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Abstract We propose a new Quaternion Circularly Semi-Orthogonal Moments for
color images that are invariant to rotation, translation and scale changes. In order to
derive these moments we employ the recently proposed Circularly
Semi-Orthogonal Moment’s expression. Invariant properties are verified with
simulation results and found that they are matching with theoretical proof.
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1 Introduction

Processing and analysis of color images represented by a quaternion algebra pro-
vides better results than the traditional methods like processing of three (R, G, B)
images separately because in the quaternion representation, a color image pixel is
treated as a single unit. One of the first persons who employed the quaternion
algebra for color images is Sangwine [1]. Since then may techniques like Fourier
transform [2, 3], Winer filter [4], Zernike moments [5, 6], Disc-Harmonic moments
[7–11], Legendre-Fourier moments [12], FourierMellin moments [13] and Bessel
Fourier moments [14–16] are extended to color images using the Quaternion
algebra. Recently, Karakasis et al. [17] published a unified methodology for
computing accurate quaternion color moments. Another recent paper by Chen et al.
[18] suggested a general formula for quaternion representation of complex type
moments.

All these moments provided mixed results for image reconstruction, object
recognition and water marking problems. Recently, Hu et al. [19] proposed an
Exponent Fourier moments for gray level images. These moments are similar to
Polar Complex Exponential Transforms and Radial Harmonic Fourier Moments.
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Exponent Fourier moments are computationally inexpensive as compared with
other moments like Zernike Bessel Fourier moments [17]. Xia et al. [20] pointed
out some errors in the above paper and proposed a better radial function. Unfor-
tunately, this expression turns out to be incorrect. Hence, Hu et al. [21] recently
suggested an improved version of it. Most of these moments suffer from numerical
and geometric errors. In order to minimize these errors, Wang et al. [22] proposed a
Circularly Semi-Orthogonal (CSO) moments for both binary and multilevel images
only. Hence, in this paper, we extend the CSO moments proposed for gray level
images to color images using the algebra of quaternion and propose a new
quaternion circularly semi orthogonal (QCSO) moments for color images. Further,
we also derive invariants properties of QCSO moments and verified them with
simulation results. In this study we have chosen CSO moments because of the
following advantages: (a) Higher order moments are numerically stable than the
lower order moments. (b) Zeroth order approximation is more robust to numerical
errors compared with other approximations and (c) no factorial terms in the radial
function definition

This paper is organized into eight sections. In Sect. 2 we present the quaternion
number system. In Sect. 3 circularly semi orthogonal moments are discussed in
detail. In Sects. 4 and 5, expressions are derived for Quaternion circularly semi
orthogonal forward and inverse moments. Invariant properties of QCSO moments
are derived in Sect. 6. Finally, simulation results and conclusions are presented in
Sects. 7 and 8 respectively.

2 Quaternion Number System

These numbers are extensions of complex numbers, that consists of one real part
and three imaginary parts. A quaternion number with zero real part is called pure
quaternion. Quaternion number system was introduced by the mathematician
Hamilton [23] in 1843. Then Sang wine [1, 23] applied them for color image
represntation. A quaternion number q is written as

q= a+ bi+ cj+ dk. ð1Þ

Where a, b, c and d are real numbers, i, j and k are orthogonal unit axis vectors
satisfies the following rules

i2 = j2 = k2 = − 1, ij = − ji = k ð2Þ

jk= − kj= i, ki= − ik= j

From these equations one can say that quaternion multiplication is not com-
mutative. Both conjugate and modulus of a quaternion number q is
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q ̄= a− bi− cj− dk

qj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 + c2 + d2

p

For any two quaternion numbers say p and q we have p.q= p ̄.q ̄. Quaternion
representation of a pixel in a color image is

f ðx, yÞ = fRðx, yÞi + fGðx, yÞj + fBðx, yÞk ð3Þ

It is assumed that real part is zero. In the above expression
fRðx, yÞ, fGðx, yÞ and fBðx, yÞ represents the red, green and blue components of a
color pixel, similarly, polar representation of an image using the quaternion rep-
resentation is

f ðr, θÞ = fRðr, θÞi + fGðr, θÞj + fBðr, θÞk ð4Þ

In this expression fRðr, θÞ, fGðr, θÞ and fBðr, θÞ denote red, green and blue
components of polar representation of image.

3 Circularly Semi-orthogonal Moments

Let f ðr, θÞ be the polar representation of a gray level image of size N × M, then
the general expression for circularly orthogonal moments (EnmÞ of order n and
repetition m of a polar image f ðr, θÞ is

Enm =
1
Z

Z1

r=0

Z2π

θ=0

f ðr, θÞTnðrÞexp − jmθð Þrdrdθ ð5Þ

where n = ±0, ±1, ±2 . . . . . . . . . . and m = ±0, ±1, ±2 . . . . . . are the moment
order and repetition of a radial function TnðrÞ and T*

n ðrÞ is the conjugate of radial
function TnðrÞ. It is noted from the available literature that, most of the circularly
orthogonal moments differ only in Radial functions and normalization constants.
Hence, Table 1 shown below lists some of the radial functions proposed recently
for defining moments.

Xia et al. [20] pointed out some errors in the radial function of Exponent Fourier
moment-I. In order to correct them, a new expression was suggested for Exponent
Fourier moments-I, which is given by

Enm =
1

2πan

Zπ +1

r= π

Z2π

θ=0

f ðr, θÞTnðrÞ exp − jmθð Þrdθdr

Quaternion Circularly Semi-orthogonal Moments … 511



where an = expð− j4nπ2Þ is normalization constant. Modified radial function TrðrÞ
is given by

TnðrÞ=
ffiffiffiffiffiffiffiffiffiffi
1

π + r

r
e− j2πnðr+ πÞ

Recently, Hu et al. [21] suggested an improved version of the above expression,
because incorrect orthogonality condition was employed to find the normalization
constant and when the limits for r are applied, no value will be within the 0 to 2 π
range. Hence, an Improved Exponent Fourier moments (IEF) moment expression is
suggested and it is given by.

Enm =
1
2π

Zk+1

r= k

Z2π

θ=0

f ðr− k, θÞTnðrÞ exp − jmθð Þrdθdr

where k is a non negative integer and f r− k, θð Þ is the translated version of original
image f ðr, θÞ. Another circularly semi orthogonal moments whose radial bases
functions are same for forward and inverse transforms was proposed by Wang et al.
[22]. Like the other radial bases functions this radial bases function also do not use
factorial terms. Hence, it is computationally not expensive. Figure 1 display the
graphs of real parts of TnðrÞ for orders n = 0, 1, 2, 3, 4 and 5. These graphs are
numerically stable and avoids the large value in the above expression when r = 0.
Given a finite number of moments (Nmax and Mmax) image reconstruction can be
obtained using the expression given below

f ðr− k, θÞ= ∑
Nmax

n=1
∑
Mmax

m=1
EnmT*

n ðrÞ expðjmθÞ

According to the above equation, pixels of reconstructed image must be shifted
by a distance k along the opposite direction. If we substitute
TnðrÞ= ð15Þ− r

4 sinðn+1Þπr and Z = 2π in Eq. (5), we obtain an expression for
Circularly semi orthogonal moments that is given below

Table 1 Radial functions and normalization constants of various moments

Moments Radial function Tn(r) Normalization constant 1
Z

Exponent fourier—I
ffiffi
1
r

q
e− j2πnr 2

π M2 +N2ð Þ

Circularly semi orthogonal moments ð15Þ− r
4 sinðn+1Þπr 2

π M2 +N2ð Þ
Polar harmonic e− j2πnr2 4

π M2 +N2ð Þ
Exponent fourier—II

ffiffi
2
r

q
e− j2πnr 1

π M2 +N2ð Þ
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Enm =
1
Z

Z1

r=0

Z2π

θ=0

f ðr, θÞð15Þ− r
4 sinðn+1Þπr exp − jmθð Þrdrdθ ð6Þ

In order to convert the above equation suitable for 2D images of size M × N,
we need a polar representation of the image and replace the integrals by summation.
In our work we employed the ‘Outer Unit Disk Mapping’ employed by Hu et al.
[19] which fixes the image pixels inside the unit circle. Expression for coordinate
mapping is

xi = 2i+1−Nffiffiffiffiffiffiffiffiffiffiffiffi
M2 +N2

p xj =
2j+1−Mffiffiffiffiffiffiffiffiffiffiffiffi
M2 +N2

p ð6aÞ

where i = 0, 1…M, j = 0, 1, …N. Final expression when zeroth order approxi-
mation of Eq. (6) is used

Enm =
1
Z

∑
M − 1

i=0
∑
N − 1

j=0
f ðxi, yjÞTnðrijÞe− jmθij ð7Þ

where 1
Z = 2

π M2 +N2ð Þ, rij =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i + y2j

q
and θij = tan− 1 yj

xi

More details can be seen in paper [19]. Next section presents Quaternion cir-
cularly semi orthogonal moments.
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Fig. 1 Real part of radial function Tn(r) for n = 0, 1, 2, 3, 4, 5 values. x axis denotes ‘r’ values (1
to 2, in steps of 0.001) and y real part of radial function. Colors n = 0, blue, n = 1, green, n = 2,
red, n = 3 black, n = 4, cyan, n = 5 magenta
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4 Quaternion Circularly Semi-orthogonal Moments

According to the definition of circularly semi-orthogonal moments (CSOM) (Eq. 6)
for gray levels and quaternion algebra, the general formula for the right side CSOM
of a color image f ðr, θÞ of order n with repetition m is

ER
nm =

1
2π

Z1

r=0

Z2π

θ=0

f ðr, θÞTnðrÞ exp − μmθð Þrdθdr

where μ is a unit pure quaternion, generally it is a linear combination of i, j and k
such that its magnitude is unity. In this work μ is taken as μ= i+ j+ kffiffi

3
p . Quaternion is

not commutative. Hence, we obtain left side expression, which is given by

EL
nm =

1
2π

Z1

r=0

Z2π

θ=0

exp − μmθð Þf ðr, θÞTnðrÞrdθdr ð8Þ

In this work we consider only right side expression and drop out the symbol R.
Relationship between these two expressions is EL

nm = −ER
n, −m, it can be derived

using the conjugate property. Next, we derive an expression for implementation of
Enm, . substituting Eq. (4) into Eq. (8), we get

Enm =
1
2π

Z1

r=0

Z2π

θ=0

TnðrÞ fRðr, θÞi+ fGðr, θÞ+ fBðr, θÞk½ � exp − μmθð Þrdθdr ð9Þ

Let

Anm =
1
2π

Z1

r=0

Z2π

r=0

fRðr, θÞTnðrÞ exp − μmθð Þrdθdr
2
4

3
5

Bnm =
1
2π

Z1

r=0

Z2π

θ=0

fGðr, θÞTnðrÞ exp − μmθð Þrdθdr
2
4

3
5

Cnm =
1
2π

Z1

r=0

Z2π

θ=0

fBðr, θÞTnðrÞ exp − μjmθð Þrdθdr
2
4

3
5

Equation (9) can be written as
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Enm = iAnm + jBnm + kCnm.

Anm, Bnm and Cnm are complex values, hence, the above equation can be
expressed as

Enm = i AR
nm + μAI

nm

� �
+ j BR

nm + μBI
nm

� �
+ kðCR

nm + μCI
nmÞ

Substituting for μ= i+ j+ kffiffi
3

p and simplifying the above expression using Eq. 2 we

get

Enm = i AR
nm +

ði+ j+ kÞffiffiffi
3

p AI
nm

� �
+ j BR

nm +
ði+ j+ kÞffiffiffi

3
p BI

nm

� �
+ k CR

nm +
ði+ j+ kÞffiffiffi

3
p CI

nm

� �

Enm = −
1ffiffiffi
3

p AI
nm +BI

nm +CI
nm

� �
+ i AR

nm +
1ffiffiffi
3

p ðBI
nm −CI

nmÞ
	 


+ j BR
nm +

1ffiffiffi
3

p ðCI
nm −AI

nmÞ
	 


+ k CR
nm +

1ffiffiffi
3

p ðAI
nm −BI

nmÞ
	 


.

In order to express the above equation in a better way we let

S1= − 1ffiffi
3

p AI
nm +BI

nm +CI
nm

� �
, S2= AR

nm + 1ffiffi
3

p BI
nm −CI

nm

� �h i
, S3=

BR
nm + 1ffiffi

3
p ðCI

nm −AI
nmÞ

h i
and S4= CR

nm + 1ffiffi
3

p ðAI
nm −BI

nmÞ
h i

, now the above equation

can be expressed as
Enm = S1+ iS2+ jS3+ kS4. In next we derive the expression for quaternion

inverse circularly semi-orthogonal moments.

5 Quaternion Inverse Circularly Semi-orthogonal
Moments

Given a finite number up to a given order L of Quaternion Circularly Semi
orthogonal moments, we find the approximated image f ðr, θÞ using the equation
given below

f ðr, θÞ= ∑
L

n=0
∑
L

m= − L
EnmTnðrÞeμmθ ð10Þ

Substituting Enm from the above equation we get

f ðr, θÞ = ∑
L

n=0
∑
L

m= − L
ðS1 + iS2 + jS3+ kS4ÞTnðrÞeμmθ
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Substituting, μ= i+ j+ kffiffi
3

p
� �

in the above expression and after simplification we get

expression for inverse QCSO moments as

f ðr, θÞ = fs1ðr, θÞ + ifs2ðr, θÞ + jfs3ðr, θÞ + kfs4ðr, θÞ

where each term is equal to

fs1ðr, θÞ= real s1ð Þ− 1ffiffiffi
3

p imag s2ð Þ+ imag s3ð Þ+ imag s4ð Þ½ �

fs2ðr, θÞ= real s2ð Þ+ 1ffiffiffi
3

p imag s1ð Þ+ imag s3ð Þ− imag s4ð Þ½ �

fs3ðr, θÞ= real s3ð Þ+ 1ffiffiffi
3

p imag s1ð Þ− imag s2ð Þ+ imag s4ð Þ½ �

fs4ðr, θÞ= real s4ð Þ+ 1ffiffiffi
3

p imag s1ð Þ+ imag s2ð Þ− imag s3ð Þ½ �

In this expression real (.) and imag (.) terms denote real and imaginary part of the
value within the bracket. Each term represents the reconstruction matrix of s1, s2,
s3 and s4 respectively and they are determined using

s1 = ∑
L

n=0
∑
L

m= − L
S1TnðrÞejmθ, s2 = ∑

L

n=0
∑
L

m= − L
S2TnðrÞejmθ

s3 = ∑
L

n=0
∑
L

m= − L
S3TnðrÞejmθ, s4 = ∑

L

n=0
∑
L

m= − L
S4TnðrÞejmθ

These expressions can be easily implemented using equation Eq. 7.

6 Invariant Properties of QCSO Moments

Let ðr, θÞ and f ðr, θ−φÞ be the un rotated and rotated (by an angle φ) images
expressed in polar form, then QCSO moments of a rotated image is

Enm =
1
2π

Z1

r=0

Z2π

θ=0

f r, θ−φð ÞTnðrÞ expð− μmθÞrdθdr

Let θ ̄= θ−φ then d dθ= dθ ̄, substituting it in the above equation we obtain a
rotated QCSO moments as

Er
nm =Enm expð− μmφÞ

Applying modulus operation on both sides of the above equation we get
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Er
nmðf Þ

 = Enmðf Þk k.1

Rotation of an image by an angle φ does not change the magnitude, but the
phase changes from − μmθ to− ðμmθ+ μmφÞ. Hence, we say that rotation does not
change magnitude, therefore it is invariant to rotation. Translation invariant is
achieved by using the common centroid xc, ycð Þ obtained using R, G, B images.
This procedure was suggested by Fluser [24] and employed by number of
researchers like Chen et al. [18], Nisrine Das et al. [7]. Procedure consists of fixing
the origin of the coordinates at the color image centroid obtained using

xc =
ðmR

1, 0 +mG
1, 0 +mB

1, 0Þ
m00

, yc =
ðmR

0, 1 +mG
0, 1 +mB

0, 1Þ
m00

,m0, 0 =mR
00 +mG

00 +mB
00,

where mR
00, m

R
10, m

R
01 are the geometric moments of R image, whereas G and B

superscripts denote green and blue images, using the above coordinates, QCSO
moments invariants to translation is given by

Enm
1
2π

Z1

r=0

Z2π

θ=0

f r ̄, θ ̄ð ÞTnðr ̄Þ exp − μmθ ̄ð Þr ̄dr ̄dθ ̄ ð11Þ

where r ̄=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx− xcÞ2 + ðy− ycÞ2

q
θ ̄= tan− 1 y− yc

x− xc

� �
.

Moments calculated using the above expression are invariant to translation. In
most of the applications like image retrieval, images are scaled moderately, then the
scale invariant property is fulfilled automatically, because, QCSO moments are
defined on the unit circle using Eq. 6a [10].

Another useful property is flipping an image either vertical or horizontal. Let
f ðr, θÞ be the original image, f ðr, − θÞ and f ðr, π − θÞ be the vertical and horizontal
flipped images. One of the color images flipped vertically and horizontally are
shown in Fig. 2. We derive its QCSO moments. QCSO moments of the flip vertical
image is

EV
nm =

1
2π

∫
2π

θ=0
∫
∞

r=0
f ðr, − θÞTnðrÞe− μmθrdrdθ

Substituting ∅= − θ, d∅= − dθ, and Simplifying the above equation, we
obtain the moments as

Ev
nm = −E ⋅

nm

where E ⋅
nm is the complex conjugate of the QCSO moments. QCSO moments of flip

horizontal image is given by
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Eh
nm =

1
2π

Z2π

θ=0

Z∞

r=0

f r, π − θð ÞTnðrÞe− μmθrdrdθ

Substituting ∅= π − θ, d∅= − dθ, we obtain the moments as

Eh
nm = −E ⋅

nme
− ði+ j+ kÞffiffi

3
p mπ

Hence, one can compute the flipped image moments using the above equation.
Some of the properties like invariance to contrast changes can be verified by
normalizing moments by E00.

7 Simulation Results

In order to verify the proposed Quaternion circularly semi orthogonal moments for
both reconstruction capability and invariant for rotation, translation, and flipping we
have selected four color images namely, Lion image, Vegetable image, Parrot

(a) Vertical flipped image (b) Horizontal flipped image 

(c) Rotated image 2 deg clockwise (d) Translated image  x=2, y=1 units

Fig. 2 Flipped, rotated and translated images
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(c) Reconstructed Lion image (d) Reconstructed Parrot Image

(e) Original Image f) Reconstructed Image using QCSO 

(g) Original Image (h) Reconstructed image using QCSO

Fig. 3 Original and reconstructed Images using QCSO Moments
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image and painted Mona Lisa images and computed their QCSO moments and
these color images are shown in Fig. 2, down loaded from Amsterdam Library of
objects, reconstructed using only moments of order 40 (L = 40 in Eq. 10).
Obtained results are shown in Fig. 3. High frequency information like edges is well
preserved. These images (Lion image is shown in Fig. 2) are rotated by 2 degrees in
clock wise using IMROTATE function available in MATLAB 2010 software and
magnitude of only few QCSO moments are computed and results are reported in
Table 2. From these results we can note that before and after rotation QCSO
moments are almost equal. We have also verified translated property by translating
Lion image and Vegetable images by 2 units in x direction (dx = 2) and 1 unit
(dy = 1) in y direction. Their results (magnitude of Enm) computed using Eq 11 are
shown in Table 3. Difference, between the moments before and after translation is
very small. Finally, moments (magnitude of Enm) calculated for flipped vertical
images are reported in Table 4.

Table 2 Rotation invariants of QCSO moments

Moments Rotated
vegetable image

Rotated
parrot image

Rotated Lion
image

Monalisa
image

Rotated
image

E0, 0j j 0.5188 0.398 0.1961 0.382 0.3792
E2, 0j j 0.0331 0.0343 0.0716 0.0396 0.0393
E3, 1j j 0.0413 0.033 0.0320 0.1055 0.1034
E4, 2j j 0.0186 0.0131 0.0012 0.0114 0.0109
E5, 1j j 0.0283 0.0277 0.0123 0.0594 0.05801

Table 3 Translation invariants of QCSO moments

x = 2, dy = 1 Vegetable image Translated image Lion image Translated image

E0, 0j j 0.5274 0.4944 0.1987 0.1803
E2, 0j j 0.0338 0.029 0.0723 0.0608
E3, 1j j 0.0415 0.0397 0.0325 0.037
E4, 2j j 0.0196 0.0182 0.0012 0.0021
E5, 1j j 0.0276 0.0203 0.0123 0.0102

Table 4 Original and flipped image QCSO moments

Vertical flipped Parrot image Flipped image Lion image Flipped image

E0, 0j j 0.399 0.4052 0.1987 0.1987
E2, 0j j 0.0338 0.0328 0.0723 0.0726
E3, 1j j 0.0330 0.0289 0.0325 0.0324
E4, 2j j 0.0134 0.0137 0.0012 0.0012
E5, 1j j 0.0275 0.0267 0.0123 0.0124
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8 Conclusions

In this paper we proposed a new Quaternion circularly semi orthogonal moments
for color images. Further, we have showed that these moments are invariant to
rotation, scale, translation and we also derived moments for flipped color images.
Presently, we are applying these moments both for color and monochrome super
resolution problems.
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