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Abstract This paper presents a new feature selection method for learning based

single image super-resolution (SR). The performance of learning based SR strongly

depends on the quality of the feature. Better features produce better co-occurrence

relationship between low-resolution (LR) and high-resolution (HR) patches, which

share the same local geometry in the manifold. In this paper, Zernike moment is

used for feature selection. To generate a better feature vector, the luminance norm

with three Zernike moments are considered, which preserves the global structure.

Additionally, a global neighborhood selection method is used to overcome the prob-

lem of blurring effect due to over-fitting and under-fitting during K-nearest neighbor

(KNN) search. Experimental analysis shows that the proposed scheme yields better

recovery quality during HR reconstruction.

Keywords Super-resolution ⋅ Zernike moment ⋅ Luminance norm ⋅ Manifold

learning ⋅ Global neighborhood selection ⋅ Locally linear embedding

1 Introduction

Visual pattern recognition and analysis plays a vital role in image processing and

computer vision. However, it has several limitations due to image acquisition in the

unfavorable condition. Super-resolution (SR) technique is used to overcome the lim-

itations of the sensors and optics [1]. Super-resolution is a useful signal processing
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technique to obtain a high-resolution (HR) image from an input low-resolution (LR)

image. In this work, we have modeled a learning based super-resolution approach to

generate a HR image from a single LR image.

The problem of learning based SR was introduced by Freeman et al. [2] called

example-based super-resolution (EBSR). In their work, a training set has been used

to learn the fine details that correspond to the region of low-resolution using the

one-pass algorithm. Later, Kim et al. [3] extended their formulation by considering

kernel ridge regression which combines the idea of gradient descent and matching

pursuit. Afterward, Li et al. [4] have proposed example-based single frame SR using

support vector regression (SVR) to illustrate the local similarity. However, due to

lack of similarities in local geometry and neighborhood preservation, aliasing effect

is generated during HR reconstruction. To preserve the neighborhood information,

a neighbor embedding based SR (SRNE) was introduced by Chang et al. [5]. There-

after, in [6–10] an extended neighbor embedding based SR is used by considering

different feature selection methods. Chan et al. [8] have proposed a neighbor embed-

ding based super-resolution algorithm through edge detection and feature selection

(NeedFS), where a combination of luminance norm and the first-order gradient fea-

ture is introduced for edge preservation and smoothening the color region. To pre-

serve the edge, Liao et al. [9] have proposed a new feature selection using stationary

wavelet transform (SWT) coefficient. Mishra et al. [10] have emphasized on neigh-

borhood preservation and reduction of sensitivity to noise. Therefore, they have pro-

posed an incremental feature selection method by combining the first-order gradient

and residual luminance inspired by image pyramid. Gao et al. [11] have proposed

a method to project the original HR and LR patch onto the jointly learning unified

feature subspace. Further, they have introduced sparse neighbor selection method to

generate a SR image [12]. Bevilacqua et al. [13] have introduced a new algorithm

based on external dictionary and non-negative embedding. They have used the itera-

tive back-projection (IBP) to refine the LR image patches and a joint K-means clus-

tering (JKC) technique to optimize the dictionary. In [14], a new Zernike moment

based SR has been proposed for multi-frame super-resolution. Due to orthogonal-

ity, rotation invariance, and information compaction of Zernike moment, they have

formulated a new weight value for HR image reconstruction.

However, in practice, preserving the fine details in the image is inaccurate in

embedding space, which is still an open problem. For better local compatibility and

smoothness constraints between adjacent patches, a better feature selection is neces-

sary. Hence, we have proposed a new feature selection method inspired by Zernike

moment [15]. In our work, a feature vector has been generated by the combination

of three Zernike moments and luminance norm. In addition, a global neighborhood

selection method is used to generate the K value for neighborhood search to over-

come the problem of over-fitting and under-fitting. The proposed approach is verified

through the different performance measures. The experimental results indicate that

proposed scheme preserves more fine details than the state-of-the-art methods.
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The remainder of the paper is organized as follows. Section 2 describes the prob-

lem statement. Section 3 presents an overall idea about Zernike moment. Section 4

discusses the proposed algorithm for single image super-resolution using Zernike

moment. Experimental results and analysis are discussed in Sect. 5 and the conclud-

ing remarks are outlined in Sect. 6.

2 Problem Statement

In this section, the objective of single image super-resolution problem is defined

and formulated. Let us consider a set of n low-resolution images of size M × N.

Theoretically each low-resolution image can be viewed as a single high-resolution

image of size DM × DN that has been blurred and down sampled by a factor of D.

A particular low-resolution image Xl is represented as

Xl = DB(Xh) , (1)

where Xh is a DM × DN high-resolution image, B is 5 × 5 Gaussian blur kernel and

D is the down sampling factor. In the proposed scheme, we consider a neighbor

embedding approach to generate a SR image for a given LR image. Hence, a set of

LR and its corresponding HR training image is required to find out a co-occurrence

relationship between LR and HR patches.

3 Background

In the field of image processing and pattern recognition, moment-based features play

a vital role. The use of the Zernike moments in image analysis was introduced by

Teague [15]. Zernike moments are basically projections of the image information to

a set of complex polynomials, that from a complete orthogonal set over the interior

of a unit circle, i.e.

√
x2 + y2 ≤ 1.

The two-dimensional Zernike moments of an image intensity function f (x, y) of

order n and repetition m are defined as

Znm = n + 1
𝜋 ∫ ∫√

x2+y2≤1
f (x, y)V∗

nm (x, y) dxdy , (2)

where
n+1
𝜋

is a normalization factor. In discrete form Znm can be expressed as

Znm =
∑

x

∑

y
f (x, y)V∗

nm (x, y) ,

√
x2 + y2 ≤ 1 . (3)
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The kernel of these moments is a set of orthogonal polynomials, where the complex

polynomial Vnm can be expressed in polar coordinates (𝜌, 𝜃) as

Vnm (𝜌, 𝜃) = Rnm (𝜌) e−jm𝜃 , (4)

where n ≥ 0 and n − |m| is an even positive integer.

In (4), Rnm(𝜌) is radial polynomial and is defined as

Rnm (𝜌) =

n−|m|
2∑

s=0

(−1)s (n − s)!rn−2s

s!
(

n+|m|
2

− s
)
!
(

n−|m|
2

− s
)
!
. (5)

The real and imaginary masks are deduced by a circular integral of complex poly-

nomials. On the whole, edge detection is conducted at the pixel level. At each edge

point, orthogonal moment method is used to calculate accurately gradient direction.

Mostly, the higher-order moments are more sensitive to noise. Therefore, first three

2nd order moments has been employed for feature selection. The real and imaginary

7 × 7 homogeneous mask of M11 and M20 should be deduced by circular integral of

V∗
11 and V∗

20 [16]. Hence, three Zernike moments are Z11R, Z11I and Z20.

4 Neighbor Embedding Based SR Using Zernike Moment

In this section, a new feature selection method is proposed using Zernike moments

for neighbor embedding based super-resolution. The feature vector is generated by

combining the three Zernike moments with luminance norm. Moreover, neighbor-

hood size for K-nearest neighbor (KNN) search is generated by global neighborhood

selection [17]. The overall block diagram of the proposed scheme is shown in Fig. 1.

4.1 Neighbor Embedding Based SR

To perform neighbor embedding based SR, luminance component of each image is

split into a set of overlapping patches. XL =
{
xtl
}T
t=1 is the training LR image and

XH =
{
xsh
}S
s=1 is the corresponding HR image. To preserve the inter-patch relation-

ship between the LR and HR patch, if the patch size of LR image is s × s then the

patch size of corresponding HR image will be fs × fs, where f is the magnification

factor. The input LR image YL =
{
ytl
}T
t=1 and expected HR image YH =

{
ysh
}S
s=1 pair

should have same number of patches.

In training process, for each LR patch K-nearest neighbors search among all train-

ing LR patches and the optimal reconstruction weight vector Wt calculated by min-

imizing the local reconstruction error as
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Fig. 1 Block diagram of proposed scheme

𝜀

t = min
‖‖‖‖‖‖
ytl −

∑

xsl∈Nt

wtsxsl

‖‖‖‖‖‖

2

, (6)

subject to two constrains, i.e.,
∑

ysl∈Nt
wts = 1 and wts = 0 for any ysl ∉ Nt. This is

generally used for normalization of the optimal weight vector, where Nt is the set of

neighborhood of ytl in training set XL.

The local Gram matrix Gt plays an important role to calculate the weight wt asso-

ciated to ytl, which is defined as

Gt =
(
ytl1

T − X
)T (ytl1

T − X
)
, (7)

where one’s column vectors are considered to match the dimensionality with X. The

dimension of X is D × K, where its columns represent the neighbors of ytl. The opti-

mal weight vector Wt for ytl having the weights of each neighbors wts are reordered

by s. The weight is calculated as

wt=
G−1

t 1
1TG−1

t 1
, (8)
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After solving wt efficiently, the high-resolution target patch yth is computed as

follows:

yth =
∑

xsl∈Nq

wtsxsh (9)

Then the HR patches are stitched according to the corresponding coordinates by

averaging the overlapping regions. The detailed procedure of the proposed scheme

is given in Algorithm 1.

Algorithm 1 Neighbor embedding based SR using Zernike feature

Input : Training LR image XL =
{
xtl
}T
t=1 and HR image XH =

{
xsh
}S
s=1,

Testing LR image YL =
{
ytl
}T
t=1,

Patch size – s, Up sampling size – f .
Output : Expected HR image.

1. Split XL and YL into patches of size s × s with overlapping by one pixel.

2. Split XH into patches of size fs × fs with overlapping by f × 1 pixels accordingly.

3. Concatenate the three Zernike moments of XL, XH and YL with its corresponding luminance

norm for feature vector.

4. For each testing LR patch ytl 𝜖 YL.

(a) Find Nt by K-nearest neighbors among all training patches using Euclidean distance.

Here, K is calculated by global neighborhood selection.

(b) Compute optimal reconstruction weights of ytl by minimizing the local reconstruction

error.

(c) Compute the high-resolution embedding ysh using (9).

5. To generate expected HR image enforce inter-patch relationships among the expected HR

patches by averaging the feature values in overlapped regions between adjacent patches.

4.2 Zernike Moment Based Feature Selection

In this section, an efficient feature selection method for neighbor embedding based

super-resolution method is proposed. In [5, 7, 8], several features are used for bet-

ter geometry preservation in the manifold. But, consistency in structure between the

neighborhood patches embedding still is an issue. To overcome the problem like sen-

sitivity of noise, recovery quality, and neighborhood preservation among the patches,

Zernike moment feature descriptor is used as appropriate feature selection. Due to

robustness to noise and orthogonal properties of Zernike moment, a perfect repre-

sentation of information is done. Basically, the features are selected from the lumi-

nance channel because it is sensitive to the human visual system. Luminance norm

is also considered as a part of the features because it represent the global structure
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of the image. For each pixel, there are four components of a feature vector i.e.,
[LN,Z11R,Z11I , and Z20]. As the learning based SR perform on the patch, feature

vector of each patch size is 4p2, where p is the patch size.

4.3 Global Neighborhood Selection

Choosing the neighborhood size for locally linear embedding has great influence

on HR image reconstruction because the neighborhood size K determines the local

and global structure in the embedding space. Moreover, fixed neighborhood size

leads to over-fitting or under-fitting. To preserve the local and global structure, the

neighbor embedding method search a transformation. Hence, global neighborhood

selection method is used. The reason for global neighborhood selection is to preserve

the small scale structures in manifold. To get the best reconstructed HR image, well

representation of high dimensional structure is required in the embedding space.

This method has been introduced by Kouropteva et al. [17], where Residual Vari-

ance is used as a quantitative measure that estimate the quality of the input-output

mapping in embedding space. The residual variance [18] is defined as

𝜎

2
r (dX , dY ) = 1 − 𝜌

2
dX ,dY

, (10)

where 𝜌 is the standard linear correlation coefficient, takes over all entries of dX
and dY matrices; The element of dX and dY matrices having size m × m represents

the Euclidean distance between pair of patches in X and Y . According to [17] lower

is the residual variance better is the high dimensional data representation. Hence,

optimal neighborhood size K = (kopt) computed by hierarchical method as

kopt = argmin
k
(1 − 𝜌

2
dX ,dY

) . (11)

The overall mechanism of global neighborhood selection is summarized in

Algorithm 2

Algorithm 2 Neighborhood selection

Input : All patches.

Output : Neighborhood size K.

1. Set kmax as the maximal possible value of kopt.
2. Calculate the reconstruction error

𝜀 =
∑N

i=1
‖‖‖xi −

∑N
j=1 wijxij

‖‖‖ for each k𝜖[1, kmax].
3. Find all minimum of 𝜀(k) and corresponding k’s which compose the set of s of initial can-

didate.

4. For each k𝜖s compute residual variance.

5. Compute K = (kopt) using (11).



20 D. Mishra et al.

5 Experimental Results

5.1 Experimental Setting

To validate the proposed algorithm, simulations are carried out on some standard

images of different size like Parrot, Peppers, Lena, Tiger, Biker, and Lotus. In this

experiment, a set of LR and HR pairs are required for training. Hence, LR images are

generated from the ideal images by blurring each image using (5 × 5) Gaussian ker-

nel and decimation using 3 ∶ 1 decimation ratio in each axis. A comparative analy-

sis has been made with respect to two performance measures, namely, pick signal to

noise ratio (PSNR) and feature similarity index (FSIM) [19]. The value of FSIM lies

between 0 to 1. The larger value of PSNR and FSIM indicates better performance.

5.2 Experimental Analysis

To evaluate the performance of the proposed scheme, we compare our results with

four schemes namely, Bicubic interpolation, EBSR [2], SRNE [5], and NeedFS [8].

(a) Parrot (b) Peppers (c) Lena (d) Tiger (e) Biker (f) Lotus

Fig. 2 Test images

Table 1 PSNR and FSIM results for test images with 3× magnification

Images Bicubic EBSR [2] SRNE [5] NeedFS [8] Proposed

Parrot 27.042 28.745 29.623 31.764 32.135

0.8340 0.8458 0.8511 0.8603 0.8693

Peppers 28.756 29.137 30.969 32.111 33.249

0.8397 0.8469 0.8582 0.8725 0.8839

Lena 29.899 30.117 31.826 33.026 34.762

0.8527 0.8702 0.8795 0.8889 0.9023

Tiger 24.549 25.771 26.235 27.909 28.423

0.8239 0.8394 0.8403 0.8519 0.8604

Biker 25.009 26.236 27.169 28.669 29.973

0.8331 0.8481 0.8537 0.8601 0.8715

Lotus 26.829 27.787 28.979 30.276 31.862

0.8338 0.8501 0.8637 0.8756 0.8904
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(a) Z11R (b) Z11I (c) Z20

Fig. 3 Three Zernike moments of Lena image

(a) LR image (b) Bicubic interpolation (c) EBSR [2] (d) SRNE [5]

(e) NeedFS [8] (f) Proposed method (g) Ground truth image

Fig. 4 Comparison of SR results(3×) of Lena image

The test images are shown in Fig. 2. Table 1 lists the PSNR and FSIM values for all

test images. The 1st row and 2nd row in the table indicates PSNR and FSIM values

respectively. The features generated by Zernike moment for Lena image are shown

in Fig. 3. The visual comparison for Lena and Tiger image are shown in Figs. 4 and

5 respectively. To validate the performance of the proposed scheme, we compare

the results with state-of-the-art approaches with different K value. In SRNE [5], the

K value is fixed which leads to blurring effect in the expected HR image; whereas

in NeedFS [8] two different K values are provided according to the patches having

edge. In our scheme, the K value lies between 1 to 15. Due to global neighborhood

selection, our method gives a better results in terms of both PSNR and FSIM as

shown in Fig. 6. It shows the graph is increased gradually between the K value 5 to

9. However, it gives only good results for a certain K value in the state-of-the-arts.
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(a) LR image (b) Bicubic interpolation (c) EBSR [2] (d) SRNE [5]

(e) NeedFS [8] (f) Proposed method (g) Ground truth image

Fig. 5 Comparison of SR results(3×) of Tiger image

Fig. 6 PSNR and FSIM comparison of Lena image

6 Conclusion

In this paper, we have proposed a new feature selection method for neighbor embed-

ding based super-resolution. The feature vector is generated by combining three

Zernike moments with the luminance norm of the image. The global neighborhood

size selection technique is used to find the K value for K-nearest neighbor search.
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Both qualitative and quantitative comparison of the proposed method is carried out

with the state-of- the-art methods. The results show that the proposed method is

superior to the other methods in terms of PSNR and FSIM values. However, for

texture based image edge preservation is still an issue that will be addressed in our

future work.
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