
Selecting Seeds for Competitive Influence
Spread Maximization in Social Networks

Hong Wu1,2, Weiyi Liu1, Kun Yue1(&), Jin Li3, and Weipeng Huang1

1 School of Information Science and Engineering,
Yunnan University, Kunming, China

kyue@ynu.edu.cn
2 School of Computer Science and Engineering,

Qujing Normal University, Qujing, China
3 School of Software, Yunnan University, Kunming, China

Abstract. There exist two or more competing products in viral marketing, and
the companies can exploit the social interactions of users to propagate the
awareness of products. In this paper, we focus on selecting seeds for maximizing
the competitive influence spread in social networks. First, we establish the
possible graphs based on the propagation probability of edges, and then we use
the competitive influence spread model (CISM) to model the competitive spread
under the possible graph. Further, we consider the objective function of
selecting k seeds of one product under the CISM when the seeds of another
product have been known, which is monotone and submodular, and thus we use
the CELF (cost-effective lazy forward) algorithm to accelerate the greedy
algorithm that can approximate the optimal with 1 − 1/e. Experimental results
verify the feasibility and effectiveness of our method.
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1 Introduction

Social networks play an important role as a media for the spread of various information.
For example, the diffusion of disease [1], viruses and even malicious rumors propaga-
tion [2–4], the information of product diffusion through the viral marketing [5, 6], etc.
Understanding the dynamics of these networks may help us to control the disease (or
computer viruses), minimize the spread of rumors and promote products. In this paper,
we take the product promotion of social networks (i.e. viral marketing) as the back-
ground. Viral marketing takes the advantage of “word-of-mouth” among the relation-
ships of individuals to spread the influence of products. The spread of viral marketing in
a social network can be described as follows. First, we select some initial nodes (i.e.,
seeds) with free samples or provide the information of products. Then these initial nodes
will tell the information of products to their friends, who then tell it to their friends and
so on, which is called as cascade spread. Finally, a large portion of nodes will be
influenced by these seeds [5].
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It is known that how to select these seeds to maximize the influence spread is the
problem of influence maximization. Domingos and Richardson [7] considered the
influence maximization as an algorithmic problem, where the customer network was
modeled as a graph and a Markov random field was used to calculate influence
propagation among them. Kempe et al. [8] formulated the influence maximization as a
discrete optimization problem and proposed two diffusion models based on the early
work [9–12]: Independent cascade model (ICM) and linear threshold model (LTM),
under which the focus is to select k seeds to maximize the influence spread. The
problem is clearly NP hard, but the greedy algorithm can be used to approximate the
optimal result based on the submodularity.

Focusing on how to design a new heuristic algorithm that is easily scalable to
large-scale social networks, some researchers have improved the scalability of the
Kempe et al.’s greedy algorithm for influence maximization [14–19]. From the per-
spective of challenges in the studies of influence maximization, there frequently exists
competition among the influences of two or more ideas or product information in a
social network [20–23], such as the same product of competing companies Apple and
Samsung or two political candidates of the opposing parties Bush and Hillary and so
on. They all want to attract people’s attention and spread their influence as much as
possible in a social network. Thus, it is necessary to select the initial nodes to spread
the influence via the relationships among individuals, exactly the problem that we will
solve in this paper.

In our study, we focus on the problem of selecting the seeds for maximizing the
competitive influence spread in a social network, that is, how to select k seeds to
maximize the competitive influence spread under certain diffusion model given the
seed set of competing product IB and the budget k of one product? For this purpose, we
consider the following problems:

(1) How to construct the spread model of competitive influence spread?
(2) How to select the k seeds?

We first denote the social network as a directed graph G = (V, E), where V is the set
of nodes representing individuals and E is the set of directed edges representing
relationships among the individuals. Each edge e(u, v) in G is associated with a
propagation probability p(u, v), where 0 < p(u, v) � 1.

For the problem (1), it is natural to consider the classical IC model, a popular
influence diffusion model that describes how influence is propagated throughout the
network starting from the initial seed nodes. Chen et al. [25] has proved that computing
the influence spread given a seed set under the IC model is #P-hard, where the hardness
of calculating the influence is due to the probability P(u, v) of edge e(u, v). If the
probability of each edge is deterministic (i.e., the probability of each edge is exactly 1),
then the breadth-first-search (BFS) can be used to obtain the influenced nodes incurred
by a seed set. Therefore, the linear-time algorithm for computing the influence spread
can be obtained in a deterministic graph [26]. In this paper, we can take advantage of
possible graphs to effectively obtain the active nodes of the competitive influence
spread. We first select top possible graphs from all possible graphs to effectively
approximate the optimal result. We further give the competitive influence spread model
(CISM) to describe the competitive diffusion process in a possible graph, where the
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competitive information diffusion process can be well reflected. The construction of
CISM can be described as follows. Initially, two sets of nodes in the social network are
selected as the seeds of A and B respectively, which are then activated, denoted as
A-activated and B-activated respectively. At each step, the nodes of A-activated and
B-activated try to activate their out-neighbors with probability 1 by the “live-edge” in
possible graph, and the influence that A dominates.

For the problem (2), the optimization problem for selecting the most effective
k seeds given the seed set of B is NP hard under the CISM. This objective function is
monotone and submodular, and propose the CELF algorithm to approximately solve
the problem of maximization competitive influence with 1 − 1/e. The CELF algorithm
is an accelerated algorithm, which can avoid evaluations when they are not necessary.
The CISM with the CELF algorithm selects a currently best seed iteratively from
V − IB starting from an empty set, which can maximize the competitive influence
spread until k seeds are selected.

To test the efficiency and effectiveness of the proposed CELF algorithm for the
CISM under the possible graphs, we implement our algorithms and make corre-
sponding experiments to show the feasibility.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
idea to obtain the possible graphs. In Sect. 3, we give the competitive influence spread
model of the possible graph. In Sect. 4, we exploit the approximate algorithm to
maximize the competitive influence spread. In Sect. 5, we show experimental results
and performance studies. Finally in Sect. 6, we conclude and discuss further work.

2 Generating Possible Graphs

In a social network, the process of calculating the influence spread under the IC model
and LT model is #P-hard when the seed set has been given. Similarly, in this paper, the
process of calculating the influence of A under the IC model and LT model is also
#P-hard given the seed set IB and IA. The hardness derives from the calculation of PA

uv

and PB
uv of edge e(u, v). Therefore, we exploit the approximate algorithm to calculate

the influence of A and that of B simultaneously.
Hu et al. [17] proposed possible graphs, similar to the subgraphs proposed by Chen

et al. [24], where the possible graphs are generated by the following idea.
For a given directed graph G = (V, E, P), the number of nodes (or resp. edges) is

n (or resp. m), and there are 2m “live-edge” and “block-edge” possible graphs in G. Let
G0 ¼ ðV 0;E0Þ denote a possible graph of G, where V 0 ¼ V , E0�E, P0ðeÞ ¼ 1 for all
e 2 E0. The existence probability of possible graph G0 is as follows [24].

PðG0Þ ¼
Y

e2G0
PðeÞ �

Y

e02GnG0
ð1� Pðe0ÞÞ ð1Þ

Based on the work in [17, 24], we propose the method for calculating the probability
of each possible graph of competitive influence spread, in which each edge e(u, v) has
two diffusion probabilities, PA

uv and PB
uv. In order to generate the possible graphs of
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competitive influence spread, we consider the following two situations: PA
uv 6¼ PB

uv and
PA
uv ¼ PB

uv.
If PA

uv 6¼ PB
uv, then the existence probability of possible graph G0

A (or resp. G0
B)

equals to the product of probabilities of all the edges G0
A (or resp. G0

B), formally
described as

PðG0
AÞ ¼

Y

e2G0
A

PðeÞ �
Y

e02GnG0
A

ð1� Pðe0ÞÞ ð2Þ

PðG0
BÞ ¼

Y

e2G0
B

PðeÞ �
Y

e02GnG0
B

ð1� Pðe0ÞÞ ð3Þ

If PA
uv ¼ PB

uv, then the probability of each possible graph can be described as

PðG0
AÞ ¼ PrðG0

BÞ ¼
Y

e2G0
A

PðeÞ �
Y

e02GnG0
A

ð1� Pðe0ÞÞ ¼
Y

e2G0
B

PðeÞ �
Y

e02GnG0
B

ð1� Pðe0ÞÞ ð4Þ

In this paper, we assume PA
uv ¼ PB

uv, which can be easily extended to PA
uv 6¼ PB

uv.

Example 1. In Fig. 1(a), v1 is selected as the seed at step t = 0. At step t = 1, v1 tries to
active v2 and v3, and v1 successfully active v3, but v1 fails to active v2. In Fig. 1(b), the
edge e(v1, v3) is called as “live-edge”, and the edge e(v1, v2) is called as “block-edge”.

Based on Eq. (1), we can obtain the probability of possible graph G0 as follows:

PðG0Þ ¼ Pðv1; v3Þ � Pðv3; v2Þ � ð1� Pðv1; v2ÞÞ � ð1� Pðv2; v3ÞÞ � ð1� Pðv2; v4ÞÞ � ð1� Pðv3; v4ÞÞ
¼ 0:06048

V1

V2 V3

V4
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V4
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0.4
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V1

V2 V3

V4

(a) original graph (b) t 1 (c) The possible graph

Fig. 1. Example of “live-edge” or “block-edge” graph and possible graph. In (a) and (b), green
nodes denote the active nodes, and white nodes denote inactive nodes. A solid green arc from
node v1 to v3 means that v1 successfully activates v3 through this arc. A dotted green arc from
node v1 to v2 means that v1 fails activates v2. (c) is the possible graph of G obtained by (a), where
V 0 ¼ V , and E0 ¼ feðv1; v3Þ; eðv2; v3Þg�E. (Color figure online)
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3 The Competitive Influence Spread Model

We now give the diffusion model of the possible graph for competitive influence spread.
In a possible graph G0 ¼ ðV 0;E0Þ, the diffusion probability of each product by

“live-edge” is PA
ðu0;v0Þ and PB

ðu0;v0Þ, where PA
ðu0;v0Þ ¼ PA

ðu0;v0Þ ¼ 1. We can describe the

competitive influence spread model (CISM) of possible graph as follows.
In the CISM, each node has three states, A-activated (i.e., individual buys product A),

B-activated (i.e., individual buys product B), and inactive. In every step, each activated
node tries to active its out-neighbors by the live-edge of A and B based on the following
rules. The discrete time step t = 0, 1, 2, …, n is used to describe the diffusion process.

At step t = 0, the seed sets IA, IB�V are activated and IA \ IB = /.
Let ItA�V and ItB�V be the sets of nodes activated by IA and IB respectively at step t.
At step t + 1, for any node v 2 NoutðItA [ ItBÞ, where v 2 NoutðItA [ ItBÞ denotes

out-neighbors of ItA [ ItB. We consider the following four situations:

(a) If the node v is only be reached by the “live-edges” from ItA, then v is added into I
tþ 1
A .

(b) If the node v is only be reached ItB by the “live-edges” from ItB, then v is added into
Itþ 1
B .

(c) If the node v can be reached by “live-edges” from ItA and ItB, then the influence of
A dominates and thus node v is added into Itþ 1

A .
(d) If the node v cannot be reached by “live-edges” from ItA and ItB, then the influence

of A and B to node v is “block”, and thus v is inactive.

The activation process stops when there are no new active nodes in a time step.

Example 2. Now we give an example of CISM in Fig. 2. Figure 2(a) is the possible
graph G0, where e(v1, v3), e(v2, v3), e(v2, v4), and e(v3, v4) are the “live-edges”, and e(v1,
v2) and e(v3, v2) are the “block-edges”. In Fig. 2(b), v2, as the seed of B, can reach nodes
v3 and v4 by the “live-edge” following the CISM. In Fig. 2(c), v2, as the seed of B, and
v3, as the seed of A, reach v4 by the “live-edge”, and v4 is activated by v3 following the
CISM.

V1

V2 V3

V4

V1

V2 V3

V4

V1

V2 V3

V4

(a) The possible graph G (b) IB {v2} (c) IB={v2}, IA={v3}

Fig. 2. Example of CISM
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4 Maximizing the Competitive Influence Spread

In this Section, we discuss the objective function that selects k seeds of A under the
CISM, when the seeds of B have been known.

4.1 Objective Function for Competitive Influence Spread

We use Formula (4) to compute the probability P(Gi) of each Gi obtained in Sect. 2. In
a possible graph Gi, we compute the expectation value rGiðIA; IBÞ of each Gi, that is, we
compute the number of nodes activated by IA under the CISM when the seed set IA and
IB are spread simultaneously. The objective function of graph G can be formally
described as follows.

rGðIA; IBÞ ¼
Xm

i¼1

PrðGiÞ � rGiðIA; IBÞ ð5Þ

Selecting k optimal nodes to maximize their influence when the initial nodes IB
have been known under the CISM is NP hard. The objective function rG(SA, IB) is
monotone and submodular under the CISM and rG(/, IB) = 0. Based on the theorem
given by Nemhauser et al. [13], we can use a greedy algorithm to approximate the
optimal result with 1 − 1/e (where e is the base of natural logarithm).

4.2 Approximate Algorithm for Maximizing the Competitive Influence
Spread

According to the conclusion in Sect. 4.1, we adopt the CELF algorithm proposed by
Leskovec et al. [14] to select the seeds of A. In Algorithm 1, we select the most
effective seed of A from V − IB in each iteration, until k seeds are selected.

First, we describe the basic idea of the algorithm as follows.
Let rGðujIA; IBÞ denote the marginal gain of node u added into the seed set IA when

the seed set IB spreads simultaneously, that is, rGðujIA; IBÞ ¼ rGðIA [fug; IBÞ�
rGðIA; IBÞ.

In the first iteration, we select the first element of Q into the seed set IA.
In the i-th iteration (1 < i � k), if rGðvijjIA; IBÞ is not smaller than the margin gain

of all the other nodes vl (vl 2 V\vj [ IA′ [ IB) added into the set IA0 in the earlier
iteration, i.e., rGðvijjIA; IBÞ� rGðvi¼1:i�1

l jIA0 ; IBÞ; IA0 � IA, which means that vl does not
need to be computed in the i-th iteration, and thus vj is added into IA, where
rGðvi¼1:i�1

l jIA0 ; IBÞ represents the margin gain of vl added into the subset of IA0 in the
earlier iteration.

In the i-th iteration (1 < i � k), if rGðvijjIA; IBÞ is not smaller than the margin gain of
some nodes vl (vl 2 V\vj [ IA [ IB) added into IA0 in the earlier iteration, but it is not
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larger than the margin gain of other nodes vm (vm 2 V\vj [ IA [ IB) added into the set
IA0 in the earlier iteration, i.e., rGðvi¼1:i�1

l jIA0 ; IBÞ\rGðvijjIA; IBÞ\rGðvi¼1:i�1
m jIA0 ; IBÞ.

Then we need compute the margin gain of these nodes vm added into IA in the i-th
iteration, and select the node with the maximal value of rGðviljIA; IBÞ as the seed of A.
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Leskovec et al. [14] empirically showed that the CELF algorithm can provide 700
times of speed-up for greedy algorithm. Therefore, Algorithm 1 is 700 times faster
when compared to the greedy algorithm. The time complexity of greedy algorithm is O
(RKnm), where R, k, n and m is the number of possible graphs, seeds, nodes and edges
respectively.

5 Experimental Results

To test the feasibility and effectiveness of maximizing the competitive influence spread
under the CISM in the possible graphs, we conduct experiments on four real-world
datasets.

5.1 Experiment Setup

The NetHEPT and Ca-GrQc are Collaboration networks extracted from the ePrint
arXiv (http://www.arXiv.org), which is the same source used in the experimental study
in [8]. The former is extracted from the “High Energy Physics-Theory” and the latter is
extracted from the General Relativity. The nodes in these two networks are authors and
an edge between two nodes means the two coauthored at least one paper. The
p2p-Gnutella08 record the Gnutella peer to peer network from August 8 2002 where
nodes represent hosts in the Gnutella network topology and edges represent connec-
tions between the Gnutella hosts. The Wiki-Vote is directed graph that Wikipedia users
vote the administrators, where the nodes represent Wikipedia users and a directed edge
from node u to node v represents that user u voted on user v.

We use the trivalency cascade model [16] to generate the influence weight of edges.
On each edge, we uniformly at random select a probability from {0.33, 0.66, 0.99},
corresponding to high, medium, low influences.

In order to measure the spread effectiveness of influence for different target sets, we
compared the CELF algorithm for competitive influence spread with the max-degree
heuristic and random heuristic on the above four datasets. The CELF algorithm for
competitive influence spread chooses the seeds by Algorithm 1. The max-degree
heuristic chooses nodes with the largest degree as the product seeds of A. The random
heuristic randomly chooses nodes as the product seeds of A.

In order to exploit the relationship of ration of the number of B (i.e., product
B) seeds to the number of A (i.e., product A) seeds (i.e., |IB|/|IA|) with the A-activated
nodes, we considered the A-activated nodes under the value of |IB|/|IA| from 0.1 to 1
when the seed set IB is fixed.

First, we tested the effectiveness of Algorithm 1. In this experiment, we select 10
seeds with random algorithm as the initial seeds of B and select 30 seeds of A with the
Algorithm 1, max-degree and random algorithm to maximize the spread of A in
NetHEPT, ca-GrQc, p2p-Gnutella08 and Wiki-Vote networks. Figure 3 shows that the
CELF algorithm outperforms the max-degree algorithm and the random algorithm.
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This is because some of max-degree seed nodes may be clustered, and selecting all of
them as the seeds of A cannot effectively spread the influence of A. By the random
heuristic, as a baseline heuristic algorithm, some of selected seeds cannot spread the
influence effectively.

Then, we tested the number of IB to the number of IA (i.e., |IB|/|IA|) with the
A-activated nodes. In this experiment, we chose 3000, 2598, 3000, 1369 nodes and
7494, 9958, 9014, 16373 edges from NetHEPT, ca-GrQc, p2p-Gnutella08 and
wiki-Vote networks respectively and generate four synthetic networks, which are called
as NetHEPT-new, ca-GrQc-new, p2p-Gnutella08-new, and Wiki-Vote-new respec-
tively. We select 5, 10 and 15 seeds by the random heuristic as the initial seeds of
B respectively and set the value of |IB|/|IA| from 0.1 to 1 to maximize the influence
spread of A with the Algorithm 1. Figure 4 shows that the number of A-activated nodes
is decreased with the increase of the value of |IB|/|IA| when the seeds of B are fixed. This
is because the value of |IB|/|IA| is decreased when the seed set of IA is increased, and thus
the number of A-activated nodes is increase.
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Fig. 3. A-activated nodes of different algorithms
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6 Conclusions and Future Work

Aiming at the effective of selecting seeds for the competitive influence maximization,
we proposed the CISM under the possible graph, under which we can obtain the active
nodes by the BFS. The possible graph can overcome the hardness of calculating the
influence probability of a social network, and the CISM can well reflect the process of
competitive influence. Further, we gave the submodular function and CELF algorithm
for solving the problem of competitive influence maximization, which exploit the
submodularity to accelerate the Greedy algorithm.

The CELF algorithm for a possible graph proposed in this paper can select seeds for
competitive influence maximization. However, the CELF algorithm is not effective for
large scale social networks. For our future work, we plan to explore more effective
algorithms for the competitive influence maximization under the possible graphs. Other
than the effectiveness, one interesting direction is to consider the influence quality of
competitive products, and another interesting direction is to consider asynchronous
product spread in a social network.
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Fig. 4. The A-activated nodes with the value of |IB|/|IA| from 0.1 to 1
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