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Abstract Preprocessing the noisy sinogram before reconstruction is an effective
and efficient way to solve the low-dose X-ray computed tomography (CT) problem.
The objective of this paper is to develop a low-dose CT image reconstruction
method based on statistical sonogram smoothing approach. The proposed method is
casted into a variational framework and the solution of the method is based on
minimization of energy functional. The solution of the method consists of two
terms, viz., data fidelity term and a regularization term. The data fidelity term is
obtained by minimizing the negative log likelihood of the signal-dependent
Gaussian probability distribution which depicts the noise distribution in low-dose
X-ray CT. The second term, i.e., regularization term is a nonlinear CONvolutional
Virtual Electric Field Anisotropic Diffusion (CONVEF-AD) based filter which is an
extension of Perona–Malik (P–M) anisotropic diffusion filter. The main task of
regularization function is to address the issue of ill-posedness of the solution of the
first term. The proposed method is capable of dealing with both signal-dependent
and signal-independent Gaussian noise, i.e., mixed noise. For experimentation
purpose, two different sinograms generated from test phantom images are used. The
performance of the proposed method is compared with that of existing methods.
The obtained results show that the proposed method outperforms many recent
approaches and is capable of removing the mixed noise in low-dose X-ray CT.
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1 Introduction

Nowadays X-ray computed tomography (CT) is one of the most widely used
medical imaging modalities for various clinical applications such as diagnosis and
image-guided interventions. Recent discoveries in medical imaging have certainly
improved the physician’s perspectives for better understanding of diseases and
treatment of the patients. Unfortunately, on the other hand it may also show some
potential harmful effects of X-ray radiation including lifetime risk of genetic,
cancerous, and other diseases due to overuse of imaging diagnostic [1]. Therefore,
the effort should be made to reduce the radiation in medical applications. To realize
this objective, many algorithms have been developed during the last two decades
for CT radiation dose reduction [1–3]. From these algorithms, preprocessing the
noisy and under sampled sinogram by statistical iterative methods has shown great
potential to reduce the radiation dose while maintaining the image quality in X-ray
CT as compared with the FBP reconstruction algorithm. For the sinogram
smoothing purpose, it is very important to consider a widely studied effective
regularization terms or priors [4–6]. The main aim of using the regularization priors
during reconstruction is to lower the noise effects and preserve the edges conse-
quently maximizing the important diagnostic information. However, one of the
drawbacks associated with using regularization term is over penalization of the
image or its gradient which may lead to loss of basic fine structure and detailed
information. To address these drawbacks, still several priors which include
smoothing, edge-preserving regularization terms, and iterative algorithms with
varying degrees of success have been already studied and used to obtain
high-quality CT reconstruction images from low-dose projection data. In view of
the above-discussed problems, an anisotropic diffusion nonlinear partial differential
equation (PDE) based diffusion process was developed by Perona and Malik (P-M)
[8] for image smoothing while preserving the small structures. In this process, the
diffusion strength is controlled by a gradient magnitude parameter to preserve
edges. The over smoothing problem associated with P–M model was addressed by
Ghita [9], by proposing the concept of Gradient Vector Flow (GVF) field for the
implementation of the anisotropic diffusion models. But it has the disadvantage to
produce undesirable staircase effect around smooth edges. Due to this effect, this
method could not remove the isolated noise accurately and falsely recognize the
boundaries of different blocks that actually belong to the same smooth area as
edges. However, due to the presence of mixed noise in the sinogram data, i.e.,
signal-dependent and signal-independent Gaussian noise; these methods cannot be
applied directly. Even, GVF fields have no ability to find edge when images are
corrupted by extraneous or Gaussian noise, and thus the denoising effect of mixed
noisy images remains unsatisfactory.

In this work, the low-dose CT image reconstruction has been improved by
modifying the CONVEF-based P–M approach which is used as a prior in the
denoising process. The proposed modified CONVEF-AD serves as a regularization
or smoothing term for low-dose sinogram restoration to deal with the problem of
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mixed (Poisson + Gaussian) noise as well as ill-posedness issue. The proposed
reconstruction model provides many desirable properties like better noise removal,
less computational time, preserving the edges, and other structure. It can also
overcome the staircase effect effectively. The proposed model performs well in
low-dose X-ray CT image reconstruction. Also, the proposed results are compared
with some recent state-of-the-art methods [5, 6].

Rest of the paper is divided into the following sections. Section 2 presents the
methods and materials of the work. The proposed variational framework for
sinogram restoration using CONVEF-AD regularized statistical image reconstruc-
tion method is presented in Sect. 3. Section 4 presents the discussion on simulation
experiments results achieved by the proposed CONVEF-AD reconstruction method
in both the simulated data and CT data. The conclusions are given in Sect. 5.

2 Methods and Models

Noise modeling of the projection (or sinogram) data, specifically for low-dose CT,
is essential for the statistics-based sinogram restoration algorithms. Low-dose (or
mAs) CT sinogram data usually contained serious staircase artifacts. It also follows
a Gaussian distribution with a nonlinear signal independent as well as Poisson
distribution with signal-dependent noise model between the sample mean and
variance. To address this issue, several approaches are available in the literature for
statistical sinogram smoothing methods like penalized weighted least square
(PWLS) [7], Poisson likelihood (PL) [3] methods, etc. [5]. However, these existing
methods often suffer from noticeable resolution loss especially in the case of
constant noise variance over all sinogram data [1–3].

The formation of X-ray CT images can be modeled approximately by a discrete
linear system as follows:

g=Af , ð1Þ

where f = f1, f2, . . . , fNð ÞT , is the original image vector to be reconstructed, N is the
number of voxels, the superscript T is the transpose operator, g= g1, g2, . . . , gMð ÞT ,
is the measured projection vector data, M is the total number of sampling points in
the projection data, A= aij

� �
, i = 1, 2, …, M and j = 1, 2, …, N is the system

matrix of size I × J and relates with f and g. The value of aij is commonly
calculated by using the intersectional length of projection ray i with pixel j.

It has been shown in [3, 10] that there are two principal sources of noise
occurred during CT data acquisition, X-ray quanta noise (signal-dependent com-
pound Poisson distribution), and system electronic background noise
(signal-independent Gaussian or normal distribution with zero mean). However, it
is numerically difficult to directly implement these models for data noise simulation.
Several reports have discussed the approximation of this model by the Poisson
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model [4]. Practically, the measured transmission data Ni can be assumed to sta-
tistically follow the Poisson distribution upon a Gaussian distributed electronic
background noise [2]:

Ni ≈Poisson N ̃i
� �

+Gaussian me, σ2e
� � ð2Þ

where me and σ2e are the mean and variance of the Gaussian distribution from the
electronic background noise, N ̃i is the mean of Poisson distribution. In reality, the
mean me of the electronic noise is generally calibrated to zero (i.e., ‘dark current
correction’) and the associative variance slightly changes due to different settings of
tube current, voltage, and durations in a same CT scanner [5]. Hence, in a single
scan, the variance of electronic background noise can be considered as uniform
distribution.

Based on the noise model in Eq. (2), the calibrated and log-transformed pro-
jection data may contain some isolated noise points which follow approximately a
Gaussian distribution. After removing this noisy points from the projection data,
there is a relationship between the data sample mean and variance, which is
described as [6]:

σ2i =
1
N0i

exp gĩð Þ 1+
1
N0i

exp gĩð Þ σ2e − 1.25
� �� �

ð3Þ

where N0i is the incident X-ray intensity,g ̃i is the mean of the log-transformed ideal
sinogram datum gi on path i, and σ2e means background Gaussian noise variance.
During implementation, the sampling mean y ̃i could be calculated approximately by
taking the average of neighboring 3 × 3 window. The parameters N0i and σ2e could
be measured as a part of the standard process in CT routine calibration systems [3].

3 The Proposed Model

The energy minimization function is used to obtain sinogram smoothing in varia-
tional framework can be defined as:

f * = arg min
f ≥ 0

E fð Þ ð4Þ

where the energy functional is described as follows:

E fð Þ=E1 fð Þ+ λE2 fð Þ ð5Þ

In the Eq. (5), E1 fð Þ is used to represents data fidelity (or equivalently, data
fitting, data mismatch, and data energy) term which ensures the modeling of
statistics of projection data f and the measurement g. E2 fð Þ is a regularization (or
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equivalently, prior, penalty, and smoothness energy) term. The parameter λ is called
balancing parameter that controls the degree of prior’s influence between the
estimated and the measured projection data.

By taking the (negative) log likelihood of the estimated data and ignoring the
constant and irrelevant term, the joint probability distribution function (pdf) can be
expressed as [10]:

P g fjð Þ= ∏
M

i=1
P gi fijð Þ= ∏

M

i=1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2i

p exp −
gi − fið Þ
2σ2i

2
 !

ð6Þ

where g= g1, g2, . . . , gMð ÞT , is the measured projection vector data. Then, ignoring
the constant, the negative logarithm function can be written as:

E1ðf Þ= lnP g fjð Þ= ∑
M

i=1

gi − fið Þ
2σ2i

2
( )

ð7Þ

According to the MRF framework, the smoothness energy is calculated by the
negative log likelihood of the priori [4]. The focus in this paper is to use nonlinear
CONVEF-based P-M anisotropic diffusion regularization term for two reasons.
(i) The integral nature of the edge-preserving MRF priori does not suit well for high
continuity of the sparse measured data. (ii) The PDE-based AD model is capable of
giving the optimal solution in less computational time. Therefore, the smoothness
function can be defined as follows [10]:

E2 fð Þ= arg min λ

Z
Ω
ϕ ∇fk k2
	 


dΩ
� �

ð8Þ

where ϕ ∇fk k2
	 


represents gradient norm of the image of corresponding energy

function. The solution of the proposed sinogram smoothing of Eq. (4) can be
described by substituting Eqs. (7) and (8) to Eq. (4):

E fð Þ= argmin
f ≥ 0

E fð Þ= ∑
M

i=1

gi − fið Þ
2σ2yi

2
( )

+
Z
Ω

λ ∇fk k2
	 


dΩ ð9Þ

The functional E fð Þ is defined on the set of f ∈BV Ωð Þ such that log f ∈L1 Ωð Þ
and f must be positive. After minimizing Eq. (9) using combined approach of
Euler–Lagrange minimization technique with gradient descent, the solution to
above Eq. (9) can be written as:

ft =
∂f
∂t

= ∑
M

i=1

gi − fið Þ2
σ2i

( )
+ λ div c ∇fj jð Þ∇fð Þ, with

∂f
∂ n! =0 on ∂Ω ð10Þ
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where div and ∇ are known as divergence and gradient operator, respectively,
f t=0ð Þ = f0 is the initial condition for noisy image. The value of diffusion coefficient
c ⋅ð Þ represents nonnegative monotonically decreasing function of the image or its
gradient. Generally c ⋅ð Þ takes as:

c ∇fj jð Þ=1 1̸ + ∇fj j ̸kð Þ2
	 


ð11Þ

where k is a conductance parameter also known as gradient magnitude threshold
parameter that controls the rate of diffusion and the level of contrast at the bound-
aries. Since the scale-space generated by these function is different. The diffusion
coefficient c favors high-contrast edges over low-contrast ones. The small value of k
is well capable of preserving small edges and other fine details but the smoothing
effect on results is poor and weak. Conversely, on the large value of k, denoising
effects on results is better but it will lose small edges and fine details. Since, it is
reported in literature [3, 12] that second term in Eq. (9) is nonlinear AD prior to
detect edges in multi-scale space, where diffusion process is controlled by the gra-
dient coefficient of image intensity in order to preserve edges. However, P-M dif-
fusion model can remove isolated noise and preserve the edges to some extent but it
cannot preserve the edge details effectively and accurately which leads to blocking
staircase effect. Moreover, it also gives poor results for very noisy images and the
values of high gradient areas of the images get smoothen out that affects the fine
edges. Therefore more diffusion cannot be allowed to remove the noise along edges.

To address these limitations of AD method, CONVEF-based P-M anisotropic
diffusion process is introduced as a second term in Eq. (8). The second term is an
expanded form of the P-M model [11] which is defined as:

div c′ ∇fj jð Þ∇ ∇fj j ⋅ ∇f + c fð Þ∇2f
� � ð12Þ

where the first term in Eq. (12) is an inverse diffusion term used to enhance or
sharpen the boundaries while the second term is a Laplacian term used for
smoothing the regions that are relatively flat, ∇f is used to displace the inverse
diffusion term to improve the denoising effect, as the GVF field basically imple-
ments a weighted gradient diffusion process. Thus, we used here a new version of
CONVEF-AD based P–M equation defined as:

ft = 1− IN f0ð Þð Þ med f0ð Þ− ft− 1ð Þ+ IN f0ð Þ ⋅ −ECONVEF ⋅ ∇f + c∇2f
� � ð13Þ

where f0 is the input noisy image, ft− 1 is the updated f at iteration t − 1. IN(f0 ) is the
Poisson or Gaussian estimator defined in [4, 11], med is the median filter, and
ECONVEF denotes the Convolutional Virtual Electric Field defined as follows [12]:

ECONVEF = −
a

rn+2
h

⊗ q, −
b

rn+2
h

⊗ q
� �

ð14Þ
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where rh =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 + h

p
, is a desired kernel that modifies the distance metrics, the

variable h plays a significant role in multi-scale space filtering, (a, b) is used as the
virtual electric field in the image pixel, and q denotes the magnitude of the image
edge maps. The signal-to-noise (SNR) ratio, the smoothness, and quality of an
image are directly dependent on the parameter h. Finally the proposed model is
introduced by incorporating the new version of modified CONVEF-AD based
P-M Eq. (13) within the variational framework of sinogram smoothing discussed in
Eq. (10). By applying Euler–Lagrange combined with gradient descent minimiza-
tion technique, the Eq. (10) reads as:

ft =
gi − fið Þ
σ2i

+ λ 1− IN f0ð Þð Þ med f0ð Þ− ft− 1ð Þ+ IN f0ð Þ ⋅ −E ⋅ ∇f + c∇2f
� �� �

, ð15Þ

The proposed model in Eq. (15) is capable of dealing with the case of mixed
noise sinogram data by introducing the CONVEF-AD regularization term. The
value of k is set to σe which represents the minimum absolute deviation (MAD) of
the image gradient. To make the adaptive or automatized nature of value of k by
using the following formula:

k= σe =1.4826 ×medianf ∇f −medianf ∇fk kð Þ�� ��� 
, ð16Þ

For digital implementations, the Eq. (15) can be discretized using finite differ-
ences schemes [4]. After discretization of the proposed CONVEF-AD model it
reads as:

f n+1
i, j = f ni, j +Δt

gn
i, j
− f n

i, j

	 

σ2i, j

	 
n + λ 1− IN f0ð Þð Þ med f0ð Þ− f n
t− 1

	 

+ IN f0ð Þ ⋅ −En ⋅ ∇f n + c∇2f n

� �	 
2
64

3
75,

ð17Þ

where the index n represents the number of iteration. The Von Neumann analysis
[4] shows that for the stability of discretized versions of Eq. (17), the following
condition should be satisfied as Δt ð̸Δf Þ2 < 1 ̸4. If the grid size is set to Δf =1 then
Δt≤ 1 ̸4.

4 Results and Discussion

In this work, two test cases are used as shown in Figs. 1a and 2a, both are
computer-generated mathematical simulated phantom one is modified Shepp–
Logan head phantom and another is CT phantom used to validate the result per-
formance of the proposed CONVEF-AD based sinogram smoothing method for
low-dose CT reconstruction. For simulation purposes, MATLAB v2013b has been
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used on a PC with Intel (R) Core (TM) i5 CPU 650 @ 3.20 GHz, 4.00 GB RAM,
and 64-bit operating system. The brief description of the various parameters used
for generation and reconstruction of the two test cases are as follows: Both test
cases are of size 128 × 128 pixels and 120 projection angles were used. To
simulate the noisy low-dose sinogram data, Eq. (2) was used, which is in mixed
noise nature, i.e., both signal-dependent and signal-independent Gaussian dis-
tributed, and all are assumed to be 128 radial bins and 128 angular views evenly
spaced over 1800. A mixed noise of magnitude 10 % is added to sinogram data. In
simulation purposes fan-beam imaging geometry were used. By applying radon
transform noise free sinogram were generated which is shown in Figs. 1b and 2b.
After that isolated data from the noisy sinogram which are shown in Figs. 1c and
2c, were extracted by applying a 3× 3 median filter and choose the output as an
initial guess estimator. The proposed model consists of many advantages over
Gradient Vector Flow (GVF) and Inverse-GVF method, like improvised numerical
stability and efficient estimation of high order derivatives. Therefore, the proposed
model introduced in Eq. (13) may effectively remove mixed noise properties, i.e.,
signal dependent and signal independent present in low-dose sinogram data and
acceptable computational cost. Also compute the mean and variance by using
Eq. (3) and then calculate the gradient coefficient by applying Eq. (11). In this

Fig. 1 The reconstructed results of modified Shepp–Logan phantom with similar standard
methods from the noisy sinogram data. a Original Shepp–Logan phantom, b noise free sinogram,
c noisy sinogram, d reconstructed image by TV+FBP, e reconstructed result by AD+FBP, and
f reconstructed result by CONVEF_AD+FBP
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experiment, the parameters of the proposed models are as follows: The INGVF field
parameters are set to 0.2. In our study, the whole algorithm is run for 100 iterations
because visual result hardly changes for further iterations and within each iterations
CONVEF_AD is run for three iterations. The CONVEF parameters: n = 5, h = 15
and the size of the kernel are defined to be one fourth of the test size images. In
Eq. (14), E is calculated before the evolution of image, only ∇f has to be computed
directly from the estimated image while the original Eq. (12) needs to compute the
second-order derivative. The value of balancing parameter λ was set to 1 for each
test case and the value of diffusion coefficient (Kappa) used by proposed
CONVEF-AD based prior was calculated by using Eq. (16) for different test cases,
within each iteration during sinogram smoothing. Update the value of the estimated
image pixel-by-pixel using Eq. (17) until it reaches to a relative convergence. The
reconstructed images produced by different algorithms have shown in Figs. 1d–f
and 3d–f, respectively. From the figures, it can be observed that proposed method
performs better in terms of noise removal as well as preservation of weak edges and
structural fine detailed information. Also notice that, proposed method reduces the
streaking artifacts and the results are close to the original phantom test cases. The
graphs are plotted for different quantitative measures like SNR, RMSE, CP, and
MSSIM for different algorithms as shown in Fig. 3a–d for both test cases. From

Fig. 2 The reconstructed results of CT phantom with different reconstruction methods from the
noisy sinogram data. a original Shepp–Logan phantom, b noise free sinogram, c noisy sinogram,
d reconstructed image by TV+FBP, e reconstructed result by AD+FBP, and f reconstructed result
by CONVEF_AD+FBP
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Fig. 3a, it is observed that the SNR values associated with the proposed method are
always higher than that produced by other algorithms such as Total Variation
(TV) [5] and Anisotropic Diffusion (AD) [6] priors with traditional filtered back-
projection (FBP), which indicates that the CONVEF-AD with FBP framework
significantly improves the quality of reconstruction in terms of different quantitative
measures like SNR, RMSE, CP, and MSSIM values. Figure 3b, shows that the
RMSE values of proposed method are higher in comparison to other methods which
indicate CONVEF-AD with FBP performs better than other methods. Figure 3c
shows that the CP values of CONVEF-AD with FBP method are higher and close
to unity in comparison to other methods which indicate that the CONVEF-AD with
FBP framework is also well capable of preserving the fine edges and detailed
structures during the reconstruction process. Figure 3d, shows that the MSSIM
values of proposed method is higher which indicate better reconstruction; it also
preserves the luminance, contrast, and other details of the image during the
reconstruction processes. Table 1 shows that the quantification values of SNRs,
RMSEs, CPs, and MSSIMs for both the test cases, respectively. The comparison
tables indicate that proposed method produces images with prefect quality than
other reconstruction methods in consideration.
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Fig. 3 The plots of a SNR, b RMSE, c CP, and d MSSIM of proposed and other models for Test
case 1
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5 Conclusions

This paper proposes an efficient method for low-dose X-ray CT reconstruction
using statistical sinogram restoration techniques. The proposed method has been
modeled into a variational framework. The solution of the method, based on
minimization of an energy functional, consists of two terms, viz., data fidelity term
and a regularization function. The data fidelity term was obtained by minimizing the
negative log likelihood of the noise distribution modeled as Gaussian probability
distribution as well as Poisson distribution which depicts the noise distribution in
low-dose X-ray CT. The regularization term is nonlinear CONVEF-AD based filter
which is a version of Perona–Malik (P–M) anisotropic diffusion filter. The proposed
method was capable of dealing with mixed noise. The comparative study and
performance evaluation of the proposed method exhibit better mixed noise removal
capability than other methods in low-dose X-ray CT.
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