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Abstract. Latin Hypercube Design (LHD) is a traditional method of
Design Of Experiments (DOE) and is often employed in system analy-
sis. However, this method imposes restriction on experiment trials and
needs much computation capacity to obtain the optimal design. A novel
experiment design method called ETPLHD is proposed in this paper to
solve this problem. ETPLHD can control the number of design points
and thus presents more flexibility to control the number of experiment
trails, which is more efficient compared to the fixed experiment trails in
the traditional LHD method for a same design space. An experiment was
conducted to compare ETPLHD with the other two experiment design
algorithms. The results showed that TPLHD reveals high design perfor-
mance and less time consumption.
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1 Introduction

Simulation is a promising way to study the complex systems with high
performance-price ratio [1]. To analysis the characteristics of the target system,
normally a large number of experiment trails need to be run and different level
combinations of the parameters are tested. While the high-performance compu-
tation facilities are widely used to speed up the computation, the computation
capacity required in system analysis still makes it difficult to test each level com-
bination of all parameters, especial for those complex systems with large set of
parameters. Even a simple application with 5 parameters, and each parameter
contains 10 levels, 106 min (over 2 years) is required to test all level combinations
assuming each trail need 10 min to run.

As a result, the DOE technique is widely used in any experiment-based
domains [2] for its capability to analyze the target system with less experiment
trials. The DOE method normally selects a small amount of typical experiment
points in the parameter space, to obtain the comprehensive understanding of the
target system. It is not necessary to test each level combination of the parame-
ters, thus improving the experiment efficiency greatly. The model of the target
system is expected to be derived based on this small amount of experiments,
then the further analysis even the prediction can be made.
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A critical property is the space-filling property, i.e., how the design points
distributed in the experiment space. Among various DOE methods, the Latin
Hypercube Design (LHD), which was proposed by McKay [3], is most used in
simulations [4]. It is always the concern in different variants of LHD design to
obtain better space-filling property. Park developed a row-wise element exchange
algorithm to obtain the optimal LHD [5]. Morris and Mitchell applied simulated
annealing algorithm to optimize the design [6]. Bates et al. employed the Genetic
algorithm to optimize LHD [7]. Although these variants present good perfor-
mance, the involved number of experiment trails is large. Felipe Viana et al.
proposed a fast optimal Latin Hypercube Design using Translational Propaga-
tion algorithm (TPLHD) [8]. TPLHD generates nearly optimal design instead of
the global optimal design. However, the number of experiment trials of TPLHD
is fixed for discrete experiment space, which is often insufficient to fully explore
the experiment space.

In this paper, an Extended TPLHD method (ETPLHD) is proposed to gen-
erate the design points flexibly. ETPLHD can generate more points in the design
space than traditional LHDs, which will be helpful in study of the target system.
It was shown in the comparison with other DOE methods that ETPLHD is effi-
cient to produce the experiment points, and achieved better evaluation results
about the studied system.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction of TPLHD. Then the proposed method ETPLHD is described in detail.
Section 3 introduces the linear regression model for system approximation and
predication. Section 3.2 presents the comparative experiment between ETPLHD
and the other two DOE methods, and the results analysis is given. Finally, the
remarkable features about ETPLHD approach is concluded in Sect. 4.

2 Method

2.1 Review of Latin Hypercube via Translational
Propagation (TPLHD)

TPLHD method works in real time at the cost of finding the near optimal design
instead of the globally optimal design. Suppose a design space with nv variables,
each variable has np levels. The first step in TPLHD is to create a seed design that
contains ns points. This seed design is used as a pattern to fill the experiment
space iteratively. To fill the space, the experiment space is partitioned into nb

blocks firstly:
nb = np/ns (1)

The number of levels contained by each block is determined as follows:

nd = (nb)1/nv (2)

The second step is to fill the seed design into each block. An example is
illustrated in Fig. 1. A seed design containing only 1 point is created in a 9 × 2
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(two variables and each has 9 levels) design space. Then the original space is
divided into 9/1 = 9 blocks, and each block has 91/2 = 3 levels. As Fig. 1(a)
shows, the seed design is placed in the left-bottom block firstly. Then the seed
design is iteratively shifted by np/nd = 3 levels along one dimension until this
dimension is filled with the seed design, as Fig. 1(b) and (c) shows. Next, the
design along this dimension is adopted as a new seed design to fill along other
dimension until all blocks are filled, as shown in Fig. 1(d).

(a) Create a seed design (b) Translate the seed de-
sign to another block along
one dimension

(c) Fill one dimension (d) Fill all dimensions

Fig. 1. The procedure of creating 9 × 2 TPLHD

As all the key operations are to translate the design points, The TPLHD
method requires much less computation compared to other optimal methods
which normally need to search the best design among all (np!)nv LHD designs.

A criterion parameter φp, is used to measure the space-filling quality of the
experiment design. For an experiment space, a smaller φp indicates that the
created experiment points are better in distribution to fill up the space.

φp = [
np−1∑

i=1

np∑

j=i+1

d−p
ij ]1/p (3)
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where p is a pre-selected integer value and dij is the distance between any two
design points xi, xj :

dij = d(xi, xj) = [
nv∑

k=1

|xik − xjk|t]1/t (4)

φp is also adopted in this paper to measure the space-filling quality of exper-
iment design. As suggested by Jin et al. [9], the value p = 50, t = 1 is taken here.
TPLHD method works well with experiment design less than 6 variables. It is
difficult to approximate a good experiment design in high-dimensional space for
2 reasons: (i) the Curse of Dimensionality. The partitioned blocks in experiment
space will grow exponentially with dimensions; (ii) the distribution of experiment
points will be asymmetry in high-dimensional space with linear partition.

2.2 The Extented TPLHD (ETPLHD)

The number of experiment points in TPLHD is constrained by np, which is the
levels of the variable. This characteristic will lead to a small point set most of
the time. For example, a size of 10×5 experiment design space contains total 510
level combinations, however, only 10 experiment points would be chosen with
TPLHD method. Obviously, this small amount of experiments is insufficient to
analysis the target system.

To increase the experiment points, the ETPLHD s proposed in this paper
to provide a layered design approach to obtain better distribution of the exper-
iment points. The horizontal interpolation is employed in ETPLHD to design
the experiment in an expanded space and then is scaled into the origin space.

Assuming all variables having the same number of levels, Eq. (2) is modi-
fied as:

d = n1/2
p (5)

d is expected to be an integer value, thus np needs to be rounded as the value
that can be squared such as 4, 9 or 16. For instance, np = 15 can be rounded
up to 16, i.e. one extra level is added into the experiment space, then the points
corresponding to the extra level are eliminated at last to correct the design.

ETPLHD holds that each block contains the same number of points as
TPLHD. However, the number of blocks in ETPLHD is much bigger than that
in TPLHD for cases with more than two dimensions, leading to the increment
of the design points in ETPLHD (denoted as n∗).

n∗ = dnv = nnv/2
p (6)

Consider a n × m (n levels, m variables) experiment space. Initially, one
dimension (variable) is chosen to be divided into intervals according to Eq. (5).
After this operation, the experiment design is conducted in a subspace n×(m−1)
within each block, where the dimension that has been divided is excluded. The
design in subspace n×(m−1) takes the same steps:chose one dimension to divide,
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(a) A TPLHD design (b) Translate within 1
layer

(c) 4 layer of 16×2 space

Fig. 2. The procedure to create 16 × 3 ETPLHD

and then perform the experiment design in a lower dimensional subspace, until
the TPLHD method is applied.

Figure 2 illustrates this process taking a design in 16 × 3 experiment space.
First, one dimension (denoted as the 1d) of the experiment space is chosen and
partitioned into 4 parts according to Eq. (5). 4 intervals along this dimension are
determined, as shown in Fig. 2(a). Next, a 16 × 2 TPLHD designs (the dimen-
sions are denoted as 2d and 3d) is conducted in each interval. By this way, the
ETPLHD generates 64 points. For comparison, TPLHD obtains a design with
16 points.

In this example, the experiment points within low-dimensional subspace need
to be expanded to the higher dimension. Generally, if the points set xim has been
obtained within a subspace of m dimensions, the design points can be expanded
to the higher dimension as follows:

xki(m+1) = ximmod d + (k − 1) · d (7)

where k(1 ≤ k ≤ dm+1) is the index of the interval along dimension m + 1. The
expansion is repeated until all dimensions are included. As for the example in
Fig. 2, the experiment points form the slanted layer along the dimension 1d, as
shown in Fig. 2(c).

After the expansion to higher dimension, some points may stay in a small
region of the experiment space. Consider the example in Fig. 2, an experi-
ment point [x0, y0] designed in the 2d × 3d subspace will generates a series
experiment points along dimension 1d by taking the expansion operation:
[x0, y0, z0], [x0, y0, z3], [x0, y0, z7], [x0, y0, z11]. From the direction of the dimen-
sion 1d, they are lines. This problem will be worse when the dimension grows.

As a result, it is necessary to adjust the distribution of the experiment points
before expansion to the higher dimension. Assuming the current dimension is m,
then the points are shifted p(0 ≤ p ≤ dm) unit along the 2 ∼ m dimension, where
dm is the number of the intervals along dimension m. Equation (7) is changed as
follows:

xki(m+1) = (xim + p)mod d + (k − 1) · d (8)
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There are two issues should be noted. First, the value of p is normally deter-
mined empirically. Second, a control parameter s can be defined to specify how
many dimensions need to apply the ETPLHD method. For a n×m space, s = 2
means only two dimensions apply the ETPLHD method and the rest m−2 dimen-
sions will apply the TPLHD method. By the control parameters, the number of
experiment points determined by ETPLHD is:

n∗ = np · ds = n
s
2+1
p (9)

Figure 3 demonstrates the shift within the 2d ×3d subspace before expansion
to dimension 1d.

Fig. 3. Translate the seed on each layer

The pseudo code of ETPLHD is shown as follows:

Algorithm 1 : ArrayCreateETPLHD(m,n, s)

var
m: the number of the design variables (dimensions) of the

experiment space. The first dim refer to sub-population.
n: the levels of each variable.
s: the control variable specifying how many dimensions should

be applied the ETPLHD design.
begin

d=sqrt(n);
Array seed = CreateTPLHD(m-s,n); //Assuming avaiable
Array res;
for(dimension=m-s+1:m){

for(layer=1:d){
Add the seed design into res;
Translate the seed by current dimension;

}
seed=res;

}
return res;

end.
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2.3 DOE Methods Comparison

Three DOE methods, ETPLHD, TPLHD and a random-selection based LHD
method lhsdesign (the implemented function name in Matlab) are compared to
demonstrate the effectiveness of ETPLHD. The lhsdesign method selects the
LHD according to the best max-min criterion, i.e., the maximization of the
minimum distance dmin, from 200 random LHDs. dmin is the other measure of
the points density (similar with φp); a bigger dmin indicates better distribution
of the points.

In a nv × np (nv levels, np variables) design space, the expected experiments
trials n∗ can be determined by Eq. (9). With TPLHD and MatlabTM method,
nv × n∗ designs were conducted. In order to compare the three methods based
on the same ground, the design values were divided by ns

d and then round up
into [1, np], to generate the same number of design points with ETPLHD. Three
criterions φp in Eq. (3), dmin and Time consumption(s) are compared in the
three methods.

All experiments were conducted in WindowsTM 7 with Intel Core i5-3470
CPU (3.20 GHz), 4 GB RAM, MATLABTM (R2012a).

Table 1 shows the results of the three methods. The best φp is shown with
bold. It can be concluded that ETPLHD method performs best under experiment
space with no more than 5 variables. The only exception is the case where
np = 4, nv = 4 and s = 1. For the design space with 6 variables, TPLHD
performs worse than lshdesign with most cases, but ETPLHD is superior to
lshdesign basically. In addition, ETPLHD can generate points with least time
consumption among the three methods. For all cases, ETPLHD and TPLHD cost
less time to obtain an optimal design. By contrast, lhsdesign requires seconds to
minutes for a large experiment space.

3 Apply ETPHLD in System Predication

3.1 Linear Regression Prediction Model

The goal of DOE method is to evaluate the target system with less experi-
ment trails. Many approximation methods such as the linear regression, Kriging
model, neural nets, support vector regression and so on are often employed to
evaluate and then predict the target system. The linear regression is the most
used approach among them10.

A first-order polynomial can be given by

y = Xβ + e (10)

where y = (y1, . . . , yn)′ is the predicted value of the target system with n experi-
ments. X = (xij)(i = 1, . . . , n, j = 1, . . . , q) is the experiment data recorded in n
trails, where i in the index of experiment trail, and j is the index of data within
each trail. β = (β1, . . . , βq) is the regression coefficients; and e = (e1, . . . , en)′

denotes the residuals in each experiment.
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Table 1. Performance comparison among ETPLHD, TPLHD and lshdesign

ETPLHD TPLHD lhsdesign

np nv s φp dmin Time φp dmin Time φp dmin Time

3 4 1 2 0.5 ≈0 2.056 0.5 ≈0 2.027 0.5 0.1

9 1 2.405 0.444 ≈0 3.178 0.333 ≈0 4.6 0.222 0.1

16 1 3.485 0.312 ≈0 4.322 0.25 ≈0 8.291 0.125 0.3

25 1 3.485 0.312 ≈0 4.322 0.25 ≈0 8.291 0.125 0.3

4 4 1 1.333 0.75 ≈0 1.014 1 ≈0 1.351 0.75 0.1

2 2.065 0.5 ≈0 2.114 0.5 ≈0 2.065 0.5 0.1

9 1 2.281 0.444 ≈0 2.313 0.444 ≈0 3 0.333 0.1

2 3.237 0.333 ≈0 3.294 0.333 ≈0 9.199 0.111 0.43

16 1 2.704 0.375 ≈0 3.304 0.312 ≈0 5.333 0.187 0.3

2 4.439 0.25 ≈0 4.505 0.25 ≈0 16.35 0.062 3.2

25 1 4.283 0.24 ≈0 5.000 0.2 ≈0 6.337 0.16 0.85

2 5.664 0.2 ≈0 5.740 0.2 ≈0 25 0.04 18.2

5 4 1 1.014 1 ≈0 1.333 0.75 ≈0 1.333 0.75 0.1

2 2.027 0.5 ≈0 2.056 0.5 ≈0 2.027 0.5 0.1

9 1 1.521 0.667 ≈0 2.281 0.444 ≈0 1.8 0.555 0.1

2 3.174 0.333 ≈0 4.626 0.222 ≈0 4.562 0.222 0.4

16 1 2.073 0.5 ≈0 3.2 0.312 ≈0 2.286 0.437 0.3

2 4.055 0.25 ≈0 4.222 0.25 ≈0 4.169 0.25 3.2

25 1 2.276 0.44 ≈0 3.671 0.28 ≈0 3.126 0.32 0.9

2 4.285 0.24 ≈0 5.348 0.2 ≈0 6.425 0.16 18.1

6 4 1 0.681 1.5 ≈0 0.8 1.25 ≈0 0.681 1.5 0.1

2 2 0.5 ≈0 2 0.5 ≈0 1.333 0.75 0.1

3 2 0.5 ≈0 2.108 0.5 ≈0 2.056 0.5 0.15

9 1 1.045 1 ≈0 1.533 0.666 ≈0 1.125 0.888 0.15

2 2.383 0.444 ≈0 2.388 0.444 ≈0 2.281 0.444 0.45

3 3.258 0.333 ≈0 4.767 0.222 ≈0 4.562 0.222 3

16 1 1.380 0.75 ≈0 2.173 0.5 ≈0 1.623 0.625 0.3

2 3.468 0.312 ≈0 4.222 0.25 ≈0 3.271 0.312 3.3

3 4.203 0.25 ≈0 8.224 0.125 0.3 5.527 0.187 49

25 1 1.701 0.64 ≈0 3.571 0.28 ≈0 1.927 0.52 0.9

2 3.966 0.28 ≈0 3.488 0.32 ≈0 4.166 0.24 18

3 4.697 0.24 ≈0 5.520 0.2 0.2 8.605 0.12 443.9

Let w = (w1, . . . , wn)′ be the true output of the simulation system, the Sum
of Squared Residuals(SSR) is given by Eq. (11)

SSR = (y − w)′(y − w) (11)
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The coefficient vector β is defined as follows to compute the predication:

β = (X ′X)−1X ′w (12)

The accuracy of the model is normally measured by the mean square error
(MSE ), which is the accurate estimate of the true error of the prediction model.

MSE = SSR/n (13)

where n is the number of experiment trials.

3.2 A Complex Example: The Combat Simulation

There are blue and red force in the combat scenario. The blue force includes a
formation of fighters, who attempts to cross a strait to attack the ships of the
red. On the other hand, the red ships have the anti-air capacity. Once the blue
fighters flight close to the ships, the SAM missiles will be launched to protect
the ships (Fig. 4). The relationship between the performance of SAM missile and
the shoot-down number of blue fighters is concerned. The combat is simulated
using a Computer Generated Force (CGF) platform [10].

Fig. 4. The two dimension display of the scenario

Five parameters of SAM missile are adopted as the design variables and each
has 4 levels, as shown in Table 2.

TPLHD and ETPLHD are tested in this scenario for comparison. In
ETPLHD, s = 3 produces 32 experiment points. Each experiment point is tested
for 5 times to get the mean value of the output for further analysis. The linear
regression approach is employed to obtain an approximated system model that
can be used to predict the output of the combat. Table 3 demonstrates a part
of the results and the predictions of the approximated models based on the two
DOE methods.
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Table 2. Design parameters and levels

Variables (of the missiles) Levels

1 2 3 4

Velocity X1 (km/h) 700 800 900 1000

Kill Radius X2 (m) 25 50 75 100

Range X3 (km) 250 500 750 1000

Bomb Loads X4 4 6 8 10

Killing Probability X5 0.4 0.5 0.6 0.7

Table 3. The true results and the predictions

(a)TPLHD

No X1 X2 X3 X4 X5 y ypred

1 1 1 1 1 1 8.2 10.2520

2 3 1 1 3 2 17.2 18.1212

3 4 2 2 2 3 14.4 13.6219

4 2 2 4 4 4 27 28.7731

· · · · ··
32 4 4 4 4 4 26.2 25.2967

(b)ETPLHD

No X1 X2 X3 X4 X5 y ypred

1 3 2 1 1 1 8 8.2456

2 3 3 4 2 1 15.6 17.7121

3 2 1 1 3 2 20.4 19.7148

4 4 1 3 2 3 17.2 16.0479

· · · · ··
32 4 3 1 1 3 8 6.7885

Given the data in Table 3, the MSE of the two methods can be calculated
according to Eq. (13). The MSE of ETPLHD is 0.6141, which is much less than
that (1.0533) of TPLHD. This result indicates that the approximated system
model using the ETPLHD method performs better than the model using TPLHD
method.

20 random points are selected from the experiment space to verify the effec-
tiveness of the approximated models. Table 4 demonstrates a part of the results.
ya is the prediction by the approximated model that uses the TPLHD method,
while yb is the predication by the model that uses the ETPLHD method.

The plots of the simulation values and two prediction values are shown in
Fig. 5. The MSE of the two predication is 4.0147 and 3.217 respectively, indi-
cating that the prediction model with ETPLHD is more precise.
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Table 4. Part of results of 20 random points with the two methods

No X1 X2 X3 X4 X5 y ya yb

1 3 1 3 3 4 24.2 22.1132 22.0739

2 2 3 2 2 1 17 14.1160 15.4181

3 4 3 1 2 1 13.2 10.4750 11.6806

4 1 3 1 3 1 21.2 18.4052 19.7464

· · · · ··
20 4 4 2 1 2 8 7.0334 7.9351

Fig. 5. The simulation and two prediction values of random points

4 Conclusion

In order to break the limitation of the fixed number of design points in tra-
ditional LHD method, a new flexible DOE method ETPLHD is proposed in
this paper. The comparison shows that ETPLHD method performs better than
TPLHD for no more than 6 variables. The ETPLHD method is also applied
in a complex combat simulation to help to find proper approximation model
of the combat system, which is used to predict the outcomes of the combat
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with different parameter configurations of the SAM missiles. The results show
that the approximation model using the ETPLHD method has better predicting
accuracy than the model using the TPLHD method.
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