	Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System
	1 Introduction
	2 Preliminary
	3 Structure
	4 Implementation
	4.1 Polarization-Entangled Two-Photon Source
	4.2 Interference-Based Optic Network
	4.3 Interface Between Classical Host and Quantum Coprocessor
	4.4 Quantum ``Program''

	5 Evaluation and Analysis
	5.1 Polarization-Entangled Two-Photon Source
	5.2 Two-Particle Bosonic-Fermionic Simulation

	6 Conclusion
	References

	An Introduction to All-Optical Quantum Controlled-NOT Gates
	1 Introduction
	2 LOQC
	2.1 Qubits
	2.2 Optical Components
	2.3 Quantum Circuit Model

	3 Schemes of CNOT Gates and Experimental Demonstrations
	3.1 CNOT Gates Based on Bases Transformation
	3.2 A CNOT Gate with Path Interferences
	3.3 A CNOT Gate with Polarized Photons Interference
	3.4 A Simplified Version of CNOT Gate with a Particular Target Qubit State
	3.5 Comparison and Analysis

	4 Implementation of Quantum Algorithms in the Quantum Circuit Model
	4.1 Application of CNOT Gates for Shors Quantum Factoring Algorithm
	4.2 Application of CNOT Gates for Solving Systems of Linear Equations

	5 Discussion
	References

	Performance Analysis of Sliding Window Network Coding in MANET
	Abstract
	1 Introduction
	2 Related Works
	3 Sliding Encoding Window Model
	3.1 Network Model
	3.2 Sliding Encoding Window Construction
	3.3 Network Coding Over Data Packet Streams

	4 Simulation Experiments
	4.1 Simulation Scenario
	4.2 Simulation Results

	5 Conclusion
	Acknowledgment
	References

	A Model for Evaluating and Comparing Moving Target Defense Techniques Based on Generalized Stochastic Petri Net
	1 Introduction
	2 Problem Formulation
	2.1 Petri Net
	2.2 SPN and GSPN

	3 A GSPN Model for Evaluating MTD Techniques
	4 A Case Study
	5 Related Work
	6 Conclusion and Future Works
	References

	Subway Timetable Adjusting Method Research of Bi-directional Trains Arriving at a Station Asynchronously
	Abstract
	1 Introduction
	2 Metro Dispatcher Model
	2.1 The Time-Factor Model
	2.1.1 Building Model Analysis
	2.1.2 Model Assumption
	2.1.3 Time-Factor Model Building

	2.2 Railway Conflict Time Model
	2.2.1 Building Model Analysis
	2.2.2 Model Assumptions
	2.2.3 Model Building

	3 Solution to Metro Staggering Regulation
	3.1 Solution of Subway Time-Factor
	3.2 The Solution to Metro Peak Load Shifting
	3.2.1 The Solution to Scheduling Problem Based on Greedy Algorithm
	3.2.2 Algorithm Flowchart
	3.2.3 Adjustment Scheme and Research Results

	4 Conclusion
	References

	Author Index

